人教A版数学必修一创优单元测评(第一章第二章)B卷.docx
人教A版数学必修一高中《》第一章教学质量检测卷.docx
第3题图高中数学《必修一》第一章教学质量检测卷班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。
本大题共10小题,每小题5分,共50分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B I 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2()()g x x =B.()221)(,)(+==x x g x x fC.2()f x x =,()g x x = D.()0f x =,()11g x x x=-+-5、函数2()21f x x =-,(0,3)x Î。
()7,f a =若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-1 7、()3f x x =+函数的值域为( )A 、[3,)+?B 、(,3]-?C 、[0)+?,D 、R8、下列四个图像中,不可能是函数图像的是 ( )题号 一 二 15 16 17 18 19 20 总分 得分yxxyyyOO9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( )A 、 f(-π)>f(3)>f(-2)B 、f(-π) >f(-2)>f(3)C 、 f(-2)>f(3)> f(-π)D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数01(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞U 上是减函数。
高中人教A版数学必修1单元测试:创优单元测评 (第一章)A卷 Word版含解析
高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章) 名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个2.下列各组函数表示相等函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( )A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3)8.已知反比例函数y =kx 的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝⎛⎦⎥⎤0,14第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+(a +1)x +ax 为奇函数,则实数a =________. 16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5(x ≤0),x +5(0<x ≤1),-2x +8(x >1).(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +ax ,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分)已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.详解答案 创优单元测评 (第一章) 名师原创·基础卷]1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B. 2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D.8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k <0,排除C.9.D解析:根据题意,得⎩⎨⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C解析:由已知得,⎩⎨⎧a >0,12a ≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞). 15.-1 解析:由题意知,f (-x )=-f (x ), 即x 2-(a +1)x +a -x =-x 2+(a +1)x +a x , ∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1.16.y =x 2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x (答案不唯一) 解析:可结合条件来列举,如:y =x 2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x . 解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}.18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π. ∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51-(-5)=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x 1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x 1=(x 2-x 1)+9(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-9)x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x 在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c ,∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1. ∴a =-1,b =2.∴f (x )=-x 2+2x +8.(2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8)=(x 22-x 21)+2(x 1-x 2)=(x 2-x 1)(x 2+x 1-2).又由假设知x 2-x 1>0,而x 2>x 1≥1,∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数.22.解:(1)由题意可知f (-x )=-f (x ),∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax 1+x 2. ∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x 2. (2)f (x )在(-1,1)上为增函数.证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22), ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,1+x 21>0,1+x 22>0,∴(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ),又f (x )是定义在(-1,1)上的奇函数,∴f (2x -1)<f (-x ),∴⎩⎪⎨⎪⎧ -1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).。
高中人教A版数学必修1单元测试:创优单元测评 (第一章 第二章)A卷 Word版含解析
高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章 第二章) 名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(-2)2] 12等于( ) A .- 2 B. 2 C .-22 D.222.已知函数f (x )=11-x 的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.若0<m <n ,则下列结论正确的是( ) A .2m>2nB.⎝ ⎛⎭⎪⎫12m <⎝ ⎛⎭⎪⎫12n C .log 2m >log 2nD .log 12m >log 12n4.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .95.函数f (x )=|log 2x |的图象是( )6.函数y =x +43-2x 的定义域是( )A.⎝ ⎛⎦⎥⎤-∞,32 B.⎝ ⎛⎭⎪⎫-∞,32 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫32,+∞ 7.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则(A ∩∁U B )∪(B ∩∁U A )=( )A .∅B .{x |x ≤0}C .{x |x >-1}D .{x |x >0或x ≤-1}8.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞)当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1)9.函数y =1-x 2+91+|x |( )A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数10.下列函数中,既是奇函数又是增函数的是( ) A .y =x +1 B .y =-x 2 C .y =1x D .y =x |x |11.已知函数y =f (x )的图象与函数y =log 21x +1的图象关于y =x 对称,则f (1)的值为( )A .1B .-1 C.12 D .-1212.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是0,1],则a 等于( )A.13B. 2C.22 D .2第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数f (x )=lg(x -1)+5-x 的定义域为________.14.若函数f (x )=a x -1-2(a >0,a ≠1),则此函数必过定点________.15.计算81-14+lg 0.01-ln e +3log 32=________.16.函数f (x )=e x 2+2x的增区间为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a >0,且a ≠1,若函数f (x )=2a x -5在区间-1,2]的最大值为10,求a 的值.18.(本小题满分12分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1}.(1)当x∈N*时,求A的子集的个数;(2)当x∈R且A∩B=∅时,求m的取值范围.19.(本小题满分12分)已知函数f(x)=m-22x+1是R上的奇函数,(1)求m的值;(2)先判断f(x)的单调性,再证明.20.(本小题满分12分)已知函数f(x)=log a(x-1),g(x)=log a(3-x)(a>0且a≠1).(1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围.21.(本小题满分12分) 设函数f (x )=ax -1x +1,其中a ∈R .(1)若a =1,f (x )的定义域为区间0,3],求f (x )的最大值和最小值; (2)若f (x )的定义域为区间(0,+∞),求a 的取值范围,使f (x )在定义域内是单调减函数.22.(本小题满分12分)已知13≤a ≤1,若函数f (x )=ax 2-2x +1在区间1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ).(1)求g (a )的函数表达式;(2)判断函数g (a )在区间⎣⎢⎡⎦⎥⎤13,1上的单调性,并求出g (a )的最小值.详解答案 创优单元测评 (第一章 第二章) 名师原创·基础卷]1.B 解析:(-2)2] 12=(2)2] 12= 2.2.C 解析:由1-x >0得x <1,∴M ={x |x <1}.∵1+x >0,∴x >-1.∴N ={x |x >-1}.∴M ∩N ={x |-1<x <1}.3.D 解析:∵y =2x是增函数,又0<m <n ,∴2m<2n;∵y =⎝ ⎛⎭⎪⎫12x是减函数,又0<m <n ,∴⎝ ⎛⎭⎪⎫12m >⎝ ⎛⎭⎪⎫12n ; ∵y =log 2x 在(0,+∞)上是增函数,又0<m <n , ∴log 2m <log 2n .4.C 解析:∵f (0)=20+1=2,∴f (f (0))=f (2)=22+2a =4a , ∴2a =4,∴a =2.5.A 解析:结合y =log 2x 可知,f (x )=|log 2x |的图象可由函数y=log 2x 的图象上不动下翻得到,故A 正确.解题技巧:函数图象的对称变换规律: 函数y =f (x )的图象―――――――――――――――――→y 轴左侧图象去掉,右侧保留并“复制”一份翻到y 轴左侧函数y =f (|x |)的图象 函数y =f (x )的图象――――――――――――――――――→x 轴上方图象不变,下方图象翻到上方函数y =|f (x )|的图象6.B 解析:由3-2x >0得x <32.7.D 解析:∁U B ={x |x >-1},∁U A ={x |x ≤0},∴A ∩∁U B ={x |x >0},B ∩∁U A ={x |x ≤-1},∴(A ∩∁U B )∪(B ∩∁U A )={x |x >0或x ≤-1}.8.A 解析:由题意知需f (x )在(0,+∞)上为减函数. 9.B 解析:f (-x )=1-(-x )2+91+|x |=1-x 2+91+|x |=f (x ),故f (x )是偶函数,故选B.10.D 解析:函数y =x +1为非奇非偶函数,函数y =-x 2为偶函数,y =1x 和y =x |x |是奇函数,但y =1x 不是增函数,故选D.11.D 解析:(m ,n )关于y =x 的对称点(n ,m ),要求f (1),即求满足1=log 21x +1的x 的值,解得x =-12.12.D 解析:∵x ∈0,1],∴x +1∈1,2].当a >1时,log a 1≤log a (x+1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0与值域0,1]矛盾.13.(1,5]解析:由⎩⎨⎧x -1>0,5-x ≤0,解得1<x ≤5.14.(1,-1) 解:当x =1时,f (1)=a 1-1-2=a 0-2=-1,∴过定点(1,-1).解题技巧:运用整体思想和方程思想求解. 15.-16 解析:原式=13-2-12+2=-16.16.-1,+∞) 解析:设f (x )=e t ,t =x 2+2x ,由复合函数性质得,f (x )=e x 2+2x的增区间就是t =x 2+2x 的增区间-1,+∞).17.解:当0<a <1时,f (x )在-1,2]上是减函数,当x =-1时,函数f (x )取得最大值,则由2a -1-5=10,得a =215,当a >1时,f (x )在-1,2]上是增函数,当x =2时,函数取得最大值,则由2a 2-5=10,得a =302或a=-302(舍).综上所述,a =215或302.18.解:(1)由题意知A 中元素为{1,2,3,4,5}, ∴A 的子集的个数为25=32.(2)∵x ∈R 且A ∩B =∅,∴B 可分为两个情况.①当B =∅时,即m -1>2m +1,解得m <-2;②当B ≠∅时,可得⎩⎪⎨⎪⎧ 2m +1<-2,m -1≤2m +1或⎩⎪⎨⎪⎧m -1>5,m -1≤2m +1,解得-2≤m <-32或m >6.综上知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <-32或m >6. 19.解:(1)据题意有f (0)=0,则m =1. (2)f (x )在R 上单调递增,以下给出证明: 任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=-22x 2+1+22x 1+1=2(2x 2-2x 1)(2x 2+1)(2x 1+1).∵x 2>x 1,∴2x 2>2x 1,∴f (x 2)-f (x 1)>0,则f (x 2)>f (x 1), 故f (x )在R 上单调递增.解题技巧:若函数f (x )的定义域内含有0且为奇函数时,则必有f (0)=0.20.解:(1)由⎩⎪⎨⎪⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≤3-x ,解得1<x ≤2;②当a >1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≥3-x ,解得2≤x <3.综上,当0<a <1时,原不等式的解集为(1,2]; 当a >1时,原不等式的解集为2,3).21.解:f (x )=ax -1x +1=a (x +1)-a -1x +1=a -a +1x +1,设x 1,x 2∈R ,则f (x 1)-f (x 2)=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 1+1)(x 2+1). (1)当a =1时,f (x )=1-2x +1,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=2(x 1-x 2)(x 1+1)(x 2+1),又x 1-x 2<0,x 1+1>0,x 2+1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )在0,3]上是增函数,∴f (x )max =f (3)=1-24=12,f (x )min =f (0)=1-21=-1. (2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0.若使f (x )在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0,而f (x 1)-f (x 2)=(a +1)(x 1-x 2)(x 1+1)(x 2+1),∴当a +1<0,即a <-1时,有f (x 1)-f (x 2)<0, ∴f (x 1)<f (x 2).∴当a ∈(-∞,-1)时,f (x )在定义域(0,+∞)内是单调减函数. 22.解:(1)∵13≤a ≤1,∴f (x )的图象为开口向上的抛物线,且对称轴为x =1a ∈1,3].林老师网络编辑整理林老师网络编辑整理 ∴f (x )有最小值N (a )=1-1a .当2≤1a ≤3,a ∈⎣⎢⎡⎦⎥⎤13,12时, f (x )有最大值M (a )=f (1)=a -1;当1≤1a <2,a ∈⎝ ⎛⎦⎥⎤12,1时, f (x )有最大值M (a )=f (3)=9a -5;∴g (a )=⎩⎪⎨⎪⎧ a -2+1a ⎝ ⎛⎭⎪⎫13≤a ≤12,9a -6+1a ⎝ ⎛⎭⎪⎫12<a ≤1.(2)设13≤a 1<a 2≤12,则g (a 1)-g (a 2)=(a 1-a 2)⎝ ⎛⎭⎪⎫1-1a 1a 2>0, ∴g (a 1)>g (a 2),∴g (a )在⎣⎢⎡⎦⎥⎤13,12上是减函数. 设12<a 1<a 2≤1,则g (a 1)-g (a 2)=(a 1-a 2)⎝ ⎛⎭⎪⎫9-1a 1a 2<0, ∴g (a 1)<g (a 2),∴g (a )在⎝ ⎛⎦⎥⎤12,1上是增函数. ∴当a =12时,g (a )有最小值12.。
2019-2020学年数学人教A版必修1作业与测评:第一章 单元质量测评(一) Word版含解析
第一章单元质量测评(一)对应学生用书P83 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4 C.4 D.0答案 B解析6-2=4∈A,6-4=2∈A.选B.2.若集合P,Q满足P={x∈Z|x<3},Q⊆N,则P∩Q不可能是( ) A.{0,1,2} B.{1,2}C.{-1} D.∅答案 C解析依题意,知P∩Q中的元素可能是0,1,2,也可能没有元素,所以P∩Q不可能是{-1}.故选C.3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩及格分别为40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是( )A.35 B.25 C.28 D.15答案 B解析全班分4类人:设两项测验成绩都及格的人数为x人;仅跳远及格的人数为(40-x)人;仅铅球及格的人数为(31-x)人;两项都不及格的人数为4人,∴40-x+31-x+x+4=50,∴x=25.4.如图所示的韦恩图中A,B是非空集合,定义集合A*B为阴影部分表示的集合,则A*B=( )A.∁U(A∪B)B.A∪(∁U B)C.(∁U A)∪(∁U B)D.(A∪B)∩∁U(A∩B)答案 D解析阴影部分为A∪B去掉A∩B后的部分,为(A∪B)∩∁(A∩B).选D.U5.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B =( )A.∅ B.{1} C.∅或{2} D.∅或{1}答案 D解析集合A中的元素可以由-1,-2,1,2中的一个或多个数构成,故A∩B=∅或A∩B={1}.6.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( ) A.{x|-2<x<1} B.{x|-1<x<1}C.{x|1<x<3} D.{x|-2<x<3}答案 B解析在数轴上表示出集合,如图所示,由图知M ∩N ={x |-1<x <1}.7.若函数f (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值范围是( )A .(-∞,+∞) B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞D.⎣⎢⎡⎭⎪⎫0,43答案 C解析 ∵mx 2+4x +3≠0,∴⎩⎪⎨⎪⎧m ≠0,Δ=16-12m <0,∴m >43.选C.8.已知函数y =f (x +1)定义域是[-2,3],则y =f (x -1)的定义域是( )A .[0,5]B .[-1,4]C .[-3,2]D .[-2,3] 答案 A解析 由题意知,-2≤x ≤3,∴-1≤x +1≤4.∴-1≤x -1≤4,得0≤x ≤5,即y =f (x -1)的定义域为[0,5]. 9.若y =f (x )是R 上的减函数,对于x 1>0,x 2<0,则( ) A .f (-x 2)>f (-x 1) B .f (-x 2)<f (-x 1) C .f (-x 2)=f (-x 1) D .无法确定 答案 B解析 因为x 1>0,x 2<0,所以-x 2>-x 1,又y =f (x )是R 上的减函数,所以f (-x 2)<f (-x 1).10.设f (x )=⎩⎪⎨⎪⎧x +3,x >10,f [f x +],x ≤10,则f (5)的值是( )A .24B .21C .18D .16 答案 A解析 f (5)=f [f (10)],∵f (10)=f [f (15)]=f (18)=21,∴f (5)=f (21)=24.选A.11.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的图象如图所示,则不等式xf (x )<0的解集是( )A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞) 答案 D解析 当x >0时,f (x )<0由图象关于原点对称, ∴x ∈(0,1)∪(2,+∞);当x <0时,f (x )>0, ∴x ∈(-∞,-2)∪(-1,0).∴选D.12.已知奇函数f (x )、偶函数g (x )的图象分别如图1,2所示,方程f [g (x )]=0,g [f (x )]=0的实根个数分别为a ,b ,则a +b =( )A .14B .10C .7D .3 答案 B解析 如图,可知m ∈(-2,-1),n ∈(1,2).由方程f [g (x )]=0,可得g (x )=-1或g (x )=0或g (x )=1,∴x =-1,1,m,0,n ,-2,2,∴方程f [g (x )]=0有7个实根,即a =7;由方程g [f (x )]=0,可得f (x )=m (舍去)或f (x )=0或f (x )=n (舍去),∴x =-1,0,1,∴方程g [f (x )]=0有3个实根,即b =3,∴a +b =10,故选B.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.函数y =x +1+12-x 的定义域为________.答案 [-1,2)∪(2,+∞)解析 由题意知⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,∴x ≥-1且x ≠2.14.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是________.答案 [-1.6,3],[5,6]解析 结合函数单调递增的概念及单调区间的概念可知,此函数的单调递增区间是[-1.6,3],[5,6].15.函数f (x )在闭区间[-1,2]上的图象如图所示,则f -12=________,f (1)=________.答案 12 -12解析由题中图象,知y =⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2,所以f -12=-12+1=12,f (1)=-12×1=-12.16.函数f (x )=2x 2-3|x |的单调减区间是________.答案 ⎝⎛⎭⎪⎫-∞,-34,⎝ ⎛⎭⎪⎫0,34解析 f (x )=⎩⎪⎨⎪⎧2x 2-3x ,x ≥0,2x 2+3x ,x <0,图象如下图所示,f (x )减区间为⎝⎛⎭⎪⎫-∞,-34,⎝ ⎛⎭⎪⎫0,34.三、解答题(本大题共6小题,满分70分)17.(本小题满分10分)全集U =R ,若集合A ={x |3≤x <10},B ={x |2<x ≤7}.(1)求A ∩B ,A ∪B ,(∁U A )∩(∁U B );(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围. 解 (1)A ∩B ={x |3≤x <10}∩{x |2<x ≤7}={x |3≤x ≤7};A ∪B ={x |3≤x <10}∪{x |2<x ≤7}={x |2<x <10};(∁U A )∩(∁U B )={x |x ≤2或x ≥10}.(2)A ={x |3≤x <10},C ={x |x >a },要使A ⊆C ,结合数轴分析可知a <3,即a 的取值范围是{a |a <3}.18.(本小题满分12分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}.(1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B ); (3)写出(∁U A )∪(∁U B )的所有子集.解 (1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a=0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}.(2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12.所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即为集合-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12.19.(本小题满分12分)设集合A ={a ,a 2,b +1},B ={0,|a |,b }且A =B .(1)求a ,b 的值;(2)判断函数f (x )=-bx -ax在[1,+∞)的单调性,并用定义加以证明.解 (1)由集合A =B 知,a ≠0,∴b +1=0, 即b =-1.此时A ={a ,a 2,0},B ={0,|a |,-1}, ∴a =-1,∴A ={-1,1,0},B ={0,1,-1},满足集合的互异性, ∴a =-1,b =-1.(2)由(1)知f (x )=x +1x ,f (x )=x +1x在[1,+∞)上单调递增.证明:任取x 1,x 2∈[1,+∞)且x 1<x 2,f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+x 2-x 1x 1·x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-1x 1·x 2 =(x 1-x 2)x 1·x 2-1x 1·x 2,∵x 1,x 2∈[1,+∞)且x 1<x 2, ∴x 1-x 2<0,x 1·x 2-1>0,x 1·x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )=x +1x在[1,+∞)上单调递增.20.(本小题满分12分)设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=-(x -2)2+2.(1)求函数f (x )在R 上的解析式; (2)在直角坐标系中画出函数f (x )的图象;(3)若方程f (x )-k =0有四个解,求实数k 的取值范围. 解 (1)若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.(2)图象如图所示.(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.故k 的取值范围是-2<k <2.21.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围; (3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1图象的上方,试确定实数m 的取值范围.解 (1)由题意设f (x )=a (x -1)2+1, 将点(0,3)的坐标代入得a =2, 所以f (x )=2(x -1)2+1=2x 2-4x +3. (2)由(1)知f (x )的对称轴为直线x =1, 所以2a <1<a +1,所以0<a <12.即实数a 的取值范围为⎝⎛⎭⎪⎫0,12.(3)f (x )-2x -2m -1=2x 2-6x -2m +2,由题意得2x 2-6x -2m +2>0对于任意x ∈[-1,1]恒成立, 所以x 2-3x +1>m 对于任意x ∈[-1,1]恒成立, 令g (x )=x 2-3x +1,x ∈[-1,1], 则g (x )min =g (1)=-1,所以m <-1,故实数m 的取值范围为(-∞,-1).22.(本小题满分12分)已知全集U =R ,集合P ={x ∈R |x 2-3x +b =0},Q ={x ∈R |(x -2)(x 2+3x -4)=0}.(1)若b =4时,存在集合M 使得PM ⊆Q ,求出这样的集合M ;(2)集合P ,Q 是否能满足(∁U Q )∩P =∅?若能,求出实数b 的取值范围;若不能,请说明理由.解 (1)b =4时,P ={x ∈R |x 2-3x +4=0}=∅,Q ={x ∈R |(x -2)(x 2+3x -4)=0}={-4,1,2}.由PM ⊆Q ,知M 是一个非空集合,且是Q 的一个子集,所以用列举法可得这样的集合M 共有7个:{-4},{1},{2},{-4,1},{-4,2},{1,2},{-4,1,2}.(2)集合P ,Q 可以满足(∁U Q )∩P =∅. 由(∁U Q )∩P =∅,得P ⊆Q .当P =∅时,满足P ⊆Q ,此时Δ=9-4b <0, 解得b >94.当P ≠∅时,因为Q ={-4,1,2},若-4∈P ,则b =-28,此时P ={-4,7},不满足P ⊆Q ; 若1∈P ,则b =2,此时P ={1,2},满足P ⊆Q ;若2∈P ,则b =2,此时P ={1,2},满足P ⊆Q . 综上,可知当P =∅或P ={1,2}时,满足(∁U Q )∩P =∅,实数b 的取值范围是bb >94或b =2.。
高中人教A版数学必修1单元测试:创优单元测评 (模块检测卷)B卷 Word版含解析
高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (模块检测卷) 名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =A ∪B ={x ∈N |0≤x ≤8},A ∩(∁U B )={1,3,5,7},则集合B =( )A .{0,2,4}B .{0,2,4,6}C .{0,2,4,6,8}D .{0,1,2,3,4}2.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数3.下列各函数中,表示同一函数的是( ) A .y =x 与y =log a a x (a >0且a ≠1) B .y =x 2-1x -1与y =x +1C .y =x 2-1与y =x -1D .y =lg x 与y =12lg x 24.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )5.已知a =log 135,b =3 15,c =⎝ ⎛⎭⎪⎫150.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a6.下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )A .y =-x 2+1B .y =|x |+1C .y =log 2x +1D .y =x 37.函数f (x )=2x +log 3x -1的零点所在的区间是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,34 D.⎝ ⎛⎭⎪⎫34,1 8.已知函数f (x )=-x 5-3x 3-5x +3,若f (a )+f (a -2)>6,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,3)C .(1,+∞)D .(3,+∞) 9.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫32,+∞ 10.设函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4 B .3 C .2 D .111.如图,平面图形中阴影部分面积S 是h (h ∈0,H ])的函数,则该函数的图象大致是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________. 14.已知函数f (x )是定义在R 上的奇函数,且在区间0,+∞)上是单调减函数,若f (2x +1)+f (1)<0,则x 的取值范围是________.15.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a +1对一切x ≥0都成立,则a 的取值范围为________.16.下列命题中:①若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1; ②已知函数y =f (3x )的定义域为-1,1],则函数y =f (x )的定义域为(-∞,0];③函数y =11-x 在(-∞,0)上是增函数;④方程2|x |=log 2(x +2)+1的实根的个数是2.所有正确命题的序号是____________(请将所有正确命题的序号都填上).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各式的值: (1)(-0.1)0+32×223+⎝ ⎛⎭⎪⎫14-12;(2)log 327+lg 25+lg 4.18.(本小题满分12分)已知幂函数f (x )=(m 2-m -1)x -5m -3在(0,+∞)上是增函数,又g (x )=log a 1-mx x -1(a >1,a ≠0).(1)求函数g (x )的解析式;(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值.19.(本小题满分12分)已知函数f (x )=1+1x -x α(α∈R ),且f (3)=-53. (1)求α的值; (2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明.20.(本小题满分12分)已知函数f (x )=ax +b x 2+1为定义在R 上的奇函数,且f (1)=12.(1)求函数f (x )的解析式;(2)判断并证明函数f (x )在(-1,0)上的单调性.21.(本小题满分12分)函数f (x )=12(a x +a -x)(a >0,且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫2,419.(1)求f (x )的解析式;(2)证明:f (x )在0,+∞)上是增函数.22.(本小题满分12分)某网店经营的一种消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p(件)与销售价格x(元)的函数关系式;(2)写出周利润y(元)与销售价格x(元)的函数关系式;(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.详解答案创优单元测评(模块检测卷)名校好题·能力卷]1.C解析:因为集合U=A∪B={0,1,2,3,4,5,6,7,8},又B∪∁U B =U,所以A=∁U B={1,3,5,7},所以B={0,2,4,6,8}.2.C 解析:f (x )f (y )=a x a y =a x +y =f (x +y ).3.A 解析:要表示同一函数必须定义域、对应法则一致,B ,D 中的定义域不同,C 中的对应法则不同.故选A.4.A 解析:根据题意得f (x )=1⊕2x=⎩⎪⎨⎪⎧2x ,x <0,1,x ≥0.5.C 解析:a =log 135<0,b =3 15>1,0<c =⎝ ⎛⎭⎪⎫150.3<1.6.B 解析:函数y =-x 2+1为偶函数,在区间(0,+∞)上为减函数,y =log 2x +1为非奇非偶函数,函数y =x 3为奇函数.故选B.7.C 解析:∵f ⎝ ⎛⎭⎪⎫12=log 312<0,f ⎝ ⎛⎭⎪⎫34=log 3334>0,∴f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫34<0. 又函数f (x )在⎝ ⎛⎭⎪⎫12,34上是连续的,故f (x )的零点所在的区间为⎝ ⎛⎭⎪⎫12,34.8.A 解析:设F (x )=f (x )-3=-x 5-3x 3-5x ,则F (x )为奇函数,且在R 上为单调减函数,f (a )+f (a -2)>6等价于f (a -2)-3>-f (a )+3=-f (a )-3],即F (a -2)>-F (a )=F (-a ),所以a -2<-a ,即a <1,故选A.9.A 解析:由x 2-3x +2>0,得x <1或x >2,底数是2,所以在(-∞,1)上递减.故选A.10.B 解析:当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.11.D 解析:由图中可知,S 随着h 的增加而减少,并且减小的趋势在减小,当h =H2时,阴影部分的面积小于整个半圆面积的一半.故选D.12.C 解析:由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>⎪⎪⎪⎪⎪⎪13-1>⎪⎪⎪⎪⎪⎪12-1,∴f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2).解题技巧:由f (2a -x )=f (x )知f (x )的图象关于直线x =a 对称. 13.(1,2) 解析:当x -1=0,即x =1时,y =2. ∴函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2). 14.(-1,+∞) 解析:f (2x +1)+f (1)<0,f (2x +1)<-f (1)=f (-1).由于f (x )是奇函数,在区间0,+∞)上是单调减函数.所以在定义域上是减函数,故2x +1>-1,x ∈(-1,+∞).15.(-∞,-1] 解析:当x =0时,f (x )=0,则0≥a +1,解得a ≤-1,当x >0时,-x <0,f (-x )=-x +a 2-x -2,则f (x )=-f (-x )=x +a 2x+2,由函数的图象或增减性可知,当x =a 2=|a |=-a 时,有f (x )min =-2a +2,所以-2a +2≥a +1,解得a ≤13,又a <0,所以a <0.综上所述:a ≤-1.16.③④ 解析:对于①,k =0也符合题意;对于②,y =f (x )的定义域应该是3-1,3];对于③,画出y =11-x的图象或利用定义可判定y =11-x在(-∞,0)上是增函数;对于④,在同一坐标系中作出y =2|x |,y =log 2(x +2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.18.解:(1)∵f (x )是幂函数,且在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,解得m =-1, ∴g (x )=log a x +1x -1.(2)由x +1x -1>0可解得x <-1或x >1,∴g (x )的定义域是(-∞,-1)∪(1,+∞). 又a >1,x ∈(t ,a ),可得t ≥1,设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0, ∴x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1)>0, ∴x 1+1x 1-1>x 2+1x 2-1. 由a >1,有log a x 1+1x 1-1>log a x 2+1x 2-1,即g (x )在(1,+∞)上是减函数.又g (x )的值域是(1,+∞),∴⎩⎪⎨⎪⎧t =1,g (a )=1,得g (a )=log a a +1a -1=1,可化为a +1a -1=a ,解得a =1±2, ∵a >1,∴a =1+2, 综上,a =1+2,t =1.19.解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1. (2)由(1),得f (x )=1+1x -x .令f (x )=0,即1+1x -x =0,也就是x 2-x -1x =0, 解得x =1±52.经检验,x =1±52是1+1x -x =0的根, 所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x -x 在(-∞,0)上是单调减函数. 证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1x 1x 2+1.因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x -x 在(-∞,0)上是单调减函数.20.解:(1)由题意得⎩⎨⎧f (0)=0,f (1)=12,解得a =1,b =0,所以f (x )=xx 2+1.(2)函数f (x )在(-1,0)上单调递增,证明如下: 任取x 1,x 2∈(-1,0),且x 1<x 2,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(1-x 1x 2)(x 1-x 2)(x 21+1)(x 22+1)<0,即f (x 1)<f (x 2).所以函数f (x )在(-1,0)上单调递增. 21.(1)解:∵ f (x )的图象经过点⎝ ⎛⎭⎪⎫2,419,∴ 12(a 2+a -2)=419,即9a 4-82a 2+9=0,解得a 2=9或a 2=19. ∵ a >0,且a ≠1,∴ a =3或a =13. 当a =3时,f (x )=12(3x+3-x );当a =13时,f (x )=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫13-x =12(3x+3-x ).∴ 所求解析式为f (x )=12(3x +3-x ).22.解:(1)由A (12,26),B (20,10)可知线段AB 的方程为p =-2x +50,12≤x ≤20,由B (20,10),C (28,2)可知线段BC 的方程为p =-x +30,20<x ≤28,∴p =⎩⎪⎨⎪⎧-2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620; 当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧-2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28.(3)当12≤x ≤20时,y =-2⎝ ⎛⎭⎪⎫x -3722+1292.故当x =372时,y 取得最大值1292. 当20<x ≤28时,y =-(x -21)2+61, 故当x =21时,y 取得最大值为61. ∵1292=64.5>61,∴当该消费品销售价格为18.5元时,周利润最大,最大周利润为64.5元.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
2020高中人教A版数学必修1单元测试:创优单元测评 (模块检测卷)B卷 Word版含解析
高中同步创优单元测评班级:________ 姓名:________ 得分:________创优单元测评(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =A ∪B ={x ∈N |0≤x ≤8},A ∩(∁U B )={1,3,5,7},则集合B =( )A .{0,2,4}B .{0,2,4,6}C .{0,2,4,6,8}D .{0,1,2,3,4}2.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数3.下列各函数中,表示同一函数的是( ) A .y =x 与y =loga a x (a >0且a ≠1)B .y =x 2-1x -1与y =x +1C .y =x 2-1与y =x -1D .y =lg x 与y =12lg x 24.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )5.已知a =log 13 5,b =3 15 ,c =⎝ ⎛⎭⎪⎪⎫150.3,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .a <c <b D .b <c <a6.下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )A .y =-x 2+1B .y =|x |+1C .y =log 2x +1D .y =x 37.函数f (x )=2x +log 3x -1的零点所在的区间是( )A.⎝ ⎛⎭⎪⎪⎫0,14 B.⎝ ⎛⎭⎪⎪⎫14,12 C.⎝ ⎛⎭⎪⎪⎫12,34 D.⎝ ⎛⎭⎪⎪⎫34,1 8.已知函数f (x )=-x 5-3x 3-5x +3,若f (a )+f (a -2)>6,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,3)C .(1,+∞)D .(3,+∞) 9.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎪⎫32,+∞10.设函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( )A .4B .3C .2D .111.如图,平面图形中阴影部分面积S 是h (h ∈0,H ])的函数,则该函数的图象大致是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎪⎫12 B .f ⎝ ⎛⎭⎪⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎪⎫13 C .f ⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫13第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________. 14.已知函数f (x )是定义在R 上的奇函数,且在区间0,+∞)上是单调减函数,若f (2x +1)+f (1)<0,则x 的取值范围是________.15.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x-2.若f (x )≥a +1对一切x ≥0都成立,则a 的取值范围为________.16.下列命题中:①若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1; ②已知函数y =f (3x )的定义域为-1,1],则函数y =f (x )的定义域为(-∞,0];③函数y =11-x 在(-∞,0)上是增函数;④方程2|x |=log 2(x +2)+1的实根的个数是2.所有正确命题的序号是____________(请将所有正确命题的序号都填上).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各式的值:(1)(-0.1)0+32×2 23 +⎝ ⎛⎭⎪⎪⎫14- 12 ; (2)log 327+lg 25+lg 4.18.(本小题满分12分)已知幂函数f (x )=(m 2-m -1)x -5m -3在(0,+∞)上是增函数,又g (x )=log a 1-mx x -1(a >1,a ≠0).(1)求函数g (x )的解析式;(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值.19.(本小题满分12分)已知函数f (x )=1+1x -x α(α∈R ),且f (3)=-53.(1)求α的值;(2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明.20.(本小题满分12分)已知函数f (x )=ax +b x 2+1为定义在R 上的奇函数,且f (1)=12.(1)求函数f (x )的解析式;(2)判断并证明函数f (x )在(-1,0)上的单调性.21.(本小题满分12分)函数f (x )=12(a x +a -x)(a >0,且a ≠1)的图象经过点⎝ ⎛⎭⎪⎪⎫2,419. (1)求f (x )的解析式;(2)证明:f (x )在0,+∞)上是增函数.详解答案 创优单元测评 (模块检测卷) 名校好题·能力卷]1.C 解析:因为集合U =A ∪B ={0,1,2,3,4,5,6,7,8},又B ∪∁U B=U ,所以A =∁U B ={1,3,5,7},所以B ={0,2,4,6,8}.2.C 解析:f (x )f (y )=a x a y =a x +y =f (x +y ).3.A 解析:要表示同一函数必须定义域、对应法则一致,B ,D 中的定义域不同,C 中的对应法则不同.故选A.4.A 解析:根据题意得f (x )=1⊕2x =⎩⎪⎨⎪⎧2x ,x <0,1,x ≥0.5.C 解析:a =log 135<0,b =3 15 >1,0<c =⎝ ⎛⎭⎪⎪⎫150.3<1.6.B 解析:函数y =-x 2+1为偶函数,在区间(0,+∞)上为减函数,y =log 2x +1为非奇非偶函数,函数y =x 3为奇函数.故选B.7.C 解析:∵f ⎝ ⎛⎭⎪⎪⎫12=log 312<0,f ⎝ ⎛⎭⎪⎪⎫34=log 3334>0,∴f ⎝ ⎛⎭⎪⎪⎫12·f ⎝ ⎛⎭⎪⎪⎫34<0. 又函数f (x )在⎝ ⎛⎭⎪⎪⎫12,34上是连续的,故f (x )的零点所在的区间为⎝ ⎛⎭⎪⎪⎫12,34. 8.A 解析:设F (x )=f (x )-3=-x 5-3x 3-5x ,则F (x )为奇函数,且在R 上为单调减函数,f (a )+f (a -2)>6等价于f (a -2)-3>-f (a )+3=-f (a )-3],即F (a -2)>-F (a )=F (-a ),所以a -2<-a ,即a <1,故选A.9.A 解析:由x 2-3x +2>0,得x <1或x >2,底数是2,所以在(-∞,1)上递减.故选A.10.B 解析:当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.11.D 解析:由图中可知,S 随着h 的增加而减少,并且减小的趋势在减小,当h =H2时,阴影部分的面积小于整个半圆面积的一半.故选D.12.C 解析:由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>⎪⎪⎪⎪⎪⎪⎪⎪13-1>⎪⎪⎪⎪⎪⎪⎪⎪12-1,∴f ⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫13<f (2). 解题技巧:由f (2a -x )=f (x )知f (x )的图象关于直线x =a 对称. 13.(1,2) 解析:当x -1=0,即x =1时,y =2. ∴函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2).14.(-1,+∞) 解析:f (2x +1)+f (1)<0,f (2x +1)<-f (1)=f (-1).由于f (x )是奇函数,在区间0,+∞)上是单调减函数.所以在定义域上是减函数,故2x +1>-1,x ∈(-1,+∞).15.(-∞,-1] 解析:当x =0时,f (x )=0,则0≥a +1,解得a ≤-1,当x >0时,-x <0,f (-x )=-x +a 2-x -2,则f (x )=-f (-x )=x +a 2x+2,由函数的图象或增减性可知,当x =a 2=|a |=-a 时,有f (x )min=-2a +2,所以-2a +2≥a +1,解得a ≤13,又a <0,所以a <0.综上所述:a ≤-1.16.③④ 解析:对于①,k =0也符合题意;对于②,y =f (x )的定义域应该是3-1,3];对于③,画出y =11-x的图象或利用定义可判定y=11-x在(-∞,0)上是增函数;对于④,在同一坐标系中作出y =2|x |,y =log 2(x +2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.18.解:(1)∵f (x )是幂函数,且在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,解得m =-1, ∴g (x )=log a x +1x -1.(2)由x +1x -1>0可解得x <-1或x >1,∴g (x )的定义域是(-∞,-1)∪(1,+∞). 又a >1,x ∈(t ,a ),可得t ≥1,设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0,∴x 1+1x 1-1-x 2+1x 2-1=2x 2-x 1x 1-1x 2-1>0, ∴x 1+1x 1-1>x 2+1x 2-1. 由a >1,有log a x 1+1x 1-1>log a x 2+1x 2-1,即g (x )在(1,+∞)上是减函数. 又g (x )的值域是(1,+∞),∴⎩⎪⎨⎪⎧t =1,g a =1,得g (a )=log a a +1a -1=1,可化为a +1a -1=a , 解得a =1±2,∵a >1,∴a =1+2,综上,a =1+2,t =1.19.解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1. (2)由(1),得f (x )=1+1x-x . 令f (x )=0,即1+1x -x =0,也就是x 2-x -1x=0, 解得x =1±52. 经检验,x =1±52是1+1x-x =0的根, 所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x-x 在(-∞,0)上是单调减函数. 证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎪⎫1x 1x 2+1. 因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x-x 在(-∞,0)上是单调减函数. 20.解:(1)由题意得⎩⎪⎨⎪⎧f 0=0,f 1=12,解得a =1,b =0,所以f (x )=xx 2+1. (2)函数f (x )在(-1,0)上单调递增,证明如下:任取x 1,x 2∈(-1,0),且x 1<x 2,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2x 21+1x 22+1=1-x 1x 2x 1-x 2x 21+1x 22+1<0,即f (x 1)<f (x 2). 所以函数f (x )在(-1,0)上单调递增.21.(1)解:∵ f (x )的图象经过点⎝ ⎛⎭⎪⎪⎫2,419,∴ 12(a 2+a -2)=419,即9a 4-82a 2+9=0,解得a 2=9或a 2=19. ∵ a >0,且a ≠1,∴ a =3或a =13. 当a =3时,f (x )=12(3x +3-x ); 当a =13时,f (x )=12⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫13x +⎝ ⎛⎭⎪⎪⎫13-x =12(3x +3-x ). ∴ 所求解析式为f (x )=12(3x +3-x ).。
【创优单元测评卷】高中人教A版数学必修1单元测试:第一章集合与函数概念(二)B卷(含答案解析)
高中同步创优单元测评B 卷数学班级:________姓名:________得分: ________第一章会合与函数观点(二 )( 函数的观点与基天性质)名校好题·能力卷 ]( 时间: 120分钟满分: 150 分 )第Ⅰ卷( 选择题共60分)一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下四组函数中,表示同一函数的是()A . y= x- 1 与 y=-2B . y= x- 1与 y=x- 1 x- 12C. y= 4lg x 与 y=2lg xxD . y= lg x - 2 与 y= lg1002A 中的元素个数最2.已知 f: x→x是会合 A 到会合 B= {0,1,4} 的一个映照,则会合多有()A.3 个B.4 个C.5 个D.6 个x+1的定义域是 ()3.函数 f(x) =x-1A .- 1,1)B .- 1,1)∪ (1,+∞)C.- 1,+∞)D. (1,+∞)4.函数 y= 2-- x2+ 4x的值域是 ()A .- 2,2]B .1,2]C. 0,2]D.- 2, 2]5.已知 f(x) 的图象如图,则f(x) 的分析式为 ()1, 0≤ x≤1 A.f(x)=- x- 2, 1<x≤2-1, 0≤x≤1B . f(x) =x+2, 1<x ≤2-1, 0≤x≤1 C. f(x) =x-2, 1<x ≤2-1, 0≤x≤1 D.f(x)=- x+ 2, 1<x≤26.定义两种运算: a⊕b=a2- b2,=-2,则函数 f(x) =2⊕ x的-2分析式为 ()A . f(x) =4- x2, x∈- 2,0)∪ (0,2]xB . f(x) =x2- 4, x∈ (-∞,- 2]∪ 2,+∞) xx2- 4C. f(x) =-,x∈ (-∞,-2]∪ 2,+∞)x4- x2D . f(x) =-,x∈-2,0)∪ (0,2]x7.函数 f(x) =1- x 的图象对于 () xA .坐标原点对称B . x 轴对称C. y 轴对称D.直线 y= x 对称8.设 f(x) 是定义在- 6,6] 上的偶函数,且f(4)>f(1) ,则以下各式必定建立的是 () A . f(0)<f(6) B .f(4)>f(3)C. f(2)>f(0)D. f( -1)<f(4)9.若奇函数 f(x) 在 1,3] 上为增函数,且有最小值0,则它在- 3,- 1]上 () A .是减函数,有最小值0 B .是增函数,有最小值0 C.是减函数,有最大值0 D .是增函数,有最大值010.已知函数f(x)a x,满足对任意 x1≠x2,都有=-+,1 -2)<0 建立,则 a 的取值范围是 (x1- x21A.0,4 B .(0,1)1C.4, 1D. (0,3)11.若 f(x) 是 R 上的减函数,且f(x) 的图象经过点A(0,4) 和点 B(3 ,- 2),则当不等式|f(x + t)- 1|<3 的解集为 (- 1,2)时, t 的值为 ()A .0B.- 1C. 1D. 212.已知函数y=f(x) 知足:① y= f(x + 1)是偶函数;②在 1,+∞)上为增函数.若 x1 <0,x2>0,且 x1+ x2<-2,则 f( - x1)与 f( -x2 )的大小关系是 ()A . f( - x1)>f( -x2)B . f(- x1)<f( - x2)C. f( - x1)= f(- x2 ) D .没法确立第Ⅱ卷(非选择题共 90分 )二、填空题 (本大题共 4 个小题,每题 5 分,共 20 分,请把正确答案填在题中横线上 )13.若函数f(x) = ax7+bx- 2,且 f(2 014) = 10,则 f( - 2 014)的值为 ________.ax+1在 x∈ (- 2,+∞)上单一递减,则实数 a 的取值范围是 ________.14.若函数 f(x) =x+2x+3,记 f(1) + f(2) +f(4) + f(8) + f(16) =m,f1+ f1+ f1+ f1 15.已知函数 f(x) =x+124816= n,则 m+ n= ________.16.设 a 为常数且 a<0, y= f(x) 是定义在 R 上的奇函数,当x<0 时, f(x) = x+a2-2.x 2a 的取值范围为 ________.若 f(x) ≥a-1 对全部 x≥0都建立,则三、解答题 (本大题共 6 个小题,共70 分,解答时应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )(1)已知 f(x - 2)= 3x- 5,求 f(x) ;(2)若 f(f(f(x))) = 27x + 26,求一次函数 f(x) 的分析式.18. (本小题满分 12 分 )已知 f(x) =1, x ∈ 2,6] .x - 1(1) 证明: f(x) 是定义域上的减函数;(2) 求 f(x) 的最大值和最小值.19. (本小题满分 12分)某企业生产一种电子仪器的固定成本为20 000 元,每生产一台仪器需增添投入100 元,1 2,0≤x ≤400,已知总利润知足函数:R(x) = 400x - x2此中 x 是仪器的月产量.80 000, x>400 ,(1) 将利润 f(x) 表示为月产量 x 的函数;(2) 当月产量 x 为什么值时,企业所赢利润最大?最大利润是多少元?(总利润=总成本+利润 )20. (本小题满分12 分 )已知函数f(x) = x2+ 2ax+ 2, x∈- 5,5].(1)当 a=- 1 时,求函数的最大值和最小值;(2) 若 y= f(x) 在区间- 5,5]上是单一函数,务实数 a 的取值范围.21. (本小题满分12 分 )已知二次函数f(x) = ax2+ bx(a, b∈ R),若 f(1)=- 1 且函数 f(x) 的图象对于直线x=1对称.(1)求 a, b 的值;(2)若函数 f(x) 在 k, k+ 1](k ≥上1)的最大值为 8,务实数 k 的值.22. (本小题满分12分)7已知二次函数f(x) 的图象过点 (0,4),对随意 x 知足 f(3- x)= f(x) ,且有最小值.4(1)求 f(x) 的分析式;(2)求函数 h(x) = f(x) -(2t -3)x 在区间 0,1] 上的最小值,此中 t∈ R;(3)在区间- 1,3] 上, y= f(x) 的图象恒在函数 y= 2x+ m 的图象上方,试确立实数m 的范围.详解答案第一章会合与函数观点 ( 二 ) (函数的观点与基天性质)名校好题·能力卷 ]1.D分析:∵ y= x- 1与 y=-2= |x- 1|的对应关系不一样,∴它们不是同一函数;y=x- 1(x ≥1)与 y=x-1(x>1) 的定义域不一样,∴它们不是同一函数;又 y= 4lg x(x>0)x-1与 y= 2lg x 2(x ≠ 0)的定义域不一样,所以它们也不是同一函数,而 y= lg x - 2(x>0) 与 y= lg x=100 lg x - 2(x>0) 有同样的定义域、值域与对应关系,所以它们是同一函数.2. C分析:令 x2= 0,1,4,解得 x=0,±1,±2.应选 C.3. B分析:由x+ 1≥0,解得 x≥- 1,且 x≠1. x-1≠0,4. C分析:令t=- x2+4x, x∈ 0,4] ,∴ t∈ 0,4].又∵ y1= x, x∈ 0,+∞)是增函数∴t∈0,2] ,- t ∈- 2,0] ,∴ y∈ 0,2] .应选 C.5. C 分析:当 0≤ x≤1时, f(x) =- 1;当 1<x ≤2时,设 f(x) = kx+ b(k ≠ 0),把点(1,- 1, 0≤x≤1,- 1), (2,0)代入 f(x) = kx +b(k ≠0),则 f(x) = x- 2.所以 f(x) =应选 C.x- 2,1<x ≤ 2.2⊕ x=22- x24-x24- x2≥0,得-6.D分析: f(x) ==|x- 2|- 2.由-2-2- 2|x- 2|- 2≠0,2≤ x≤2且 x≠ 0∴. f(x) =-4- x2 x.7.A11- x=- f(x) ,分析:函数 f(x) 的定义域对于原点对称,又∵ f( - x)=-x+ x=-x∴ f(x) 为奇函数,其图象对于坐标原点对称.8.D分析:∵ f(x) 是定义在-6,6]上的偶函数,∴ f( - 1)= f(1) .又 f(4)>f(1),f(4)>f( -1).9. D分析:因为奇函数f(x) 在 1,3] 上为增函数,且有最小值0,所以 f(x) 在- 3,-1]上是增函数,且有最大值 0.x,a知足对随意 x≠x,都有10 . A 分析:因为函数f(x) =+12-1 -0<a<1,1 2a- 3<0,x1- x2<0 建立,所以该函数为R 上的减函数,所以解得 0<a≤0,4. 4a≤a解题技巧:此题主要考察了分段函数的单一性,解决此题的重点是利用好该函数为R上的减函数这一条件.应特别注意隐含条件“a≥ 4a.”11. C 分析:由不等式 |f(x+ t) - 1|<3,得- 3< f(x + t)- 1< 3,即- 2< f(x + t)< 4.又因为 f(x) 的图象经过点 A(0,4) 和点 B(3,- 2),所以 f(0)= 4, f(3) =- 2,所以 f(3) <f(x + t)<f(0) .又 f(x) 在 R 上为减函数,则 3>x+ t> 0,即- t<x< 3- t,解集为 (- t,3- t).∵不等式的解集为 (- 1,2),∴- t=- 1,3- t= 2,解得 t= 1.应选 C.12.A 分析:由 y= f(x + 1)是偶函数且把 y= f(x + 1)的图象向右平移 1 个单位可得函数 y=f(x) 的图象,所以函数 y= f(x) 的图象对于 x= 1 对称,即 f(2+ x)= f( - x).因为 x1<0,x2>0,且 x1+x2<- 2,所以 2<2+ x2<- x1.因为函数在 1,+∞)上为增函数,所以 f(2+ x2)<f( -x1),即 f( - x1)>f( - x2),应选 A.13.- 14分析:设g(x)=ax7+bx,则g(x)是奇函数,g(-2 014)=-g(2 014).∵ f(2 014)= 10 且 f(2 014) =g(2 014) - 2,∴ g(2 014) = 12,∴ g(- 2 014)=- 12,∴ f(- 2 014)= g(-2 014)- 2,∴ f( - 2 014)=- 14.1分析: f(x) =ax+1= a+1-2a1在 x∈ (-2,+∞)上是减函数,∴ 114. a<2x+ 2x+ 2 .∵y=x+ 2- 2a>0,∴ a<1 . 215. 18分析:因为函数x+3,所以 f1= 1+ 3x f(x) =x+1x x+ 1.又因为 f(x) + f 1=+=4,x+ 1x1111f(1) + f(2) + f(4) + f(8) + f(16) + f 2+ f4+ f 8+ f 161111= f(1) + f(2) + f 2+ f(4) + f 4+ f(8) + f8+ f(16) +f 16= f(1) + 4×4= 18,所以 m+ n=18.解题技巧:此题主要考察了学生的察看、概括、推理的能力,解决此题的重点是发掘出题目中隐含的规律 f(x) + f 1=4. x16.- 1≤ a<0 分析:当 x= 0时, f(x) = 0,则2- 1,解得- 1≤a≤1,所以- 1≤a<0. 0≥a当 x>0 时,- x<0 ,f( - x)=- x+a2- 2,则 f(x) =- f( - x)= x+a2+2.- x x由对数函数的图象可知,当x= a2=|a|=- a 时,有 f(x) min=- 2a+ 2,22所以- 2a+2≥a- 1,即 a + 2a- 3≤0,解得- 3≤a≤又1. a<0,所以- 3≤a<0.综上所述,-1≤a<0.17.解: (1)令 t=x- 2,则 x=t+2,t∈R,由已知有f(t) = 3(t+ 2)- 5= 3t+ 1,故 f(x)=3x + 1.(2)设 f(x) = ax+ b(a ≠,0) f(f(x)) = a2x+ ab+ b,f(f(f(x)))232= a(a x+ ab+ b)+ b=a x+a b+ ab+ b,a3= 27,∴a2b+ ab+b= 26,解得 a= 3, b= 2.则 f(x) = 3x+ 2.18. (1)证明:设2≤x1<x 2≤6,则 f(x 1)-f(x 2)=1- 1 =x2- x1,x1- 1x2- 11-2-因为 x1- 1>0, x2- 1>0 ,x2- x1>0,所以 f(x 1)- f(x 2)>0 ,即 f(x 1 )>f(x 2) .所以 f(x) 是定义域上的减函数.1(2) 由(1) 的结论可得,f(x) min= f(6) =5, f(x) max= f(2) = 1.19.解: (1) 当 0≤ x≤ 400时,12- 20 000=-12+ 300x- 20 000.f(x) = 400x- x - 100x2x2当 x>400 时, f(x) = 80 000-100x - 20 000= 60 000- 100x,-1x2+ 300x- 20 000, 0≤x≤400,所以 f(x) =260000- 100x,x>400.(2)当 0≤ x≤ 400时,f(x) =-1212;2x+ 300x- 20 000=- (x- 300)+ 25 0002当 x= 300 时, f(x) max= 25 000;当 x>400 时,f(x) = 60 000- 100x<f(400) =20 000<25 000 ;所以当 x=300 时, f(x) max= 25 000.故当月产量 x 为 300 台时,企业赢利润最大,最大利润为25 000 元.20.解: (1) 当 a=- 1 时, f(x) = x2- 2x+ 2= (x- 1)2+ 1.又因为 x∈- 5,5] .所以函数的最大值为37,最小值为 1.(2)若 y= f(x) 在区间- 5,5]上是单一函数,则有- a≤- 5 或- a≥5解得 a≤- 5 或 a≥5.解题技巧:此题主要考察了二次函数在给定区间上的最值与单一性.解决此题的重点是确立对称轴和区间端点的关系.注意分类议论.b21.解: (1) 由题意可得 f(1) = a + b =- 1 且- = 1, 解得 a = 1, b =- 2.(2)f(x) = x 2- 2x = (x -1) 2-1.因为 k ≥1,所以 f(x) 在 k ,k + 1]上单一递加,所以 f(x) max = f(k + 1)= (k + 1)2-2(k + 1)= 8,解得 k = ±3.又 k ≥1,所以 k =3.22.解: (1) 由题知二次函数图象的对称轴为3,又最小值是 7,x = 24则可设 f(x) = a x - 3 2 7(a ≠ 0),2+4 又图象过点 (0,4),则 a 0-32+ 7= 4,解得 a = 1.243 272∴ f(x) = x - 2 +4= x - 3x + 4.(2)h(x) = f(x) - (2t -3)x = x 2- 2tx + 4= (x -t) 2+ 4- t 2,其对称轴 x = t.① t ≤0时,函数 h(x) 在 0,1]上单一递加,最小值为 h(0)= 4;②当 0<t<1 时,函数 h(x) 的最小值为 h(t)= 4- t 2;③当 t ≥1时,函数 h(x) 在 0,1] 上单一递减,最小值为h(1) = 5- 2t ,所以 h(x) min =4, t ≤0,4- t 2, 0<t<1 ,5- 2t , t ≥ 1.(3) 由已知: f(x)>2x + m 对 x ∈- 1,3] 恒建立,∴ m<x 2- 5x + 4 对 x ∈- 1,3]恒建立.∴ m<(x 2-5x + 4)min (x ∈- 1,3]) .29 ∵ g(x) = x - 5x + 4 在 x ∈- 1,3] 上的最小值为- 4,∴ m< -9.4。
2020高中人教A版数学必修1单元测试:创优单元测评 (第一章 第二章)B卷 Word版含解析
高中同步创优单元测评班级:________ 姓名:________ 得分:________创优单元测评 (第一章 第二章)(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.80-lg 100的值为( )A .2B .-2C .-1 D.122.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎪⎫1a <f ⎝ ⎛⎭⎪⎪⎫1bB .f ⎝ ⎛⎭⎪⎪⎫1a <f ⎝ ⎛⎭⎪⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎪⎫1b <f ⎝ ⎛⎭⎪⎪⎫1aD .f ⎝ ⎛⎭⎪⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎪⎫1b <f (b ) 3.下列不等式成立的是(其中a >0且a ≠1)( )A .log a 5.1<log a 5.9B .a 0.8<a 0.9C .1.70.3>0.93.1D .log 32.9<log 0.52.24.函数f (x )=log a (4x -3)过定点( )A .(1,0) B.⎝ ⎛⎭⎪⎪⎫34,0 C .(1,1) D.⎝ ⎛⎭⎪⎪⎫34,1 5.在同一坐标系中,当0<a <1时,函数y =a -x 与y =log a x 的图象是( )6.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎪⎫f ⎝ ⎛⎭⎪⎪⎫12的值是( ) A .-3 B .3 C.13 D .-137.用固定的速度向如图形状的瓶子中注水,则水面的高度h 和时间t 之间的关系可用图象大致表示为( )8.已知f (x 6)=log 2x ,那么f (8)等于( ) A.43 B .8 C .18 D.12 9.函数y =xlg 2-x的定义域是( )A .0,2)B .0,1)∪(1,2)C .(1,2)D .0,1)10.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .0B .1C .2D .311.已知函数f (x )在0,+∞)上是增函数,g (x )=-f (|x |),若g (lgx )>g (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫110,10 B .(0,10)C .(10,+∞)D.⎝ ⎛⎭⎪⎪⎫110,10∪(10,+∞) 12.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若x log 23=1,则3x =________.14.若点(2,2)在幂函数y =f (x )的图象上,则f (x )=________.15.已知函数y =log a ⎝ ⎛⎭⎪⎪⎫14x +b (a ,b 为常数,其中a >0,a ≠1)的图象如图所示,则a +b 的值为__________.16.下列说法中,正确的是________.(填序号) ①任取x >0,均有3x >2x ; ②当a >0且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图象关于y 轴对称. 三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分) 计算下列各式的值:(1)(32×3)6+(2×2) 43 -(-2 012)0; (2)lg 5×lg 20+(lg 2)2.18.(本小题满分12分)设f(x)=a-22x+1,x∈R.(其中a为常数)(1)若f(x)为奇函数,求a的值;(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.19.(本小题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.20.(本小题满分14分)已知函数f(x)=log2|x|.(1)求函数f(x)的定义域及f(-2)的值;(2)判断函数f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.21.某种产品的成本f1(x)与年产量x之间的函数关系的图象是顶点在原点的抛物线的一部分(如图1),该产品的销售单价f2(x)与年销售量之间的函数关系图象(如图2),若生产出的产品都能在当年销售完.(1)求f1(x),f2(x)的解析式;(2)当年产量多少吨时,所获利润最大,并求出最大值.详解答案 创优单元测评 (第一章 第二章) 名校好题·能力卷]1.C 解析:80-lg 100=1-2=-1.2.C 解析:∵0<a <b <1,∴1<1b <1a .∴0<a <b <1b <1a.又∵f (x )=x12 在(0,+∞)单调递增,∴f (a )<f (b )<f ⎝ ⎛⎭⎪⎪⎫1b <f ⎝ ⎛⎭⎪⎪⎫1a .3.C 解析:选项A ,B 均与0<a <1还是a >1有关,排除;选项C 既不同底数又不同指数,故取“1”比较,1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1正确.选项D 中,log 32.9>0,log 0.52.2<0,D 不正确.解题技巧:比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等;(3)采用数形结合的方法,通过函数的图象解决.4.A 解析:令4x -3=1可得x =1,故函数f (x )=log a (4x -3)过定点(1,0).5.C 解析:当0<a <1时,y =a -x=⎝ ⎛⎭⎪⎪⎫1a x 是过(0,1)点的增函数,y =log a x 是过(1,0)点的减函数.故选C.6.C 解析:f ⎝ ⎛⎭⎪⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎪⎫f ⎝ ⎛⎭⎪⎪⎫12=f (-1)=3-1=13.7.B 解析:由题图可知,当t 越来越大时,h 的增长速度越来越快,而A ,D 是匀速增长的,瓶子应为直筒状,C 表示的瓶子应是口大于底,故选B.8.D 解析:令x 6=8可知x =± 2.又∵x >0,∴x =2,∴f (8)=log 22=log 22 12 =12.9.B 解析:由题意可知,要使函数有意义,只需⎩⎪⎨⎪⎧x ≥0,2-x >0且2-x ≠1,解得0≤x <2且x ≠1.∴函数y =xlg 2-x的定义域为0,1)∪(1,2).10.C 解析:g (x )=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数f (x )=ln x 与g (x )=(x -2)2的图象(如图).由图可得两个函数的图象有2个交点.11.A 解析:因为g (lg x )>g (1),所以f (|lg x |)<f (1),又f (x )在0,+∞)单调递增,所以0≤|lg x |<1,解得110<x <10.12.A 解析:∵f (x )是R 上的奇函数,∴f (0)=0. 又x ≥0时,f (x )=2x +2x +b ,∴20+b =0,b =-1. ∴当x ≥0时,f (x )=2x +2x -1. ∴f (1)=21+2×1-1=3.∵f (x )是R 上的奇函数,∴f (-1)=-f (1)=-3. 13.2 解析:∵x log 23=1,∴x =log 32, ∴3x =3log 32=2.解题技巧:注意换底公式与对数恒等式的应用.14.x12 解析:设f (x )=x α(α为常数),由题意可知f (2)=2α=2,∴α=12,∴f (x )=x 12 .15.34 解析:将图象和两坐标轴的交点代入得log a b =2,log a ⎝ ⎛⎭⎪⎪⎫34+b =0,34+b =1,a 2=b ,从图象看出,0<a <1,b >0,解得a =12,b =14,a +b =34.16.①④⑤ 解析:对于①,可知任取x >0,3x >2x 一定成立. 对于②,当0<a <1时,a 3<a 2,故②不一定正确.对于③,y =(3)-x=⎝ ⎛⎭⎪⎪⎫33x ,因为0<33<1,故y =(3)-x 是减函数,故③不正确.对于④,因为|x |≥0,∴y =2|x |的最小值为1,正确. 对于⑤,y =2x 与y =2-x 的图象关于y 轴对称,是正确的.(2)原式=lg 5×lg(5×4)+(lg 2)2 =lg 5×(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2=(lg 5+lg 2)2=1.18.解:(1)因为x ∈R ,所以f (0)=0得a =1.(2)f (x )=a -22x +1, 因为f (x )+a >0恒成立,即2a >22x +1恒成立. 因为2x+1>1,所以0<22x +1<2, 所以2a ≥2,即a ≥1.故a 的取值范围是1,+∞).19.解:(1)∵h (x )=f (x )+g (x )=lg(x +2)+lg(2-x ),要使函数h (x )有意义,则有⎩⎪⎨⎪⎧x +2>0,2-x >0,解得-2<x <2. 所以,h (x )的定义域是(-2,2).(2)由(1)知,h (x )的定义域是(-2,2),定义域关于原点对称, 又∵ h (-x )=f (-x )+g (-x )=lg(2-x )+lg(2+x )=g (x )+f (x )=h (x ),∴ h (-x )=h (x ),∴ h (x )为偶函数.20.解:(1)依题意得|x |>0,解得x ≠0,所以函数f (x )的定义域为(-∞,0)∪(0,+∞).f (-2)=log 2|-2|=log 22 12 =12.(2)设x ∈(-∞,0)∪(0,+∞),则-x ∈(-∞,0)∪(0,+∞). f (-x )=log 2|-x |=log 2|x |=f (x ),所以f (-x )=f (x ),所以函数f (x )是偶函数.(3)f (x )在(0,+∞)上是单调增函数.证明如下:设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=log 2|x 1|-log 2|x 2|=log 2x 1x 2. 因为0<x 1<x 2,所以x 1x 2<1, 所以log 2x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(0,+∞)上是单调增函数. 21.解:(1)设f 1(x )=ax 2,将(1 000,1 000)代入可得1 000=a ×1 0002, 所以a =0.001,所以f 1(x )=0.001x 2.设f 2(x )=kx +b ,将(0,3),(1 000,2)代入可得k =-0.001,b =3, 所以f 2(x )=-0.001x +3.(2)设利润为f (x ),则f (x )=xf 2(x )-f 1(x )=(-0.001x +3)x -0.001x 2=-0.002x 2+3x =-0.002(x 2-1 500x +7502)+1 125,所以当x =750时,f (x )max =1 125.解题技巧:解应用题的一般思路可表示如下:。
高中人教A版数学必修1单元测试:创优单元测评 (模块检测卷)AB卷 Word版含解析
高中同步创优单元测评A 卷数学班级:________姓名:________得分:________创优单元测评(模块检测卷)名师原创·基础卷](时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.42.若函数y=f(x)的定义域是0,2],则函数g(x)=f(2x)x-1的定义域是()A.0,1] B.0,1)C.0,1)∪(1,4] D.(0,1)3.下列各组函数中,表示同一函数的是()A.y=x2和y=(x)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)C.y=log a x2和y=2log a xD.y=x和y=log a a x4.如果lg x=lg a+3lg b-5lg c,那么()A .x =ab 3c 5 B .x =3ab5c C .x =a +3b -5cD .x =a +b 3-c 35.已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 6.若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫12,+∞ D .(0,+∞) 7.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)8.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x9.当x <0时,a x >1成立,其中a >0且a ≠1,则不等式log a x >0的解集是( )A .{x |x >0}B .{x |x >1}C .{x |0<x <1}D .{x |0<x <a }10.设P ,Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q ={x |x ∈P ∪Q ,且x ∉P ∩Q },如果P ={y |y =4-x 2},Q ={y |y =4x ,x >0},则P ⊙Q =( )A .0,1]∪(4,+∞)B .0,1]∪(2,+∞)C .1,4]D .(4,+∞)11.已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如下图所示,则函数g (x )=a x +b 的图象是( )12.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝⎛⎭⎪⎫log 213=( )A .7 B.103 C .-4 D.43第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知幂函数y =f (x )的图象经过点(2,2),那么f (9)=________.14.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.15.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131则不等式fg (x )]>gf (x )]的解为________.16.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.18.(本小题满分12分)定义在(-1,1)上的函数f (x )满足:①对任意x ,y ∈(-1,1)都有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ;②f (x )在(-1,1)上是单调函数;③f ⎝ ⎛⎭⎪⎫12=1. (1)求f (0)的值; (2)证明:f (x )为奇函数;(3)解不等式f (2x -1)<1.19.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.20.(本小题满分12分)已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)当x ∈-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.21.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0.(1)请在直角坐标系中画出函数f (x )的图象,并写出该函数的单调区间;(2)若函数g (x )=f (x )-m 恰有3个不同零点,求实数m 的取值范围.22.(本小题满分12分)某专营店经销某商品,当售价不高于10元时,每天能销售100件;当售价高于10元时,每提高1元,销量减少3件.若该专营店每日费用支出为500元,用x 表示该商品定价,y 表示该专营店一天的净收入(除去每日的费用支出后的收入).(1)把y 表示成x 的函数;(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.详解答案 创优单元测评 (模块检测卷) 名师原创·基础卷]1.D 解析:∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16,a 2=4矛盾. 2.B 解析:由题意,得⎩⎪⎨⎪⎧0≤2x ≤2,x ≠1,∴0≤x <1.3.D 解析:要表示同一函数必须定义域、对应法则一致,A ,B ,C 中的定义域不同,故选D.4.A 解析:∵lg x =lg a +3lg b -5lg c ,∴lg x =lg a +lg b 3-lg c 5=lg ab3c 5,即x =ab 3c 5.5.A 解析:b =⎝ ⎛⎭⎪⎫12-0.8=20.8<a =21.2,c =2log 52=log 54<log 55=1<b=20.8,所以c <b <a .6.A 解析:要使函数f (x )=1log 12(2x +1)的解析式有意义,自变量x 需满足:log 12(2x +1)>0,2x +1>0,则0<2x +1<1,解得-12<x <0.7.B 解析:∵f (-1)=12-3<0,f (0)=1>0,∴f (-1)·f (0)<0. 又函数f (x )在(-1,0)上是连续的,故f (x )的零点所在的一个区间为(-1,0).8.A 解析:∵y =x -1是奇函数,y =log 12x 不具有奇偶性,故排除B ,D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,故选A.9.C 解析:由x <0时,a x >1可知0<a <1,故y =log a x 在(0,+∞)上为减函数,∴log a x >0=log a 1,∴0<x <1,故不等式log a x >0的解集为{x |0<x <1}.10.B 解析:P =0,2],Q =(1,+∞),∴P ⊙Q =0,1]∪(2,+∞).11.A 解析:由函数f (x )的图象可知0<a <1,b <-1,故函数g (x )=a x +b (0<a <1,b <-1)可以看作把y =a x 的图象向下平移|b |个单位,且g (x )是单调递减函数,又g (0)=a 0+b =1+b <0,故选A.12.C 解析:∵f (x )是奇函数, ∴f ⎝⎛⎭⎪⎫log 213=f (-log 23)=-f (log 23).又log 23>0,且x >0时,f (x )=2x +1,故f (log 23)=2log 23+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 213=-4. 13.3 解析:设y =f (x )=x α(α是常数),则2=2α,解得α=12,所以f (x )=x 12,则f (9)=9 12=3.14.-2 解析:∵x =-2<0,∴f (-2)=10-2=1100>0, ∴f (10-2)=lg 10-2=-2,即f (f (-2))=-2.15.x =2 解析:∵f (x ),g (x )的定义域都是{1,2,3},∴当x =1时,fg (1)]=f (3)=1,gf (1)]=g (1)=3,此时不等式不成立;当x =2时,f g (2)]=f (2)=3,gf (2)]=g (3)=1,此时不等式成立; 当x =3时,f g (3)]=f (1)=1,gf (3)]=g (1)=3, 此时不等式不成立. 因此不等式的解为x =2.16.⎝ ⎛⎭⎪⎫1,54 解析:y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.解题技巧:数形结合的思想的运用. 17.解:(1)A ={x |3≤3x ≤27}={x |1≤x ≤3}, B ={x |log 2x >1}={x |x >2},A ∩B ={x |2<x ≤3}, (∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}, (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3;综合①②,可得a 的取值范围是(-∞,3].18.(1)解:取x =y =0,则f (0)+f (0)=f (0),所以f (0)=0. (2)证明:定义域(-1,1)关于原点对称,令y =-x ∈(-1,1),则f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x 1-x 2=f (0)=0,所以f (-x )=-f (x ),则f (x )在x ∈(-1,1)上为奇函数.(3)解:∵f (0)=0,f ⎝ ⎛⎭⎪⎫12=1,∴f (x )是在(-1,1)上的单调增函数,∴不等式可化为⎩⎨⎧-1<2x -1<1,2x -1<12,∴⎩⎨⎧0<x <1,x <34,∴0<x <34,∴不等式的解集为⎝ ⎛⎭⎪⎫0,34. 19.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数. 当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x .任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2.由于x 1≥2,x 2≥2,且x 1<x 2, ∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2),故f (x )在2,+∞)上是单调递增函数. 20.解:(1)设f (x )=ax 2+bx +c (a ≠0),由题意可知,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x , c =1.整理,得2ax +a +b =2x , ∴⎩⎪⎨⎪⎧a =1,b =-1,c =1,∴f (x )=x 2-x +1.(2)当x ∈-1,1]时,f (x )>2x +m 恒成立,即x 2-3x +1>m 恒成立; 令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,x ∈-1,1],则g (x )min =g (1)=-1,∴m <-1. 21.解:(1)函数f (x )的图象如下图.函数f (x )的单调递减区间是(0,1); 单调递增区间是(-∞,0)及(1,+∞). (2)作出直线y =m ,函数g (x )=f (x )-m 恰有3个不同零点等价于函数y =m 与函数f (x )的图象恰有三个不同公共点.由函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2-x +1,x >0的图象易知m ∈⎝ ⎛⎭⎪⎫12,1. 解题技巧:方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.22.解:(1)由题意可得,y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,[100-3(x -10)]·x -500,x >10,x ∈N *, ∴y =⎩⎪⎨⎪⎧100x -500,0<x ≤10,x ∈N *,-3x 2+130x -500,x >10,x ∈N *. (2)当0<x ≤10时,y =100x -500为增函数.∴当x =10时,y max =500. 当x >10时,y =-3x 2+130x -500 =-3⎝⎛⎭⎪⎫x -6532+2 7253,∴当x =653时,y max =2 7253. 又∵x ∈N *,∴当x =22时,y 取得最大值,y max =908. 又908>500,∴当该商品定价为22元时,净收入最大,最大为908元.高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (模块检测卷) 名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =A ∪B ={x ∈N |0≤x ≤8},A ∩(∁U B )={1,3,5,7},则集合B =( )A .{0,2,4}B .{0,2,4,6}C .{0,2,4,6,8}D .{0,1,2,3,4}2.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数3.下列各函数中,表示同一函数的是( ) A .y =x 与y =log a a x (a >0且a ≠1) B .y =x 2-1x -1与y =x +1C .y =x 2-1与y =x -1D .y =lg x 与y =12lg x 24.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )5.已知a =log 135,b =3 15,c =⎝ ⎛⎭⎪⎫150.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a6.下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )A .y =-x 2+1B .y =|x |+1C .y =log 2x +1D .y =x 37.函数f (x )=2x +log 3x -1的零点所在的区间是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,34 D.⎝ ⎛⎭⎪⎫34,1 8.已知函数f (x )=-x 5-3x 3-5x +3,若f (a )+f (a -2)>6,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,3)C .(1,+∞)D .(3,+∞) 9.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫32,+∞ 10.设函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4 B .3 C .2 D .111.如图,平面图形中阴影部分面积S 是h (h ∈0,H ])的函数,则该函数的图象大致是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12 B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________.14.已知函数f (x )是定义在R 上的奇函数,且在区间0,+∞)上是单调减函数,若f (2x +1)+f (1)<0,则x 的取值范围是________.15.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a +1对一切x ≥0都成立,则a 的取值范围为________.16.下列命题中:①若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1; ②已知函数y =f (3x )的定义域为-1,1],则函数y =f (x )的定义域为(-∞,0];③函数y =11-x 在(-∞,0)上是增函数;④方程2|x |=log 2(x +2)+1的实根的个数是2.所有正确命题的序号是____________(请将所有正确命题的序号都填上).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各式的值: (1)(-0.1)0+32×2 23+⎝ ⎛⎭⎪⎫14-12;(2)log 327+lg 25+lg 4.18.(本小题满分12分)已知幂函数f (x )=(m 2-m -1)x -5m -3在(0,+∞)上是增函数,又g (x )=log a 1-mx x -1(a >1,a ≠0).(1)求函数g (x )的解析式;(2)当x ∈(t ,a )时,g (x )的值域为(1,+∞),试求a 与t 的值.19.(本小题满分12分)已知函数f (x )=1+1x -x α(α∈R ),且f (3)=-53. (1)求α的值; (2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明.20.(本小题满分12分)已知函数f (x )=ax +b x 2+1为定义在R 上的奇函数,且f (1)=12.(1)求函数f (x )的解析式;(2)判断并证明函数f (x )在(-1,0)上的单调性.21.(本小题满分12分)函数f (x )=12(a x +a -x )(a >0,且a ≠1)的图象经过点⎝⎛⎭⎪⎫2,419.(1)求f (x )的解析式;(2)证明:f (x )在0,+∞)上是增函数.22.(本小题满分12分)某网店经营的一种消费品的进价为每件12元,周销售量p(件)与销售价格x(元)的关系如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p(件)与销售价格x(元)的函数关系式;(2)写出周利润y(元)与销售价格x(元)的函数关系式;(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润.详解答案 创优单元测评 (模块检测卷) 名校好题·能力卷]1.C 解析:因为集合U =A ∪B ={0,1,2,3,4,5,6,7,8},又B ∪∁U B =U ,所以A =∁U B ={1,3,5,7},所以B ={0,2,4,6,8}.2.C 解析:f (x )f (y )=a x a y =a x +y =f (x +y ).3.A 解析:要表示同一函数必须定义域、对应法则一致,B ,D 中的定义域不同,C 中的对应法则不同.故选A.4.A 解析:根据题意得f (x )=1⊕2x =⎩⎪⎨⎪⎧2x ,x <0,1,x ≥0.5.C 解析:a =log 135<0,b =315>1,0<c =⎝ ⎛⎭⎪⎫150.3<1.6.B 解析:函数y =-x 2+1为偶函数,在区间(0,+∞)上为减函数,y =log 2x +1为非奇非偶函数,函数y =x 3为奇函数.故选B.7.C 解析:∵f ⎝ ⎛⎭⎪⎫12=log 312<0,f ⎝ ⎛⎭⎪⎫34=log 3334>0, ∴f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫34<0. 又函数f (x )在⎝ ⎛⎭⎪⎫12,34上是连续的,故f (x )的零点所在的区间为⎝ ⎛⎭⎪⎫12,34. 8.A 解析:设F (x )=f (x )-3=-x 5-3x 3-5x ,则F (x )为奇函数,且在R 上为单调减函数,f (a )+f (a -2)>6等价于f (a -2)-3>-f (a )+3=-f (a )-3],即F (a -2)>-F (a )=F (-a ),所以a -2<-a ,即a <1,故选A.9.A 解析:由x 2-3x +2>0,得x <1或x >2,底数是2,所以在(-∞,1)上递减.故选A.10.B 解析:当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.11.D 解析:由图中可知,S 随着h 的增加而减少,并且减小的趋势在减小,当h =H 2时,阴影部分的面积小于整个半圆面积的一半.故选D.12.C 解析:由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>⎪⎪⎪⎪⎪⎪13-1>⎪⎪⎪⎪⎪⎪12-1,∴f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2). 解题技巧:由f (2a -x )=f (x )知f (x )的图象关于直线x =a 对称.13.(1,2) 解析:当x -1=0,即x =1时,y =2.∴函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2).14.(-1,+∞) 解析:f (2x +1)+f (1)<0,f (2x +1)<-f (1)=f (-1).由于f (x )是奇函数,在区间0,+∞)上是单调减函数.所以在定义域上是减函数,故2x +1>-1,x ∈(-1,+∞).15.(-∞,-1] 解析:当x =0时,f (x )=0,则0≥a +1,解得a ≤-1,当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2,由函数的图象或增减性可知,当x =a 2=|a |=-a 时,有f (x )min=-2a +2,所以-2a +2≥a +1,解得a ≤13,又a <0,所以a <0.综上所述:a ≤-1.16.③④ 解析:对于①,k =0也符合题意;对于②,y =f (x )的定义域应该是3-1,3];对于③,画出y =11-x的图象或利用定义可判定y =11-x在(-∞,0)上是增函数;对于④,在同一坐标系中作出y =2|x |,y =log 2(x +2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.18.解:(1)∵f (x )是幂函数,且在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,解得m =-1, ∴g (x )=log a x +1x -1. (2)由x +1x -1>0可解得x <-1或x >1, ∴g (x )的定义域是(-∞,-1)∪(1,+∞).又a >1,x ∈(t ,a ),可得t ≥1,设x 1,x 2∈(1,+∞),且x 1<x 2,于是x 2-x 1>0,x 1-1>0,x 2-1>0, ∴x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1)>0, ∴x 1+1x 1-1>x 2+1x 2-1.由a >1,有log a x 1+1x 1-1>log a x 2+1x 2-1,即g (x )在(1,+∞)上是减函数. 又g (x )的值域是(1,+∞),∴⎩⎪⎨⎪⎧t =1,g (a )=1,得g (a )=log a a +1a -1=1,可化为a +1a -1=a , 解得a =1±2,∵a >1,∴a =1+2,综上,a =1+2,t =1.19.解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1.(2)由(1),得f (x )=1+1x -x .令f (x )=0,即1+1x -x =0,也就是x 2-x -1x=0, 解得x =1±52.经检验,x =1±52是1+1x -x =0的根,所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x -x 在(-∞,0)上是单调减函数.证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1x 1x 2+1. 因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x -x 在(-∞,0)上是单调减函数. 20.解:(1)由题意得⎩⎨⎧ f (0)=0,f (1)=12,解得a =1,b =0,所以f (x )=x x 2+1. (2)函数f (x )在(-1,0)上单调递增,证明如下:任取x 1,x 2∈(-1,0),且x 1<x 2,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(1-x 1x 2)(x 1-x 2)(x 21+1)(x 22+1)<0,即f (x 1)<f (x 2).所以函数f (x )在(-1,0)上单调递增.21.(1)解:∵ f (x )的图象经过点⎝⎛⎭⎪⎫2,419, ∴ 12(a 2+a -2)=419,即9a 4-82a 2+9=0,解得a 2=9或a 2=19.∵ a >0,且a ≠1,∴ a =3或a =13.当a =3时,f (x )=12(3x +3-x );当a =13时,f (x )=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫13-x =12(3x +3-x ). ∴ 所求解析式为f (x )=12(3x +3-x ).22.解:(1)由A (12,26),B (20,10)可知线段AB 的方程为p =-2x+50,12≤x ≤20,由B (20,10),C (28,2)可知线段BC 的方程为p =-x +30,20<x ≤28, ∴p =⎩⎪⎨⎪⎧ -2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620;当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧ -2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28.(3)当12≤x ≤20时,y =-2⎝ ⎛⎭⎪⎫x -3722+1292.故当x =372时,y 取得最大值1292.当20<x ≤28时,y =-(x -21)2+61,故当x =21时,y 取得最大值为61.∵1292=64.5>61,∴当该消费品销售价格为18.5元时,周利润最大,最大周利润为64.5元.。
人教A版数学必修一创优单元测评(第一章)B卷.docx
高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章) [名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,1 2.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1(x ≥2),-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( )A .1B .-1C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数 8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈[3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间[0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f(x)在(0,+∞)上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求a的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+ax (x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.详解答案 创优单元测评 (第一章) [名校好题·能力卷]1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎨⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf (x )2f (x )+3=x ,f (x )=3x c -2x =cx2x +3,得c =-3.6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫34.解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1);令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-[f (x )]2≤0.16.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1, 即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0, ∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是[3,7].19.解:(1)f (x )在[3,5]上为增函数.证明如下: 任取x 1,x 2∈[3,5]且x 1<x 2.∵ f (x )=2x -1x +1=2(x +1)-3x +1=2-3x +1, ∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1), ∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在[3,5]上为增函数.(2)根据f (x )在[3,5]上单调递增知,[f (x )]最大值=f (5)=32,[f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在[0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在[0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在[0,a ]上单调递增,在[a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2), Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2. ∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0, ∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=[f (3)]3,∴9=[f (3)]3,∴f (3)=39,∵f (a +1)≤39,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是[0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x (x ≠0),而f (-1)+f (1)=2≠0, f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x . 任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 21+1x 1-⎝ ⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2-1x 1x 2, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2, f (x 1)<f (x 2),故f (x )在[2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
人教A版数学必修一第一章单元质量评估2.docx
第一章单元质量评估(二)时限:120分钟满分:150分一、选择题(每小题5分,共60分)1.已知全集U=R,集合P={x∈N*|x<7},Q={x|x-3>0},那么图中阴影部分表示的集合是( )A.{1,2,3,4,5,6}B.{x|x>3}C.{4,5,6}D.{x|3<x<7}2.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a等于( )A.4 B.2C.0 D.0或43.下表给出函数y=f(x)的部分对应值,则f(1)=( )x -101478y2 0 π 1 -3 1A. π B .4 C .8D .04.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+1 B .f (x )=1-1xC .f (x )=x 2-5x -6D .f (x )=3-x5.函数f (x )=1+x +x 2+11-x的定义域为( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)6.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π7.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值等于( )A.23 B .2 C .4D .68.已知函数y =k (x +2)-1的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f ⎝ ⎛⎭⎪⎫-3727等于( )A.89B.79C.59D.299.已知函数y =f (x )在(0,2)上为增函数,函数y =f (x +2)为偶函数,则f (1),f ⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭⎪⎫72的大小关系是( )A .f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72B .f (1)>f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫72C .f ⎝ ⎛⎭⎪⎫72>f ⎝ ⎛⎭⎪⎫52>f (1)D .f ⎝ ⎛⎭⎪⎫72>f (1)>f ⎝ ⎛⎭⎪⎫5210.定义运算a b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,则函数f (x )=x 2|x |的图象是( )11.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( )A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( )A .0B .1或2C .1D .2二、填空题(每小题5分,共20分)13.已知f (x +2)=x 2-4x ,则f (x )=________.14.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________.15.已知二次函数f (x )=x 2+2ax -4,当a ________时,f (x )在[1,+∞)上是增函数,当a ________时,函数f (x )的单调递增区间是[1,+∞).答案1.C P ={1,2,3,4,5,6},Q ={x |x >3},则阴影部分表示的集合是P ∩Q ={4,5,6}.2.A 当a =0时,方程ax 2+ax +1=0无解, 这时集合A 为空集,故排除C 、D.当a =4时,方程4x 2+4x +1=0只有一个解x =-12,这时集合A 只有一个元素,故选A. 3.A4.B A ,C ,D 选项中的三个函数在(-∞,0)上都是减函数,只有B 正确.5.D 要使函数有意义,则有⎩⎪⎨⎪⎧1+x ≥0,1-x >0,解得-1≤x <1,所以函数的定义域为[-1,1). 6.B 因为π是无理数,所以g (π)=0, 所以f (g (π))=f (0)=0.故选B.7.B 因为函数f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )关于x =1对称,所以区间(3-2a ,a +1)关于x =1对称,所以3-2a +a +12=1,即a =2,所以选B.8.A 由题知A (-2,-1).又由A 在f (x )的图象上得3×(-2)+b =-1,b =5,则f (x )=3x +5,则f ⎝ ⎛⎭⎪⎫-3727=89.故选A.9.A y =f (x +2)关于x =0对称,则y =f (x )关于x =2对称,因为函数f (x )在(0,2)上单调递增,所以函数f (x )在(2,+∞)上单调递减,所以f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72.10.B 根据运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,得f (x )=x 2|x |=⎩⎪⎨⎪⎧x 2,x <-1或x >1,|x |,-1≤x ≤1,由此可得图象如图所示.11.C ∵f (x )为偶函数,∴f (-x )=f (x ),故f (x )+f (-x )2x<0可化为f (x )x<0.又f (x )在(0,+∞)上是减函数,且f (3)=0,结合图象知,当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x<0的解集为(-3,0)∪(3,+∞).12.C 二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.13.x 2-8x +12解析:设t =x +2,则x =t -2, ∴f (t )=(t -2)2-4(t -2)=t 2-8t +12. 故f (x )=x 2-8x +12. 14.-0.5解析:由题意,得f(x)=-f(x+2)=f(x+4),则f(7.5)=f(3.5)=f(-0.5)=-f(0.5)=-0.5.15.≥-1 =-1解析:∵f(x)=x2+2ax-4=(x+a)2-4-a2,∴f(x)的单调递增区间是[-a,+∞),∴当-a≤1时,f(x)在[1,+∞)上是增函数,即a≥-1;当a=-1时,f(x)的单调递增区间是[1,+∞).16.定义在R上的偶函数f(x),当x∈[1,2]时,f(x)<0,且f(x)为增函数,给出下列四个结论:①f(x)在[-2,-1]上单调递增;②当x∈[-2,-1]时,有f(x)<0;③f(x)在[-2,-1]上单调递减;④|f(x)|在[-2,-1]上单调递减.其中正确的结论是________(填上所有正确的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设全集为实数集R,集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.(1)求A∪B及(∁R A)∩B;(2)若A∩C=A,求a的取值范围;(3)如果A∩C≠∅,求a的取值范围.18.(12分)已知函数f(x)=1+x-|x|4.(1)用分段函数的形式表示函数f(x);(2)在平面直角坐标系中画出函数f(x)的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x(x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x的解集.——————————————————————————答案16.②③解析:因为f (x )为定义在R 上的偶函数,且当x ∈[1,2]时,f (x )<0,f (x )为增函数,由偶函数图象的对称性知,f (x )在[-2,-1]上为减函数,且当x ∈[-2,-1]时,f (x )<0.17.解:(1)A ∪B ={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3,或7≤x <10}.(2)由A ∩C =A 知A ⊆C ,借助数轴可知a 的取值范围为[7,+∞). (3)由A ∩C ≠∅可知a 的取值范围为(3,+∞). 18.解:(1)当x ≥0时,f (x )=1+x -x4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎪⎨⎪⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x的解集是{x |x >1}.19.(12分)已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0,且f (x )在(1,+∞)内单调递减,求a 的取值范围. 20.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性;(3)求函数f (x )+g (x )在(0,2]上的最小值.答案19.(1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2).故f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a-x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1].20.解:(1)设f (x )=k 1x ,g (x )=k 2x,其中k 1k 2≠0.∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2,∴k 1=1,k 2=2,∴f (x )=x ,g (x )=2x.(2)设h (x )=f (x )+g (x ),则h (x )=x +2x,∴函数h (x )的定义域是(-∞,0)∪(0,+∞).∵h (-x )=-x +2-x =-⎝⎛⎭⎪⎫x +2x =-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x.设x 1,x 2是(0,2]上的任意两个不相等的实数,且x 1<x 2,则h (x 1)-h (x 2)=⎝ ⎛⎭⎪⎫x 1+2x 1-⎝ ⎛⎭⎪⎫x 2+2x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫2x 1-2x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-2x 1x 2=(x 1-x 2)(x 1x 2-2)x 1x 2.∵x 1,x 2∈(0,2],且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,∴(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=22,即函数f (x )+g (x )在(0,2]上的最小值是2 2.—————————————————————————— 21.(12分)若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数; (3)若f (4)=5,解不等式f (3m -2)<3.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a 的取值范围.答案21.(1)证明:因为定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,所以令x 1=x 2=0,则f (0+0)=f (0)+f (0)-1, 即f (0)=1. 令x 1=x ,x 2=-x ,则f (x -x )=f (x )+f (-x )-1, 所以[f (x )-1]+[f (-x )-1]=0, 故y =f (x )-1为奇函数.(2)证明:由(1)知y =f (x )-1为奇函数, 所以f (x )-1=-[f (-x )-1]. 任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, 所以f (x 2-x 1)=f (x 2)+f (-x 1)-1 =f (x 2)-[f (x 1)-1]=f (x 2)-f (x 1)+1. 因为当x >0时,f (x )>1,所以f (x 2-x 1)=f (x 2)-f (x 1)+1>1, 即f (x 1)<f (x 2), 故f (x )是R 上的增函数.(3)解:因为f (x 1+x 2)=f (x 1)+f (x 2)-1,且f (4)=5,所以f (4)=f (2)+f (2)-1=5,即f (2)=3,由不等式f (3m -2)<3,得f (3m -2)<f (2). 由(2)知f (x )是R 上的增函数, 所以3m -2<2,即3m -4<0,即m <43,故不等式f (3m -2)<3的解集为⎝⎛⎭⎪⎫-∞,43.22.(1)解:因为奇函数f (x )的定义域为R ,所以f (0)=0. 故有f (0)=0+m02+n ×0+1=0,解得m =0.所以f (x )=xx 2+nx +1.由f (-1)=-f (1),即-1(-1)2+n ×(-1)+1=-112+n ×1+1,解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=xx 2+1,任取-1<x 1<x 2<1.则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1)=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,故1-x 1x 2>0,又因为x 1<x 2,所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上为增函数. (3)解:由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎢⎡⎦⎥⎤-13,13上为增函数,故最大值为f ⎝ ⎛⎭⎪⎫13=310.由题意可得a3≥310,解得a ≥910.故a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.。
人教A版数学必修一单元质量评估(一).docx
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(一)(第一章)(90分钟120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2015·北京高考)设集合A={x|-5<x<2},B={x|-3<x<3},则A∩B= ( )A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}【解析】选A.如图,得A∩B={x|-3<x<2}.【补偿训练】(2016·唐山高一检测)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C= ( )A.{1,2,3}B.{1,2,4}C.{2,3,4}D.{1,2,3,4}【解析】选D.A∩B={1,2},(A∩B)∪C={1,2,3,4}.2.设a,b∈R,集合{a,1}={0,a+b},则b-a= ( )A.1B.-1C.2D.-2【解析】选A.由题意得所以b-a=1.3.(2016·重庆高一检测)下列函数中,既是奇函数又是增函数的是( )A.y=-B.y=|x+1|-1C.y=x|x|D.y=x2【解析】选C.A函数为奇函数;B.非奇非偶函数;C.y=x|x|=根据函数的性质易知其满足条件;D.显然函数为偶函数.4.(2014·浙江高考)已知函数f(x)=x3+ax2+bx+c且0<f(-1)=f(-2)=f(-3)≤3,则( )A.c≤3B.3<c≤6C.6<c≤9D.c>9【解题指南】根据题意先由等式关系求a,b的值,然后再由不等关系求c的范围.【解析】选C.由f(-1)=f(-2)=f(-3)得,解得所以f(x)=x3+6x2+11x+c,由0<f(-1)≤3,得0<-1+6-11+c≤3,解得6<c≤9.5.(2016·浏阳高一检测)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是图中的( )【解析】选B.对A,函数定义域不是M;对C,此图象不是函数图象;对D,函数值域不是N;只有B选项符合要求.6.(2016·天水高一检测)偶函数y=f(x)在区间[0,4]上单调递减,则有( )π>f(-π)A.f(-1)>fπ>f(-1)>f(-π)B.fπC.f(-π)>f(-1)>fπD.f(-1)>f(-π)>f【解析】选A.因为f(x)是偶函数,则f(-1)=f(1),f(-π)=f(π),又y=f(x)在区间[0,4]上单调递减,π>f(π),所以f(1)>fπ>f(-π).从而f(-1)>f7.(2016·德阳高一检测)已知f(x)=则f(3)为( )A.2B.3C.4D.5【解析】选A.由函数解析式可得f=f=f=7-5=2.【补偿训练】设函数f(x)=则f(f(3))= ( )A. B.3 C. D.【解析】选D.f(3)=,f(f(3))=+1=.8.已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-4)<f(-2),则下列不等式一定成立的是( )A.f(-1)<f(3)B.f(2)<f(3)C.f(-3)<f(5)D.f(0)>f(1)【解析】选D.因为函数f(x)在[-5,5]上是偶函数,所以f(-4)<f(-2)⇔f(4)<f(2).又f(x)在[0,5]上是单调函数.所以f(x)在[0,5]上递减,从而f(0)>f(1).9.(2016·德阳高一检测)函数y=(x>0)的值域为( )A.(-1,+∞)B.(-1,2)C.{y|y≠2}D.{y|y>2}【解析】选B.因为y===2-,因为x>0,所以x+1>1,所以∈(0,3),所以函数值域为(-1,2).10.(2016·平湖高一检测)已知函数y=f(x)和函数y=g(x)的图象如图所示:则函数y=f(x)g(x)的图象可能是( )【解析】选B.当x<0时f>0,g<0,所以y=f g<0,当x>0时f>0,g>0,所以y=f g>0,因此B正确.11.定义在R上的函数f(x)在区间(-∞,2)上是增函数,且f(x+2)的图象关于x=0对称,则( )A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)【解析】选A.因为f(x+2)的图象关于x=0对称,所以f(x)的图象关于x=2对称,又f(x)在区间(-∞,2)上是增函数,则其在(2,+∞)上为减函数,作出其图象大致形状如图所示.由图象知,f(-1)<f(3).【拓展延伸】比较函数值大小常用的方法(1)利用函数的单调性,但需将待比较函数值调节到同一个单调区间上.(2)利用数形结合法比较.(3)对于选择、填空题可用排除法、特值法等比较.12.(2016·石家庄高一检测)已知f(x)=是定义在R上的减函数,则a的取值范围是( )A. B.C. D.【解析】选 A.因为函数是定义在R上的减函数,所以需满足:⇒≤a<.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.已知函数f(x)=.若f(a)=3,则实数a= .【解析】f(a)==3.则a-1=9,a=10.答案:1014.(2016·淮安高一检测)集合A={1,2,4,6,7},B={3,4,5,7},则A∩B= .【解析】因为集合A={1,2,4,6,7},B={3,4,5,7},所以集合A∩B={4,7}.答案:{4,7}15.若y=f(x)在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f(-2)=0,则不等式x·f(x)<0的解集为.【解题指南】根据题目中的条件画出函数的大致图象,然后结合图象求解不等式.【解析】根据题意画出f(x)大致图象:由图象可知-2<x<0或0<x<2时,x·f(x)<0.答案:(-2,0)∪(0,2)16.(2016·石家庄高一检测)函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是.【解析】根据偶函数定义f=f,可得函数f(x)=(k-2)x2+(k-1)x+3是偶函数时,k=1,即函数为f=-x2+3,故f(x)的递减区间是(或(0,+∞)).答案:(或(0,+∞))三、解答题(本大题共4个小题,共40分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(2016·临沂高一检测)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R}.若A∩B=[1,3],求实数m的值.【解析】A={x|-1≤x≤3},B={x|m-2≤x≤m+2}.因为A∩B=[1,3],所以得m=3.18.(10分)(2016·德阳高一检测)李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系.(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?【解题指南】(1)分0≤x≤30,x>30两个阶段,根据各档的单价列式即可得解.(2)把自变量L=35代入函数表达式,进行计算即可得x值,求得用电量.(3)分别求得两方案下的函数解析式,通过解不等式求得用电量的取值范围. 【解析】(1)当0≤x≤30时,L(x)=2+0.5x.当x>30时,L(x)=2+30×0.5+(x-30)×0.6=0.6x-1.所以L(x)=(注:x也可不取0)(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去.当x>30时,由L(x)=0.6x-1=35得x=60,所以李刚家该月用电60度.(3)设按方案二收费为F(x)元,则F(x)=0.58x.当0≤x≤30时,由L(x)<F(x),得2+0.5x<0.58x,所以x>25,所以25<x≤30;当x>30时,由L(x)<F(x),得,0.6x-1<0.58x,所以x<50,所以30<x<50.综上,25<x<50,故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.19.(10分)(2016·长沙高一检测)设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.【解析】由f(m)+f(m-1)>0,得f(m)>-f(m-1),即f(1-m)<f(m).又因为f(x)在[0,2]上单调递减且f(x)在[-2,2]上为奇函数,所以f(x)在[-2,2]上为减函数.所以1-m>m,又-2≤m-1≤2,-2≤m≤2,所以解得-1≤m<.故m的取值范围是.【误区警示】在利用函数的单调性与奇偶性脱掉符号“f”时,容易忽略函数的定义域,只得出式子1-m>m,即m的取值范围为-2≤m<的错误.【补偿训练】(2016·南昌高一检测)判断函数f(x)=在(3,+∞)上的单调性并证明你的结论.【解析】函数f(x)在(3,+∞)上为单调递增函数.任取3<x1<x2,f(x1)-f(x2)=(x1-x2)所以3<x1<x2,所以x1-x2<0,(x1-1)(x2-1)>(3-1)(3-1)=4,所以1->0,所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以函数f(x)在(3,+∞)上为单调递增函数.【拓展延伸】定义法证明函数单调性时常用的变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常使用因式分解法.(2)通分:当原函数是分式函数时,作差后的变形通常是先通分,然后再对分子使用因式分解法.(3)配方:当原函数是二次函数时,作差后的变形可考虑使用配方法,此时比较容易判断符号.20.(10分)(2016·日照高一检测)定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f.(1)求证:函数f(x)是奇函数.(2)若当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是减函数.【解析】(1)证明:函数f(x)定义域是(-1,1),由f(x)+f(y)=f,令x=y=0,得f(0)+f(0)=f,所以f(0)=0.令y=-x,得f(x)+f(-x)=f=f(0)=0,所以f(-x)=-f(x).所以f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减,令0<x1<x2<1,则f(x1)-f(x2)=f(x1)+f(-x2)=f=f,因为0<x1<x2<1,所以x2-x1>0,1-x1x2>0.所以>0.又(x2-x1)-(1-x1x2)=(x2-1)(x1+1)<0,所以0<x2-x1<1-x1x2.所以-1<-<0,由题意,知f>0,所以f(x1)>f(x2).所以f(x)在(0,1)上为减函数.又f(x)为奇函数,所以f(x)在(-1,1)上也是减函数.【补偿训练】(2016·邢台高一检测)已知函数f(x)=是奇函数.(1)求实数m的值.(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 【解析】(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象(图略)知所以1<a≤3,故实数a的取值范围是(1,3].关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料马鸣风萧萧*整理制作高中同步创优单元测评B 卷 数 学班级:________ 姓名:________ 得分:________创优单元测评 (第一章 第二章) [名校好题·能力卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.80-lg 100的值为( )A .2B .-2C .-1 D.12 2.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )3.下列不等式成立的是(其中a >0且a ≠1)( )A .log a 5.1<log a 5.9B .a 0.8<a 0.9C .1.70.3>0.93.1D .log 32.9<log 0.52.24.函数f (x )=log a (4x -3)过定点( )A .(1,0) B.⎝ ⎛⎭⎪⎫34,0 C .(1,1) D.⎝ ⎛⎭⎪⎫34,1 5.在同一坐标系中,当0<a <1时,函数y =a -x 与y =log a x 的图象是( )6.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值是( )A .-3B .3 C.13 D .-137.用固定的速度向如图形状的瓶子中注水,则水面的高度h 和时间t 之间的关系可用图象大致表示为( )8.已知f (x 6)=log 2x ,那么f (8)等于( ) A.43 B .8 C .18 D.129.函数y =xlg (2-x )的定义域是( )A .[0,2)B .[0,1)∪(1,2)C .(1,2)D .[0,1)10.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( )A .0B .1C .2D .311.已知函数f (x )在[0,+∞)上是增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,10 B .(0,10)C .(10,+∞)D.⎝ ⎛⎭⎪⎫110,10∪(10,+∞) 12.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若x log 23=1,则3x =________.14.若点(2,2)在幂函数y =f (x )的图象上,则f (x )=________.15.已知函数y =log a ⎝ ⎛⎭⎪⎫14x +b (a ,b 为常数,其中a >0,a ≠1)的图象如图所示,则a +b 的值为__________.16.下列说法中,正确的是________.(填序号) ①任取x >0,均有3x >2x ; ②当a >0且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图象关于y 轴对称. 三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分) 计算下列各式的值:(1)(32×3)6+(2×2) 43-(-2 012)0; (2)lg 5×lg 20+(lg 2)2.18.(本小题满分12分)设f (x )=a -22x +1,x ∈R .(其中a 为常数)(1)若f (x )为奇函数,求a 的值;(2)若不等式f (x )+a >0恒成立,求实数a 的取值范围.19.(本小题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.20.(本小题满分14分)已知函数f(x)=log2|x|.(1)求函数f(x)的定义域及f(-2)的值;(2)判断函数f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.21.某种产品的成本f 1(x )与年产量x 之间的函数关系的图象是顶点在原点的抛物线的一部分(如图1),该产品的销售单价f 2(x )与年销售量之间的函数关系图象(如图2),若生产出的产品都能在当年销售完.(1)求f 1(x ),f 2(x )的解析式;(2)当年产量多少吨时,所获利润最大,并求出最大值.22.(本小题满分12分) 设f (x )=-2x +m 2x +1+n(m >0,n >0).(1)当m =n =1时,证明:f (x )不是奇函数;(2)设f (x )是奇函数,求m 与n 的值;(3)在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集.详解答案 创优单元测评 (第一章 第二章) [名校好题·能力卷]1.C 解析:80-lg 100=1-2=-1.2.C 解析:∵0<a <b <1,∴1<1b <1a .∴0<a <b <1b <1a . 又∵f (x )=x 12在(0,+∞)单调递增,∴f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1a .3.C 解析:选项A ,B 均与0<a <1还是a >1有关,排除;选项C 既不同底数又不同指数,故取“1”比较,1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1正确.选项D 中,log 32.9>0,log 0.52.2<0,D 不正确.解题技巧:比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等;(3)采用数形结合的方法,通过函数的图象解决.4.A 解析:令4x -3=1可得x =1,故函数f (x )=log a (4x -3)过定点(1,0).5.C 解析:当0<a <1时,y =a -x=⎝ ⎛⎭⎪⎫1a x是过(0,1)点的增函数,y=log a x 是过(1,0)点的减函数.故选C.6.C 解析:f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=3-1=13. 7.B 解析:由题图可知,当t 越来越大时,h 的增长速度越来越快,而A ,D 是匀速增长的,瓶子应为直筒状,C 表示的瓶子应是口大于底,故选B.8.D 解析:令x 6=8可知x =±2.又∵x >0,∴x =2, ∴f (8)=log 22=log 22 12=12.9.B 解析:由题意可知,要使函数有意义,只需⎩⎪⎨⎪⎧x ≥0,2-x >0且2-x ≠1,解得0≤x <2且x ≠1. ∴函数y =xlg (2-x )的定义域为[0,1)∪(1,2).10.C 解析:g (x )=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数f (x )=ln x 与g (x )=(x -2)2的图象(如图).由图可得两个函数的图象有2个交点.11.A 解析:因为g (lg x )>g (1),所以f (|lg x |)<f (1),又f (x )在[0,+∞)单调递增,所以0≤|lg x |<1,解得110<x <10.12.A 解析:∵f (x )是R 上的奇函数,∴f (0)=0. 又x ≥0时,f (x )=2x +2x +b ,∴20+b =0,b =-1. ∴当x ≥0时,f (x )=2x +2x -1. ∴f (1)=21+2×1-1=3.∵f (x )是R 上的奇函数,∴f (-1)=-f (1)=-3. 13.2 解析:∵x log 23=1,∴x =log 32, ∴3x =3log 32=2.解题技巧:注意换底公式与对数恒等式的应用.14.x 12解析:设f (x )=x α(α为常数),由题意可知f (2)=2α=2, ∴α=12,∴f (x )=x 12.15.34 解析:将图象和两坐标轴的交点代入得log a b =2,log a ⎝⎛⎭⎪⎫34+b =0,34+b =1,a 2=b ,从图象看出,0<a <1,b >0,解得a=12,b =14,a +b =34.16.①④⑤ 解析:对于①,可知任取x >0,3x >2x 一定成立. 对于②,当0<a <1时,a 3<a 2,故②不一定正确.对于③,y =(3)-x=⎝ ⎛⎭⎪⎫33x ,因为0<33<1,故y =(3)-x 是减函数,故③不正确.对于④,因为|x |≥0,∴y =2|x |的最小值为1,正确. 对于⑤,y =2x 与y =2-x 的图象关于y 轴对称,是正确的.(2)原式=lg 5×lg(5×4)+(lg 2)2 =lg 5×(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2 =(lg 5+lg 2)2=1.18.解:(1)因为x ∈R ,所以f (0)=0得a =1. (2)f (x )=a -22x +1,因为f (x )+a >0恒成立, 即2a >22x +1恒成立.因为2x+1>1,所以0<22x +1<2,所以2a ≥2,即a ≥1. 故a 的取值范围是[1,+∞).19.解:(1)∵h (x )=f (x )+g (x )=lg(x +2)+lg(2-x ),要使函数h (x )有意义,则有⎩⎪⎨⎪⎧x +2>0,2-x >0,解得-2<x <2.所以,h (x )的定义域是(-2,2).(2)由(1)知,h (x )的定义域是(-2,2),定义域关于原点对称, 又∵ h (-x )=f (-x )+g (-x )=lg(2-x )+lg(2+x )=g (x )+f (x )=h (x ),∴ h (-x )=h (x ),∴ h (x )为偶函数.20.解:(1)依题意得|x |>0,解得x ≠0,所以函数f (x )的定义域为(-∞,0)∪(0,+∞).f (-2)=log 2|-2|=log 22 12=12.(2)设x ∈(-∞,0)∪(0,+∞),则-x ∈(-∞,0)∪(0,+∞). f (-x )=log 2|-x |=log 2|x |=f (x ),所以f (-x )=f (x ),所以函数f (x )是偶函数.(3)f (x )在(0,+∞)上是单调增函数.证明如下:设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=log 2|x 1|-log 2|x 2|=log 2x 1x 2. 因为0<x 1<x 2,所以x 1x 2<1, 所以log 2x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(0,+∞)上是单调增函数.21.解:(1)设f 1(x )=ax 2,将(1 000,1 000)代入可得1 000=a ×1 0002,所以a =0.001,所以f 1(x )=0.001x 2.设f 2(x )=kx +b ,将(0,3),(1 000,2)代入可得k =-0.001,b =3, 所以f 2(x )=-0.001x +3.(2)设利润为f (x ),则f (x )=xf 2(x )-f 1(x )=(-0.001x +3)x -0.001x 2=-0.002x 2+3x =-0.002(x 2-1 500x +7502)+1 125,所以当x =750时,f (x )max =1 125.解题技巧:解应用题的一般思路可表示如下:22.(1)证明:当m =n =1时,f (x )=-2x +12x +1+1. 由于f (1)=-2+122+1=-15,f (-1)=-12+12=14, 所以f (-1)≠-f (1),f (x )不是奇函数.(2)解:f (x )是奇函数时,f (-x )=-f (x ),即-2-x +m 2-x +1+n =--2x +m 2x +1+n对定义域内任意实数x 成立. 化简整理得(2m -n )·22x +(2mn -4)·2x +(2m -n )=0,这是关于x 的恒等式,所以⎩⎪⎨⎪⎧ 2m -n =0,2mn -4=0,解得⎩⎪⎨⎪⎧ m =-1,n =-2或⎩⎪⎨⎪⎧ m =1,n =2. 经检验⎩⎪⎨⎪⎧m =1,n =2符合题意. (3)解:由(2)可知,f (x )=-2x +12x +1+2=12⎝ ⎛⎭⎪⎫-1+22x +1, 易判断f (x )是R 上单调减函数.由f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0,得f (f (x ))<f ⎝ ⎛⎭⎪⎫-14,f (x )>-14,2x <3,得x <log 23, 即f (x )>0的解集为(-∞,log 23).。