2019届江苏省泰州、南通、扬州、苏北四市七市高三第二次模拟考试 数学(理)
2019届高三数学二模考试试题理(含解析)
2019届高三数学二模考试试题理(含解析)一、选择题1.已知是虚数单位,复数的共轭复数是()A. B. C. 1 D. -1【答案】B【解析】【分析】先把复数化简,然后可求它的共轭复数.【详解】因为,所以共轭复数就是.故选:B.【点睛】本题主要考查复数的运算及共轭复数的求解,把复数化到最简形式是求解的关键,侧重考查数学运算的核心素养. 2.已知集合,则满足的集合的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先求解集合,然后根据可求集合的个数.【详解】因为,,所以集合可能是.故选:A.【点睛】本题主要考查集合的运算,化简求解集合是解决这类问题的关键,侧重考查数学运算的核心素养.3.设向量,满足,,则()A. -2B. 1C. -1D. 2【答案】C【解析】【分析】由平面向量模的运算可得:,①,②,则①②即可得解.【详解】因为向量,满足,,所以,①,②由①②得:,即,故选:.【点睛】本题主要考查了平面向量模和数量积的运算,意在考查学生对这些知识的理解掌握水平,属基础题.4.定义运算,则函数的大致图象是()A. B.C. D.【答案】A【解析】【分析】图象题应用排除法比较简单,先根据函数为奇函数排除、;再根据函数的单调性排除选项,即可得到答案.【详解】根据题意得,且函数为奇函数,排除、;;当时,,令,令,函数在上是先递减再递增的,排除选项;故选:.【点睛】本题主要考查了函数的奇偶性与单调性的判断,考查根据解析式找图象,意在考查学生对这些知识的理解掌握水平,属于基础题.5.已知圆:,定点,直线:,则“点在圆外”是“直线与圆相交”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】通过圆心到直线的距离与圆的半径进行比较可得.【详解】若点在圆外,则,圆心到直线:的距离,此时直线与圆相交;若直线与圆相交,则,即,此时点在圆外.故选:C.【点睛】本题主要考查以直线和圆的位置关系为背景的条件的判定,明确直线和圆位置关系的代数表示是求解的关键,侧重考查逻辑推理的核心素养.6.某程序框图如图所示,若输入的,则输出的值是()A. B.C. D.【答案】D【解析】分析】按照程序框图的流程,写出前五次循环的结果,直到第六次不满足判断框中的条件,执行输出结果.【详解】经过第一次循环得到经过第二次循环得到经过第三次循环得到经过第四次循环得到经过第五次循环得到经过第六次循环得到此时,不满足判断框中的条件,执行输出故输出结果为故选:.【点睛】本题主要考查解决程序框图中的循环结构,常按照程序框图的流程,采用写出前几次循环的结果,找规律.7.在公差不等于零的等差数列中,,且,,成等比数列,则()A. 4B. 18C. 24D. 16【答案】D【解析】【分析】根据,,成等比数列可求公差,然后可得.【详解】设等差数列的公差为,因为,,成等比数列,所以,即有,解得,(舍),所以.故选:D.【点睛】本题主要考查等差数列的通项公式,根据已知条件构建等量关系是求解的关键,侧重考查数学运算的核心素养. 8.已知,为椭圆的左右焦点,点在上(不与顶点重合),为等腰直角三角形,则的离心率为()A. B. C. D.【答案】B【解析】【分析】先根据为等腰直角三角形可得,结合椭圆的定义可求离心率.【详解】由题意等腰直角三角形,不妨设,则,由椭圆的定义可得,解得.故选:B.【点睛】本题主要考查椭圆离心率的求解,离心率问题的求解关键是构建间的关系式,侧重考查数学运算的核心素养.9.若三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.C. D.【答案】D【解析】【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【详解】根据三视图可知几何体是一个三棱锥,由俯视图和侧视图知,底面是一个直角三角形,两条直角边分别是、4,由正视图知,三棱锥的高是4,该几何体的体积,故选:.【点睛】本题主要考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.10.若的展开式中的各项系数的和为1,则该展开式中的常数项为()A. 672B. -672C. 5376D. -5376【答案】A【解析】【分析】先根据的展开式中的各项系数的和为1,求解,然后利用通项公式可得常数项.【详解】因为的展开式中的各项系数的和为1,所以,即;的通项公式为,令得,所以展开式中的常数项为.【点睛】本题主要考查二项式定理展开式的常数项,利用通项公式是求解特定项的关键,侧重考查数学运算的核心素养.11.已知函数,则的最大值为()A. 1B.C.D. 2【答案】B【解析】【分析】先化简函数,然后利用解析式的特点求解最大值.【详解】,因为,所以.故选:B.【点睛】本题主要考查三角函数的最值问题,三角函数的最值问题主要是先化简为最简形式,结合解析式的特点进行求解.12.将边长为2的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为()A. B. C. D.【答案】C【解析】【分析】由弧长公式可得,,由异面直线所成角的作法可得为异面直线与所成角,再求解即可.【详解】由弧长公式可知,,在底面圆周上去点且,则面,连接,,,则即为异面直线与所成角,又,,所以,故选:.【点睛】本题主要考查了弧长公式及异面直线所成角的作法,考查了空间位置关系的证明,意在考查学生对这些知识的理解掌握水平.二、填空题13.向平面区域内随机投入一点,则该点落在曲线下方概率为______.【答案】【解析】【分析】由题意画出图形,分别求出正方形及阴影部分的面积,再由几何概型概率面积比得答案.【详解】作出平面区域,及曲线如图,,.向平面区域,内随机投入一点,则该点落在曲线下方的概率为.故答案为:.【点睛】本题主要考查几何概型概率的求法,考查数形结合的解题思想方法,意在考查学生对这些知识的理解掌握水平.14.设,满足约束条件,则的取值范围是______.【答案】【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的取值范围.【详解】作出,满足约束条件,则对应的平面区域(阴影部分),由,得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.此时的最大值为,由图象可知当直线经过点时,直线的截距最小,此时最小.此时的最小值为,故答案为:,.【点睛】本题主要考查线性规划的应用,意在考查学生对这些知识的理解掌握水平,利用数形结合是解决线性规划题目的常用方法.15.设等差数列的前项和为,若,,,则______.【答案】8【解析】【分析】根据等差数列的通项公式及求和公式可得.【详解】因为,所以,因为,所以,设等差数列的公差为,则,解得,由得,解得.故答案为:8.【点睛】本题主要考查等差数列的基本量的运算,熟记相关的求解公式是求解的关键,侧重考查数学运算的核心素养.16.若直线既是曲线的切线,又是曲线的切线,则______.【答案】1【解析】【分析】分别设出两个切点,根据导数的几何意义可求.详解】设直线与曲线相切于点,直线与曲线相切于点,则且,解得;同理可得且,解得;故答案为:1.【点睛】本题主要考查导数的几何意义,设出切点建立等量关系式是求解的关键,侧重考查数学运算的核心素养.三、解答题17.在中,内角,,的对边分别为,,,已知.(1)若,求和;(2)求的最小值.【答案】(1),(2)【解析】【分析】(1)利用已知条件求出的余弦函数值,然后求解的值,然后求解三角形的面积;(2)通过余弦定理结合三角形的面积转化求解即可.【详解】(1)因为,代入,得,所以,,由正弦定理得,所以,.(2)把余弦定理代入,得,解得.再由余弦定理得.当且仅当,即时,取最小值.【点睛】本题主要考查三角形的解法、正余弦定理的应用、三角形的面积以及基本不等式的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,是中档题.18.一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:温度21产卵数/7个为了预报一只红玲虫在时的产卵数,根据表中的数据建立了与的两个回归模型.模型①:先建立与的指数回归方程,然后通过对数变换,把指数关系变为与的线性回归方程:;模型②:先建立与的二次回归方程,然后通过变换,把二次关系变为与的线性回归方程:.(1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数;,,;,,,,,,)【答案】(1),(2)模型①得到的预测值更可靠,理由见解析【解析】【分析】(1)把分别代入两个模型求解即可;(2)通过残差及相关指数的大小进行判定比较.【详解】(1)当时,根据模型①,得,,根据模型②,得.(2)模型①得到的预测值更可靠.理由1:因为模型①的残差平方和小于模型②的残差平方和,所以模型①得到的预测值比模型②得到的预测值更可靠;理由2:模型①的相关指数大于模型②的相关指数,所以模型①得到的预测值比模型②得到的预测值更可靠;理由3:因为由模型①,根据变换后的线性回归方程计算得到的样本点分布在一条直线的附近;而由模型②,根据变换后的线性回归方程得到的样本点不分布在一条直线的周围,因此模型②不适宜用来拟合与的关系;所以模型①得到的预测值比模型②得到的预测值更可靠.(注:以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得)【点睛】本题主要考查回归分析,模型拟合程度可以通过两个指标来判别,一是残差,残差平方和越小,拟合程度越高;二是相关指数,相关指数越接近1,则拟合程度越高.19.如图,在四棱锥中,已知底面,,,,,是上一点.(1)求证:平面平面;(2)若是的中点,且二面角的余弦值是,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)先证明平面,然后可得平面平面;(2)建立坐标系,根据二面角的余弦值是可得的长度,然后可求直线与平面所成角的正弦值.【详解】(1)平面,平面,得.又,在中,得,设中点为,连接,则四边形为边长为1的正方形,所以,且,因为,所以,又因为,所以平面,又平面,所以平面平面.(2)以为坐标原点,分别以射线、射线为轴和轴的正方向,建立如图空间直角坐标系,则,,.又设,则,,,,.由且知,为平面的一个法向量.设为平面的一个法向量,则,即,取,,则,有,得,从而,.设直线与平面所成的角为,则.即直线与平面所成角的正弦值为.【点睛】本题主要考查空间平面与平面垂直及线面角的求解,平面与平面垂直一般转化为线面垂直来处理,空间中的角的问题一般是利用空间向量来求解.20.设为抛物线:的焦点,是上一点,的延长线交轴于点,为的中点,且.(1)求抛物线的方程;(2)过作两条互相垂直的直线,,直线与交于,两点,直线与交于,两点,求四边形面积的最小值.【答案】(1)(2)32【解析】【分析】(1)由题意画出图形,结合已知条件列式求得,则抛物线的方程可求;(2)由已知直线的斜率存在且不为0,设其方程为,与抛物线方程联立,求出,,可得四边形的面积,利用基本不等式求最值.【详解】(1)如图,为的中点,到轴的距离为,,解得.抛物线的方程为;(2)由已知直线的斜率存在且不为0,设其方程为.由,得.△,设,、,,则;同理设,、,,,则.四边形的面积.当且仅当时,四边形的面积取得最小值32.线相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.21.是自然对数的底数,已知函数,.(1)求函数的最小值;(2)函数在上能否恰有两个零点?证明你结论.【答案】(1)(2)能够恰有两个零点,证明见解析【解析】【分析】(1)先求导数,再求极值。
江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学试题及答案
绝密★启用前江苏省南通、泰州、扬州及苏北四市2019届高三毕业班第二次模拟联合考试数学试题(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={1,3,a},B ={4,5},若A ∩B ={4},则实数a 的值为________.2. 复数z =2i 2+i(i 为虚数单位)的实部为________. 3. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.4. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.5. 执行如图所示的伪代码,则输出的S 的值为________.i ←1S ←2While i<7S ←S ×ii ←i +2End WhilePrint S6. 函数y =4x -16的定义域为________.7. 将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f(x)的图象,则f ⎝⎛⎭⎫π3的值为________.8. 在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为2,则b 的值为________.9. 在△ABC 中,已知C =120°,sin B =2sin A,且△ABC 的面积为23,则AB 的长为________.10. 设P,A,B,C 为球O 表面上的四个点,PA,PB,PC 两两垂直,且PA =2m ,PB =3m ,PC =4m ,则球O 的表面积为________m 2.11. 定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上,f (x )=⎩⎪⎨⎪⎧2-x ,2≤x <3,x -4,3≤x <4,则函数y =f (x )-log 5|x |的零点的个数为________.12. 已知关于x 的不等式ax 2+bx +c>0(a,b,c ∈R ) 的解集为{x |3<x <4},则c 2+5a +b 的最小值为________.13. 在平面直角坐标系xOy 中,已知点A,B 在圆x 2+y 2=4上,且AB =22,点P(3,-1),PO →·(PA →+PB →)=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________.14. 已知集合A ={x|x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos α,sin α),b =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,cos ⎝⎛⎭⎫α+π6,其中0<α<π2. (1) 若a ∥b ,求α的值;(2) 若tan2α=-17,求a ·b 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D,B 1C 与BC 1交于点E.求证:(1) DE ∥平面ABB 1A 1;(2) BC 1⊥平面A 1B 1C.。
【精品试题】【市级联考】江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考
2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为 35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C 120°,sinB 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA 2 m,PB 3 m,PC4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA 2 m,PB 3 m,PC 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O 的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(31),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量 , ,其中.(1)若∥,求的值; (2)若,求的值.【答案】(1);(2)【解析】 【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥, 所以,所以.因为,所以.于是 解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题 16.如图所示,在直三棱柱ABC A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E .求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB ABB1 A1,DE ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.又因为BC1BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C A1B1C,所以BC1⊥平面A1B1C.【点睛】本题考查线面平行的证明,线面垂直的判定,熟记判断定理,准确推理是关键,是基础题.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD 和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ABCD,得FH⊥HM.在Rt△FHM中,HM 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.①射线与椭圆C1依次交于点,求证:为定值;②过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。
江苏省七市2019届高三第二次调研考试数学
2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ .【答案】4 2. 复数2i2iz =+(i 为虚数单位)的实部为 ▲ . 【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y =的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元 素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<. (1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分 因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分(2)因为π02α<<,所以02πα<<,又1tan 207α=-<,故π2π2α<<.因为sin 21tan 2cos 27ααα==-,所以cos27sin20αα=-<,又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分 因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos 2sin 66αα=+(12=⋅= ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.ABCA 1B 1C 1ED(第16题)又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C . 又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.①(第17题)②ABC DE F HMθ A BC DE F HMθ从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分 (2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()cos -=f θθθ,π04θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为22182y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA =,1PB =,则3PA PB =- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P x =从而||||3||||PA P A PB P A x x x x PA PB x x x x --====--+ 所以3PA PB =- ……………………………………………………………8分 ②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分(第18题)又点在00()P x y ,椭圆C 2:22182y x +=上,所以2200124y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立,即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x =. ………………………………………………10分法二:变形得0022x x x x ++≥在()0+∞,上恒成立 ,因为2x x+=≥x =时,等号成立),所以002x x +,从而(200x ≤,所以0x =.……………………………10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .22x a x a x x x x ax x x a x x ax x x a x x ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,,记1()2ln p t t t t =+-,则222(1)21()10t p t t t t-'=--=-<, 所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=.从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n , 且2340n n n S S T -+=,n *∈N .(1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分(2)因为2340n n n S S T -+=, ① 所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立, 所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分 若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12n n n ≤(*),从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2n n λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12n n n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t =+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分 所以AB =.…………………………………………………10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤.【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥ ……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤, 所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置. 【解】(1)由题意知,AB ,AD ,AP 两两垂直. 以{}AB AD AP uu u r uuu r uu u r,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,. 从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,uu r uu u r uu u r设平面PCD 的法向量()x y z =n ,,, 则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u ruu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,.所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分(第22题)设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉==⋅n n nuu ruu ruu r, 即直线PB 与平面PCD.……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,uuu r设PN PC λ=,uuu r uu u r 则()22PN λλλ=,,-,uuu r而(002)AP =,,,uu u r 所以(222)MN MA AP PN a λλλ=++=--uuu r uuu r uu u r uuu r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N ≥,,,,均为非负实数,且122n a a a +++=.证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L , 则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =…. 由归纳假设,知122311++++1k k k x x x x x x x x -≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++≥≥,即1223+1+11++++1k k k a a a a a a a a ≤,也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。
2019届江苏省泰州、南通、扬州、苏北四市七市高三第二次模拟考试 数学(理)(word版)
2019届江苏省泰州、南通、扬州、苏北四市七市高三第二次模拟数 学 理(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={1,3,a},B ={4,5},若A ∩B ={4},则实数a 的值为________.2. 复数z =2i2+i(i 为虚数单位)的实部为________.3. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.4. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.5. 执行如图所示的伪代码,则输出的S 的值为________. i ←1 S ←2 While i<7 S ←S ×i i ←i +2 End While Print S6. 函数y =4x -16的定义域为________.7. 将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f(x)的图象,则f ⎝⎛⎭⎫π3的值为________. 8. 在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为2,则b 的值为________.9. 在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为23,则AB 的长为________. 10. 设P ,A ,B ,C 为球O 表面上的四个点,PA ,PB ,PC 两两垂直,且PA =2m ,PB =3m ,PC =4m ,则球O 的表面积为________m 2.11. 定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上,f (x )=⎩⎪⎨⎪⎧2-x ,2≤x <3,x -4,3≤x <4,则函数y =f (x )-log 5|x |的零点的个数为________.12. 已知关于x 的不等式ax 2+bx +c>0(a ,b ,c ∈R ) 的解集为{x |3<x <4},则c 2+5a +b的最小值为________.13. 在平面直角坐标系xOy 中,已知点A ,B 在圆x 2+y 2=4上,且AB =22,点P(3,-1),PO →·(PA →+PB →)=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________.14. 已知集合A ={x|x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos α,sin α),b =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,cos ⎝⎛⎭⎫α+π6,其中0<α<π2. (1) 若a ∥b ,求α的值; (2) 若tan2α=-17,求a ·b 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E.求证:(1) DE ∥平面ABB 1A 1; (2) BC 1⊥平面A 1B 1C.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M.已知HM =5 m ,BC =10 m ,梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH =θ⎝⎛⎭⎫0<θ<π4. (1) 求屋顶面积S 关于θ的函数关系式;(2) 已知上部屋顶造价与屋顶面积成正比,比例系数为k(k 为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?①②如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证:k 1·k 2为定值.已知函数f(x)=2ln x +12x 2-ax ,a ∈R .(1) 当a =3时,求函数f (x )的极值;(2) 设函数f (x )在x =x 0处的切线方程为y =g (x ),若函数y =f (x )-g (x )是(0,+∞)上的单调增函数,求x 0的值;(3) 是否存在一条直线与函数y =f (x )的图象相切于两个不同的点?并说明理由.已知数列{a n}的各项均不为零.设数列{a n}的前n项和为S n,数列{a2n}的前n项和为T n,且3S2n-4S n +T n=0,n∈N*.(1) 求a1,a2的值;(2) 证明:数列{a n}是等比数列;(3) 若(λ-na n)(λ-na n+1)<0对任意的n∈N*恒成立,求实数λ的所有值.2019届高三年级第二次模拟考试(十二) 数学附加题(满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量α=⎣⎢⎡⎦⎥⎤11是矩阵M =⎣⎢⎡⎦⎥⎤1m 2n 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.B. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =t(t 为参数),椭圆C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数).设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.C. [选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且x 2+4y 2+z 2=16,求证:x +y +z ≤6.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=1,AP=AD=2.(1) 求直线PB与平面PCD所成角的正弦值;(2) 若点M,N分别在AB,PC上,且MN⊥平面PCD,试确定点M,N的位置.23. (本小题满分10分)已知a1,a2,…,a n(n∈N*,n≥4)均为非负实数,且a1+a2+…+a n=2.证明:(1) 当n=4时,a1a2+a2a3+a3a4+a4a1≤1;(2) 对于任意的n∈N*,n≥4,a1a2+a2a3+…+a n-1a n+a n a1≤1.2019届高三年级第二次模拟考试 (南通七市)数学参考答案1.42.253.354.23 5.30 6.[2,+∞) 7.-2 8.2 9.27 10.29π 11.5 12.4 513.1,15 14.4415.(1) 因为a ∥b ,所以cos αcos ⎝⎛⎭⎫α+π6-sin αsin ⎝⎛⎭⎫α+π6=0,(2分) 所以cos ⎝⎛⎭⎫2α+π6=0.(4分) 因为0<α<π2,所以π6<2α+π6<7π6,所以2α+π6=π2,解得α=π6.(6分)(2) 因为0<α<π2,所以0<2α<π.又tan2α=-17<0,故π2<2α<π.因为tan2α=sin2αcos2α=-17,所以cos2α=-7sin2α<0.又sin 22α+cos 22α=1, 解得sin2α=210,cos2α=-7210.(10分) 所以a ·b =cos αsin ⎝⎛⎭⎫α+π6+sin αcos ⎝⎛⎭⎫α+π6=sin ⎝⎛⎭⎫2α+π6(12分) =sin2αcos π6+cos2αsin π6=210·32+⎝⎛⎭⎫-7210·12=6-7220.(14分) 16.(1) 因为三棱柱ABCA 1B 1C 1为直三棱柱, 所以侧面ACC 1A 1为平行四边形. 又A 1C 与AC 1交于点D , 所以D 为AC 1的中点.同理,E 为BC 1的中点,所以DE ∥AB.(3分) 又AB ⊂平面ABB 1A 1,DE ⊄平面ABB 1A 1, 所以DE ∥平面ABB 1A 1.(6分)(2) 因为三棱柱ABCA 1B 1C 1为直三棱柱, 所以BB 1⊥平面A 1B 1C 1. 又因为A 1B 1⊂平面A 1B 1C 1, 所以BB 1⊥A 1B 1.(8分)又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1, BB 1∩B 1C 1=B 1,所以A 1B 1⊥平面BCC 1B 1.(10分) 又因为BC 1⊂平面BCC 1B 1, 所以A 1B 1⊥BC 1.(12分)又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C. 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1C , 所以BC 1⊥平面A 1B 1C.(14分)17.(1) 由题意得FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,所以FH ⊥HM.(2分) 在Rt △FHM 中,HM =5,∠FMH =θ, 所以FM =5cos θ,(4分) 所以△FBC 的面积为12×10×5cos θ=25cos θ,所以屋顶面积S =2S △FBC +2S 梯形ABFE =2×25cos θ+2×25cos θ×2.2=160cos θ,所以S 关于θ的函数关系式为S =160cos θ⎝⎛⎭⎫0<θ<π4.(6分) (2) 在Rt △FHM 中,FH =5tan θ,所以主体高度为h =6-5tan θ,(8分) 所以别墅总造价为 y =S·k +h·16k =160cos θ·k +(6-5tan θ)·16k =160cos θk -80sin θcos θk +96k=80k·⎝⎛⎭⎫2-sin θcos θ+96k(10分) 记f(θ)=2-sin θcos θ,0<θ<π4,所以f′(θ)=2sin θ-1cos 2θ, 令f′(θ)=0,得sin θ=12.又0<θ<π4,所以θ=π6.(12分)列表:所以当θ=π6时,f(θ)有最小值.故当θ为π6时该别墅总造价最低.(14分)18.(1) 设椭圆C 2的焦距为2c ,由题意,得a =22, c a =32,a 2=b 2+c 2, 解得b =2,所以椭圆C 2的标准方程为x 28+y 22=1.(3分)(2) ①1°当直线OP 的斜率不存在时,PA =2-1,PB =2+1,则PA PB =2-12+1=3-2 2.(4分) 2°当直线OP 的斜率存在时,设直线OP 的方程为y =kx , 代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P=84k 2+1,(6分) 所以x 2P =2x 2A ,由题意,得x P 与x A 同号,所以x P =2x A ,所以PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-22,所以PAPB=3-22为定值.(8分)②设P(x 0,y 0),所以直线l 1的方程为 y -y 0=k 1(x -x 0),即y =k 1x +k 1y 0-x 0, 记t =k 1y 0-x 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0. 因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2+1=0,将t =k 1y 0-x 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0, (12分)同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根, 所以k 1·k 2=y 20-1x 20-4.(14分)又点P(x 0,y 0)在椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 2, 所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)19.(1) 当a =3时,函数f(x)=2ln x +12x 2-3x 的定义域为(0,+∞),则f′(x)=2x +x -3=x 2-3x +2x ,令f′(x)=0,得x =1或x =2.(2分)列表:所以函数f(x)的极大值为f(1)=-52,极小值为f(2)=2ln 2-4.(4分)(2) 依题意,得切线方程为y =f′(x 0)(x -x 0)+f(x 0)(x 0>0), 所以g(x)=f′(x 0)(x -x 0)+f(x 0)(x 0>0), 记p(x)=f(x)-g(x),则p(x)=f(x)-f(x 0)-f′(x 0)(x -x 0)在(0,+∞)上为单调增函数, 所以p′(x)=f′(x)-f′(x 0)≥0在(0,+∞)上恒成立, 即p′(x)=2x -2x 0+x -x 0≥0在()0,+∞上恒成立.(8分)法一:变形得⎝⎛⎭⎫x -2x 0(x -x 0)≥0在(0,+∞)上恒成立, 所以2x 0=x 0,又x 0>0,所以x 0= 2.(10分)法二:变形得x +2x ≥x 0+2x 0在(0,+∞)上恒成立,因为x +2x≥2x·2x=22(当且仅当x =2时,等号成立), 所以22≥x 0+2x 0,所以()x 0-22≤0,所以x 0= 2.(10分)(3) 假设存在一条直线与函数f(x)的图象有两个不同的切点T 1(x 1,y 1),T 2(x 2,y 2), 不妨设0<x 1<x 2,则点T 1处切线l 1的方程为 y -f(x 1)=f′(x 1)(x -x 1), 点T 2处切线l 2的方程为 y -f(x 2)=f′(x 2)(x -x 2). 因为l 1,l 2为同一直线,所以⎩⎪⎨⎪⎧f′(x 1)=f′(x 2),f (x 1)-x 1f′(x 1)=f (x 2)-x 2f′(x 2),(12分)所以2x 1+x 1-a =2x 2+x 2-a ,2ln x 1+12x 21-ax 1-x 1⎝⎛⎭⎫2x 1+x 1-a =2ln x 2+12x 22-ax 2-x 2⎝⎛⎭⎫2x 2+x 2-a , 整理,得⎩⎪⎨⎪⎧x 1x 2=2,2ln x 1-12x 21=2ln x 2-12x 22,(14分)消去x 2,得2ln x 212+2x 21-x 212=0.①令t =x 212,由0<x 1<x 2与x 1x 2=2,得t ∈(0,1),记p(t)=2ln t +1t -t ,则p′(t)=2t -1t 2-1=-(t -1)2t 2<0,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0, 所以①式不可能成立,所以假设不成立,所以不存在一条直线与函数f(x)的图象有两个不同的切点.(16分)20.(1) 因为3S 2n -4S n +T n =0,n ∈N *.令n =1,得3a 21-4a 1+a 21=0. 因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0.因为a 2≠0,所以a 2=-12.(3分)(2) 因为3S 2n -4S n +T n =0,①所以3S 2n +1-4S n +1+T n +1=0,②②-①,得3(S n +1+S n )a n +1-4a n +1+a 2n +1=0, 因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,③ (5分)所以3(S n +S n -1)-4+a n =0(n ≥2),④当n ≥2时,③-④,得3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n .因为a n ≠0,所以a n +1a n =-12.又由(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)(3) 由(2)知,a n =⎝⎛⎭⎫-12n -1.因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n ⎝⎛⎭⎫-12n -1和n ⎝⎛⎭⎫-12n之间. 因为n ⎝⎛⎭⎫-12n -1·n ⎝⎛⎭⎫-12n <0对任意的n ∈N *恒成立,所以λ=0适合.(10分) 若λ>0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有λ<n2n -1恒成立. 记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n (*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n ⎝⎛⎭⎫-12n<λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有-λ<n2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0.(16分)21.A.由题意,得Mα=3α,即⎣⎢⎡⎦⎥⎤1m 2n ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤1+m 2+n =⎣⎢⎡⎦⎥⎤33, 所以m =2,n =1,即矩阵M =⎣⎢⎡⎦⎥⎤1221.(5分) 矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=(λ-1)2-4=0,解得矩阵M 的另一个特征值为λ=-1.(10分) B.由题意,得直线l 的普通方程为x -y -1=0.① 椭圆C 的普通方程为x 22+y 2=1.②(4分)由①②联立,解得A (0,-1),B ⎝⎛⎭⎫43,13,(8分) 所以AB =⎝⎛⎭⎫43-02+⎝⎛⎭⎫13+12=423.(10分)C.由柯西不等式,得[x 2+(2y )2+z 2]·⎣⎡⎦⎤12+⎝⎛⎭⎫122+12≥(x +y +z )2.(5分) 因为x 2+4y 2+z 2=16, 所以(x +y +z )2≤16×94=36,所以x +y +z ≤6,当且仅当x =2y =z 时取等号.(10分) 22.(1) 由题意,知AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则 B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2), 所以PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎪⎨⎪⎧x +2y -2z =0,2y -2z =0,不妨取y =1,则x =0,z =1,所以平面PCD 的一个法向量为n =(0,1,1).(3分)设直线PB 与平面PCD 所成角为θ,所以sin θ=|cos 〈PB →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PB →·n ||PB →·|n |=105, 即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2) 设M (a ,0,0),则MA →=(-a ,0,0), 设PN →=λPC →,则PN →=()λ,2λ,-2λ,因为AP →=(0,0,2),所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1), 因为MN ⊥平面PCD ,所以MN →∥n ,所以⎩⎪⎨⎪⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12,所以M 为AB 的中点,N 为PC 的中点.(10分)23.(1) 当n =4时,因为a 1,a 2,…,a 4均为非负实数,且a 1+a 2+a 3+a 4=2,所以a 1a 2+a 2a 3+a 3a 4+a 4a 1 =a 2(a 1+a 3)+a 4(a 3+a 1) =(a 3+a 1)(a 2+a 4)(2分)≤⎣⎡⎦⎤(a 3+a 1)+(a 2+a 4)22=1.(4分)(2) ①当n =4时,由(1)可知,命题成立; ②假设当n =k(k ≥4)时,命题成立,即对于任意的k ≥4,若x 1,x 2,…,x k 均为非负实数,且x 1+x 2+…+x k =2, 则x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1,则当n =k +1时,设a 1+a 2+…+a k +a k +1=2,不妨设a k +1=max {a 1,a 2,…,a k ,a k +1}. 令x 1=(a 1+a 2),x 2=a 3,x k -1=a k ,x k =a k +1, 则x 1+x 2+…+x k =2. 由归纳假设,知x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1.(8分) 因为a 1,a 2,a 3均为非负实数,且a k +1≥a 1, 所以x 1x 2+x k x 1=(a 1+a 2)a 3+a k +1(a 1+a 2) =a 2a 3+a k +1a 1+a 1a 3+a k +1a 2 ≥a 1a 2+a 2a 3+a k +1a 1,所以1≥(x 1x 2+x k x 1)+(x 2x 3+…+x k -1x k )≥(a 1a 2+a 2a 3+a k +1a 1)+(a 3a 4+…+a k a k +1), 即a 1a 2+a 2a 3+…+a k a k +1+a k +1a 1≤1, 所以当n =k +1时命题也成立,所以由①②可知,对于任意的n ≥4,a 1a 2+a 2a 3+…+a n -1a n +a n a 1≤1.(10分)。
[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析
-2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A ={1,3},B ={0,1},则集合A ∪B =.2.(5分)已知复数(i 为虚数单位),则复数z 的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b 的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm ,侧面的对角线长是3cm ,则这个正四棱柱的体积是cm 3.7.(5分)若实数x ,y 满足x ≤y ≤2x+3,则x+y 的最小值为.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有个.11.(5分)已知函数f (x )是定义在R 上的奇函数,且f (x+2)=f (x ).当0<x ≤1时,f (x )=x 3﹣ax+1,则实数a 的值为.12.(5分)在平面四边形ABCD 中,AB =1,DA =DB ,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围.14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P ﹣ABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面P AD⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ;(2)MD ⊥平面PAB .16.(14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,,.(1)求角B 的值;(2)若,求△ABC 的面积.17.(14分)如图,在平面直角坐标系xOy 中,椭圆(a >b >0)的左焦点为F ,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.【解答】解:抛物线y 2=2px (p >0)的准线为l :x =﹣,双曲线的两条渐近线方程为y =±x ,可得A (﹣,﹣),B ((﹣,),|AB|==,可得p =2.故答案为:2.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为4.【解答】解:根据题意得,t =1y ′=acosx ﹣bsinx ∴k =acos0﹣bsin0=a ∴a =3,bcos0=1∴a =3,b =1故答案为4.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x 3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为?=3,AB=1,所以可设C(3,n),又?=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围﹣4<m.【解答】解:显然直线l 有斜率,设直线l :y =k (x ﹣m ),即kx ﹣y ﹣km =0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m >0且3m 2+8m ﹣16<0解得﹣4<m <,故答案为:﹣4<m .14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f (x )关于点对称,所以,解得:a =﹣673,f (x )=(2x ﹣673)(|x+673|+|x ﹣2×673|)=2019,显然有:0<2x ﹣673<2019,即,所以,f (x )=(2x ﹣673)(x+673+2×673﹣x )=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面PAB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC?平面PBC,MN?平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB?底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD?侧面PAD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面PAB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cosB=sinB.…………………………………………………………………4分若cosB=0,则sinB=0,与sin2B+cos2B=1矛盾,故cosB≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n ﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3?2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为ξ012P所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:?,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。
江苏省泰州、南通、扬州、苏北四市七市2019届高三第二次模拟考试 数学 Word版含答案
2019届高三年级第二次模拟考试数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={1,3,a},B ={4,5},若A ∩B ={4},则实数a 的值为________.2. 复数z =2i2+i(i 为虚数单位)的实部为________.3. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.4. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.5. 执行如图所示的伪代码,则输出的S 的值为________. i ←1 S ←2 While i<7 S ←S ×i i ←i +2 End While Print S6. 函数y =4x -16的定义域为________.7. 将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f(x)的图象,则f ⎝⎛⎭⎫π3的值为________.8. 在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为2,则b 的值为________.9. 在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为23,则AB 的长为________.10. 设P ,A ,B ,C 为球O 表面上的四个点,PA ,PB ,PC 两两垂直,且PA =2m ,PB =3m ,PC =4m ,则球O 的表面积为________m 2.11. 定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上,f (x )=⎩⎪⎨⎪⎧2-x ,2≤x <3,x -4,3≤x <4,则函数y =f (x )-log 5|x |的零点的个数为________.12. 已知关于x 的不等式ax 2+bx +c>0(a ,b ,c ∈R ) 的解集为{x |3<x <4},则c 2+5a +b的最小值为________.13. 在平面直角坐标系xOy 中,已知点A ,B 在圆x 2+y 2=4上,且AB =22,点P(3,-1),PO →·(PA →+PB →)=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________. 14. 已知集合A ={x|x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos α,sin α),b =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,cos ⎝⎛⎭⎫α+π6,其中0<α<π2. (1) 若a ∥b ,求α的值; (2) 若tan2α=-17,求a ·b 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E.求证:(1) DE ∥平面ABB 1A 1; (2) BC 1⊥平面A 1B 1C.17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M.已知HM =5 m ,BC =10 m ,梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH =θ⎝⎛⎭⎫0<θ<π4. (1) 求屋顶面积S 关于θ的函数关系式;(2) 已知上部屋顶造价与屋顶面积成正比,比例系数为k(k 为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?①②18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证:k 1·k 2为定值.19. (本小题满分16分)已知函数f(x)=2ln x +12x 2-ax ,a ∈R .(1) 当a =3时,求函数f (x )的极值;(2) 设函数f (x )在x =x 0处的切线方程为y =g (x ),若函数y =f (x )-g (x )是(0,+∞)上的单调增函数,求x 0的值;(3) 是否存在一条直线与函数y =f (x )的图象相切于两个不同的点?并说明理由.20. (本小题满分16分)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n ∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.2019届高三年级第二次模拟考试(十二) 数学附加题(满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量α=⎣⎢⎡⎦⎥⎤11是矩阵M =⎣⎢⎡⎦⎥⎤1m 2n 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.B. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =t (t 为参数),椭圆C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数).设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.C. [选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且x 2+4y 2+z 2=16,求证:x +y +z ≤6.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AB =1,AP =AD =2.(1) 求直线PB 与平面PCD 所成角的正弦值;(2) 若点M ,N 分别在AB ,PC 上,且MN ⊥平面PCD ,试确定点M ,N 的位置.23. (本小题满分10分)已知a 1,a 2,…,a n (n ∈N *,n ≥4)均为非负实数,且a 1+a 2+…+a n =2.证明: (1) 当n =4时,a 1a 2+a 2a 3+a 3a 4+a 4a 1≤1;(2) 对于任意的n ∈N *,n ≥4,a 1a 2+a 2a 3+…+a n -1a n +a n a 1≤1.2019届高三年级第二次模拟考试 (南通七市)数学参考答案1.42.253.354.23 5.30 6.[2,+∞) 7.-2 8.2 9.27 10.29π 11.5 12.4 513.1,15 14.4415.(1) 因为a ∥b ,所以cos αcos ⎝⎛⎭⎫α+π6-sin αsin ⎝⎛⎭⎫α+π6=0,(2分) 所以cos ⎝⎛⎭⎫2α+π6=0.(4分) 因为0<α<π2,所以π6<2α+π6<7π6,所以2α+π6=π2,解得α=π6.(6分)(2) 因为0<α<π2,所以0<2α<π.又tan2α=-17<0,故π2<2α<π.因为tan2α=sin2αcos2α=-17,所以cos2α=-7sin2α<0.又sin 22α+cos 22α=1, 解得sin2α=210,cos2α=-7210.(10分) 所以a ·b =cos αsin ⎝⎛⎭⎫α+π6+sin αcos ⎝⎛⎭⎫α+π6=sin ⎝⎛⎭⎫2α+π6(12分) =sin2αcos π6+cos2αsin π6=210·32+⎝⎛⎭⎫-7210·12=6-7220.(14分) 16.(1) 因为三棱柱ABCA 1B 1C 1为直三棱柱, 所以侧面ACC 1A 1为平行四边形. 又A 1C 与AC 1交于点D , 所以D 为AC 1的中点.同理,E 为BC 1的中点,所以DE ∥AB.(3分) 又AB ⊂平面ABB 1A 1,DE ⊄平面ABB 1A 1, 所以DE ∥平面ABB 1A 1.(6分)(2) 因为三棱柱ABCA 1B 1C 1为直三棱柱, 所以BB 1⊥平面A 1B 1C 1. 又因为A 1B 1⊂平面A 1B 1C 1, 所以BB 1⊥A 1B 1.(8分)又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1, BB 1∩B 1C 1=B 1,所以A 1B 1⊥平面BCC 1B 1.(10分) 又因为BC 1⊂平面BCC 1B 1, 所以A 1B 1⊥BC 1.(12分)又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C. 又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1C , 所以BC 1⊥平面A 1B 1C.(14分)17.(1) 由题意得FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,所以FH ⊥HM.(2分) 在Rt △FHM 中,HM =5,∠FMH =θ, 所以FM =5cos θ,(4分)所以△FBC 的面积为12×10×5cos θ=25cos θ,所以屋顶面积S =2S △FBC +2S 梯形ABFE =2×25cos θ+2×25cos θ×2.2=160cos θ,所以S 关于θ的函数关系式为S =160cos θ⎝⎛⎭⎫0<θ<π4.(6分) (2) 在Rt △FHM 中,FH =5tan θ,所以主体高度为h =6-5tan θ,(8分) 所以别墅总造价为 y =S·k +h·16k =160cos θ·k +(6-5tan θ)·16k =160cos θk -80sin θcos θk +96k=80k·⎝⎛⎭⎫2-sin θcos θ+96k(10分) 记f(θ)=2-sin θcos θ,0<θ<π4,所以f′(θ)=2sin θ-1cos 2θ, 令f′(θ)=0,得sin θ=12.又0<θ<π4,所以θ=π6.(12分)列表:所以当θ=π6时,f(θ)有最小值.故当θ为π6时该别墅总造价最低.(14分)18.(1) 设椭圆C 2的焦距为2c ,由题意,得a =22, c a =32,a 2=b 2+c 2, 解得b =2,所以椭圆C 2的标准方程为x 28+y 22=1.(3分)(2) ①1°当直线OP 的斜率不存在时,PA =2-1,PB =2+1,则PA PB =2-12+1=3-2 2.(4分) 2°当直线OP 的斜率存在时,设直线OP 的方程为y =kx , 代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1,(6分) 所以x 2P =2x 2A ,由题意,得x P 与x A 同号,所以x P =2x A ,所以PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-22,所以PAPB=3-22为定值.(8分)②设P(x 0,y 0),所以直线l 1的方程为 y -y 0=k 1(x -x 0),即y =k 1x +k 1y 0-x 0, 记t =k 1y 0-x 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0. 因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2+1=0,将t =k 1y 0-x 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0, (12分)同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根, 所以k 1·k 2=y 20-1x 20-4.(14分)又点P(x 0,y 0)在椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 20, 所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)19.(1) 当a =3时,函数f(x)=2ln x +12x 2-3x 的定义域为(0,+∞),则f′(x)=2x +x -3=x 2-3x +2x ,令f′(x)=0,得x =1或x =2.(2分)列表:所以函数f(x)的极大值为f(1)=-52,极小值为f(2)=2ln 2-4.(4分)(2) 依题意,得切线方程为y =f′(x 0)(x -x 0)+f(x 0)(x 0>0), 所以g(x)=f′(x 0)(x -x 0)+f(x 0)(x 0>0), 记p(x)=f(x)-g(x),则p(x)=f(x)-f(x 0)-f′(x 0)(x -x 0)在(0,+∞)上为单调增函数,所以p′(x)=f′(x)-f′(x 0)≥0在(0,+∞)上恒成立, 即p′(x)=2x -2x 0+x -x 0≥0在()0,+∞上恒成立.(8分)法一:变形得⎝⎛⎭⎫x -2x 0(x -x 0)≥0在(0,+∞)上恒成立, 所以2x 0=x 0,又x 0>0,所以x 0= 2.(10分)法二:变形得x +2x ≥x 0+2x 0在(0,+∞)上恒成立,因为x +2x≥2x·2x=22(当且仅当x =2时,等号成立), 所以22≥x 0+2x 0,所以()x 0-22≤0,所以x 0= 2.(10分)(3) 假设存在一条直线与函数f(x)的图象有两个不同的切点T 1(x 1,y 1),T 2(x 2,y 2), 不妨设0<x 1<x 2,则点T 1处切线l 1的方程为 y -f(x 1)=f′(x 1)(x -x 1), 点T 2处切线l 2的方程为 y -f(x 2)=f′(x 2)(x -x 2). 因为l 1,l 2为同一直线,所以⎩⎪⎨⎪⎧f′(x 1)=f′(x 2),f (x 1)-x 1f′(x 1)=f (x 2)-x 2f′(x 2),(12分)所以2x 1+x 1-a =2x 2+x 2-a ,2ln x 1+12x 21-ax 1-x 1⎝⎛⎭⎫2x 1+x 1-a =2ln x 2+12x 22-ax 2-x 2⎝⎛⎭⎫2x 2+x 2-a , 整理,得⎩⎪⎨⎪⎧x 1x 2=2,2ln x 1-12x 21=2ln x 2-12x 22,(14分)消去x 2,得2ln x 212+2x 21-x 212=0.①令t =x 212,由0<x 1<x 2与x 1x 2=2,得t ∈(0,1),记p(t)=2ln t +1t -t ,则p′(t)=2t -1t 2-1=-(t -1)2t 2<0,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0,所以①式不可能成立,所以假设不成立,所以不存在一条直线与函数f(x)的图象有两个不同的切点.(16分)20.(1) 因为3S 2n -4S n +T n =0,n ∈N *.令n =1,得3a 21-4a 1+a 21=0.因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0.因为a 2≠0,所以a 2=-12.(3分) (2) 因为3S 2n -4S n +T n =0,①所以3S 2n +1-4S n +1+T n +1=0,②②-①,得3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,③(5分)所以3(S n +S n -1)-4+a n =0(n ≥2),④当n ≥2时,③-④,得3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n . 因为a n ≠0,所以a n +1a n =-12. 又由(1)知,a 1=1,a 2=-12,所以a 2a 1=-12, 所以数列{a n }是以1为首项,-12为公比的等比数列.(8分) (3) 由(2)知,a n =⎝⎛⎭⎫-12n -1.因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立,所以λ的值介于n ⎝⎛⎭⎫-12n -1和n ⎝⎛⎭⎫-12n 之间. 因为n ⎝⎛⎭⎫-12n -1·n ⎝⎛⎭⎫-12n <0对任意的n ∈N *恒成立,所以λ=0适合.(10分) 若λ>0,当n 为奇数时,n ⎝⎛⎭⎫-12n <λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有λ<n 2n -1恒成立. 记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*), 从而当n ≥5且n ≥2λ时,有λ≥2n ≥n 2n -1, 所以λ>0不符.(13分)若λ<0,当n 为奇数时,n ⎝⎛⎭⎫-12n <λ<n ⎝⎛⎭⎫-12n -1恒成立,从而有-λ<n 2n 恒成立. 由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n 2n ,所以λ<0不符.综上,实数λ的所有值为0.(16分)21.A.由题意,得Mα=3α,即⎣⎢⎡⎦⎥⎤1m 2n ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤1+m 2+n =⎣⎢⎡⎦⎥⎤33, 所以m =2,n =1,即矩阵M =⎣⎢⎡⎦⎥⎤1221.(5分) 矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=(λ-1)2-4=0, 解得矩阵M 的另一个特征值为λ=-1.(10分)B.由题意,得直线l 的普通方程为x -y -1=0.①椭圆C 的普通方程为x 22+y 2=1.② (4分)由①②联立,解得A (0,-1),B ⎝⎛⎭⎫43,13,(8分)所以AB =⎝⎛⎭⎫43-02+⎝⎛⎭⎫13+12=423.(10分) C.由柯西不等式,得[x 2+(2y )2+z 2]·⎣⎡⎦⎤12+⎝⎛⎭⎫122+12≥(x +y +z )2.(5分) 因为x 2+4y 2+z 2=16,所以(x +y +z )2≤16×94=36, 所以x +y +z ≤6,当且仅当x =2y =z 时取等号.(10分)22.(1) 由题意,知AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则 B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),所以PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎪⎨⎪⎧x +2y -2z =0,2y -2z =0, 不妨取y =1,则x =0,z =1,所以平面PCD 的一个法向量为n =(0,1,1).(3分)设直线PB 与平面PCD 所成角为θ,所以sin θ=|cos 〈PB →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PB →·n ||PB →·|n |=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2) 设M (a ,0,0),则MA →=(-a ,0,0),设PN →=λPC →,则PN →=()λ,2λ,-2λ,因为AP →=(0,0,2), 所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1),因为MN ⊥平面PCD ,所以MN →∥n ,所以⎩⎪⎨⎪⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12, 所以M 为AB 的中点,N 为PC 的中点.(10分)23.(1) 当n =4时,因为a 1,a 2,…,a 4均为非负实数,且a 1+a 2+a 3+a 4=2, 所以a 1a 2+a 2a 3+a 3a 4+a 4a 1=a 2(a 1+a 3)+a 4(a 3+a 1)=(a 3+a 1)(a 2+a 4)(2分)≤⎣⎡⎦⎤(a 3+a 1)+(a 2+a 4)22=1.(4分)(2) ①当n =4时,由(1)可知,命题成立; ②假设当n =k(k ≥4)时,命题成立,即对于任意的k ≥4,若x 1,x 2,…,x k 均为非负实数,且x 1+x 2+…+x k =2, 则x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1,则当n =k +1时,设a 1+a 2+…+a k +a k +1=2,不妨设a k +1=max {a 1,a 2,…,a k ,a k +1}. 令x 1=(a 1+a 2),x 2=a 3,x k -1=a k ,x k =a k +1, 则x 1+x 2+…+x k =2.由归纳假设,知x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1.(8分) 因为a 1,a 2,a 3均为非负实数,且a k +1≥a 1, 所以x 1x 2+x k x 1=(a 1+a 2)a 3+a k +1(a 1+a 2)=a 2a 3+a k +1a 1+a 1a 3+a k +1a 2≥a1a2+a2a3+a k+1a1,所以1≥(x1x2+x k x1)+(x2x3+…+x k-1x k)≥(a1a2+a2a3+a k+1a1)+(a3a4+…+a k a k+1),即a1a2+a2a3+…+a k a k+1+a k+1a1≤1,所以当n=k+1时命题也成立,所以由①②可知,对于任意的n≥4,a1a2+a2a3+…+a n-1a n+a n a1≤1.(10分)。
2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷(解析版)
2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B=.2.(5分)已知复数(i为虚数单位),则复数z的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是cm3.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有个.11.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为.12.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.【解答】解:=,则复数z的模为.故答案为:.3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.【解答】解:抛物线y2=2px(p>0)的准线为l:x=﹣,双曲线的两条渐近线方程为y=±x,可得A(﹣,﹣),B((﹣,),|AB|==,可得p=2.故答案为:2.9.【解答】解:根据题意得,t=1y′=a cos x﹣b sin x∴k=a cos0﹣b sin0=a∴a=3,b cos0=1∴a=3,b=1故答案为4.10.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为•=3,AB=1,所以可设C(3,n),又•=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.【解答】解:显然直线l有斜率,设直线l:y=k(x﹣m),即kx﹣y﹣km=0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m>0且3m2+8m﹣16<0解得﹣4<m<,故答案为:﹣4<m.14.【解答】解:注意到:,又因为:,,因此.所以,函数f(x)关于点对称,所以,解得:a=﹣673,f(x)=(2x﹣673)(|x+673|+|x﹣2×673|)=2019,显然有:0<2x﹣673<2019,即,所以,f(x)=(2x﹣673)(x+673+2×673﹣x)=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD⊂侧面P AD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cos B=sin B.…………………………………………………………………4分若cos B=0,则sin B=0,与sin2B+cos2B=1矛盾,故cos B≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B=.……………………………………………12分所以△ABC的面积为.……14分17.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O 2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣3﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3•2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为所以,随机变量ξ的数学期望为:. (10)分25.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:∅,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。
2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷和答案
2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B=.2.(5分)已知复数(i为虚数单位),则复数z的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是cm3.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有个.11.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为.12.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.【解答】解:抛物线y2=2px(p>0)的准线为l:x=﹣,双曲线的两条渐近线方程为y=±x,可得A(﹣,﹣),B((﹣,),|AB|==,可得p=2.故答案为:2.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为4.【解答】解:根据题意得,t=1y′=a cos x﹣b sin x∴k=a cos0﹣b sin0=a∴a=3,b cos0=1∴a=3,b=1故答案为4.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为•=3,AB=1,所以可设C(3,n),又•=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围﹣4<m.【解答】解:显然直线l有斜率,设直线l:y=k(x﹣m),即kx﹣y﹣km=0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m>0且3m2+8m﹣16<0解得﹣4<m<,故答案为:﹣4<m.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f(x)关于点对称,所以,解得:a=﹣673,f(x)=(2x﹣673)(|x+673|+|x﹣2×673|)=2019,显然有:0<2x﹣673<2019,即,所以,f(x)=(2x﹣673)(x+673+2×673﹣x)=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD⊂侧面P AD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cos B=sin B.…………………………………………………………………4分若cos B=0,则sin B=0,与sin2B+cos2B=1矛盾,故cos B≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O 2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣3﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3•2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:∅,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n =+(n∈N*)故答案为:+(n∈N*)第21页(共21页)。
【市级联考】江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次调研考试
2019届南通市高三第二次调研联考英语试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求考试时间120分钟。
考试结束后,只要将答题纸交回。
1.本试卷共14页,包含第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分。
2.答题前,请您务必将自己的姓名、学校、考试号用书写黑色字迹的0.5毫米签字笔填写在答题纸上,并用2B铅笔把答题纸上考试号对应数字框涂黑,如需改动,请用橡皮擦干净后,再正确涂写。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与你本人的是否相符。
4.答题时,必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。
第I卷 (三部分,共85分)第一部分听力(共两节,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.【此处有音频,请去附件查看】What color is the sofa?A. Brown.B. White.C. Blue.2.【此处有音频,请去附件查看】What meal are the speakers about to eat?A. Breakfast.B. LunchC. Dinner.3.【此处有音频,请去附件查看】How many players will play the game?A. Two.B. Three.C. Four.4.【此处有音频,请去附件查看】What will the man need to do during the holiday?A. Write papers.B. Play basketball.C. Take a vacation.5.【此处有音频,请去附件查看】What does the woman ask the boy to wash?A. His hands.B. His plates.C. His clothes.第二节听下面5段对话或独白。
2019江苏省南通市高三二模数学试卷含答案
南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。
江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学答案
18.(1)设椭圆C2的焦距为2c,由题意,得a=2 ,
= ,a2=b2+c2,
解得b= ,
所以椭圆C2的标准方程为 + =1.(3分)
(2)①1°当直线OP的斜率不存在时,
PA= -1,PB= +1,则
= =3-2 .(4分)
2°当直线OP的斜率存在时,设直线OP的方程为y=kx,
所以主体高度为h=6-5tanθ,(8分)
所以别墅总造价为
y=S·k+h·16k
= ·k+(6-5tanθ)·16k
= k- k+96k
=80k· +96k(10分)
记f(θ)= ,0<θ< ,
所以f′(θ)= ,
令f′(θ)=0,得sinθ= .
又0<θ< ,所以θ= .(12分)
列表:
所以当θ= 时,f(θ)有最小值.
记t=k1y0-x0,则l1的方程为y=k1x+t,
代入椭圆C1的方程,消去y,得(4k +1)x2+8k1tx+4t2-4=0.
因为直线l1与椭圆C1有且只有一个公共点,
所以Δ=(8k1t)2-4(4k +1)(4t2-4)=0,
即4k -t2+1=0,
将t=k1y0-x0代入上式,整理得,
(x -4)k -2x0y0k1+y -1=0,(12分)
所以A1B1⊥平面BCC1B1.(10分)
又因为BC1⊂平面BCC1B1,
所以A1B1⊥BC1.(12分)
又因为侧面BCC1B1为正方形,所以BC1⊥B1C.
又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,
所以BC1⊥平面A1B1C.(14分)
17.(1)由题意得FH⊥平面ABCD,FM⊥BC,
2019-2020学年南通市、扬州市、泰州市高考数学二模试卷(有答案)
江苏省南通市、扬州市、泰州市高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为______.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为______.3.如图是一个算法流程图,则输出的k的值是______.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是______.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是______.6.已知函数f(x)=loga(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是______.7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为______.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是______.9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为______.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为______.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为______.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是______.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是______.14.若存在α,β∈R,使得,则实数t的取值范围是______.二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.18.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,A为椭圆上异于顶点的一点,点P满足=2.(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为﹣,求实数m的值.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.20.设数列{an }的各项均为正数,{an}的前n项和,n∈N*.(1)求证:数列{an}为等差数列;(2)等比数列{bn}的各项均为正数,,n∈N*,且存在整数k≥2,使得.(i)求数列{bn}公比q的最小值(用k表示);(ii)当n≥2时,,求数列{bn}的通项公式.[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.[附加题]22.在平面直角坐标系xOy 中,已知直线(t 为参数)与曲线(θ为参数)相交于A ,B 两点,求线段AB 的长.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N *),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元. (1)求概率P (X=0)的值;(2)为使收益X 的数学期望不小于0元,求k 的最小值. (注:概率学源于赌博,请自觉远离不正当的游戏!)24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ). (1)当k=2时,求m (1)的值; (2)求m (3)关于k 的表达式,并化简.江苏省南通市、扬州市、泰州市高考数学二模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+2i)•z=3,得,∴复数z的实部为.故答案为:.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为 1 .【考点】交集及其运算.【分析】由A,B,以及两集合的交集确定出a的值即可.【解答】解:∵A={﹣1,0,1},B={a﹣1,a+},A∩B={0},∴a﹣1=0或a+=0(无解),解得:a=1,则实数a的值为1,故答案为:13.如图是一个算法流程图,则输出的k的值是17 .【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的k的值,当k=17时满足条件k>9,退出循环,输出k的值为17.【解答】解:模拟执行程序,可得k=0不满足条件k>9,k=1不满足条件k>9,k=3不满足条件k>9,k=17满足条件k>9,退出循环,输出k的值为17.故答案为:17.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400 .【考点】频率分布表.【分析】利用频率、频数与样本容量的关系进行求解即可.【解答】解:根据题意,估计该批灯泡使用寿命不低于1100h的灯泡的只数为5000×=1400.故答案为:1400.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,由“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,利用对立事件概率计算公式能求出“立德树人”主题被该队选中的概率.【解答】解:电视台组织中学生知识竞赛,共设有5个版块的试题,某参赛队从中任选2个主题作答,基本事件总数n==10,“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,∴“立德树人”主题被该队选中的概率p=1﹣=.故答案为:.(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是.6.已知函数f(x)=loga【考点】对数函数的图象与性质;函数的图象.【分析】由函数f(x)=log(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,构造方a程组,解得答案.(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,【解答】解:∵函数f(x)=loga∴,解得:∴a+b=,故答案为:7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为 2 .【考点】正弦函数的图象.【分析】根据题意,得出ω+=+2kπ,k∈Z,求出ω的值即可.【解答】解:∵函数,且0<x<π,ω>0,∴<ωx+<ωπ+,又当且仅当时,y取得最大值,∴<ωx+<ωπ+<,∴ω+=,解得ω=2.故答案为:2.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是.【考点】等比数列的通项公式.【分析】由题意和等差数列可得q的方程,解方程由等比数列的通项公式可得.【解答】解:∵在等比数列{an }中a2=1,公比q≠±1,a1,4a3,7a5成等差数列,∴8a3=a1+7a5,∴8×1×q=+7×1×q3,整理可得7q4﹣8q2+1=0,分解因式可得(q2﹣1)(7q2﹣1)=0,解得q2=或q2=1,∵公比q≠±1,∴q2=,∴a6=a2q4=故答案为:9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为.【考点】棱锥的结构特征.【分析】由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度.【解答】解:如图,在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高,∵,AB=1,∴由,得.又BC=2,BD=3,得,得sinB=,∴cosB=.当cosB=时,CD2=22+32﹣2×2×3×=7,则CD=;当cosB=﹣时,CD2=22+32﹣2×2×3×()=19,则CD=.∴CD长度的所有值为,.故答案为:,.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为 4 .【考点】直线与圆的位置关系.【分析】设过点P(﹣2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=,不妨取k=,由勾股定理得PT=RS=,再由圆心(a,)到直线y=(x+2)的距离能求出结果.【解答】解:设过点P(﹣2,0)的直线方程为y=k(x+2),∵过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,∴=1,解得k=,不妨取k=,PT==,∴PT=RS=,∵直线y=(x+2)与圆相交于点R,S,且PT=RS,∴圆心(a,)到直线y=(x+2)的距离d==,由a>0,解得a=4.故答案为:4.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7 .【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是.【考点】平面向量数量积的运算.【分析】建立如图所示的坐标系,得到点A、B、C的坐标,由,求得a+b=±3,分类讨论,利用二次函数的性质求得的最大值.【解答】解:由点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3,可得平行线m、n间的距离为2,以直线m为x轴,以过点A且与直线m垂直的直线为y轴建立坐标系,如图所示:则由题意可得点A(0,1),直线n的方程为y=﹣2,设点B(a,0)、点C(b,﹣2),∴=(a,﹣1)、=(b,﹣3),∴+=(a+b,﹣4).∵,∴(a+b)2+16=25,∴a+b=3,或a+b=﹣3.当a+b=3时, =ab+3=a(3﹣a)+3=﹣a2+3a+3,它的最大值为=.当a+b=﹣3时, =ab+3=a(﹣3﹣a)+3=﹣a2﹣3a+3,它的最大值为=.综上可得,的最大值为,故答案为:.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是6+4.【考点】双曲线的简单性质.【分析】设出双曲线的参数方程,代入所求式,运用切割化弦,可得+= [(1﹣sinα)+(1+sinα)](+),展开再由基本不等式即可得到所求最小值.【解答】解:由﹣y2=1,可设x=2secα,y=tanα,则3x2﹣2xy=12sec2α﹣4secαtanα=﹣==+,其中﹣1<sinα<1,[(1﹣sinα)+(1+sinα)](+)=12++≥12+2=12+8,当且仅当=,解得sinα=3﹣2(3+2舍去),取得最小值.则3x2﹣2xy的最小值是6+4.故答案为:6+4.14.若存在α,β∈R,使得,则实数t的取值范围是[,1] .【考点】三角函数中的恒等变换应用.【分析】由α≤α﹣5cosβ,得到cosβ<0,由已知α≤t,即,令,则f′(t)=,令f′(t)=0,则sinβ=0,当sinβ=0时,f(t)取得最小值,然后由t≤α﹣5cosβ,即,令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.【解答】解:∵α≤α﹣5cosβ,∴0≤﹣5cosβ.∴cosβ<0.∵α≤t,∴,即.令,则f′(t)==,令f′(t)=0,则sinβ=0.∴当sinβ=0时,f(t)取得最小值.f(t)=.∵t≤α﹣5cosβ,∴α≥t+5cosβ.∴即.令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.f(t)=.则实数t的取值范围是:[,1].故答案为:[,1].二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.【考点】两角和与差的正切函数;正弦定理.【分析】(1)由条件利用两角和差的正切公式,诱导公式求得tanC的值可得C的值.(2)由条件利用正弦定理、两角和差的正弦公式求得a、b的值,可得△ABC的周长.【解答】解:(1)斜三角形ABC中,∵tanA+tanB+tanAtanB=1,∴tanA+tanB=1﹣tanAtanB,∴tan(A+B)==1,即﹣tanC=1,tanC=﹣1,∴C=135°.(2)若A=15°,则B=30°,∵,则由正弦定理可得===2,求得a=2sin(45°﹣30°)=2(sin45°cos30°﹣cos45°sin30°)=,b=•2=1,故△ABC的周长为a+b+c=+1+=.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)推导出四边形AMC 1P 为平行四边形,从而AP ∥C 1M ,由此能证明AP ∥平面C 1MN . (2)连结AC ,推导出MN ⊥BD ,DD 1⊥MN ,从而MN ⊥平面BDD 1B 1,由此能证明平面B 1BDD 1⊥平面C 1MN . 【解答】证明:(1)在正方体ABCD ﹣A 1B 1C 1D 1中, ∵M ,N ,P 分别为棱AB ,BC ,C 1D 1的中点, ∴AM=PC 1,又AM ∥CD ,PC 1∥CD ,故AM ∥PC 1, ∴四边形AMC 1P 为平行四边形, ∴AP ∥C 1M ,又AP ⊄平面C 1MN ,C 1M ⊂平面C 1MN , ∴AP ∥平面C 1MN .(2)连结AC ,在正方形ABCD 中,AC ⊥BD , 又M 、N 分别为棱AB 、BC 的中点,∴MN ∥AC , ∴MN ⊥BD ,在正方体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面ABCD , 又MN ⊂平面ABCD ,∴DD 1⊥MN , 而DD 1∩DB=D,DD 1、DB ⊂平面BDD 1B 1, ∴MN ⊥平面BDD 1B 1,又MN ⊂平面C 1MN ,∴平面B 1BDD 1⊥平面C 1MN .17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案: 方案①多边形为直角三角形AEB (∠AEB=90°),如图1所示,其中AE+EB=30m ; 方案②多边形为等腰梯形AEFB (AB >EF ),如图2所示,其中AE=EF=BF=10m . 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.【考点】定积分在求面积中的应用;基本不等式.【分析】设方案①,②的多边形苗圃的面积分别为S 1,S 2,根据基本不等式求出S 1的最大值,用导数求出S 2的最大值,比较即可.【解答】解:设方案①,②的多边形苗圃的面积分别为S 1,S 2, 方案①,设AE=x ,则S 1=x (30﹣x )≤ []2=,当且仅当x=15时,取等号, 方案②,设∠BAE=θ,则S 2=100sinθ(1+cosθ),θ∈(0,),由S 2′=100(2cos 2θ+cosθ﹣1)=0得cosθ=(cosθ=﹣1舍去), ∵θ∈(0,),∴θ=,当S 2′>0,解得0<x <,函数单调递增, 当S 2′<0,解得<x <,函数单调递减, ∴当θ=时,(S 2)max=75,∵<75,∴建立苗圃时用方案②,且∠BAE=.18.如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,A 为椭圆上异于顶点的一点,点P 满足=2.(1)若点P 的坐标为(2,),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且=m ,直线OA ,OB 的斜率之积为﹣,求实数m 的值.【考点】椭圆的简单性质. 【分析】(1)由已知得A (﹣1,﹣),代入椭圆,得,再由椭圆离心率为,得=,由此能求出椭圆方程.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),推导出P (﹣2x 1,﹣2y 1),(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),从而得到()+()﹣()=1,由直线OA ,OB 的斜率之积为﹣,得到=0,由此能求出实数m 的值.【解答】解:(1)∵A 为椭圆上异于顶点的一点,点P 满足=2,点P 的坐标为(2,),∴A (﹣1,﹣),代入椭圆,得,①∵椭圆+=1(a >b >0)的离心率为,∴=,②联立①②,解得a 2=2,b 2=1, ∴椭圆方程为.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), ∵=2,∴P (﹣2x 1,﹣2y 1),∵=m,∴(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),∴,∴,代入椭圆,得=1,即()+()﹣()=1,③∵A,B在椭圆上,∴+=1, =1,④∵直线OA,OB的斜率之积为﹣,∴=﹣,结合②,知=0,⑤将④⑤代入③,得=1,解得m=.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.【考点】根的存在性及根的个数判断.【分析】(1)若k=0,先化简不等式即可解不等式•f(x)≥•g(x);(2)若k≥0,化简方程f(x)=x•g(x),然后讨论k的取值范围即可得到结论.【解答】解:(1)若k=0,f(x)=(x+1),g(x)=,则不等式•f(x)≥•g(x)等价为•(x+1)≥•,此时,即x≥0,此时不等式等价为(x+1)x≥(x+3),即2x2+x﹣3≥0,得x≥1或x≤﹣,∵x≥0,∴x≥1,即不等式的解集为[1,+∞).(2)若k≥0,由f(x)=x•g(x)得(x+k+1)=x,①.由得,即x ≥k ,∴当x ≥0时x ﹣k+1>0,方程①两边平方整理得(2k ﹣1)x 2﹣(k 2﹣1)x ﹣k (k+1)2=0,(x ≥k ),② 当k=时,由②得x=,∴方程有唯一解, 当k ≠时,由②得判别式△=(k+1)2(3k ﹣1)2, 1)当k=时,判别式△=0,方程②有两个相等的根x=,∴原方程有唯一解.2)0≤k <且k ≠时,方程②整理为[(2k ﹣1)x+k (k+1)](x ﹣k ﹣1)=0, 解得x 1=,x 2=k+1,由于判别式△>0,∴x 1≠x 2,其中x 2=k+1>k ,x 1﹣k=≥0,即x 1≥k ,故原方程有两解,3)当k >时,由2)知,x 1﹣k=<0,即x 1<k ,故x 1不是原方程的解,而x 2=k+1>k ,则原方程有唯一解,综上所述,当k ≥或k=时,原方程有唯一解, 当0≤k <且k ≠时,原方程有两解.20.设数列{a n }的各项均为正数,{a n }的前n 项和,n ∈N *.(1)求证:数列{a n }为等差数列; (2)等比数列{b n }的各项均为正数,,n ∈N *,且存在整数k ≥2,使得.(i )求数列{b n }公比q 的最小值(用k 表示); (ii )当n ≥2时,,求数列{b n }的通项公式.【考点】数列的求和;等差关系的确定. 【分析】(1)数列{a n }的前n 项和,n ∈N *.利用递推关系可得:a n ﹣a n ﹣1=2,再利用等差数列的通项公式即可得出.(2)(i )由(1)可得:a n =2n ﹣1,S n =n 2.根据存在整数k ≥2,使得.可得b 1=.b n =k 2•.由,n ∈N *,可得:q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,利用导数研究其单调性可得:的最大值为k ,q ≥.当n ≤k ﹣1时,q ≤.可得q 的最小值为(整数k ≥2). (ii )由题意可得:q ∈N *,由(i )可知:q ∈,(k ≥2),可得:q ≥>1,q ≤≤4,q ∈{2,3,4},分类讨论即可得出.【解答】(1)证明:∵数列{a n }的前n 项和,n ∈N *.∴当n=1时,,解得a 1=1. 当n ≥2时,a n =S n ﹣S=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0,∵数列{a n }的各项均为正数,∴a n +a n ﹣1>0(n ≥2),a n ﹣a n ﹣1=2, ∴数列{a n }是等差数列,公差为2.(2)解:(i )由(1)可得:a n =1+2(n ﹣1)=2n ﹣1,S n =n 2. ∵存在整数k ≥2,使得.∴,可得b 1=.∴b n ==k 2•,∵,n ∈N *,∴k 2•q n ﹣k ≥n 2,∴q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,∴≥,令f (x )=,(x >1),则f′(x )=,令g (t )=1﹣t+lnt ,(0<t <1),则g′(t )=>0,因此函数g (t )在(0,1)内单调递增,∴g (t )<g (1)=0,∴f′(x )<0,∴函数f (x )在(1,+∞)为减函数,∴的最大值为k,∴≥k,∴q≥.当n≤k﹣1时,q≤.∴q的最小值为(整数k≥2).(ii)由题意可得:q∈N*,由(i)可知:q∈,(k≥2),∴q≥>1,q≤≤4,=,舍去.∴q∈{2,3,4},当q=2时,≤2≤,只能取k=3,此时bn=4,舍去.当q=3时,≤3≤,只能取k=2,此时bn=22n﹣3,符合条件.当q=4时,≤4≤,只能取k=3,此时bn=22n﹣3.综上可得:bn[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.【考点】几种特殊的矩阵变换.【分析】设B′(x,y),=,求得A′的坐标,写出向量,,=,即可求得x和y,求得点B′的坐标.【解答】解:设B′(x,y),由题意可知:=,得A′(1,2),则=(2,2),=(x﹣1,y﹣2),即旋转矩阵N=,则=,即=,解得:,所以B′的坐标为(﹣1,4).[附加题]22.在平面直角坐标系xOy中,已知直线(t为参数)与曲线(θ为参数)相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【分析】直线(t为参数),消去参数t化为普通方程.由曲线(θ为参数),利用倍角公式可得y=1﹣2sin2θ,联立解出,再利用两点之间的距离公式即可得出.【解答】解:直线(t为参数)化为普通方程:y=2x+1.由曲线(θ为参数),可得y=1﹣2sin2θ=1﹣2x2(﹣1≤x≤1),联立(﹣1≤x≤1),解得,或,.∴A(﹣1,﹣1),B(0,1),∴|AB|==.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,由此能求出P(X=0).(2)依题意,X的可能取值为k,﹣1,1,0,分别求出相应的概率,由此求出E(X),进而能求出k的最小值.【解答】解:(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则P (X=0)=3×=.(2)依题意,X 的可能取值为k ,﹣1,1,0,且P (X=k )=()3=, P (X=﹣1)=()3=, P (X=1)=3×=, P (X=0)=3×=,∴参加游戏者的收益X 的数学期望为:E (X )==,为使收益X 的数学期望不小于0元,故k ≥110,∴k 的最小值为110.24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ).(1)当k=2时,求m (1)的值;(2)求m (3)关于k 的表达式,并化简.【考点】整除的定义.【分析】(1)当k=2时,由题意可得数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,可得m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0,然后用组合数表示m (3),同理用组合数表示m (1),结合m (1)=m (3),求出m (1)+m (3),即可求得m (3).【解答】解:(1)当k=2时,数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,∴m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0, ∴m (3)=, 同理得:m (1)=, ∵, ∴m (1)=m (3).又m (1)+m (3)==24k ﹣1,∴m (3)=24k ﹣2=42k ﹣1.。
江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)
2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C = 120°,sinB = 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB 【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA = 2 m,PB = 3 m,PC = 4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA = 2 m,PB = 3 m,PC = 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(3, 1),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量=,= ,其中.(1)若∥,求的值;(2)若,求的值.【答案】(1);(2)【解析】【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥,所以,所以.因为,所以.于是解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)证明A1B1⊥平面BCC1B1,进而A1B1⊥BC1,进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C = B1,A1B1,B1C ⊂平面A1B1C,所以BC1⊥平面A1B1C.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH = .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ⊂平面ABCD,得FH⊥HM.在Rt△FHM中,HM = 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.① 射线与椭圆C1依次交于点,求证:为定值;② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。
江苏省泰州中学等2019届高三第二学期联合调研测试数学试题(解析版)
江苏省泰州中学等2019届高三第二学期联合调研测试数学试题一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........)1.已知集合,,则集合中元素的个数为____.【答案】4【解析】【分析】先求出集合A B,数出其中元素个数即可.【详解】解:因为集合A={l,2,3},B={2,3,4}所以A B={l,2,3,4},有4个元素故答案为:4.【点睛】本题考查了集合的并集运算,属于基础题.2.在复平面内,复数对应的点位于第_______象限.【答案】四【解析】【分析】先对复数进行运算化简,找出其对应的点即可判断出其所在的象限.【详解】解:因为所以复数对应的点为,位于第四象限故答案为:四.【点睛】本题考查了复数的除法运算,复数与复平面中坐标的关系,属于基础题.3.为了解某高中学生的身高情况,现采用分层抽样的方法从三个年级中抽取一个容量为100的样本,其中高一年级抽取24人,高二年级抽取26人.若高三年级共有学生600人,则该校学生总人数为_______.【答案】1200【解析】【分析】先求出高三年级出去的人数和所占比例,再用高三年级学生数除以其所占比例即为总人数.【详解】解:由题意知高三年级抽取了人所以该校学生总人数为人故答案为:1200.【点睛】本题考查了分层抽样,属于基础题.4.从集合A={0,1,2,3}中任意取出两个不同的元素,则这两个元素之和为奇数的概率是_______.【答案】【解析】【分析】先列出一共有多少种取法,再找出其中和为奇数的取法,即可求出其概率.【详解】解:集合A中共有4个元素,任取两个不同的元素有(0,1)、(0,2)、(0,3)、(1,2)、(1,3)(2,3)共6种取法,其中两个元素之和为奇数的有(0,1)、(0,3)、(1,2)、(2,3)共4种取法,所以故答案为:.【点睛】本题考查了古典概型,当取法总数较少时可以采用穷举法,属于基础题.5.中国南宋时期的数学家秦九韶提出了一种多项式简化算法,如图是实现该算法的程序框图,若输入的n=2,x=1,依次输入的a为1,2,3,运行程序,输出的s的值为_______.【答案】6【解析】【分析】先代入第一次输入的,计算出对应的,判断为否,再代入第二次输入的,计算出对应的,判断仍为否,再代入第三次输入的,计算出对应的,判断为是,得到输出值.【详解】解:第一次输入,得,,判断否;第二次输入,得,,判断否;第三次输入,得,,判断是,输出故答案为:6.【点睛】本题考查了循环结构流程图,要小心每次循环后得到的字母取值,属于基础题.6.若双曲线的离心率为,则实数a的值为_______.【答案】1【解析】【分析】先由双曲线方程求出,再利用列方程求解.【详解】解:因为代表双曲线所以,且,所以解出故答案为:1.【点睛】本题考查了双曲线的离心率,属于基础题.7.若圆锥的侧面积为,底面积为,则该圆锥的体积为。
江苏扬州、南通、泰州、宿迁四2019高三3月第二次调研测试-数学
江苏扬州、南通、泰州、宿迁四2019高三3月第二次调研测试-数学数学2018.3数学I【一】填空题:本大题共14小题,每题5分,共70分、请把答案填写在答卷卡的相应位置........上.、 1.在平面直角坐标系中,向量AB uur =(2,1),向量AC uuu r =(3,5),那么向量BC uu u r 的坐标为▲、 【答案】〔1,4〕2.设集合{}{}2223050A x x xB x x x =--=-≤,≥,那么()A B =R I ð▲、【答案】(]03,3.设复数z 满足|z |=|z -1|=1,那么复数z 的实部为▲、 【答案】124.设f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +e x〔e 为自然对数的底数〕,那么()ln6f 的值为▲、 【答案】1ln 66-5.某篮球运动员在7天中进行投篮训练的时间〔单位:分钟〕用茎叶图表示〔如图〕,图中左列表示训练时间的十位数,右列表示训练时间的个位数,那么该运动员这7天的平均训练时间为▲分钟、【答案】72 6.依照如下图的伪代码,最后输出的S 的值为▲、 【答案】145 7.在平面直角坐标系xOy 中,设椭圆与双曲线223y x -=该椭圆的离心率 为▲、8.假设将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2cm 的半圆,那么该圆锥的高为▲cm 、9.将函数π2sin 3y x=的图象上每一点向右平移1个单位,再将所得图象上每一点的横坐标扩大为原来的π3倍〔纵坐标保持不变〕,得函数()y f x =的图象,那么()f x 的一个解析式为▲、(第6题) 6 4 5 7 7 2 5 8 0 1(第5题)【答案】()π2sin 3y x =- 10.函数()(1)sin π1(13)f x x x x =---<<的所有零点之和为▲、【答案】411.设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=、那么cos β的值为▲、【答案】1665-12.设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,那么a 1的值大于20的概率为▲、【答案】1413.设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,那么max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是 ▲、【答案】914.在平面直角坐标系xOy 中,设(11)A -,,B ,C 是函数1(0)y x x=>图象上的两点,且△ABC 为正三角形,那么△ABC 的高为▲、 【答案】2【二】解答题:本大题共6小题,共90分.请把答案写在答题卡相应的位置上..........解答时应写出文字说明、证明过程或演算步骤、 15.〔本小题总分值14分〕△ABC 的内角A 的大小为120〔1〕假设AB=,求△ABC 的另外两条边长;〔2〕设O 为△ABC 的外心,当BC =AO BC ⋅uuu r uu u r的值、【解】〔1〕设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,1sin 2bc A ==,因此bc =4、………………………………3分 因为c AB ==b CA ==、由余弦定理得BC a =====、………6分〔2〕由BC =22421b c ++=,即2216170b b +-=,解得1b =或4、 (8)分ABCP(第16题)DA BPDH 设BC 的中点为D ,那么AO AD DO =+uuu r uuu r uuu r, 因为O 为△ABC 的外心,因此0DO BC ⋅=uuu r uu u r,因此()()22122b c AO BC AD BC AB AC AC AB -⋅=⋅=+⋅-=uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu u r 、…………………12分 因此当1b =时,4c =,221522b c AO BC -⋅==-uuu r uu u r ; 当4b =时,1c =,221522b c AO BC -⋅==uuu r uu u r 、…………………………14分 16.〔本小题总分值14分〕如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,BC //平面PAD ,PBC ∠90=, 90PBA ∠≠、求证:〔1〕//AD 平面PBC ;〔2〕平面PBC ⊥平面PAB 、 【证】〔1〕因为BC //平面PAD ,而BC ⊂平面ABCD ,平面ABCD I 平面PAD =AD , 因此BC //AD 、…………………………………3分 因为AD ⊄平面PBC ,BC ⊂平面PBC ,因此//AD 平面PBC 、……………………………………………………6分 〔2〕自P 作PH ⊥AB 于H ,因为平面PAB ⊥平面ABCD ,且平面PAB I 平面ABCD =AB ,因此PH ⊥平面ABCD 、………………………9分 因为BC ⊂平面ABCD ,因此BC ⊥PH 、 因为PBC ∠90=,因此BC ⊥PB ,而90PBA ∠≠,因此点H 与B 不重合,即PB I PH =H 、因为PB ,PH ⊂平面PAB ,因此BC ⊥平面PAB 、…………12分因为BC ⊂平面PBC ,故平面PBC ⊥平面PAB 、……………………14分 17、〔本小题总分值14分〕为稳定房价,某地政府决定建筑一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x 层楼房每平方米的建筑费用为(kx +800)元(其中k 为常数)、经测算,假设每幢楼为5层,那么该小区每平方米的平均综合费用为1 270元.(每平方米平均综合费用=购地费用+所有建筑费用所有建筑面积)、 〔1〕求k 的值;〔2〕问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?如今每平方米的平均综合费用为多少元? 【解】〔1〕假如每幢楼为5层,那么所有建筑面积为10×1 000×5平方米,所有建筑费用为[(k +800)+(2k +800)+(3k +800)+(4k +800)+(5k +800)]×1 000×10,因此,…………3分1 270=16 000 000+[(k +800)+(2k +800)+(3k +800)+(4k +800)+(5k +800)]×1 000×1010×1 000×5, 解之得:k =50、……………………………………………………6分〔2〕设小区每幢为n (n ∈N *)层时,每平方米平均综合费用为f (n ),由题设可知 f (n )=16 000 000+[(50 +800)+(100 +800)+…+(50n +800)]×1 000×10 10×1 000×n =1 600n +25n +825≥2 1 600×25+825=1225 (元).……………10分 当且仅当1 600n =25n ,即n =8时等号成立、………………………12分答:该小区每幢建8层时,每平方米平均综合费用最低,如今每平方米平均综合费用为1225元、……………………………14分18.〔本小题总分值16分〕函数f (x )=(m -3)x 3+9x .〔1〕假设函数f (x )在区间(-∞,+∞)上是单调函数,求m 的取值范围; 〔2〕假设函数f (x )在区间[1,2]上的最大值为4,求m 的值、【解】〔1〕因为f '(0)=9>0,因此f (x )在区间()-∞+∞,上只能是单调增函数、………3分由f '(x )=3(m -3)x 2+9≥0在区间(-∞,+∞)上恒成立,因此m ≥3、故m 的取值范围是[3,+∞)、…………………………………………6分〔2〕当m ≥3时,f (x )在[1,2]上是增函数,因此[f (x )]max =f (2)=8(m -3)+18=4,解得m =54<3,不合题意,舍去、………………………………………8分 当m <3时,f '(x )=3(m -3)x 2+9=0,得x =、 因此f (x )的单调区间为:(-∞-,单调减,(单调增,)+∞单调减、……………………………………10分2,即934m <≤时,([12]⊆,,因此f (x )在区间[1,2]上单调增,[f (x )]max =f (2)=8(m -3)+18=4,m =54,不满足题设要求、②当12<<,即0<m <94时,[f (x )]max 04f==≠舍去、1,即m ≤0时,那么[12]⎤⊆+∞⎥⎦,,因此f (x )在区间[1,2]上单调减,[f (x )]max =f (1)=m +6=4,m =-2.综上所述:m =-2、……………………………………………16分 19、〔本小题总分值16分〕在平面直角坐标系xOy 中,圆C :x 2+y 2=r 2和直线l :x =a 〔其中r 和a 均为常数,且0<r <a 〕,M 为l 上一动点,A 1,A 2为圆C 与x 轴的两个交点,直线MA 1,MA 2与圆C 的另一个交点分别为P 、Q 、〔1〕假设r =2,M 点的坐标为(4,2),求直线PQ 方程; 〔2〕求证:直线PQ 过定点,并求定点的坐标、 【解】〔1〕当r =2,M (4,2),那么A 1(-2,0),A 2(2,0).直线MA 1的方程:x -3y +2=0,解224320x y x y ⎧+=⎨-+=⎩,得()8655P ,、…………………2分 直线MA 2的方程:x -y -2=0,解22420x y x y ⎧+=⎨--=⎩,得()02Q -,、………………4分由两点式,得直线PQ 方程为:2x -y -2=0、………………………………6分 〔2〕证法一:由题设得A 1(-r ,0),A 2(r ,0).设M (a ,t ),直线MA 1的方程是:y =t a +r (x +r ),直线MA 1的方程是:y =ta -r (x -r )、…………8分解222()x y r t y x r a r ⎧+=⎪⎨=+⎪+⎩,得()222222()2()()()r a r rt tr a r P a r t a r t +-+++++,、…………………………10分解222()x y r t y x r a r ⎧+=⎪⎨=-⎪-⎩,得()222222()2()()()rt r a r tr a r Q a r t a r t -----+-+,、……………………12分因此直线PQ 的斜率k PQ =2ata 2-t 2-r 2,直线PQ 的方程为()2222222222()()2()()tr a r r a r rt at y x a r t a t r a r t ++--=-++--++、…………14分上式中令y =0,得x =r 2a ,是一个与t 无关的常数.故直线PQ 过定点()20r a ,、…16分证法二:由题设得A 1(-r ,0),A 2(r ,0).设M (a ,t ),直线MA 1的方程是:y =ta +r (x +r ),与圆C 的交点P 设为P (x 1,y 1)、直线MA 2的方程是:y =ta -r (x -r );与圆C 的交点Q 设为Q (x 2,y 2)、那么点P (x 1,y 1),Q (x 2,y 2)在曲线[(a +r )y -t (x +r )][(a -r )y -t (x -r )]=0上,…10分化简得(a 2-r 2)y 2-2ty (ax -r 2)+t 2(x 2-r 2)=0、①又有P (x 1,y 1),Q (x 2,y 2)在圆C 上,圆C :x 2+y 2-r 2=0、②① -t 2×②得(a 2-r 2)y 2-2ty (ax -r 2)-t 2(x 2-r 2)-t 2(x 2+y 2-r 2)=0, 化简得:(a 2-r 2)y -2t (ax -r 2)-t 2y =0、因此直线PQ 的方程为(a 2-r 2)y -2t (ax -r 2)-t 2y =0、③……………14分在③中令y =0得x =r 2a ,故直线PQ 过定点()20r a ,、………………16分20、〔本小题总分值16分〕设无穷数列{}n a 满足:n *∀∈Ν,1n n a a +<,na *∈N .记*1()n n n a n ab ac a n +==∈N ,.〔1〕假设*3()nb n n =∈N ,求证:1a =2,并求1c 的值;〔2〕假设{}n c 是公差为1的等差数列,问{}n a 是否为等差数列,证明你的结论、【解】〔1〕因为n a *∈N ,因此假设11a =,那么113a a a ==矛盾,假设113aa a =≥,可得113a ≥≥矛盾,因此12a =、…………………………4分因此123a a a ==,从而121136a a c a a a +====、……………………………7分〔2〕{}n a 是公差为1的等差数列,证明如下:…………………………9分 12n n a a n +>⇒≥时,1n n a a ->,因此11()n n n m a a a a n m -+⇒+-≥≥,()m n <11111(1)n n a a n n a a a a ++++⇒++-+≥,………………………………………………13分即11n n n n cc a a ++--≥,由题设,11n n a a +-≥,又11n n a a +-≥,因此11n n aa +-=,即{}n a 是等差数列、………………………………………16分数学II 〔附加题〕21.〔选做题〕本大题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题.每题10分,共20分、请在答题卡上准确填涂题目标记.解答时应写出文字说明、证明过程或演算步骤、A.选修4-1:几何证明选讲如图,AB 是⊙O 的直径,,C F 是⊙O 上的两点,OC ⊥AB 过点F 作⊙O 的切线FD 交AB 的延长线于点D 、连结CF 交 AB 于点E .求证:2DE DB DA =⋅.【证明】连结OF 、因为DF 切⊙O 于F ,因此∠OFD =90°、 因此∠OFC +∠CFD =90°、因为OC =OF ,因此∠OCF =∠OFC 、因为CO ⊥AB 于O ,因此∠OCF +∠CEO =90°、…………………5分 因此∠CFD =∠CEO =∠DEF ,因此DF =DE 、因为DF 是⊙O 的切线,因此DF 2=DB ·DA 、因此DE 2=DB ·DA 、………………10分 B.选修4-2:矩阵与变换设曲线22221x xy y ++=在矩阵()001m m n ⎡⎤=>⎢⎥⎣⎦M 对应的变换作用下得到的曲线为221x y +=,求矩阵M 的逆矩阵1-M 、【解】设曲线22221x xy y ++=上任一点(,)P x y 在矩阵M 对应的变换下的像是(,)P x y ''',由01x m x mx n y y nx y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'+⎣⎦⎣⎦⎣⎦⎣⎦,得x mx y nx y '=⎧⎨'=+⎩,,因为()P x y ''',在圆221x y +=上,因此()()221mx nx y ++=,化简可得2222()21m n x nxy y +++=、………………………………………………3分依题意可得22222m n n +==,,11m n ==,或11m n =-=,而由0m >可得11m n ==,、………6分故1011⎡⎤=⎢⎥⎣⎦M ,11011-⎡⎤=⎢⎥-⎣⎦M 、…………………………………………10分 C.选修4-4:坐标系与参数方程在平面直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=、〔1〕在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别求圆12,C C 的极坐标方程及这两个圆的交点的极坐标; 〔2〕求圆12C C 与的公共弦的参数方程、【解】〔1〕圆1C 的极坐标方程为=2ρ,圆2C 的极坐标方程为4cos ρθ=,(第22题)BACA 1B 1C 1 由24cos ρρθ=⎧⎨=⎩,得π=23ρθ=±,,故圆12C C ,交点坐标为圆()()ππ2233-,,,、…………………5分 〔2〕由〔1〕得,圆12C C ,交点直角坐标为(1(1,,, 故圆12C C 与的公共弦的参数方程为1(x y t t =⎧⎪⎨=⎪⎩,.……………10分注:第〔1〕小题中交点的极坐标表示不唯一;第〔2〕小题的结果中,假设未注明参数范围,扣2分、D 、选修4-5:不等式选讲 设正数a ,b ,c 满足1a b c ++=,求111323232a b c +++++的最小值、【解】因为a ,b ,c 均为正数,且1a b c ++=,因此(32)(32)(32)9a b c +++++=、 因此()[]111(32)(32)(32)323232a b c a b c ++++++++++9=≥,当且仅当13a b c ===时,等号成立、…………………………………8分 即1111323232a b c +++++≥,故111323232a b c +++++的最小值为1、…………10分 22.必做题,本小题10分、解答时应写出文字说明、证明过程或演算步骤、如图,在三棱柱111ABC A B C -中,1A B ABC ⊥平面,AB AC ⊥,且12AB AC A B ===、〔1〕求棱1AA 与BC 所成的角的大小;〔2〕在棱11B C 上确定一点P ,使二面角1P AB A--的平面角的余弦、【解】〔1〕如图,以A 为原点建立空间直角坐标系,那么()()()()11200020022042C B A B ,,,,,,,,,,,, ()1022AA =,,,()11220BC B C ==-,,、1111cos 28AA BC AA BC AA BC⋅〈〉===-⋅,,故1AA 与棱BC 所成的角是π3、………………………4分〔2〕P 为棱11B C 中点,设()111220B P B C λλλ==-,,,那么()2422P λλ-,,、 设平面PAB 的法向量为n 1(),,x y z =,()=2422AP λλ-,,, 那么1103202000AP x y z z x y y AB λ⎧⋅=++==-⎧⎧⎪⇒⇒⎨⎨⎨==⋅=⎩⎩⎪⎩,,,.n n故n 1()10λ=-,,………………………8分而平面1ABA 的法向量是n 2=(1,0,0),那么121212cos ,⋅〈〉===⋅n n n n n n解得12λ=,即P 为棱11B C 中点,其坐标为()132P ,,……………………10分23、必做题,本小题10分、解答时应写出文字说明、证明过程或演算步骤、设b >0,函数2111()(1)ln 2f x ax x bxab b b=+-+,记()()F x f x '=〔()f x '是函数()f x 的导函数〕,且当x =1时,()F x 取得极小值2、 〔1〕求函数()F x 的单调增区间; 〔2〕证明[]()*()()22nn n F x F x n --∈N ≥、【解】〔1〕由题()11111()()2(1)002F x f x ax a ax x b ab b bx b x'==⋅+⋅-+=+>>,,、 因此()211()F'x a b x=-,假设0a <,那么()0F'x <,与()F x 有极小值矛盾,因此0a >、 令()0F'x=,并考虑到0x >,知仅当x =时,()F x 取得极小值、因此11(1)2a b=⎪+=⎩,,解得1a b ==、……………………………………………4分C 1故1()(0)F x x x x=+>,由()0F x '>,得1x >,因此()F x 的单调增区间为(1)+∞,、〔2〕因为0x >,因此记[][]()()11()()()()()nnnnnnng x F x F x F x F x x x xx=-=-=+-+11223312311111C C C C n n n n n n n nn x x x x x x x x -----=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+⋅ 因为11C C 2C (121)rn rn r r nn n n r xx r n x x---⋅+⋅=-L ≥,,,, 因此12312()2(C C C C )2(22)n nn nnn g x -+++⋅⋅⋅⋅⋅⋅+=-≥,故[]()*()()22nn nF x F x n --∈N ≥、………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届江苏省泰州、南通、扬州、苏北四市七市高三第二次模拟数学理(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A ={1,3,a},B ={4,5},若A ∩B ={4},则实数a 的值为________.2.复数z =2i 2+i(i 为虚数单位)的实部为________.3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.5.执行如图所示的伪代码,则输出的S 的值为________.i ←1S ←2While i<7S ←S ×ii ←i +2End WhilePrint S6.函数y =4x -16的定义域为________.7.将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f(x)的图象,则f ________.8.在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为2,则b 的值为________.9.在△ABC 中,已知C =120°,sin B =2sin A ,且△ABC 的面积为23,则AB 的长为________.10.设P ,A ,B ,C 为球O 表面上的四个点,PA ,PB ,PC 两两垂直,且PA =2m ,PB =3m ,PC =4m ,则球O 的表面积为________m 2.11.定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上,f (x )-x ,2≤x <3,-4,3≤x <4,则函数y =f (x )-log 5|x |的零点的个数为________.12.已知关于x 的不等式ax 2+bx +c>0(a ,b ,c ∈R )的解集为{x |3<x <4},则c 2+5a +b________.13.在平面直角坐标系xOy 中,已知点A ,B 在圆x 2+y 2=4上,且AB =22,点P(3,-1),PO →·(PA→+PB →)=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________.14.已知集合A ={x|x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系中,设向量a =(cos α,sin α),b 0<α<π2.(1)若a ∥b ,求α的值;(2)若tan2α=-17,求a ·b 的值.16.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E.求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM=5m,BC=10m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH=(1)求屋顶面积S关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6m的别墅,试问:当θ为何值时,总造价最低?①②如图,在平面直角坐标系xOy中,已知椭圆C1:x24+y2=1,椭圆C2:x2a2+y2b2=1(a>b>0),C2与C1的长轴长之比为2∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点P为椭圆C2上一点.①射线PO与椭圆C1依次交于点A,B,求证:PAPB为定值;②过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证:k1·k2为定值.已知函数f(x)=2ln x+12x2-ax,a∈R.(1)当a=3时,求函数f(x)的极值;(2)设函数f(x)在x=x0处的切线方程为y=g(x),若函数y=f(x)-g(x)是(0,+∞)上的单调增函数,求x0的值;(3)是否存在一条直线与函数y=f(x)的图象相切于两个不同的点?并说明理由.已知数列{a n}的各项均不为零.设数列{a n}的前n项和为S n,数列{a2n}的前n项和为T n,且3S2n-4S n +T n=0,n∈N*.(1)求a1,a2的值;(2)证明:数列{a n}是等比数列;(3)若(λ-na n)(λ-na n+1)<0对任意的n∈N*恒成立,求实数λ的所有值.2019届高三年级第二次模拟考试(十二)数学附加题(满分40分,考试时间30分钟)21.【选做题】本题包括A、B、C三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知m,n∈R,向量α=11是矩阵M=1m2n的属于特征值3的一个特征向量,求矩阵M及另一个特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l =1+t,=t(t为参数),椭圆C的参数方程为=2cosθ,=sinθ(θ为参数).设直线l与椭圆C交于A,B两点,求线段AB的长.C.[选修4-5:不等式选讲](本小题满分10分)已知x,y,z均是正实数,且x2+4y2+z2=16,求证:x+y+z≤6.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=1,AP=AD=2.(1)求直线PB与平面PCD所成角的正弦值;(2)若点M,N分别在AB,PC上,且MN⊥平面PCD,试确定点M,N的位置.23.(本小题满分10分)已知a1,a2,…,a n(n∈N*,n≥4)均为非负实数,且a1+a2+…+a n=2.证明:(1)当n=4时,a1a2+a2a3+a3a4+a4a1≤1;(2)对于任意的n∈N*,n≥4,a1a2+a2a3+…+a n-1a n+a n a1≤1.2019届高三年级第二次模拟考试(南通七市)数学参考答案1.42.253.354.235.306.[2,+∞)7.-28.29.2710.29π11.512.4513.1,1514.4415.(1)因为a ∥b ,所以cos αsin α0,(2分)所以α0.(4分)因为0<α<π2,所以π6<2α+π6<7π6,所以2α+π6=π2,解得α=π6.(6分)(2)因为0<α<π2,所以0<2α<π.又tan2α=-17<0,故π2<2α<π.因为tan2α=sin2αcos2α=-17,所以cos2α=-7sin2α<0.又sin 22α+cos 22α=1,解得sin2α=210,cos2α=-7210.(10分)所以a ·b =cos αsin αα分)=sin2αcos π6+cos2αsin π6=210·32+·12=6-7220.(14分)16.(1)因为三棱柱ABCA 1B 1C 1为直三棱柱,所以侧面ACC 1A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点.同理,E 为BC 1的中点,所以DE ∥AB.(3分)又AB ⊂平面ABB 1A 1,DE ⊄平面ABB 1A 1,所以DE ∥平面ABB 1A 1.(6分)(2)因为三棱柱ABCA 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1.(8分)又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1=B 1,所以A 1B 1⊥平面BCC 1B 1.(10分)又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.(12分)又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C.又A 1B 1∩B 1C =B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C.(14分)17.(1)由题意得FH ⊥平面ABCD ,FM ⊥BC ,又因为HM ⊂平面ABCD ,所以FH ⊥HM.(2分)在Rt △FHM 中,HM =5,∠FMH =θ,所以FM =5cos θ(4分)所以△FBC 的面积为12×10×5cos θ=25cos θ,所以屋顶面积S =2S △FBC +2S 梯形ABFE =2×25cos θ+2×25cos θ×2.2=160cos θ,所以S 关于θ的函数关系式为S 分)(2)在Rt △FHM 中,FH =5tan θ,所以主体高度为h =6-5tan θ,(8分)所以别墅总造价为y =S·k +h·16k=160cos θ·k +(6-5tan θ)·16k =160cos θk -80sin θcos θk +96k=96k(10分)记f(θ)=2-sin θcos θ,0<θ<π4,所以f′(θ)=2sin θ-1cos 2θ,令f′(θ)=0,得sin θ=12.又0<θ<π4,所以θ=π6.(12分)列表:所以当θ=π6时,f(θ)有最小值.故当θ为π6时该别墅总造价最低.(14分)18.(1)设椭圆C 2的焦距为2c ,由题意,得a =22,c a =32,a 2=b 2+c 2,解得b =2,所以椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 的斜率不存在时,PA =2-1,PB =2+1,则PA PB =2-12+1=3-2 2.(4分)2°当直线OP 的斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4,所以x 2A =44k 2+1,同理x 2P =84k 2+1,(6分)所以x 2P =2x 2A ,由题意,得x P 与x A 同号,所以x P =2x A ,所以PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-22,所以PA PB=3-22为定值.(8分)②设P(x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x +k 1y 0-x 0,记t =k 1y 0-x 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0.因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2+1=0,将t =k 1y 0-x 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,(12分)同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根,所以k 1·k 2=y 20-1x 20-4.(14分)又点P(x 0,y 0)在椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 20,所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)19.(1)当a =3时,函数f(x)=2ln x +12x 2-3x 的定义域为(0,+∞),则f′(x)=2x +x -3=x 2-3x +2x令f′(x)=0,得x =1或x =2.(2分)列表:所以函数f(x)的极大值为f(1)=-52,极小值为f(2)=2ln 2-4.(4分)(2)依题意,得切线方程为y =f′(x 0)(x -x 0)+f(x 0)(x 0>0),所以g(x)=f′(x 0)(x -x 0)+f(x 0)(x 0>0),记p(x)=f(x)-g(x),则p(x)=f(x)-f(x 0)-f′(x 0)(x -x 0)在(0,+∞)上为单调增函数,所以p′(x)=f′(x)-f′(x 0)≥0在(0,+∞)上恒成立,即p′(x)=2x -2x 0+x -x 0≥0在(0,+∞)上恒成立.(8分)-x 0)≥0在(0,+∞)上恒成立,所以2x 0=x 0,又x 0>0,所以x 0=2.(10分)法二:变形得x +2x ≥x 0+2x 0在(0,+∞)上恒成立,因为x +2x ≥2x·2x=22(当且仅当x =2时,等号成立),所以22≥x 0+2x 0,所以(x 0-2)2≤0,所以x 0=2.(10分)(3)假设存在一条直线与函数f(x)的图象有两个不同的切点T 1(x 1,y 1),T 2(x 2,y 2),不妨设0<x 1<x 2,则点T 1处切线l 1的方程为y -f(x 1)=f′(x 1)(x -x 1),点T 2处切线l 2的方程为y -f(x 2)=f′(x 2)(x -x 2).因为l 1,l 2为同一直线,(x 1)=f′(x 2),x 1)-x 1f′(x 1)=f (x 2)-x 2f′(x 2),(12分)所以2x 1+x 1-a =2x 2+x 2-a ,2ln x 1+12x 21-ax 1-x x 1-2ln x 2+12x 22-ax 2-x x 2-1x 2=2,ln x 1-12x 21=2ln x 2-12x 22,(14分)消去x 2,得2ln x 212+2x 21-x 212=0.①令t =x 212,由0<x 1<x 2与x 1x 2=2,得t ∈(0,1),记p(t)=2ln t +1t -t ,则p′(t)=2t -1t 2-1=-(t -1)2t 2<0,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0,所以①式不可能成立,所以假设不成立,所以不存在一条直线与函数f(x)的图象有两个不同的切点.(16分)20.(1)因为3S 2n -4S n +T n =0,n ∈N *.令n =1,得3a 21-4a 1+a 21=0.因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0.因为a 2≠0,所以a 2=-12.(3分)(2)因为3S 2n -4S n +T n =0,①所以3S 2n +1-4S n +1+T n +1=0,②②-①,得3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,③(5分)所以3(S n +S n -1)-4+a n =0(n ≥2),④当n ≥2时,③-④,得3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n .因为a n ≠0,所以a n +1a n=-12.又由(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)(3)由(2)知,a n -1.因为对任意的n ∈N *,(λ-na n )(λ-na n +1)<0恒成立,所以λ的值介于n -1和n 之间.因为-1·<0对任意的n ∈N *恒成立,所以λ=0适合.(10分)若λ>0,当n 为奇数时,<λ<-1恒成立,从而有λ<n 2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0,所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n 2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,<λ<n-1恒成立,从而有-λ<n 2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n 2n ,所以λ<0不符.综上,实数λ的所有值为0.(16分)21.A.由题意,得Mα=3α,即1m 2n 11=1+m 2+n =33,所以m =2,n =1,即矩阵M =1221.(5分)矩阵M 的特征多项式f (λ)=|λ-1-2-2λ-1|=(λ-1)2-4=0,解得矩阵M 的另一个特征值为λ=-1.(10分)B.由题意,得直线l的普通方程为x -y -1=0.①椭圆C 的普通方程为x 22y 2=1.②(4分)由①②联立,解得A (0,-1),(8分)所以AB=423.(10分)C.由柯西不等式,得[x 2+(2y )2+z 2]·12+12≥(x +y +z )2.(5分)因为x 2+4y 2+z 2=16,所以(x +y +z )2≤16×94=36,所以x +y +z ≤6,当且仅当x =2y =z 时取等号.(10分)22.(1)由题意,知AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),所以PB→=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2).设平面PCD 的法向量n =(x ,y ,z ),·PC →=0,·PD →=0,+2y -2z =0,y -2z =0,不妨取y =1,则x =0,z =1,所以平面PCD 的一个法向量为n =(0,1,1).(3分)设直线PB 与平面PCD 所成角为θ,所以sin θ=|cos 〈PB →,n 〉|=|PB →·n |PB →|·|n ||=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分)(2)设M (a ,0,0),则MA →=(-a ,0,0),设PN →=λPC →,则PN →=(λ,2λ,-2λ),因为AP →=(0,0,2),所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分)由(1)知,平面PCD 的一个法向量为n =(0,1,1),因为MN ⊥平面PCD ,所以MN →∥n ,-a =0,λ=2-2λ,解得λ=12,a =12,所以M 为AB 的中点,N 为PC 的中点.(10分)23.(1)当n =4时,因为a 1,a 2,…,a 4均为非负实数,且a 1+a 2+a 3+a 4=2,所以a 1a 2+a 2a 3+a 3a 4+a 4a 1=a 2(a 1+a 3)+a 4(a 3+a 1)=(a 3+a 1)(a 2+a 4)(2分)≤(a 3+a 1)+(a 2+a 4)22=1.(4分)(2)①当n =4时,由(1)可知,命题成立;②假设当n =k(k ≥4)时,命题成立,即对于任意的k ≥4,若x 1,x 2,…,x k 均为非负实数,且x 1+x 2+…+x k =2,则x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1,则当n =k +1时,设a 1+a 2+…+a k +a k +1=2,不妨设a k +1=max {a 1,a 2,…,a k ,a k +1}.令x 1=(a 1+a 2),x 2=a 3,x k -1=a k ,x k =a k +1,则x 1+x 2+…+x k =2.由归纳假设,知x 1x 2+x 2x 3+…+x k -1x k +x k x 1≤1.(8分)因为a 1,a 2,a 3均为非负实数,且a k +1≥a 1,所以x 1x 2+x k x 1=(a 1+a 2)a 3+a k +1(a 1+a 2)=a 2a 3+a k +1a 1+a 1a 3+a k +1a 2≥a 1a 2+a 2a 3+a k +1a 1,所以1≥(x 1x 2+x k x 1)+(x 2x 3+…+x k -1x k )≥(a 1a 2+a 2a 3+a k +1a 1)+(a 3a 4+…+a k a k +1),即a 1a 2+a 2a 3+…+a k a k +1+a k +1a 1≤1,所以当n =k +1时命题也成立,所以由①②可知,对于任意的n ≥4,a 1a 2+a 2a 3+…+a n -1a n +a n a 1≤1.(10分)。