中山市2014年初三数学竞赛试题2014
中山市2013-2014学年度上学期九年级数学期末水平测试试卷
中山市2013-2014学年度上学期期末水平测试试卷九年级数学一、单项选择题(共10个小题,每小题3分,满分30分)1、下列事件属于不可能事件的是 ( )A.掷一次般子,向上的一面是6点B.打开电视机,正在转播足球比赛C.地球上,向上抛的篮球会下落D.从只有红球的袋子中,摸出1个白球2、.抛物线5)2(32+--=x y 的对称轴是直线 ( )A. x=2B. x=5C. X=—2D. x 二一53用配方法解关于x 的一元二次方程0522=--x x ,配方正确的是 ( ) A. 6)1(2=+x B.612=-)(x C. 412=-)(x D. 412=+)(x 4.平面直角坐标系内,点M(1,-2)关于原点对称点的坐标是 ( )A.(l ,-2)B.(一2. l)C.(一1,一2)D.(一1,2)5.将5张分别画有等边三角形、平行四边形、矩形、五角星、圆的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,翻到中心对称图形的概率是 ( )A 、51B 、52C 、53D 、54 6.下列计算正确的是 ( )A 、32-23=B 、2224= C 、10522=)( D 、3-3-2=)( 7.己知圆O 半径为5,圆心O 到直线I 的距离为3,则直线l 与圆O 位置关系是( )A.相交B.相切C.相离D.无法确定8.如图,Rt ∆OAB 中,∠AOB= 25°,将∆OAB 绕点O 逆时针旋转100°得到11B OA ∆,则OB A 1∠为 ( )A 、125°B 、65°C 、75°D 、50°9、二次函数c bx ax y ++=2的图像如图所示,则卜列判断中错误的是( )A.图像的对称轴是直线x=一1B.当x<一1时,Y 随x 的增大而增大C 、当一3<x<1时,y<0 D.一元二次方程2ax + bx 十c=0的两个根是一3,110.如图,A 、B,、C 三点都在圆0上,点D 是AB 延长线上的一点,070CBD =∠则AOC ∠的度数为A .55° B. 70° C .I10° D. 140°二、填空题(每小题4分,满分24分)11、当m 时,二次根式12-m 有意义.12、将抛物线232-=x y 向右平移3个单位后得到的抛物线解析式是 l3.用半径为2,圆心角是60°的扇形围成的圆锥侧面积是 〔结果保留π).14.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安 排15场比赛,设应邀请x 支球队参赛,根据题意,可列出方程 15.如图,∆ABC 中,,4B=AC. ∠ABC=40°,点I 是∆ABC 的内心,则∠ BIC 的度数为16.如图,若弧BC 的半径AB 为12,圆心角为120°,半径为2的圆O ,从弧BC 的一个端点B(切点)开始沿弧滚动到另一个端点C(切点),则圆O 需要转动 周三、解答题(共3个小题,每小题5分,满分15分)17(5分)计算:))((272-7-92+18、(5分)己知关于x 的一元二次方程03222=-+-a a x ax 的一根为0,求a 的值。
2014年全国初中数学竞赛试题参考答案及评分标准
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
2014年全国初中数学竞赛预赛试题及答案
2014 年全国初中数学竞赛预赛试题及参考答案(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共 6 小题,每小题 6 分,共36 分)以下每小题均给出了代号为A ,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0 分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则(A)2013 答】D.B)2014的值为【】C)2015 (D)0解:最大的负整数是-1,1;绝对值最小的有理数是0, •••=0;倒数等于它本身的自然数是1=1.=0.2. 已知实数满足则代数式的值是【A )(B)3 (C)(D)7 答】A.解:两式相减得3.如图,将表面展开图(图1)还原为正方体,按图2 所示摆放,那么,图1 中的线段MN 在图 2 中的对应线段是【】A) B)C)D)【答】C . 解:将图1中的平 面图折成正方体,MN 和线段c 重合.不妨设 图1中完整的正方形 为完整面,△ AMN 和 △ ABM 所在的面为组 合面,则△ AMN 和与AM 重合,MN 与线段c 重合.△ ABM 所在的面为两个相邻的组合面,比较图 2,首先确定B 点,所以线段d4. 已知二次函数的图象如图所示,则下列7 个代数式12 / 75)3个 (C ) 4个】 (D) 4个以上答】C.解:由图象可得:抛物线与轴有两个交点,=118 /75即21 / 75. 从图象可得,抛物线对称轴在直线=1 的左边.因此7 个代数式中,其值为正的式子的个数为 4 个.5.如图,Rt A OAB的顶点O与坐标原点重合,/ AO=90°,AO=2BQ当A(x>0)的图象上移动点在反比例函数时, B 点坐标满足的函数解析式为【】x<0)B) x<0)C) x<0)D)x<0)答】B.轴的垂线那么28 / 756.如图,四边形ABHK 是边长为6 的正方形,点C、D 在边AB 上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP, E、F分别为MN、QR的中点,连接EF,设EF 的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH 中点为S ,连接PE 、ES SF 、PF 、PS ,可证明四边形 PESF 为平行四边形,••• G 为PS 的中点,即在点P 运动过程中,G 始终为PS 的中点,所 以G 的运行轨迹为△ CSD 的中位线,••• CD=AB — AC — BD=6 — 1 — 1 = 4 , •••点 G 移动的路径长为=2.、填空题(共6小题,每小题6分,共36 分)A【答】原式=8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为个为红色玻璃球的概率为___________ ,那么,随机摸出一答】解:设口袋中蓝色玻璃球有个,依题意,得=10,所以P (摸出一个红色玻璃球)9. 若【答】8.10. _______________________________________ 如图,在Rt A OAB 中,/ AOB=30° AB=2,将Rt△ OAB 绕O 点顺时针旋转90°得到Rt△ OCD,则AB扫过的面积为______________________________________ .【答】解:T Rt A OAB 中,/ AOB=30°, AB=2,,BO=DO=4,AO=CO=阴影部分面11. 如图,在矩形ABCD中,AB=3, BC=4,点E是AD上一个动点,把△ BAE沿BE向矩形内部折叠,当点A的对应点A i恰落在/ BCD的平分线上时, CA i= __________答】.解:过A i 作A i M 丄BC,垂足为M,设CM=A i M=x,贝U BM=4 —X, 在Rt△ A i BM 中,E=A i M =•••在等腰Rt△ A i CM 中,C A i =12. 已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x 的方程(x—a)(x—b)(x—c)(x —d) =2014 中大于a、b、c、d 的一个整数根,贝U m的值为_______ .【答】20.解:•••( m—a)( m—b)( m—c)( m—d) =2014,且a、b、c、d 是四个不同的整数,由于m是大于a、b、c、d的一个整数根,二(m—a)、( m—b)、( m—c)、( m —d)是四个不同的正整数. v2014=1 >2X19>53, /•( m—a) + (m—b) + (m—c) + (m—d) =1+2+19+53=75.又v a+b+c+d =5,二m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13. 某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x本,大笔记本y本,钢笔z支,易知0< x w 69, 0< y w 49, 0< z w 34,••• x, y, z均为正整数,>0,即0V z< 14••• z只能取14,9和4. (8)分① 当z 为14 时,=2,=28.② 当z 为9 时,=26,=18.③ 当z 为 4 时,=50 ,=8.综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支• ............................................................ 14分14. 如图,在矩形ABCD中, AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP为x,四边形AEHP勺面积为y,试求y与x的函数解析式;(2) 若AE=2EB①求圆心在直线BC上,且与直线DE AB都相切的。
2014年全国初中数学联合竞赛试题参考答案和评分标准
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
中山市2014年初三数学竞赛试题
EFDCBA中山市2014年初三数学竞赛试题(竞赛时间:2014年3月16日上午9::0-11:00,满分:150分)一、选择题(共5小题,每小题7分,共35分。
每道小题有且只有一个选项是正确的,请将正确选项代号填入题后的括号里,不填、多填或错填都得0分)1.|16|-的算术平方根是 ( ) A.2± B.4± C.2 D.42.观察下列等式:331=,932=,2733=,8134=,,24335=72936=,218737=……解答下列问题: 201443233333+++++ 的末位数字是 ( )A.0B.2C.3D.93.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论中正确的是 ( ) A.当AC=BD 时,四边形ABCD 是矩形;B.当AB=AD ,CB=CD 时,四边形ABCD 是菱形;C.当AB=AD=BC 时,四边形ABCD 是菱形;D.当AC=BD ,AD=AB 时,四边形ABCD 是正方形。
4.已知抛物线)0(2≠++=a c bx ax y 经过点A (-1,3)、B )1,(1x 、C )1,(2x ,其中,10,1221<<-<<-x x 给出以下结论:⑴124<+-c b a ;⑵1>c ;⑶1-<a ;⑷ac a b 4122>+。
则正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个5.如图,在R t △ABC 中,AC=3,BC=4,D 为斜边AB 上的一动点,DE ⊥BC ,DF ⊥AC ,垂足分别为E 、F ,当线段EF 的长为最小时,cos ∠EFD=( )A.53B.54C.43D.47二、填空题(共5小题,每小题7分,共35分)6.若关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 有解,则m 的取值范围为 。
7.单项式3238--b b y x 与单项式a b a y ax ---23之差还是单项式,则b a +的值是 。
2014年全国初中数学竞赛精彩试题及问题详解
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设a =b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.22121+++-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC=不一定是有理数.4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.200解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802B HC A B OC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ①即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()kj i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
2014年全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不.一定..是有理数的为( ). (A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设33a =,b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.444444222222121231991001121231991001++++++++++-+-+-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC ∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC=·AD AB 不一定是有理数. 4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25. 因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ① 即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
2014年全国初中数学联赛决赛(初三)试题及其解答
PAE 1 (BAD CAE) 1 (66 30) 18 ,
2
2
所以 PAC PAE CAE 18 30 48 .
EP
C
D
A
4.已知正整数 a, b, c 满足:1 a b c , a b c 111, b2 ac ,则 b
.
【答】36.
设 a, c 的最大公约数为 (a, c) d , a a1d , c c1d , a1, c1 均为正整数且 (a1, c1) 1, a1 c1,则
F
故12 x2 [ 2(1 x)]2 ,即 x2 4x 1 0 .又 0 x 1,故可得 x 2 3 .
A
B E
故 BE 2x 4 2 3 .
二、填空题:(本题满分 28 分,每小题 7 分)
1.已知实数 a, b, c 满足 a b c 1, 1 1 1 1,则 abc ____. abc bca cab
8.
a2 b2 a2b2
a2b2
22
二.(本题满分 25 分)如图,在平行四边形 ABCD 中,E 为对角线 BD 上一点,且满足 ECD ACB ,
AC 的延长线与△ ABD 的外接圆交于点 F . 证明: DFE AFB .
D
证明 由 ABCD 是平行四边形及已知条件知 ECD ACB DAF .
【答】 0.
由题意知 1 1 1 1,所以 1 2c 1 2a 1 2b
(1 2a)(1 2b) (1 2b)(1 2c) (1 2a)(1 2c) (1 2a)(1 2b)(1 2c)
整理得 2 2(a b c) 8abc ,所以 abc 0.
2014 年全国初中数学联合竞赛试题参考答案 第 2 页(共 6 页)
全国初中数学竞赛2014年预赛.doc
全国初中数学竞赛(2014年预赛)(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则的值为【】(A)2013(B)2014(C)2015(D)02. 已知实数满足则代数式的值是【】(A)(B)3(C)(D)73.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1中的线段MN在图2中的对应线段是【】(A)(B)(C)(D)4. 已知二次函数的图象如图所示,则下列7个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4个以上5. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的函数解析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP 和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6二、填空题(共6小题,每小题6分,共36分)7.已知,化简得.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.9. 若,则= .10.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为.11.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE 沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,CA1= .12.已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x 的方程(x-a)(x-b)(x-c)(x-d)=2014中大于a、b、c、d的一个整数根,则m的值为.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?14.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP 为x,四边形AEHP的面积为y,试求y与x的函数解析式;(2)若AE=2EB. ①求圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长;②圆心在直线BC上,且与直线DE及矩形ABCD的某一边所在直线都相切的圆共有多少个?(直接写出满足条件的圆的个数即可.)15. 如图1,等腰梯形OABC的底边OC在x轴上,AB∥OC,O为坐标原点,OA =AB=BC,∠AOC=60°,连接OB,点P为线段OB上一个动点,点E为边OC中点.(1)连接PA、PE,求证:PA=PE;(2)连接PC,若PC+P E=,试求AB的最大值;(3)在(2)在条件下,当AB取最大值时,如图2,点M坐标为(0,-1),点D为线段OC上一个动点,当D点从O点向C点移动时,直线MD与梯形另一边交点为N,设D点横坐标为m,当△M NC为钝角三角形时,求m的范围.答案1.【答】D.解:最大的负整数是-1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它本身的自然数是1,∴=1.∴==0.2. 【答】A.解:两式相减得3.【答】C.解:将图1中的平面图折成正方体,MN和线段c重合.不妨设图1中完整的正方形为完整面,△AMN和△ABM所在的面为组合面,则△AMN和△ABM所在的面为两个相邻的组合面,比较图2,首先确定B点,所以线段d 与AM重合,MN与线段c重合.4【答】C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴.当=1时,,即.当=时,,即.从图象可得,抛物线对称轴在直线=1的左边,即,∴.因此7个代数式中,其值为正的式子的个数为4个.5. 【答】B.解:如图,分别过点分别做轴的垂线,那么∽,则,故..6.【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为=2.7.【答】.解:∵,∴,,原式=.8.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以P(摸出一个红色玻璃球)=.9.【答】8.解:∵,∴.则,即.∴10. 【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴AO=CO=,BO=DO=4,∴阴影部分面积====.【答】.解:过A1作A1M⊥BC,垂足为M,设CM=A1M=x,则BM=4-x,在Rt△A1BM中,,∴=,∴x =A1M=,∴在等腰Rt△A1CM中,C A1=.12. 【答】20.解:∵(m-a)(m-b)(m-c)(m-d)=2014,且a、b、c、d是四个不同的整数,由于m是大于a、b、c、d的一个整数根,∴(m-a)、(m-b)、(m-c)、(m-d)是四个不同的正整数. ∵2014=1×2×19×53,∴(m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵a+b+c+d =5,∴m =20.13. 解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有,.易知0<x≤69,0<y≤49,0<z≤34,……………………………………4分∴,,即.∵x,y,z均为正整数,≥0,即0<z≤14∴z只能取14,9和4 (8)分①当z为14时,=2,=28. .②当z为9时,=26,=18. .③当z为4时,=50,=8. .综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支.……………………………………………………………………14分14. 14、解:(1)在Rt中,…………………………………………………………5分(2)①∽.………………………7分若⊙与直线DE、AB都相切,且圆心在AB的左侧,过点作于,则可设. 解得…………………10分若⊙与直线DE、AB都相切,且圆心在AB的右侧,过点作于,则可设解得即满足条件的圆的半径为或6.…………………………………………13分②6个.………………………………………………………………………………………16分15. 解:(1)证明:如图1,连接AE.…………………………………………………………5分(2)∵PC+P E=,∴PC+PA=.显然有OB=AC≤PC+P A=.……………7分在Rt△B OC中,设AB=OA=BC=x,则OC=2x,OB=,∴≤,∴≤2.即AB的最大值为2.…………………………10分(3) 当AB取最大值时,AB=OA=BC=2,OC=4.分三种情况讨论:①当N点在OA上时,如图2,若CN⊥M N时,此时线段OA上N点下方的点(不包括N、O)均满足△M NC为钝角三角形.过N作NF⊥x轴,垂足为F,∵A点坐标为(1,),∴可设N点坐标为(,),则D F=a-m,NF=,FC=4-a. ∵△O MD∽△FN D∽△FCN,∴.解得,,即当0<<时,△M NC为钝角三角形; (14)分②当N点在AB上时,不能满足△M NC为钝角三角形; (15)分③当N点在BC上时,如图3,若CN⊥M N时,此时BC上N点下方的点(不包括N、C)均满足△M NC为钝角三角形.智浪教育—普惠英才文库∴当<<4时,△M NC为钝角三角形.综上所述,当0<<或<<4时,△M NC为钝角三角形 (1)。
中山市2014-2015学年度上学期九年级数学期末水平测试试卷-推荐下载
15.已知两个正整数的和是 6,设其中一个数为 x ,两个正整数的积为 y ,则 y 的最大值是
16.如图, ABT 是等腰直角三角形,AB 是⊙O 的直径,且 AB=4,则图中阴影部分的面积
是
(结果保留 ).
三、解答题(共 3 个小题,每小题 6 分,满分 18 分)
17.(6 分)解方程: x(x 3B.
1
3
9.正方形的边长为 4,则其外接圆半径的长是( )
A. 4 2 B. 2 2 C.2 D. 2
C.
1
2
D.
A
10.如图, ABC 中,AB=AC,∠ABC=70°,
O
3
4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
中山市2014-2015学年度上学期九年级数学期末水平测试试卷
中山市2014—2015学年度上学期期末水平测试试卷九年级数学一、 单项选择题(共10个小题,每小题3分,满分30分)3)2(2+-=x y 的顶点坐标是( )A.(2,3)B.(-2, 3)C.(2,-3)D.(-2,-3) 2.下列四个函数中,是反比例函数的是( ) A. 2x y =B.xy 2= C.23-=x y D.2x y = ⊙O 的半径为5厘米,圆心O 到点A 的距离为6厘米,则点A 与⊙O 的位置关系是( )A 在⊙O 内 B. 点A 在⊙O 上 C. 点A 在⊙O 外 D. 无法确定4.下列事件属于随机事件的是( )A.任意画一个三角形,其内角和是180°B.掷一次骰子,向上的一面的点数是7C.从只有红球的袋子中,摸出1个白球D.打开电视,电视正在播放新闻节目x 的一元二次方程342=+x x ,配方正确的是( )A .3)2(2=+x B. 4)2(2=+x C. 7)2(2=+x D. 4)1(2=+x 6.已知点A (x ,2)和点B (1,-2)关于原点对称,则x 的值等于( )7.下列图形不是中心对称图形是( )8.一个盒子内装有大小、形状完全相同的四个球,其中红球3个、白球1个,小明从盒子中摸出一个球,则摸到白球的概率是( ) A .41 B.31 C.21 D.439.正方形的边长为4,则其外接圆半径的长是( ) A.24 B.22 C.2 D.210.如图, ABC ∆中,AB =AC ,∠ABC =70°, 点O 是ABC ∆的外心,则∠BOC 的度数为( ) A .40°°°°二、填空题(每小题4分,满分24分)11.将抛物线x x y 22+=向下平移1个单位后得到的抛物线的解析式是 .12.已知一个矩形的面积为2,两条边的长度分别为x 、y ,则y 与x 的函数关系式为 . 13.某同学练习定点投篮时记录的结果如下表:则这位同学投篮一次,投中的概率约是 (结果保留小数点后一位).“足球学校”,预计到2016年底全国将拥有8000间“足球学校”,设2015和2016年“足球学校”的平均增长率都为x ,根据题意,可列出方程 .15.已知两个正整数的和是6,设其中一个数为x ,两个正整数的积为y ,则y 的最大值是 . 16.如图,ABT ∆是等腰直角三角形,AB 是⊙O 的直径,且AB =4,则图中阴影部分的面积 是 (结果保留π).三、解答题(共3个小题,每小题6分,满分18分) 17.(6分)解方程:62)3(+=+x x x18.(6分)确定抛物线3422++=x x y 的开口方向、对称轴和顶点坐标.19.(6分)如图,点A 、B 、C 都在⊙O 上,∠AOB =∠BOC=120°.求证:ABC ∆是等边三角形.C第10题图第16题图第19题图四、解答题(共3个小题,每小题7分,满分21分)20.(7分)司机以80hkm 的平均速度驾驶汽车从A 地去B 地,用时5h 到达目的地.(1)当他按原路匀速返回时,汽车的速度v 与行驶时间t 有怎样的函数关系? (2)如果该司机必须在4h 之内回到A 地,那么返程时的平均速度不能小于多少?21.(7分)四个小球上分别标有1,3,5,7四个数,这四个球除了标的数不同外,其余均相同.将小球放入一个不透明的布袋中搅匀,从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数.求两次记下之数的和大于9的概率.22.(7分)如图,在ABC Rt ∆中,∠BAC =90°,如果将该三角形绕点A 按顺时针方向旋转到''C AB ∆的位置,点'B 恰好落在边BC 的中点处,求旋转角的大小.'第22题图五、解答题(共3个小题,每小题9分,满分27分)23.(9分)已知关于x 的方程1222-=+k x x . (1)当0=k 时,解方程1222-=+k x x ;(2)若0=x 是方程1222-=+k x x 的一个根,求方程的另一个根; (3)求证:当k 取全体实数时,方程1222-=+k x x 总有实数根.24.(9分)如图(1),线段AB =4,以线段AB 为直径画⊙O ,C 为⊙O 上的动点,连接OC ,过点A 作⊙O 的切线与BC 的延长线交于点D ,E 为AD 的中点,连接CE.(1)求证:CE 是⊙O 的切线;(2)点C 在线段BD 的哪个位置时,四边形AOCE 为正方形?要求说明理由,并求出此时CE 的长; (3)如图(2),当CDE ∆为等边三角形时,求CD 的长.A 第24题图(1)第24题图(2)25.(9分)如图,抛物线 与直线 相交于A (0,1),B (3, )两点,过点B 作BC ⊥x 轴,垂足为点C ,在线段AB 上方的抛物线上取一点D ,过D 作DF ⊥x 轴,垂足为点F ,交AB 于点E.(1)求该抛物线的表达式; (2)求DE 的最大值;(3)连接BD 、CE ,四边形BDEC 能否成为平行四边形?若能,求出点D 的坐标,若不能,请说明理由.中山市2014—2015学年度上学期期末水平测试九年级数学参考答案及评分建议一、(每小题3分)1.A ;2.B ;3.C ;4.D ;5.C ;6.B ;7.A ;8.A ;9.B ;10.D.二、(每小题4分)11.122-+=x x y ; 12.xy 2=; 13.0.8; 14.8000)1(50002=+x ; 15. 9; 16. π-6.17.解:变形(或展开,或移项)…………………………… 3分 3,221-==x x ………………………………………6分18.解:开口向上; ……………………………………………1分对称轴1-=x ;………………………………………4分(要过程,但方法不限) 顶点坐标(—1,1) …………………………………6分 19.解:证明:∵点A 、B 、C 都在⊙O 上,c bx x y ++-=245c x y +=2125∴∠AOB ,∠BOC ,∠AOC 都是圆心角 ………………………1分 又∵∠AOB =∠BOC =1200∴∠AOC =1200, …………………………………………………3分 ∴∠AOB =∠BOC =∠AOC ……………………………………4分 ∴AB =BC =AC , …………………………………………………5分 ∴△ABC 是等边三角形.……………………………………………6分 20. 解:(1)A 、B 两地的距离为80×5=400(km ), ………1分 ∵400=vt ………………………………………………………2分 ∴汽车的速度v 与行驶时间t 之间的函数关系tv 400= ……4分 (2)把t =4代入tv 400=,v=100 ……………………………6分 答:返程时的平均速度不能小于h km /100. …………………7分21. 解:列表如下:1 3 5 7 12 4 6 834 6 8 1056 8 10 12 78101214或画树形图如下:13577531135775317531………………………………………………………4分(列表或画图正确都给4分) 共有16种等可能的结果,其中和大于9的有6种结果,因此和大于9的概率是83(7分) 22.解:∵在Rt △ABC 中,点'B 为BC 的中点,∴A 'B =B 'B ,………………………………………………………………2分 又由旋转的性质可得,A 'B = A B ……………………………………………3分 ∴A 'B =AB =B 'B ,△AB 'B 是等边三角形 ……………………………………5分 ∴旋转角∠BA 'B 等于60°. ……………………………………………………7分 23.解:(1)当0=k 时,方程变为122-=+x x ,……………………1分 解得121-==x x …………………………………………………3分 (2)把0=x 代入方程1222-=+k x x ,得012=-k …………4分 所以,原方程变为022=+x x ,解得2,021-==x x另一个根为2-=x …………………………………………………6分 (3)△=)1(442k --……………………………………………………7分=24k ≥0, ………………………………………………………8分 所以方程一定有实数根. ……………………………………………9分 24. (1)证明:连接AC , ∵AB 为直径∴∠ACB 是直角,△ACD 为直角三角形 又∵E 为AD 的中点∴EA=EC…………………………………………………………………1分 连接OE ,又OA=OC∴△OCE ≌△O AE,………………………………………………………2分 ∴∠OCE =∠OAE =90° ∴CE ⊥OC 于C∴CE 是⊙O 的切线 ………………………………………………3分 (2)C 在线段BD 的中点时,四边形AOCE 为正方形. C 在边BD 的中点时,由E 为AD 的中点, ∴CE ∥AB ,且2CE=AB ,又2OA=AB∴四边形OCEA 是平行四边形,…………………………………4分 又∵AD 是切线, ∴∠OAE=90°∴平行四边形OCEA 是矩形………………………………………5分 又∵OA=OC ,∴矩形OCEA 是正方形∴CE=OA=2…………………………………………………………6分 (3)连接AC ,∵△CDE 为等边三角形 ∴∠D=60°,∠ABD =∠CAD =30°,………………………………7分 从而AC =2……………………………………………………………8分 由AD =2CD 和勾股定理,可求得CD =332. ……………………9分 25.(1)把A (0,1)、B (3,52)两点坐标代入c bx x y ++-=245 得⎪⎩⎪⎨⎧=++-=2534451c b c ……………………………………………………1分解得⎪⎩⎪⎨⎧==4171b c ,所以1417452++-=x x y . ……………………………2分 (2)由(1)得直线AB 的解析式为121+=x y 设点D 的横坐标为x ,则 点D 、E 的坐标分别为(x ,1417452++-x x ),(x ,121+x )所以1645)23(454154522+--=+-=X x x DE ,…………………4分 当x=32时,DE 的最大值为1645………………………………………6分(3)能. 理由如下:因为BC ∥DE ,所以只需BC=DE ,四边形BDEC 即为平行四边形. 由题意可得BC=52所以x x DE 415452+-==52解方程x x 415452+-=52………………………………………………7分解得x=1, ………………………………………………………………8分 代入1417452++-=x x y ,得y=4, 所以点D 的坐标为(1,4)……………………………………………9分。
中山2014中考数学试题及答案
中山2014中考数学试题及答案三年的努力只为今天的战斗,2014年中山中考数学考试已经落下帷幕,本网站为您第一时间发布2014年中山中考数学真题及答案解析,2014年中考真题及答案最新资讯发布尽在中考真题栏目及中考答案栏目,期待您的关注。
2014年中山中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。
审题是正确答题的前导。
从一个角度看,审题甚至比做题更重要。
题目审清了,解题就成功了一半。
认真审准题,才能正确定向,一举突破。
每次考试,总有一些考生因为审题失误而丢分。
尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。
我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。
横批:掉以轻心。
越是简单、熟悉的试题,越要倍加慎重。
很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。
考试应努力做到简单题不因审题而丢分。
“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。
基础题和中等难度题的分值应占到80%。
考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。
只要听到铃声一响就可开始答题了。
解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。
同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。
”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。
万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。