雨林木风_第二十六章《二次函数》_zh 40141540
人教版数学九年级上册 二次函数的图象与各项字母系数之间的关系
y
●
-2 -1 o 1 2
x
-1
a-b+c的值 ●
是正数
0
1
x
a-b+c的值 是负数
a
开口方向向上a>0 向下a<o
b c 2a+b
2a-b b2-4ac a+b+c a-b+c
对称轴与y轴比较 左侧ab同号 右侧ab异号 与y轴交点:交于上半轴c>o,下半轴c<0,交于原点c=0
- b 与1比较,等于1,大于1,小于1
数b的关系
x
b 2a
y
对称轴在y 轴的左侧
x
b 2a
0
0
x
x
b 2a
1b 2a
0
对称轴在y轴的左侧, a和b的符号相同
2.二次函数图象的对称轴的位置和二次项系数a、一次项系
数b的关系
y
x
b 2a
对称轴在y 轴的右侧
x
b 2a
0
0
x
x
b 2a
1b 2a
0
对称轴在y轴的右侧, a和b的符号相异
2a
- b 与-1比较,等于-1,大于-1,小于-1 2a 与x轴交点个数
令x=1,y=a+b+c,看纵坐标是在y轴的正半轴 上(>0)还是在负半轴上(<0)
令x=-1,y=a-b+c,看纵坐标
4a+2b+c 4a-2b+c
令x=2,y=4a+2b+c,看纵坐标 令x=-2,y=4a-2b+c,看纵坐标
23
能力提升
1.已知:二次函数y=ax2+bx+c的图象如图所示,
《二次函数》优质PPT课件(共65页ppt)
抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
2024中考数学一轮复习专题精练专题13 二次函数(学生版)
知识点01:二次函数的图象特征及性质 【高频考点精讲】关系式 一般式y =ax 2+bx +c (a ≠0)顶点式k h x a y +-=2)((a ≠0)开口方向 当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
顶点坐标(ab2-,a b ac 442-)(h ,k )对称轴直线x =ab2-直线x =h增减性a>0x<ab2-时,y随x增大而减小;x>ab2-时,y随x增大而增大。
x<h时,y随x增大而减小;x>h时,y随x增大而增大。
a<0x<ab2-时,y随x增大而增大;x>ab2-时,y随x增大而增大。
x<h时,y随x增大而增大;x>h时,y随x增大而减小。
最值a>0当x=ab2-时,abacy442-=最小值。
当x=h时,ky=最小值。
a<0当x=ab2-时,abacy442-=最大值。
当x=h时,ky=最大值。
知识点02:二次函数图象与系数的关系【高频考点精讲】1.a决定抛物线的开口方向及大小(1)a>0,抛物线开口向上;a<0,抛物线开口向下。
(2)|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。
2.a、b共同决定抛物线对称轴的位置(1)当b=0时,对称轴x=ab2-=0,对称轴为y轴。
(2)当a、b同号时,对称轴x=ab2-<0,对称轴在y轴左侧。
(3)当a、b异号时,对称轴x=ab2->0,对称轴在y轴右侧。
3.c 决定抛物线与y 轴的交点位置 (1)当c =0时,抛物线过原点。
(2)当c >0时,抛物线与y 轴交于正半轴。
(3)当c <0时,抛物线与y 轴交于负半轴。
4.ac b 42-决定抛物线与x 轴的交点位置(1)当ac b 42-=0时,抛物线与x 轴有唯一交点。
(2)当ac b 42->0时,抛物线与x 轴有两个交点。
(3)当ac b 42-<0时,抛物线与x 轴没有交点。
5.特殊值(1)当x=1时,y=a+b+c ;当x=﹣1时,y=a-b+c ;当x=2时,y=4a+2b+c ;当x=﹣2时,y=4a-2b+c 。
九年级数学 第二十二章 二次函数 22.1 二次函数的图像和性质 22.1.1 二次函数
注 意:(1)在二次函数 y=ax2+bx+c 中,a≠0 是必要条件,不可忽视; (2)b,c 可以为任何实数; (3)定义中的二次函数是关于 x 的二次整式,切不可把类似“y=x2+1x+3”的 式子也当成二次函数.
12/7/2021
第五页,共二十四页。
归类探究
类型之一 二次函数的识别和应用
12/7/2021
第十九页,共二十四页。
(2)能,理由是: ∵设计费为 2 000 元/m2, ∴当设计费为 24 000 元时,面积为 24 000÷2 000=12(m2),即-x2+8x=12, 解得 x1=2,x2=6, ∴设计费能达到 24 000 元.
12/7/2021
第二十页,共二十四页。
A.2
B.-2
C.-1
D.-4
3.把一根长为 50 cm 的铁丝弯成一个矩形,设这个矩形的一边长为 x cm,它
的面积为 y cm2,则 y 与 x 之间的函数关系式为( C )
A.y=-x2+50x
B.y=x2-50x
C.y=-x2+25x
D.y=-2x2+25
4.二次函数 y=2(x+2)2-3 的二次项系数是 2 ,一次项系数是 8 ,常数
12/7/2021
第九页,共二十四页。
(3)根据上面得到的表达式填写下表: x 5 10 15 20 25 30 35 y 175 300 375 400 375 300 175
华师版九年级数学上学期《二次函数》整章电子课本
第27章 二次函数要用长20m 的铁栏杆,一面靠墙,围成一个矩形的花圃,怎么样围法才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m ,花圃的面积为y m 2,那么y =x (20-2x ).试问:x 为何值时,才能使y 的值最大?§27.1 二次函数问题1 (本章导图中的问题)如图27.1.1,要用总长为20 m 的铁栏杆,一面靠墙,围成一个矩形的花圃.怎样围法,才能使围成的花圃面积最大?试一试(1) 设矩形花圃的垂直于墙的一边AB 的长为x m ,先取x 的一些值,算出矩形的另一边BC 的长,进而得出矩形的面积y m 2.试将计算结果填写在下表的空格中.(2) x 的值是否可以任意取?试指出它的取值范围.(3) 我们发现,当AB 的长(x )确定后,矩形的面积(y )也就随之确定,y 是x 的函数,试写出这个函数的关系式. 问题2图27.1.1某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大? 分 析在这个问题中,该商品每天的利润与其降价的幅度有关.设每件商品降价x 元 (0≤x ≤2),该商品每天的利润为y 元,y 是x 的函数. 我们可以得到:问题1中的函数关系式为y =x (20-2x ) (0<x <10)即 y =-2x 2+20x (0<x <10)问题2中的函数关系式为y =(10-x -8)(100+100x ) (0≤x ≤2),即 y =-100x 2+100x +200 (0≤x ≤2). 观 察得到的两个函数关系式有什么共同特点?这两个问题有什么共同特点? 概 括它们都是用自变量的二次多项式来表示的.问题都可归结为:自变量x 为何值时函数y 取得最大值?形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数叫做x 的二次函数(quadratic function ). 练 习1. 已知一个直角三角形的两条直角边长的和为10 cm .(1) 当它的一条直角边长为4.5 cm 时,求这个直角三角形的面积;(2) 设这个直角三角形的面积为S cm 2,其中一条直角边长为x cm ,求S 关于x的函数关系式.2. 已知正方体的棱长为x cm ,它的表面积为S cm 2,体积为V cm 3.(1) 分别写出S 与x 、V 与x 之间的函数关系式; (2) 这两个函数中,哪个是x 的二次函数? 习题27.11. 设圆柱的高为6 cm ,底面半径r cm ,底面周长C cm ,圆柱的体积为V cm 3. (1) 分别写出C 关于r 、V 关于r 、V 关于C 的函数关系式; (2) 这三个函数中,哪些是二次函数?2. 正方形的边长为4,若边长增加x ,则面积增加y ,求y 关于x 的函数关系式.这个函数是二次函数吗?3. 已知二次函数y =ax 2+c ,当x =2时,y =4;当x =-1时,y =-3.求a 、c 的值. 4. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m .(1) 求隧道截面的面积S (m 2)关于上部半圆半径r (m )的函数关系式;(2) 求当上部半圆半径为2 m 时的截面面积.(π取3.14,结果精确到0.1 m 2)(第4题)§27.2 二次函数的图象与性质回顾上一节所提出的两个问题,都归结为有关二次函数的问题.为了解决这类问题,需要研究二次函数的性质.在研究一次函数时,曾借助图像了解了一次函数的性质.对二次函数的研究,我们也从图像入手.1. 二次函数y=ax2的图象与性质我们知道,一次函数的图像是一条直线.那么,二次函数的图像是什么?它有什么特点?又有哪些性质?让我们先来研究最简单的二次函数y=ax2的图像与性质.例1画二次函数y=x2的图象.解列表.在直角坐标系中描点,然后用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图27.2.1所示.图27.2.1像这样的曲线通常叫做抛物线(parabola).它有一条对称轴,抛物线与它的对称轴的交点叫做抛物线的顶点.做一做(1)在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?(2)在同一直角坐标系中,画出函数y=2x2、y=-2x2的图象.观察并比较这两个函数的图象,你能发现什么?(3)将所画的四个函数的图象作比较,你又能发现什么?概括函数y=ax2的图象是一条抛物线,它关于y轴对称.它的顶点坐标是(0,0).观察y =x 2、y =2x 2的图象,可以看出:当a >0时,抛物线y =ax 2开口向上.在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.顶点是抛物线上位置最低的点.图象的这些特点,反映了当a >0时,函数y =ax 2具有这样的性质:当x <0时,函数值y 随x 的增大而减小;当x >0时,函数值y 随x 的增大而增大;当x =0时,函数 y=ax 2取得最小值,最小值y =0. 思 考观察函数y =-x 2、y =-2x 2的图象,试作出类似的概括,当a <0时,抛物线y =ax 2有些什么特点?它反映了当a <0时,函数y =ax 2具有哪些性质?将你思考的结果填在下面的方框内,与同伴交流.练 习1.在同一直角坐标系中,画出下列函数的图象:(1) y =3x 2; (2) y =-31x 2.2.根据上题所画的函数图象填空.(1) 抛物线y =3x 2的对称轴是_______________,顶点坐标是____________,当x _________时,抛物线上的点都在x 轴的上方;(2) 抛物线y =-31x 2的开口向________,除了它的顶点,抛物线上的点都在x 轴的_________方,它的顶点是图象的最___________点.3.不画图象,说出抛物线y =-4x 2和y =41x 2的对称轴、顶点坐标和开口方向.4.记r 为圆的半径,S 为该圆的面积,有面积公式S =πr 2,表明S 是r 的函数.(1) 当半径r 分别为2、2.5、3时,求圆的面积S (π取3.14);(2) 画出函数S =πr 2的图象.2. 二次函数y =ax 2+bx +c 的图象与性质问题1试研究二次函数y =2x 2-4x +3的图象. 分 析将函数关系式配方,得y =2(x -1)2+1.我们设法寻求它与y =2x 2图像的联系.为此,先看几个简单的例子.例2在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图像.解列表.描点、连线,画出这两个函数的图象,如图27.2.2所示.图27.2.2观察当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?观察这两个函数的图象,分别说出它们的开口方向、对称轴和顶点坐标.它们有哪些是相同的?又有哪些不同?概括通过观察,我们发现:当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1.反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位.函数y=2x2+1与y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的,它的顶点坐标是(0,1).据此,可以由函数y=2x2的性质,得到函数y=2x2+1的一些性质:当x_____时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x_____时,函数取得最____值,最____值y=______.做一做先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?说出y=2x2-2的图象的开口方向、对称轴和顶点坐标,并讨论这个函数的性质. 思 考在同一直角坐标系中,函数y =-31x 2+2的图象与函数y =-31x 2的图象有什么关系?你能说出函数y =-31x 2+2的图象的开口方向、对称轴和顶点坐标吗?这个函数有哪些性质? 练 习1.已知函数y =-31x 2、y =-31x 2+2和y =-31x 2-2.(1) 分别画出它们的图象;(2) 说出各个图象的开口方向、对称轴和顶点坐标;(3) 试说出函数y =-31x 2+4的图象的开口方向、对称轴和顶点坐标.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y =-31x 2得到抛物线y =-31x 2+2和y =-31x 2-2?如果要得到抛物线y =-31x 2+4,应将抛物线y =-31x 2作怎样的平移?3.试说出函数y =ax 2+k (a 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标,并填写下表.例3 在如图27.2.3所示的直角坐标系中,画出函数y =2x 2和y =2(x -1)2的图象.解 列表.描点、连线,画出这两个函数的图象.图27.2.3观 察根据所画出的图象,在下表中填出这两个函数的图象的开口方向、对称轴和顶点坐标.思 考这两个函数的图象之间有什么关系? 概 括通过观察、分析,可以发现:函数y =2(x -1)2与y =2x 2的图象,开口方向相同,但对称轴和顶点坐标不同.函数y =2(x -1)2的图象可以看作是将函数y =2x 2的图象向右平移1个单位得到的.它的对称轴是直线x =1,顶点坐标是(1,0).据此,可以由函数y =2x 2的性质,得到函数y =2(x -1)2的性质:当x ______时,函数值y 随x 的增大而减小;当x _____时,函数值y 随x 的增大而增大;当x _____时,函数取得最______值,最______值y =______. 做一做在同一直角坐标系中画出函数y =2(x +1)2与函数y =2x 2的图象,比较它们的联系和区别.并说出函数y =2(x +1)2的图象可以看成由函数y =2x 2的图象经过怎样的平移得到.由此讨论函数y =2(x +1)2的性质. 思 考在同一直角坐标系中,函数y =-31(x +2)2的图象与函数y =-31x 2的图象有什么关系?试说出函数y =-31(x +2)2图象的开口方向、对称轴和顶点坐标,并讨论这个函数的性质. 练 习1. 已知函数y =31x 2、y =31(x +3)2和y =31(x -3)2.(1) 在同一直角坐标系中画出它们的图象;(2) 分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3) 分别讨论各个函数的性质.2. 根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y =31x 2得到抛物线y =31(x +3)2和y =31(x -3)2?3. 你能说出函数y =a (x -h )2(a 、h 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.例2及例3的基础上,我们再来研究第7页的问题1, 即研究函数y =2(x -1)2+1的图象和性质.分 析我们已经知道函数y =2(x -1)2的图象与函数y =2x 2的图象之间的关系.在此基础上,可以找到函数y =2(x -1)2+1的图象与函数y =2(x -1)2的图象之间的关系. 试一试(1) 填写下表.(2) 从上表中,你能分别找到函数y =2(x -1)2+1与函数y =2(x -1)2、y =2x 2的图象的关系吗?(3) 进一步,你能发现函数y =2(x -1)2+1有哪些性质?做一做(1) 在图27.2.3中,再画出函数y =2(x -1)2-2的图象,并将它与函数y =2(x -1)2 的图象作比较.(2) 试说出函数y =-31(x -1)2+2的图象与函数y =-31x 2的图象的关系,由此进一步说明这个函数图象的开口方向、对称轴和顶点坐标.练 习1.已知函数y =21x 2、y =21(x +2)2+2和y =21(x +2)2-3.(1) 在同一个直角坐标系中画出这三个函数的图象;(2) 分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3) 试讨论函数y =21(x +2)2-3的性质.2.试说明:分别通过怎样的平移,可以由抛物线y =21x 2得到抛物线y =21(x +2)2+2和抛物线y =21(x -2)2-3?如果要得到抛物线y =21(x +2)2-6,那么应该将抛物线y =21x 2作怎样的平移?3.你能说出函数y =a (x -h )2+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.4.不画出图象,直接说出函数y =-3x 2-6x +8的图象的开口方向、对称轴和顶点坐标.(提示:将-3x 2-6x +8配方,化为练习第3题中的形式)例4 画出函数y =-21x 2+x -25的图象,并说明这个函数具有哪些性质.分析 因为 y =-21x 2+x -25=-21(x -1)2-2,所以这个函数的图象开口向下,对称轴为x =1,顶点坐标为(1,-2).根据这些特点,我们容易画出它的图象. 解 列表.画出的图象如图27.2.4.图27.2.4由图象不难得到这个函数具有如下性质:当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小;当x =1时,函数取得最大值,最大值y =-2. 做一做(1) 请你按照上面的方法,画出函数y =21x 2-4x +10的图象,由图象你能发现这个函数具有哪些性质?(2) 通过配方变形,说出函数y =-2 x 2+8x -8的图象的开口方向、对称轴和顶点坐标.这个函数有最大值还是最小值?这个值是多少?思 考对于任意一个二次函数y =ax 2+bx +c (a ≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 练 习1. 说出下列抛物线的开口方向、对称轴及顶点坐标.(1) y =3(x +3)2+4; (2) y =-2(x -1)2-2;(3) y =21(x +3)2-2; (4) y =-32(x -1)2+0.6.2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1) y =2x 2+4x ; (2) y =-2x 2-3x ;(3) y =-3x 2+6x -7; (4) y =21x 2-4x +5.3. 先确定下列抛物线的开口方向、对称轴和顶点坐标,再描点画出图象.(1) y =-2(x -1)2+4; (2) y =21(x +2)2-5;(3) y =-31x 2-2x +1; (4) y =x 2-4x +7.应 用现在让我们应用二次函数的有关知识去解决第2页提出的两个问题. 问题1 这个问题实际上是要求出自变量x 为何值时,二次函数y =-2x 2+20x (0<x <10)取得最大值.将这个函数的关系式配方,得y =-2(x -5)2+50.显然,这个函数的图象开口向下,它的顶点坐标是(5,50),这就是说,当x =5时,函数取得最大值y =50.这时,AB =5(m ),BC =20-2x =10(m ).所以当围成的花圃与墙垂直的一边长5 m ,与墙平行的一边长10 m 时,花圃面积最大,最大面积为50 m 2.问题2 实际上是要求出自变量x 为何值时,二次函数y =-100x 2+100x +200(0≤x ≤2)取得最大值.请同学们完成这个问题的解答.例5 用6 m 长的铝合金型材做一个形状如图27.2.5所示的矩形窗框.应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?解 设做成的窗框的宽为x m ,则长为236x-m .这里应有x >0,且236x ->0,故0<x <2.做成的窗框的透光面积y 与x 的函数关系式是y =x •236x -, 即 y =x x 3232+-.配方得 y =-23(x -1)2+23,所以当x =1时,函数取得最大值,最大值y =1.5.因为x =1时,满足0<x <2,这时236x-=1.5.所以应做成宽1 m 、长1.5 m 的矩形窗框,才能使透光面积最大.最大面积是1.5 m 2.练 习1. 求下列函数的最大值或最小值.(1) y =x 2-3x +4; (2) y =1-2x -x 2;(3) y =237272+-x x ; (4) y =100-5x 2;(5) y =-6x 2+12x ; (6) y =-23x 2-4x +1.2. 有一根长为40 cm 的铁丝,把它弯成一个矩形框.当矩形框的长、宽各是多少时,矩形面积最大?最大面积是多少?3. 已知两个正数的和是60,它们的积最大是多少?(提示:设其中的一个正数为x ,将它们的积表示为x 的函数)图27.2.53. 求二次函数的函数关系式问题2如图27.2.6,某建筑的屋顶设计成横截面为抛物线型(曲线AOB )的薄壳屋顶.它的拱宽AB 为4 m ,拱高CO 为0.8 m .施工前要先制造建筑模板,怎样画出模板的轮廓线呢?图27.2.6分 析为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数的关系式,然后根据这个关系式进行计算,放样画图.如图27.2.6,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立直角坐标系.这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式为y =ax 2 (a <0). (1)因为AB 与y 轴交于点C ,所以CB =2AB=2(m ),又CO =0.8 m ,所以点B 的坐标为(2,-0.8).因为点B 在抛物线上,将它的坐标代入(1),得-0.8=a ×22,所以 a =-0.2.因此,函数关系式是y =-0.2x 2.根据这个关系式,容易画出模板的轮廓线.在解决一些实际问题时,往往需要根据某些条件求出函数的关系式. 例6 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.分析 因为这个二次函数的图象的顶点是(8,9),因此,可以设函数关系式为y =a (x -8)2+9.根据它的图象过点(0,1),容易确定a 的值. 例7 已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.解 设所求二次函数为y =ax 2+bx +c ,由已知,这个函数的图象过(0,1),可以得到c =1.又由于其图象过(2,4)、(3,10)两点,可以得到⎩⎨⎧=+=+.939,324b a b a 解这个方程组,得a =23,b =-23 所以,所求二次函数的关系式是y=123232+-x x .注 意求二次函数的关系式,常运用待定系数法.首先应根据已知条件,写出适当的形式. 练 习1. 根据下列条件,分别求出对应的二次函数的关系式. (1) 已知抛物线的顶点在原点,且过点(2,8); (2) 已知抛物线的顶点是(-1,-2),且过点(1,10); (3) 已知抛物线过三点:(0,-2)、(1,0)、(2,3).2. 已知抛物线y =ax 2+bx +c 过三点:(-1,-1)、(0,-2)、(1,1). (1) 求这条抛物线所对应的二次函数的关系式; (2) 写出它的开口方向、对称轴和顶点坐标;(3) 这个函数有最大值还是最小值?这个值是多少?3.将抛物线3212+--=x x y 向下平移1个单位,再向右平移4个单位,求所得抛物线的开口方向、对称轴和顶点坐标. 习题27.21. 分别在同一直角坐标系中,画出下列各组两个二次函数的图象.(1) y =31x 2+2与y =31x 2-3;(2) y =-21(x +3)2与y =-21(x -1)2;(3) y =-3(x -2)2与y =-3(x -2)2+1; (4) y =-(x +3)2-1与y =-(x +3)2+2. 2. 说出下列抛物线的开口方向、顶点坐标和对称轴. (1)y =x 2-3x -4; (2)y =2-4x -x 2;(3)y =21x 2-2x -1; (4)y =-43x 2+6x -7;(5)y =2x 2-3x ; (6)y =-2x 2-5x +7.3. 下列抛物线有最高点或最低点吗?如有,写出这些点的坐标. (1)y =4x 2-4x +1; (2)y =-4x 2-9; (3)y =-4x 2+3x ; (4)y =3x 2-5x +6.4. 根据下列条件,分别求出对应的二次函数的关系式. (1) 已知抛物线的顶点在原点,且过点(3,-27); (2) 已知抛物线的顶点在(1,-2),且过点(2,3);(3) 已知抛物线过三点:(-1,2),(0,1),(2,-7).5. 有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4 m ,跨度为10 m .如图所示,把它的图形放在直角坐标系中.(1) 求这条抛物线所对应的函数关系式;(2) 如图,在对称轴右边1 m 处,桥洞离水面的高是多少?(第5题)§27.3 实践与探索生活中,我们常会遇到与二次函数及其图象有关的问题.请与同伴共同研究,尝试解决下面的问题.问题1某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m .水流在各个方向上沿形状相同的抛物线路径落下,如图27.3.1(1)所示.图27.3.1根据设计图纸已知:在图27.3.1(2)中所示直角坐标系中,水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是y =-x 2+2x +54.(1) 喷出的水流距水平面的最大高度是多少?(2) 如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?问题2一个涵洞成抛物线形,它的截面如图27.3.2.现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ? 分 析根据已知条件,要求ED 宽,只要求出FD 的长度.在图示的直角坐标系中,即只要求出点D 的横坐标.因为点D 在涵洞所成的抛物线上,又由已知条件可得到点D 的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D 的横坐标.你会求吗? 问题3 画出函数432--=x x y 的图象,根据图象回答下列问题.(1) 图象与x 轴交点的坐标是什么?(2) 当x 取何值时,y =0?这里x 的取值与方程432--=x x y 有什么关系?(3) 你能从中得到什么启发? 试一试根据问题3的图象回答下列问题.(1) 当x 取何值时,y <0?当x 取何值时,y >0? (2) 能否用含有x 的不等式来描述(1)中的问题? 练 习1. 画出函数y =x 2-2x -1的图象,求方程x 2-2x -1=0的解.(精确到0.1)2. 你能否画出适当的函数图象,求方程3212+=x x 的解?问题4育才中学初三(3)班的学生在上节课的作业中出现了争论:求方程3212+=x x 的解时,几乎所有学生都是将方程化为03212=--x x ,画出函数3212--=x x y 的图象,观察它与x 轴的交点,得出方程的解.惟独小刘没有将方程移项,而是分别画出了函数y =x 2和的图象321+=x y ,如图27.3.3,认为它们交点A 、 B 的横坐标-23和2就是原方程的解.图27.3.2图27.3.3对于小刘提出的解法,同学们展开了热烈的讨论. 做一做利用图27.3.4,运用小刘的方法求下列方程的解,并检验小刘的方法是否合理.(1) x 2+x -1=0(精确到0.1);(2) 2x 2-3x -2=0.习题27.31. 如图,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约1.6m ;铅球落地在点B 处.铅球运行中在运动员前4 m 处(即OC =4)达到最高点,最高点高为3.2 m .已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?(精确到0.1米 )2. 某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可销出100件.他想采用提高售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1) 写出售价x (元/件)与每天所得的利润y (元)之间的函数关系式; (2) 每件售价定为多少元,才能使一天的利润最大? 3. 利用函数的图象求下列方程的解.(1) x 2+x -12=0; (2)2x 2-x -3=0. 4. 利用函数的图象求下列方程组的解.(1)⎪⎩⎪⎨⎧=+=;,23212x y x y (2)⎩⎨⎧-=--=.,132x x y x y图27.3.4 (第1题)小结一、知识结构二、概括1. 二次函数是反映现实世界中变量间的数量关系和变化规律的一种常见的数学模型.要学会分析实际问题中的变量与变量间的关系,列出函数关系式,善于利用二次函数的图象和性质去解决问题.2. 二次函数的图象是研究二次函数性质的重要工具,注意把握二次函数图象的特点(对称轴、开口方向、顶点坐标),并由此发现和认识二次函数的一些性质,如:何时函数值y随自变量x的增加而增加(或减小)?何时函数取得最大(小)值?在学习二次函数时,要善于运用图象,领会和运用数形结合的思想方法(包括利用函数的图象求解方程与方程组).3. 在研究二次函数的图象和性质时,首先抓住最简单的二次函数y=ax2(a≠0)的图象和性质.对于一般的二次函数,常利用配方法,将函数关系式化为y=a(x-h)2+k(h、k为常数)的形式,抓住它与y=ax2的图象之间的联系来研究.要注意在研究具体实例的过程中,体会这种化归(化未知为已知,变复杂为简单)的思想方法.复习题A组1.填写表中的空格.2. 画出下列函数的图象,并根据图象写出它们的最大值或最小值. (1) y =1-3x 2; (2) y =x 2-4x +5; (3) y =x 2-6x ; (4) y =-3x 2+6x -1.3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1) y =x 2-2x -4; (2) y =1+6x -x 2;(3) y =-x 2+4x ; (4) y =41x 2-x +4.4. 已知函数y =2x 2-3x -2. (1) 画出函数的图象;(2) 观察图象,说出x 取哪些值时,函数的值为0. 5. 填空:(1) 抛物线y =x 2-3x +2与y 轴的交点坐标是____________,与x 轴的交点坐标是____ ________;(2) 抛物线y =-2x 2+5x -3与y 轴的交点坐标是____________,与x 轴的交点坐标是____ ________.6. 已知抛物线y =ax 2+x +2经过点(-1,0),求a 的值,并写出这条抛物线的顶点坐标.7. 求满足下列条件的对应的二次函数的关系式. (1) 抛物线经过(2,0)、(0,-2)和(-2,3)三点; (2) 抛物线的顶点坐标是(6,-4),且过点(4,-2).B 组8. 已知二次函数y =(x -2)2-1.(1) 先确定其图象的开口方向、对称轴和顶点坐标,再画出图象; (2) 观察图象确定:x 取什么值时,① y =0;② y >0;③ y <0. 9. 说出下列函数的图象是将抛物线y =3x 2经过怎样的平移得到的.(1)232-=x y ; (2)2)21(3-=x y ;(3)4)21(32+-=x y ; (4)y =3x 2-6x . .10. 观察下面的表格.(1) 求a 、b 、c 的值,并在表内的空格中填上正确的数;(2) 设y =ax 2+bx +c ,求这个二次函数的顶点坐标与对称轴. 11. 若抛物线y =x 2-x -2经过点A (3,a )和点B (b ,0),求点A 、点B .12. 行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s (m )与车速x (km/h )间有下述的函数关系式:s =0.01x +0.002x 2.现该车在限速140 km/h 的高速公路上出了交通事故,事后测得其刹车距离为46.5 m .请推测刹车时,汽车是否超速?C 组13. 如图,有一个抛物线形的水泥门洞.门洞的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m .求这个门洞的高度.(精确到0.1 m )(第13题)(第14题)14. 如图,一位篮球运动员在离篮圈水平距离4 m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m .(1) 建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2) 若该运动员身高1.8 m ,这次跳投时,球在他头顶上方0.25 m 处出手.问:球出手时,他跳离地面多高?15. 某市经济开发区建区以来5年的财政收入情况如图所示,可以看出图中的折线近似于抛物线的一部分.(1) 试求出过A 、C 、D 三点的二次函数的关系式 (2) 利用(1)的结果,分别求出当x =2和x =5时该二次函数的函数值,并分别与点B 、点E 的纵坐标比较;(3) 利用(1)中的二次函数的关系式预测该开发区第6年的财政收入可能达到的数值.(精确到0.1亿元)(4)(第15题)。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
上册 二次函数人教版九级数学全一册课件
上册 22.1.1 二次函数-2020秋人教版九年级数学全 一册课 件(共2 3张PPT )
上册 22.1.1 二次函数-2020秋人教版九年级数学全 一册课 件(共2 3张PPT )
13.[2019 春·崇川区校级月考]若 y=(m-1)xm2+m 是 y 关于 x 的二次函数,则 m 的
值为( A )
A.-2
B.1
C.-2 或 1
D.2 或 1
【解析】 ∵y=(m-1)xm2+m 是 y 关于 x 的二次函数,∴m2+m=2,且 m-1≠0,
解得 m=-2.
14.[2019 春·西湖区校级月考]已知函数 y=(m2+2m)x2+mx+m+1, (1)当 m 为何值时,此函数是一次函数? (2)当 m 为何值时,此函数是二次函数? 解:(1)∵函数 y=(m2+2m)x2+mx+m+1 是一次函数, ∴m2+2m=0,m≠0,解得 m=-2; (2)∵函数 y=(m2+2m)x2+mx+m+1 是二次函数, ∴m2+2m≠0,解得 m≠-2 且 m≠0.
a≠ - 2
___________.
11.如图 22-1-2,在一个长 50 cm,宽 30 cm 的包裹的四周加一圈泡沫,设包装后 的包裹所占面积为 y cm2,泡沫宽为 x cm,则 y 与 x 的关系式是___y_=__4_x_2+__1_6_0_x_+__1__5_0_0_ __.
图 22-1-2
上册 22.1.1 二次函数-2020秋人教版九年级数学全 一册课 件(共2 3张PPT )
二次函数
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
1.二次函数的解析表达式有 ①一般式 f(x)=ax2+bx+c(a≠0); ②顶点式 f(x)=a(x-k)2+m(a≠0); ③零点式 f(x)=a(x-x1)(x-x2)(a≠0)
2.二次函数在闭区间上必定有最大值和最小值,它只能在 区间的端点或二次函数图象的顶点处取得对于二次函数
0
④若一根小于α ,另一根小于β ,则有 f 0 f 0
0
⑤若两根中只有一根在区间(α
,β
)内,则有
f
f
0
返回
课前热身
1.二次函数f(x)满足f(3+x)=f(3-x)且f(x)=0有两个实根x1,x2, 则x1+x2等于_________.
f(x)=a(x-h)2+k(a>0)在区间[m,n]上的最值问题,有以下
讨论: ①若h∈[m,n],则ymin=f(h)=k,ymax=max{f(m),f(n)} ②若h∈[m,n],则ymin=min{f(m),f(n)},ymax=max{f(m),f(n)} (a<0时可仿此讨论)
3 . 二 次 函 数 f(x)=ax2+bx+c(a≠0) 在 区 间 [ p,q]上 的 最 值 问 题. 一般情况下,需要分:-b/2a<p,p≤-b/2a≤q和-b/2a>q三 种情况讨论解决.
①若两根都小于实数α
,则有
f
b 2a 0来自 0②若两根都大于实数α
,则有
f
b 2a
【晨鸟】(精)人教版数学九年级上册《二次函数》全章教案(最新) (2)
22.1 二次函数的图像和性质(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式;2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?(二)自主探究、合作交流:问题 1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为 y,写出 y 与 x 的关系。
问题 2: n 边形的对角线数 d 与边数 n 之间有怎样的关系 ?问题 3:某工厂一种产品现在的年产量是20 件,计划今后两年增加产量.如果每年都比上一年的产量增加 x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定, y 与 x 之间的关系怎样表示 ?问题 4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。
问题 5:什么是二次函数?形如。
问题 6:函数 y=ax2+bx+c ,当 a、 b、 c 满足什么条件时, (1)它是二次函数 ?(2) 它是一次函数?(3) 它是正比例函数?(三)尝试应用:例 1.关于 x 的函数y (m 21)xm2 m求 m 的值.是二次函数,注意:二次函数的二次项系数必须是的数。
例 2.已知关于 x 的二次函数,当数值为 7。
求这个二次函数的解析式.x=- 1 时,函数值为(待定系数法 )10,当x=1时,函数值为4,当x=2时,函(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x - 1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2- 2x+1;(5)y=x 2- x(1+x);(6)y=x -2+x .2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
26二次函数范文
26二次函数范文二次函数是数学中的一个重要概念,在很多实际问题中都有广泛的应用。
本文将介绍二次函数的定义、性质和应用,并以一道典型的二次函数题为例进行讲解。
首先,二次函数是指形如y=ax²+bx+c的函数,其中a、b和c是常数,且a≠0。
二次函数的图像是一个抛物线,其开口的方向由a的符号决定。
若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。
此外,二次函数的图像上可能存在顶点、对称轴和零点等特殊点。
其次,二次函数具有以下几个重要的性质。
首先,二次函数的对称轴是垂直于x轴的一条直线,可以通过计算x=-b/2a得到。
其次,对称轴上的点称为抛物线的顶点,顶点的纵坐标可以通过将x=-b/2a代入函数中得到。
第三,二次函数在顶点处取得极值,若a>0,则函数在顶点处取得最小值;若a<0,则函数在顶点处取得最大值。
最后,二次函数的图像上可能存在零点,即解方程ax²+bx+c=0所得到的x的值。
接下来,我们以一道经典的二次函数题目为例进行讲解。
题目:已知二次函数y=ax²+bx+c的图像上的点A(-1,5)和点B(2,6),且曲线过点(-2,0),求函数的解析式。
解析:首先,根据题目中给出的三个点,我们可以列出三个方程组。
由点A(-1,5):a(-1)²+b(-1)+c=5,即a-b+c=5;由点B(2,6):a(2)²+b(2)+c=6,即4a+2b+c=6;由点C(-2,0):a(-2)²+b(-2)+c=0,即4a-2b+c=0。
解这个方程组可以使用高斯消元法或者克拉默法则。
经过计算,我们可以得到a=1,b=1,c=3所以,函数的解析式为y=x²+x+3最后,我们来探讨一下二次函数的应用。
二次函数广泛应用于各个领域。
在物理学中,二次函数可以用来描述平抛运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系;在建筑学中,二次函数可以用来描述建筑物的折线屋顶等等。
人教版九年级上册第22章 二次函数1(19页)
二次函数
一般形式
y=ax2+bx+c(a ≠0,a,b,c是常数)
y=ax2;
特殊形式
y=ax2+bx;
y=ax2+c(a ≠0,a,b,c是常数).
即当t=2时,计算此时对应的y值.
解:当t=2时,y=20×2-5×22=40-20=20,
故抛出小球2 s后,小球的飞行高度是20 m.
典例精析
例3 从地面向上抛一个小球,小球的飞行高度y(m)与飞行时间t(s)之间
的关系式为y=20t-5t2.
(2)小球飞行多长时间后,飞行高度是15 m?
解:当y=15时,20t-5t2=15,
二次项
常数项
一次项
新课讲授
(1)二次函数概念中a、b、c有怎样的要求?
a,b,c为常数,a≠0
(2)当a=0时,这个函数还是二次函数吗?为什么?
不是,有可能是一次函数,当b≠0时,是一次函数;
当b=0时,是一个常数函数
(3)b或c能为0吗?
当a≠0时,b或c可以为0
典例精析
例1 下列函数中,哪些是二次函数?
(1) = −
(2) =
二次函数必须同时满足三个条件:
(3) =( − ) −
(4)
= +
(5) = ++
(1)函数解析式是整式.
(2)化简后自变量的最高次数是2.
(3)二次项系数不为0.
典例精析
例2 若y=(m-2) xm²-2+4是二次函数,求m的值和函数解析式.
即 t2-4t+3=0,
即当y=15时,计算此时
解得 t1=1,t2=3.
故小球飞行1 s和3 s时,飞行高度是15 m.
【晨鸟】(精)人教版数学九年级上册《二次函数》全章教案(最新)(003)
22.1 二次函数的图像和性质(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式;2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?(二)自主探究、合作交流:问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y 与x 的关系。
问题2:n 边形的对角线数 d 与边数n 之间有怎样的关系?问题3:某工厂一种产品现在的年产量是20 件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。
问题5:什么是二次函数?形如。
问题6:函数y=ax2+bx+c ,当a、b、c 满足什么条件时,(1)它是二次函数?(2) 它是一次函数?(3) 它是正比例函数?(三)尝试应用:2 m2 m例1.关于x 的函数y (m 1)x 是二次函数,求m 的值.注意:二次函数的二次项系数必须是的数。
x=-1 时,函数值为10,当x=1 时,函数值为4,当x=2 时,函例2.已知关于x 的二次函数,当数值为7。
求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x -1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x .2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
浙教版-数学-九年级上册-《二次函数》整章教材分析
第一章二次函数本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
伽利略所发现的、通过比萨斜塔实验验证的、著名的自由落体运动公式就是二次函数刻画物体运动的最好例证,是最重要的物理学公式之一。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.当a<0时,开口向下; 在对称轴的左侧,y随x的增大而增大, 在对称轴的右侧,y随x的增大而减小; 当x=0时,y取最大值为c。
巩固
4、说出下列函数图象的性质:
1 2 (1) y x 2 2
(2) y 2 x 3
2
开口方向、对称轴、顶点、增减性。
范例
2
例1、求符合下列条件的抛物线 y ax 1的函数关系式: (1)经过点(-3,2); 1 2 (2)与 y x 的开口大小相同,方向相反; 2 (3)当x的值由0增加到2时,函数值减少 4。
2
巩固
2、二次函数 y x 2是由二次函 2 数 y x 向 平移 个单位得到的。
2
3、二次函数 y 3x 2 是由二次函 数 向上平移5个单位得到的。
2
探究
三、观察三条抛物线: y (1)开口方向是什么? 开口都向上
9 8 7 6 5 4 3 2 1
y x 3
2
yx
2
2
y x 2
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
探究
三、观察三条抛物线: y (2)开口大小有没有 变化?
9 8 7 6 5 4 3 2 1
y x 3
2
yx
2
2
y x 2
没有变化
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
探究
三、观察三条抛物线: y (3)对称轴是什么?
2
复习
1、二次函数 y ax 的图象及性质: 、 (4)当a<0时,抛物线 2 y y 2x 开口向 ,顶点是 最 点,在对称轴 的左侧,y随x的增大 o x 而 ,在对称轴 的左侧,y随x的增大 1 2 而 ,a值越大, y x 2 开口越 .
2
探究
一、在同一坐标系中画二次函数的图象:
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
探究
三、观察三条抛物线: y (5)增减性怎么样? 对称轴左侧递减 对称轴右侧递增
9 8 7 6 5 4 3 2 1
y x 3
2
yx
2
2
y x 2
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
归纳 二次函数 y ax c 的图象及性质:
(2)开口方向、开口大小、极值 ; (3)对称轴两侧增减性。
(1) y x
2
(2) y x 1
2
(3) y x 1
2
探究
二、关于三条抛物 线,你有什么看法? 上下平移得到
y x 3
2
y
9 8 7 6 5 4 3 2 1
yx
2
2
y x 2
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
归纳 用平移观点看函数: 抛物线 y ax k 可以看作是由 2 2 抛物线 y ax 平移得到。 y ax k y (k 0) (1)当k>0时,向上平移 2 y ax k 个单位; 2 y ax k (2)当k<0时,向下平移 (k 0) k 个单位; o x
26.1.3二次函数
y ax k
2
的图象和性质
复习
1、二次函数 y ax 的图象及性质:
2
(1)图象是 (2)顶点为 对称轴为
; , ;
y
y 2x
x
2
o
1 2 y x 2
复习
1、二次函数 y ax 的图象及性质: 、 (3)当a>0时,抛物线 2 y y 2x 开口向 ,顶点是 最 点,在对称轴 的左侧,y随x的增大 o x 而 ,在对称轴 的左侧,y随x的增大 1 2 而 ,a值越大, y x 2 开口越 ;
9 8 7 6 5 4 3 2 1
y x 3
2
yx
2
2
y x 2பைடு நூலகம்
对称轴是y轴
-4 -3 -2 -1-1 1 2 3 4 0 -2
x
探究
三、观察三条抛物线: y (4)顶点各是什么?
9 8 7 6 5 4 3 2 1
y x 3
2
yx
2
2
y x 2
(0,3) (0,0)
(0,-2)
巩固
5、已知一次函数 y ax c的图象如图 2 所示,则二次函数 y ax c的图象大 致是如下图的( ) y y ax c y y o x A C o o x x y y B D o o x x
小结
二次函数 y ax
2
c的图象及性质:
(1)形状、对称轴、顶点坐标;
2
1.图象是一条抛物线,对称轴为y轴, 顶点为(0,c)。
归纳 二次函数 y ax c 的图象及性质:
2
2.当a>0时,开口向上; 在对称轴的左侧,y随x的增大而减小, 在对称轴的右侧,y随x的增大而增大; 当x=0时,y取最小值为c。
归纳 二次函数 y ax c 的图象及性质: