2015学年浙江省绍兴市嵊州市谷来中学中考数学模拟试卷(4月份)及答案
浙江省嵊州市谷来镇中学2015届九年级3月月考数学试题(WORD版含答案)
2014-2015学年第二学期4月份九年级数学月考试卷一、选择题(本题有10小题,每小题4分,共40分) 1. 3的相反数是( )A. 3 B. -3 C.31 D.31- 2. 下列运算正确的是( ) A. 2x x x =+ B. 326x x x =÷ C. 43x x x =⋅ D.5326)2(x x = 3.据科学家估计,地球年龄大约十4 600 000 000 年,这个数用科学记数法表示为( ) A. 8106.4⨯ B. 81046⨯ C. 9106.4⨯ D.101046.0⨯ 4.如图所示的几何体,其主视图是( )5.化简111--x x 可得( )A. x x -21 B. x x --21 C. x x x -+212 D.xx x --212 6.在如图所示的平面直角坐标系内,画在透明胶片上的平行四边形ABCD ,点A 的坐标是(0,2)现将这张胶片平移,使点A 落在点A`(5,-1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位 7.如图,AD 为⊙o 的内接正三角形,甲、乙两人的作法分别是:甲:1.作OD 的中垂线,交⊙O 于B 、C 两点,2.连接AB 、AC ,△ABC 即为所求的三角形;乙:1.以D 为圆心,OD 长为半径作圆弧,交⊙O 于B 、C 两点,2.连接AB 、BC 、CA .△ABC 即为所求的三角形.对于甲、乙两人的作法,可判断( )A .甲、乙均正确B .甲、乙均错误 C.甲正确,乙错误 D. 甲错误,乙正确8.如图,扇形DOE 的半径为3,边长为3的菱形OABC 的顶点A,C,B 分别在OD ,OE ,弧ED 上,若把扇形DOE 围成一个圆锥,则此圆锥的高为( )A.21 B. 22 C. 237 D.235 9. 在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m ~550m 之间树与灯的排列顺序是( )10. 如图,直角三角形纸片ABC 中,AB=3,AC=4,D 为斜边BC 的重点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD交与点P 1;设P1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )A. 125235⨯B. 96235⨯C. 146235⨯D.117253⨯ 二、填空题(本题有6小题,每小题5分,共30分) 11. 分解因式:=-a a 3.12. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为3)4(1212+--=x y ,由此可知铅球推出的距离是________m. 13. 箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是______.14. 小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速返回.父亲看了10分报纸后,用了15分返回家.则表示父亲、母亲离家距离与时间之间的关系是________.(只需填序号)15. 如图,在矩形ABCD 中,点E ,F 分别在BC,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的B ′处,又将△CEF 沿EF 折叠,使点C 落在EB ′与AD 的交点C ′处.则BC :AB 的值为 。
2015年中考模拟名校检测联考数学试题卷及答案
2015年中考模拟名校检测联考数学试题卷时间 120分钟.满分150分 2015。
3。
18一、选择题(每小题3分,满分30分)1.2-的绝对值是(*). A .2B .2-C .21D .42.下列二次根式中,最简二次根式是(*). A .50B .5.0C .5D .b a 23.已知一个正多边形的每个内角都是144°,则该正多边形的边数是(*). A .7 B .8C .9D .104.顺次连接等腰梯形四边中点所得四边形一定是(*). A .矩形 B .菱形C .正方形D .梯形5.要判断马力同学的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的(*). A .方差 B .中位数 C .平均数 D .众数6.抛物线1162---=x x y 的顶点坐标是(*). A .(3,2) B .(3,2-) C .(2-,2) D .(3-,2-)7.函数xx y -+-=4142中自变量x 的取值范围是(*). A .4>xB .2≥xC .42<<xD .42<≤x8.若20a c +=,则关于x 的方程02=+-c bx ax (a ≠0,且a ≠2c )的根的情况是(*). A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断9.如图1是一个正六棱柱的主视图和左视图,则图中的a =(*A .3B .32C .2D .110.如图2,在矩形ABCD 中,E为AD 的中点,EF ⊥EC 交边AB于F ,连FC ,下列结论不正确...的是(*). A .AB ≥AE B .△AEF ∽△DCE左视图主视图图1 图2F EDCBAC .△AEF ∽△ECFD .△AEF 与△BFC 不可能相似二、填空题(每小题3分,满分18分.)11.当01<<-x 时,|1|2++x x = * .12.两个图形关于原点位似,且一对对应点的坐标分别为(3,6-)、(2-,b ),则b = * . 13.某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份则4月份这100户节电量的中位数是 * .14.圆锥的底面半径是1,母线长是4,一只蜘蛛从底面圆周上的一点A 出发沿圆锥的侧面爬行一周后回到A 点,则蜘蛛爬行的最短路径的长是 * . 15.观察下列各等式:①2121=,②434121=+,③87814121=++,④1615161814121=+++,…,猜想第n (n 是正整数)个等式是 * .16.如图3,将矩形纸片ABCD 沿着AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB =3,则AE 的长为 * .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)先化简22)1111(2-÷+--x xx x ,然后从2,1,1-中选一个你认为合适的数作为x 的值 代入求值.18.(本小题满分9分)如图4,已知△ABC (AB >AC ).G B'FE DC BA 图3(1)利用尺规作边BC的垂直平分线l以及∠A的平分线m,记l与m的交点为O(要求保留作图痕迹,不写作法);(2)过O点画AB的垂线,垂足为D,过O点画AC的垂线,垂足为E,求证:BD=CE.AB C图4 19.(本小题满分10分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.20.(本小题满分10分)如图5,为了测量不能到达对岸的河宽,在河的岸边选两点A、B,测得AB =100米,分别在A 点和B 点看对岸一点C ,测得∠A =43°, ∠B =65°,求河宽(河宽可看成是点C 到直线AB 的距离).21.(本小题满分12分)一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,每天的施工费乙公司比甲公司少1500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费用较少?22.(本小题满分12分)如图6,直线b kx y +=分别交x 轴、y 轴于A (1,0)、B (0,1-),交双曲线xmy =于点C 、D ,且AB =AC . (1)求k 、b 、m 的值; (2)求D 点的坐标;(3)直接写出不等式xmb kx >+的解集. CBA图5图623.(本小题满分12分)如图7,AB 是⊙O 的直径,AB =6,D 是⊙O 上的动点(不 同于A 、B ),过O 作OC //AD 交过B 点⊙O 的切线于点C . (1)求证:CD 与⊙O 相切;(2)设AD=x ,OC=y ,求y 关于x 的函数关系式; (3)当AD =2时,求sin ∠ACO 的值.24.(本小题满分14分)已知:在平面直角坐标系中,抛物线1l 的顶点为(2,5-),且经过点(0,4-),先将1l 向上平移5个单位,再向左平移2个单位,得抛物线2l .设A 、B 是抛物线2l 上的两个动点,横坐标分别为a 、b . (1)求2l 的解析式;(2)探究:当a 、b 满足什么关系时,OA ⊥OB ?(3)当a 、b 满足(2)中的关系时,求证 :直线AB 经过定点,并求出线段AB 长度的最小值.图725.(本小题满分14分)如图8,在△OAB 中,∠A =90°,△OCD 是把△OAB 以O 为旋转中心,顺时针旋转而得到的(其中C 与A 对应),记旋转角为α,OBA ∠为β.(1)如图,当旋转后满足BD ∥AO 时,求α与β之间的数量关系; (2)当旋转后满足OC ⊥OB 时,取BD 的中点P ,探究线段PO 与PC 的数量关系并予以证明.参考答案与评分标准一、选择题(本大题共10小题,每小题3分,满分30分.)ACDBA DDCAD二、填空题(本大题共6小题,每小题3分,满分18分.请将答案写在各题号的横线上.11.1;12. 4;13. 40; 14.24; 15.n n 21121...21212132-=++++; 16. 2 . 三、解答题(本大题共9小题,满分102分.解答题写出文字说明、证明过程或演算步骤.)17.(本小题满分9分) 解:22)1111(2-÷+--x xx x )1(21222-÷-=x xx 原式—————————————2分 DCBAO图8x x x )1(21222-∙-=————————————————2分x4=———————————————————————2分 当2=x 时,24=原式—————————————1分22=—————————————2分18.(本小题满分9分)(1)垂直平分线————————————2分;角平分线—————————————2分 (2)证明:连OB 、OC , ∵l 是BC 的垂直平分线,∴OB=OC ,———————————————1分 ∵OD ⊥AB ,OE ⊥AC ,且O 在BAC ∠的角平分线m 上, ∴OD=OE ,———————————————1分 在Rt △OBD 和Rt △OCE 中, ∵⎩⎨⎧==OE OD OCOB ,—————————————1分∴Rt △OBD ≌Rt △OCE ,——————————1分 ∴BD=CE.————————————————1分 19.(本小题满分10分)(1)0.251;————————————————1分 0.25;—————————————————1分 (2)设袋中白球为x 个,4111=+x ,——————————————2分 x=3,—————————————————1分 答:估计袋中有3个白球。
2015年浙江省中考模拟数学试卷(1)
2015年中考模拟数学试卷一、选择题(每小题4分,共48分,在每个小题中的四个选项中,只有一项符合题目要求)1.4的算术平方根是( ▲ ) A .2B .-2C .±2D .162.下列计算正确的是( ▲ ) A .x 2•x 3=x 6B . x 6÷x 5=xC . (﹣x 2)4=x 6D . x 2+x 3=x 53.下列“表情”中属于轴对称图形的是( ▲ )A .B .C .D .4. “天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( ▲ )A . 700×1020B . 7×1023C . 0.7×1023D . 7×10225. 下面四个立体图形中,主视图是三角形的是( ▲ )A .B .C .D .6.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的( ▲ )A .方差B .众数C .平均数D .中位数 7.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则( ▲ ) A .0>mB .0<mC .3>mD .3<m8.如图,AB 是⊙O 的弦,半径2OA =,2sin 3A =,则弦AB 的长为( ▲ ) A .25B .213C .4D .459.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是( ▲ )A . 120πcm 2B . 240πcm 2C . 260πcm 2D . 480πcm 2OA B第8题图第9题图第11题图G QFHCADBE 第17题图10. 如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形, 点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( ▲ )A .2B .3C .23D .2311.如图,已知AB 的长为2,动点C 从点A 出发,沿AB 方向匀速运动到终点B ,分别以AC ,BC 为斜边在AB 的同侧作两个等腰直角三角形⊿ACD 和⊿BCE ,连结DE 。
2015年浙江省绍兴市中考数学试题及答案解析(word版)全解
浙江省绍兴市2015年中考数学试卷、选择题(本题有10小题,每小题4分,共40分)1.计算(一1) 3的结果是A. -3B. -2C. 2D.32.据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000 元,将27 800 000 000 用科学计数法表示为10 11 10 11A. 2.78 X 10B. 2.78 X 10C. 27.8 X 10D. 0.278 X 10有6个相同的立方体搭成的几何体如图所示,则它的主视图是a 2 a 3二a 5,其中做对的一道题的序号是ABCD 其中AB=AD BC=DC 将仪器上的点 A 与/ PRQ 勺顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A C 画一条射线AE, AE 就是/ PRQ的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ ABC^A ADC 这样就有/ QAE=/ PAE 则说明这两个三角形全等的依据是3.4.母2至视方向 第3题图F 面是一位同学做的四道题:①2a 3b = 5ab ; ②(3a 3)2 =6a 6 :③ a 「a 2 二 a 3:④5.A.①B. ②在一个不透明的袋子中装有除颜色外其它均相同的 3个红球和2个白球,从中任意摸出12 C .A.B.351x -1 1 -x13D.25xA. SASB. ASAC. AASD. SSS个球,则摸出白7.如图,小敏做了一个角平分仪它往上拿走。
如图中,按照这一规则,第 1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走如图,四边形ABC 是O O 的内接四边形,O O 的半径为2,/ B=135B.C. D.9.如果一种变换是将抛物线向右平移 2 2个单位或向上平移 1个单位, 3我们把这种变换称为抛10. 物线的简单变线的解析式不可能的是C. y = X 2 4x 4挑游戏棒是一种好玩的游戏, B.D.游戏规则:当 2y 二x 1,则原抛物根棒条没有被其它棒条压着时,就可以把⑦号棒 C. ⑧号棒D.⑩号棒8.A.②号棒B.、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x212. 如图,已知点A ( 0, 1), B (0, -1 ),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C ,则/ BA (等于 ▲ 度第12题图13. 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
2015年浙江省中考第三次模拟考数学试卷【含答案】
2015年中考第三次模拟考(试卷)数 学考生须知:本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
答题时,应该在答题卷上写明校名,姓名和准考证号。
所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
考试结束后,上交答题卷。
一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1. 下列计算正确的是( ) A . 2×3=6B .+=C . 5﹣2=3D . ÷=2.在△ABC 中,∠C=90°,tanA=125,则sinA=( ) A.1312 B.135 C.513 D.5123.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A . 平均数B . 标准差C .中位数D . 众数4.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两....5.已知α是一元二次方程x 2﹣x ﹣1=0较大的根,则下面对α的估计正确的是( ) A . 0<α<1 B . 1<α<1.5 C . 1.5<α<2 D . 2<α<3 6.在一个圆中,给出下列命题,其中真命题是( ) A .垂直于弦的直线平分弦,并且平分弦所对的弧 B .平分弦的直径垂直于弦,并且平分弦所对的两条弧 C .弦所对的两弧中点的连线,垂直于弦,并且经过圆心D .平分弧的直线,平分这条弧所对的弦 7.==∙-+-w ,1w )a 319a 62则若(( ) A.a+3(a ≠-3) B.-a+3(a ≠3) C.a-3(a ≠3) D.-a-3(a ≠-3)∙A DEPB C8.把一枚均匀的骰子连续抛掷两次,则两次朝上面的点数之积为3的倍数的概率是()A.95B.3615C.114D.319.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)。
2015中考数学模拟试卷及答案
2015年中考数学模拟试卷及答案如何实现中考好成绩,需要我们从各方面去努力。
小编为大家整理了2015年中考数学模拟试卷及答案,希望对大家有所帮助。
二次函数A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-1图31312.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.二次函数1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).第二部分空间与图形2015年中考数学模拟试卷及答案已经呈现在各位考生面前,望各位考生能够努力奋斗,成绩更上一层楼。
2015年中考数学模拟试题参考答案
2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。
设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。
5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。
2015中考模拟考试试题数学科参考答案
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
2014-2015学年浙江省绍兴市嵊州中学九年级上学期期中数学试卷与解析
2014-2015学年浙江省绍兴市嵊州中学九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)抛物线y=(x﹣1)2+2的顶点是()A.(1,﹣2)B.(1,2) C.(﹣1,2)D.(﹣1,﹣2)2.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+33.(3分)若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y34.(3分)若一个三角形的三边为5,12,13,那么这个三角形的外接圆的半径是()A.5 B.6 C.6.5 D.不能确定5.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.6.(3分)如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定7.(3分)如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=()A.105°B.120°C.135° D.150°8.(3分)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③b2﹣4ac>0;④2a+b>0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2 B.3 C.4 D.59.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣10.(3分)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1,K1K2,K2K3,K3K4,K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2014等于()A.B.C.D.二.填空题:(本题共6小题,每小题5分,共30分)11.(5分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.12.(5分)如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是.13.(5分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.14.(5分)图1中的“箭头”是以AC所在直线为对称轴的轴对称图形,∠BAD=90°,AB=2.图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中BC的长为.15.(5分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D 或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.16.(5分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;…如此进行下去,直至得C14,若P(41,m)在这列抛物线上,则m=.三.解答题(本大题有8小题,第17-20题每小题6分,第21小题10分,第22,23题每小题6分,24题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(6分)已知等腰三角形ABC,如图.(1)用直尺和圆规作△ABC的外接圆;(2)设△ABC的外接圆的圆心为O,若∠BOC=128°,求∠BAC的度数.18.(6分)已知抛物线y=﹣x2+bx﹣c的部分图象如图.(1)求b、c的值;(2)分别求出抛物线的对称轴和y的最大值.19.(6分)学校要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.求恰好选派一男一女两位同学参赛的概率.20.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.21.(6分)定义:若抛物线y=ax2+bx+c与x轴的两个交点和顶点构成直角三角形,则称这条抛物线为“直角抛物线”.(1)抛物线y=x2﹣1直角抛物线(填“是”或“不是”);(2)直角抛物线y=a(x+2)2﹣3与x轴交于点A、B(A在B的左侧),顶点为P,求a的值.22.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?23.(4分)如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM 与BN交于点P,(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM 与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.24.(6分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE 面积的最大值,并求此时E点的坐标.2014-2015学年浙江省绍兴市嵊州中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)抛物线y=(x﹣1)2+2的顶点是()A.(1,﹣2)B.(1,2) C.(﹣1,2)D.(﹣1,﹣2)【解答】解:因为抛物线y=2(x﹣1)2+2是顶点式,根据顶点式的坐标特点,顶点坐标为(1,2).故选:B.2.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+3【解答】解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.3.(3分)若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3【解答】解:∵二次函数y=x2+4x﹣m,∴对称轴为x=﹣2,A(﹣4,y1),B(﹣3,y2)在对称轴的左侧,y随x的增大而减小,因为﹣4<﹣3,故y2<y1,根据二次函数图象的对称性可知,C(1,y3)与(﹣5,y3)关于对称轴对称,故有y3>y1;于是y3>y1>y2.故选:B.4.(3分)若一个三角形的三边为5,12,13,那么这个三角形的外接圆的半径是()A.5 B.6 C.6.5 D.不能确定【解答】解:∵52+122=132,∴此三角形为直角三角形,∴这个三角形的外接圆的直径为13,∴这个三角形的外接圆的半径是.故选:C.5.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.6.(3分)如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【解答】解:∵AC=6,AB=10,CD是斜边AB上的中线,∴AD=5,∵点O是AC中点,点P是CD中点,∴OP是△CAD的中位线,OC=OA=3,∴OP=AD=2.5,∵OP<OA,∴点P在⊙O内,故选:A.7.(3分)如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=()A.105°B.120°C.135° D.150°【解答】解:由题意知,弦BC、CD、DA三等分半圆,∴弦BC和CD和DA对的圆心角均为60°,∴∠BCD=120°.故选:B.8.(3分)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③b2﹣4ac>0;④2a+b>0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2 B.3 C.4 D.5【解答】解:∵抛物线与y轴的交点在x轴下方,∴c<0,∵抛物线的对称轴在y轴的右侧,∴ab<0,而a>0,∴b<0,∴bc>0,所以①正确;∵a>0,c<0,∴2a﹣3c>0,所以②错误;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以③正确;∵0<﹣<1,∴2a+b>0,所以④正确;∵x=1时,y<0,∴a+b+c<0,所以⑤错误;当x>1时,y随x增大而增大,所以⑥错误.故选:B.9.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣【解答】解:连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF ﹣S△ABD=﹣×2×=﹣.故选:A.10.(3分)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1,K1K2,K2K3,K3K4,K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2014等于()A.B.C.D.【解答】解:根据题意得:l1==,l2==,l3===π,l4==,按照这种规律可以得到:l n=,所以l2014=.故选:C.二.填空题:(本题共6小题,每小题5分,共30分)11.(5分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【解答】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.12.(5分)如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是y=﹣x2﹣x+5.【解答】解:根据题意得,抛物线经过点(0,5),(﹣4,2),(2,4),设抛物线的解析式为y=ax2+bx+c,则,解得,∴抛物线的解析式为y=﹣x2﹣x+5.故答案为:y=﹣x2﹣x+5.13.(5分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8mm.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.14.(5分)图1中的“箭头”是以AC所在直线为对称轴的轴对称图形,∠BAD=90°,AB=2.图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中BC的长为2.【解答】解:由正方形的性质,得AB=AA′=2AE,又AB=2,∴AE=1,BE==,再由折叠的性质,得BC=2BE=2.15.(5分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D 或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.16.(5分)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;…如此进行下去,直至得C14,若P(41,m)在这列抛物线上,则m=﹣2.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C14在x轴下方,相当于抛物线C1向右平移6×6=36个单位得到C13,再将C13绕点A13旋转180°得C14,∴抛物线C14的解析式为y=(x﹣39)(x﹣39﹣3)=(x﹣39)(x﹣42),∵P(41,m)在第14段抛物线C14上,∴m=(41﹣39)(41﹣42)=﹣2.故答案为:﹣2.三.解答题(本大题有8小题,第17-20题每小题6分,第21小题10分,第22,23题每小题6分,24题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(6分)已知等腰三角形ABC,如图.(1)用直尺和圆规作△ABC的外接圆;(2)设△ABC的外接圆的圆心为O,若∠BOC=128°,求∠BAC的度数.【解答】解:(1)(4分)(2)在优弧BC上任取一点D,连接BD,CD,∵∠BOC=128°,∴∠BDC=∠BOC=64°,∴∠BAC=180°﹣∠BDC=116°.18.(6分)已知抛物线y=﹣x2+bx﹣c的部分图象如图.(1)求b、c的值;(2)分别求出抛物线的对称轴和y的最大值.【解答】解:(1)把(1,0),0,3)代入y=﹣x2+bx﹣c得解得b=﹣2,c=﹣3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,所以抛物线的对称轴是x=﹣1,最大值为4.19.(6分)学校要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.求恰好选派一男一女两位同学参赛的概率.【解答】解:画树状图得:∵有12种等可能的结果;恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.20.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余;又∠ACE与∠CAE互余∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)21.(6分)定义:若抛物线y=ax2+bx+c与x轴的两个交点和顶点构成直角三角形,则称这条抛物线为“直角抛物线”.(1)抛物线y=x2﹣1是直角抛物线(填“是”或“不是”);(2)直角抛物线y=a(x+2)2﹣3与x轴交于点A、B(A在B的左侧),顶点为P,求a的值.【解答】解:(1)令y=0可得x2﹣1=0,解得x=±1,∴与x轴的交点坐标为C(﹣1,0)和D(1,0),又顶点E坐标为(0,﹣1),∴OE=OC=OD,∴∠CED=90°,∴抛物线y=x2﹣1是直角抛物线,故答案为:是;(2)设对称轴与x轴的交点为F,∵y=a(x+2)2﹣3是直角抛物线,顶点坐标为P(﹣2,﹣3),∴AF=BF=PF=3,且OF=2,∴OB=BF﹣OF=3﹣2=1,∴B为(1,0),代入抛物线解析式可得0=a(1+2)2﹣3,解得a=.22.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.23.(4分)如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM 与BN交于点P,(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM 与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.【解答】解:(1)△BCN 是△ABM 绕正方形中心O 逆时针旋转90°得到的(2分) (△BCN 是△ABM 沿BC 方向平移BC 长,使点B 与点C 重合,再绕点C 逆时针旋转90°得到的)(2)S 四边形PMCN =S △APB (3分)(3)(2)中结论仍成立,即:S 四边形PMDN =S △APB (4分) 证明:设正六边形ABCDEF 中心为O ∴∠AOB=∠BOC=∠COD=∠MON=60°, AO=BO ,BO=CO ,CO=DO ,MO=NO .∴四边形BCDN 是四边形ABCM 绕点O 逆时针旋转60°得到的(6分) ∴S 四边形BCDN =S 四边形ABCM∴S 四边形BCDN ﹣S 四边形BCMP =S 四边形ABCM ﹣S 四边形BCMP (7分) 即:S 四边形PMDN =S △APB24.(6分)如图①,已知抛物线y=ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE 面积的最大值,并求此时E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴解得:∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)∵抛物线解析式为:y=﹣x2﹣2x+3,∴其对称轴为x==﹣1,∴设P点坐标为(﹣1,a),当x=0时,y=3,∴C(0,3),M(﹣1,0)∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,∴P点坐标为:P1(﹣1,);∴当CM=PM时,(﹣1)2+32=a2,解得a=±,∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P点坐标为:P4(﹣1,6)综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a=BF•EF+(OC+EF)•OF∴S四边形BOCE=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)==﹣+∴当a=﹣时,S最大,且最大值为.四边形BOCE此时,点E坐标为(﹣,).。
2015年中考数学模拟考试试题和答案
2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。
A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。
11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。
2015年浙江省绍兴市嵊州市中考数学一模试卷及参考答案
2015年浙江省绍兴市嵊州市中考数学一模试卷一、选择题(本大题有10小题,每小题4分,共40分。
请选出每小题中一个最符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2015的相反数是()A.2015 B.C.﹣D.﹣20152.(4分)下列计算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.a6÷a3=a2D.a2•a3=a53.(4分)钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数字用科学记数法表示为()A.464×104B.46.4×106C.4.64×106D.0.464×1074.(4分)图中几何体的左视图是()A.B.C.D.5.(4分)下列二次根式是最简二次根式的是()A.B. C.D.6.(4分)根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.(4分)如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为()A.30°B.45°C.50°D.60°8.(4分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.39.(4分)如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16 B.24 C.36 D.5410.(4分)已知:如图,四边形ABCD是矩形,其中点A(x1,a)、B(x2,a)分别是函数y=和y=上第一象限的点,点C、D在x轴上.在边AD从大于AB到小于AB的变化过程中,若矩形ABCD的周长始终保持不变,则(k2﹣k1)的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题(本大题有6小题,每小题5分,共30分。
2015中考数学模拟试卷附答案
中考数学模拟试卷一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A.(2a)2=2a2 B.a6÷a3=a3 C.a3﹣a2=a6 D.3a2+2a3=5a32.下列方程有实数根的是()A.B.C.x2﹣x+1=0 D.2x2+x﹣1=03.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0 C.m<0 D.m≤04.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形二、填空题:(本大题共12题,每题4分,满分48分)7.9的平方根是.8.在实数范围内分解因式:x4﹣25=.9.计算:=.10.函数的定义域是.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是(只需写出一个满足要求的数).15.已知:在平行四边形ABCD中,设=,=,那么=(用向量、的式子表示).16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).18.在Rt△ABC中,AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,那么半径r的取值范围是.三、解答题:(本大题共7题,满分78分)19.计算:.20.解方程组:.21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cosC=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?23.如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE 的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB=90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A.(2a)2=2a2 B.a6÷a3=a3 C.a3﹣a2=a6 D.3a2+2a3=5a3考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:分别根据同底数幂的除法、幂的乘方与积的乘方、合并同类项的法则进行逐一计算即可.解答:解:A、(2a)2=4a2,错误;B、a6÷a3=a3,正确;C、a3与a2不是同类项,不能合并,错误;D、3a2与2a3不是同类项,不能合并,错误;故选B.点评:本题考查合并同类项、同底数幂的除法、幂的乘方,熟练掌握性质和法则是解题的关键.2.下列方程有实数根的是()A.B.C.x2﹣x+1=0 D.2x2+x﹣1=0考点:根的判别式;无理方程;解分式方程.专题:计算题.分析:根据分式方程和无理方程的解法如果能求得方程的解说明方程有实数解,一元二次方程有实数根只需得到其根的判别式为非负数.解答:解:A、分式方程=0,去分母得:x2+2=0∵x2≥0,∴原方程无解;B、∵≥0∴无理方程无解;C、∵x2﹣x+1=0中b2﹣4ac=1﹣4=﹣3<0∴x2﹣x+1=0无实数根;D、∵2x2+x﹣1=0中b2﹣4ac=1+8=9>0,∴此方程有实数根,故选D.点评:本题考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时方程有两个相等的实数根;当△<0时,方程无实数根.3.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0 C.m<0 D.m≤0考点:一次函数的性质.分析:图象一定经过第二象限,则函数一定与y轴的正半轴相交,因而m>0.解答:解:根据题意得:m>0,故选A.点评:本题主要考查了一次函数的性质,结合坐标系以及函数的图象理解函数的性质是关键.4.如图,反映的是某中学九(1)班学生外出乘车、步行、骑车人数的扇形分布图,其中乘车的学生有20人,骑车的学生有12人,那么下列说法正确的是()A.九(1)班外出的学生共有42人B.九(1)班外出步行的学生有8人C.在扇形图中,步行学生人数所占的圆心角的度数为82°D.如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人考点:扇形统计图.专题:数形结合.分析:先求出九(1)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.解答:解:由扇形图知乘车的人数是20人,占总人数的50%,所以九(1)班有20÷50%=40人,所以骑车的占12÷40=30%,步行人数=40﹣12﹣20=8人,所占的圆心角度数为360°×20%=72°,如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有150人.故选:B.点评:本题主要考查扇形统计图及用样本估计总体等知识.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体的知识.5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形考点:中心对称图形;轴对称图形.专题:几何图形问题;综合题;压轴题.分析:先根据旋转对称图形的定义得出这个正多边形是正八边形、再根据轴对称图形和中心对称图形的定义即可解答.解答:解:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.点评:本题综合考查了旋转对称图形的概念,中心对称图形和轴对称图形的定义.根据定义,得一个正n边形只要旋转的倍数角即可.奇数边的正多边形只是轴对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.6.下列命题中正确的是()A.对角线相等的梯形是等腰梯形B.有两个角相等的梯形是等腰梯形C.一组对边平行的四边形一定是梯形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形考点:等腰梯形的判定.专题:推理填空题.分析:根据等腰梯形的判定定理对各个选项逐一分析即可.解答:解:A、对角线相等的梯形是等腰梯形,由全等三角形的判定与性质可证明出是等腰梯形,故本选项正确;B、有两个角相等的梯形是等腰梯形,根据等腰梯形的性质和判定可判断:直角梯形中有两个角相等为90度,但不是等腰梯形,故本选项错误;C、一组对边平行的四边形一定是梯形,错误,因为没说明另一组对边的关系,有可能也平行,那么就有可能是平行四边形,故本选项错误;D、一组对边平行,另一组对边相等则有两种情况,即平行四边形或等腰梯形,所以不能说一定是等腰梯形.故本选项错误;故选A.点评:此题主要考查学生对等腰梯形的判定这一知识点的理解和掌握,此题难度不大,属于基础题,学生应熟练掌握才行.二、填空题:(本大题共12题,每题4分,满分48分)7.9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.8.在实数范围内分解因式:x4﹣25=.考点:实数范围内分解因式.专题:因式分解.分析:考查了对一个多项式因式分解的能力.我们在学习中要掌握提公因式法,公式法等技能,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.本题先用平方差公式分解因式后,再把剩下的式子中的(x2﹣5)写成x2﹣,符合平方差公式的特点,可以继续分解.解答:解:x4﹣25=(x2﹣5)•(x2+5)=(x2+5)(x+)(x﹣).故答案为:(x2+5)(x+)(x﹣).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.9.计算:=.考点:分式的加减法.分析:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.解答:解:原式==.点评:本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.10.函数的定义域是x≤2.考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的意义,被开方数是非负数可:4﹣2x≥0,求解即可.解答:解:根据题意得:4﹣2x≥0,解得x≤2.故答案为x≤2.点评:本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数非负.11.已知:反比例函数的图象经过点A(2,﹣3),那么k=﹣6.考点:待定系数法求反比例函数解析式.专题:函数思想.分析:根据反比例函数图象上点的坐标特征,将点A(2,﹣3)代入反比例函数,然后解关于k的方程即可.解答:解:根据题意,得﹣3=,解得,k=﹣6.故答案是:﹣6.点评:本题主要考查了待定系数法求反比例函数解析式.解题时,借用了反比例函数图象上点的坐标特征(经过函数的某点一定在函数的图象上)这一知识点.12.将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为y=x﹣2.考点:一次函数图象与几何变换.专题:存在型.分析:根据“上加下减,左加右减”的原则进行解答即可.解答:解:一次函数y=x+3的图象沿着y轴向下平移5个单位所得函数解析式为:y=x+3﹣5,即y=x﹣2.故答案为:y=x﹣2.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为.考点:概率公式.专题:应用题.分析:由于每个球被摸到的机会是均等的,故可用概率公式解答.解答:解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)==.故答案为:.点评:此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A 的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.14.如果一组数a,2,4,0,5的中位数是4,那么a可以是4(所填答案满足a≥4即可)(只需写出一个满足要求的数).考点:中位数.专题:开放型.分析:由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.解答:解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).点评:本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.15.已知:在平行四边形ABCD中,设=,=,那么=﹣﹣(用向量、的式子表示).考点:*平面向量.分析:由在平行四边形ABCD中,可得==,即可得=﹣,=﹣,又由=+,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==,∵=,∴=﹣,=﹣,∴=+=﹣﹣.故答案为:﹣﹣.点评:此题考查了平面向量的知识与平行四边形的性质.此题难度不大,注意数形结合思想的应用.16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是AB=CD或AD∥BC(只需写出一种情况).考点:平行四边形的判定.专题:开放型.分析:用反推法,如果四边形ABCD是平行四边形,会推出什么结论,那么这些结论就是我们要添加的条件.解答:解:∵∠ABD=∠CDB,∴AB∥CD,要使四边形ABCD是平行四边形,可添AB=CD,根据一组对边平行且相等的四边形是平行四边形,可使四边形ABCD是平行四边形;或添AD∥BC,根据由两组对边分别平行的四边形是平行四边形,可使四边形ABCD是平行四边形.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.17.某中学组织九年级学生春游,有m名师生租用45座的大客车若干辆,共有2个空座位,那么租用大客车的辆数是(用m的代数式表示).考点:列代数式.专题:应用题.分析:让汽车上一共可坐的人数除以每辆汽车可坐的人数即为租用大客车的辆数.解答:解:共有2个空座位,那么一共可以坐(m+2)人,∴租用大客车的辆数是,故答案为:.点评:考查列代数式;得到租用大客车的辆数的等量关系是解决本题的关键.18.在Rt△ABC中,AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,那么半径r的取值范围是3<r≤4或.考点:直线与圆的位置关系.专题:几何图形问题;压轴题.分析:根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.解答:解:过点C作CD⊥AB于点D,∵AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,∴AB=5,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤4,故答案为:3<r≤4或.点评:此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.三、解答题:(本大题共7题,满分78分)19.计算:.考点:实数的运算.专题:计算题.分析:分别根据二次根式、负整数指数幂的运算法则计算出各数即可.解答:解:2﹣(2﹣)﹣6×,=2﹣2+﹣2,=3﹣4.故答案为:3﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.熟练掌握负整数指数幂及二次根式的化简是解答此题的关键.20.解方程组:.考点:高次方程.专题:计算题.分析:先由②得到关于y,并代入①,从而求得.解答:解:由②得y=2x﹣1.③把③代入①,得3x2﹣(2x﹣1)2﹣(2x﹣1)+3=0.整理后,得x2﹣2x﹣3=0.解得x1=﹣1,x2=3.把x1=﹣1代入③,得y1=﹣3.把x2=3代入③,得y2=5.所以,原方程组的解是点评:本题考查了高次方程的运算,从②得到关于y并代入①,解方程从而得到两组解.21.如图,在梯形ABCD中,AD∥BC,AB=CD=5,对角线BD平分∠ABC,cosC=.(1)求边BC的长;(2)过点A作AE⊥BD,垂足为点E,求cot∠DAE的值.考点:等腰梯形的性质;勾股定理;解直角三角形.分析:(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由,可求得CH,再根据对角线和平行线,得∠ABD=∠ADB.则AD=AB=5.即可求出BC;(2)在Rt△CDH中,可求得DH,进而得出BH,将角∠DAE转化成∠BDH,即可得出答案.解答:解:(1)过点D作DH⊥BC,垂足为点H.在Rt△CDH中,由∠CHD=90°,CD=5,,得.∵对角线BD平分∠ABC,∴∠ABD=∠CBD.∵AD∥BC,∴∠ADB=∠DBC.∴∠ABD=∠ADB.即得AD=AB=5.于是,由等腰梯形ABCD,可知BC=AD+2CH=13.(2)∵AE⊥BD,DH⊥BC,∴∠BHD=∠AED=90°.∵∠ADB=∠DBC,∴∠DAE=∠BDH.在Rt△CDH中,.在Rt△BDH中,BH=BC﹣CH=13﹣4=9.∴.∴cot∠DAE=cot∠BDH=.点评:本题考查了等腰梯形的性质、勾股定理以及解直角三角形,是基础知识要熟练掌握.22.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?考点:一元二次方程的应用;根据实际问题列一次函数关系式.分析:(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租可列出函数式.(2)38400是利润,根据价格和住房的关系可列方程求出解解答:解:(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意,得:y=200﹣4×,∴.(2)设每间客房每天的定价增加x元根据题意,得.整理后,得x2﹣320x+6000=0.解得x1=20,x2=300.当x=20时,x+180=200(元).当x=300时,x+180=480(元).答:这天的每间客房的价格是200元或480元.点评:本题考查理解题意的能力,关键知道涨价和住房的关系,表示出关系,根据利润做为等量关系可列方程求解.23.如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE 的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.考点:正方形的判定;全等三角形的判定与性质;线段垂直平分线的性质.分析:(1)根据线段垂直平分线的性质,可得AF=CF,再根据等角的余角相等可得∠B=∠BAF,所以AF=BF.(2)由AAS可证△AEG≌△CEF,所以AG=CF.由一组对边平行且相等的四边形是平行四边形得四边形AFCG是平行四边形,进而证得四边形AFCG是菱形,最后根据有一个角为直角的菱形是正方形得证四边形AFCG是正方形.解答:证明:(1)∵AD=CD,点E是边AC的中点,∴DE⊥AC.即得DE是线段AC的垂直平分线.∴AF=CF.∴∠FAC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠FAC+∠BAF=90°.∴∠B=∠BAF.∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵点E是边AC的中点,∴AE=CE.在△AEG和△CEF中,,∴△AEG≌△CEF(AAS).∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.即得点F是边BC的中点.又∵AB=AC,∴AF⊥BC.即得∠AFC=90°.∴四边形AFCG是正方形.点评:本题考查的是正方形的判定方法,考查了线段垂直平分线的性质、全等三角形的判定与性质等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质.24.如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,且∠OAB=90°,∠BOA=30°,OB=4.二次函数y=﹣x2+bx的图象经过点A,顶点为点C.(1)求这个二次函数的解析式,并写出顶点C的坐标;(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求的值;(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.考点:二次函数综合题.专题:代数几何综合题.分析:(1)由∠OAB=90°,在直角三角形OAB中求得点A,代入函数式解得.(2)直角三角形OAB中求得AB的长度,由抛物线的对称轴可知DE∥AB,OE=AE.求得DE,进而求得CD,从而求得.(3)利用三角形OCE和三角形POA的面积相等即求得.解答:解:(1)∵∠OAB=90°,∠BOA=30°,OB=4,∴.∴A(,0).∵二次函数y=﹣x2+bx的图象经过点A,∴.解得.∴二次函数的解析式为.顶点C的坐标是(,3).(2)∵∠OAB=90°,∠BOA=30°,OB=4,∴AB=2.由DE是二次函数的图象的对称轴,可知DE∥AB,OE=AE.∴.即得DE=1.又∵C(,3),∴CE=3.即得CD=2.∴.(3)根据题意,可设P(,n).∵,CE=3,∴.∴.解得.∴点P的坐标为P1(,)、P2(,).点评:本题考查了二次函数的综合运用,考查了直角三角形内的三角函数,抛物线过一点,即代入求得;通过抛物线的对称轴来做题,方便快捷,这也考查了灵活的思维;通过面积的求得,来求得点的做标,只是考查的手段,问题考查的思路.25.已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).考点:相似三角形的判定与性质;等腰三角形的性质;等边三角形的性质;勾股定理;解直角三角形.专题:计算题.分析:(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.利用勾股定理即可证明;(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理求出PD,然后在Rt△PEM中,由勾股定理得PM2+EM2=PE2.从而可求出答案;(3)△PHD与△ABH相似,则有,代入各线段的长短即可求出x的值.解答:解:(1)∵△ABC为等边三角形,∴,∠B=60°.又∵,AH⊥BC,∴.即得PH=AH﹣AP=6﹣x=3.在Rt△PHD中,HD=2,利用勾股定理,得.∴当x=3时,⊙P的半径长为.(2)过点P作PM⊥EF,垂足为点M,连接PE.在Rt△PHD中,HD=2,PH=6﹣x.利用勾股定理,得.∵△ABC为等边三角形,AH⊥BC,∴∠BAH=30°.即得.在⊙P中,PE=PD.∵PM⊥EF,P为圆心,∴.于是,在Rt△PEM中,由勾股定理得PM2+EM2=PE2.即得.∴所求函数的解析式为,定义域为.(3)∵①△PHD∽△ABH,则有,,解得:PH=,∴x=AP=6﹣,当P在AH的延长线上时,x=6+;②当△PHD∽△AHB时,,即,解得:PH=2,∴x=AP=6﹣2,当P在AH的延长线上时,x=6+2;,,,.点评:本题考查了相似三角形及等腰三角形的判定与性质,难度较大,关键是掌握相似三角形的性质及勾股定理的运用.。
浙江省绍兴市2015年中考数学真题试题(含扫描答案)
浙江省2015年初中毕业生学业考试绍兴市试卷数 学 试 题 卷满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 32. 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×10113. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A. ①B. ②C. ③D. ④5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A. 31 B. 52 C. 21 D. 53 6. 化简xx x -+-1112的结果是 A. 1+x B. 11+x C. 1-x D. 1-x x 7. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS8. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长 A. π2 B. π C. 2π D. 3π 9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。
浙江省绍兴市中考数学模拟试题 含答案
浙江省2015年初中毕业生学业考试绍兴市试卷数 学 试 题 卷满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 32. 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×10113. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A. ①B. ②C. ③D. ④5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A. 31 B. 52 C. 21 D. 53 6. 化简xx x -+-1112的结果是 A. 1+x B. 11+x C. 1-x D. 1-x x 7. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得 △ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS8. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长 A. π2 B. π C. 2π D. 3π 9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。
浙教版七年级数学下册试题嵊州市谷来镇中第一次月考
嵊州市谷来镇中2014学年下七年级数学第一次月考(201503)----------------------------------模拟试题 姓名 学号 成绩1.同学们,请认真仔细的审好每一道题,答好每一道题。
做出自己的自信,相信自己是最好的。
2.请把所有答案....做在答题纸上。
一、认真选一选,选出最适合题意的答案(每小题3分共30分。
)1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2. 下列是二元一次方程的是 ( )A .3x-6=x B.32x y = C.2x+13=yD. 23x y xy -= 3. 如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A. AD ∥BCB. ∠B =∠CC. ∠2+∠B =180°D. AB ∥CD4. 下列计算正确的是( )A. 725)(a a = B. 1025a a a =⋅• C. 623)(a a = D. 2a +42a a = 5. 对于方程组⎩⎨⎧-==-)2(12)1(532x y y x ,把(2)代入(1)得 ( ) A. 2x-6x-1=5 B. 2(2x-1)-3y=5 C. 2x-6x+3=5 D. 2x-6x-3=56. 已知二元一次方程3x+2y=11,则 ( )A 任何一对有理数都是它的解. B.只有一个解 C.只有两个解 D.有无数个解7. 已知|x |=1,|y |=21,则23320)(y x x -的值等于( ) A. 43-或45- B.43 C. 43或45 D. 45- 8. 两个角的两边分别平行,其中一个角是60°,则另一个角是 ( ) A. 60° B.120° C. 60°或120° D. 无法确定9.若方程组⎩⎨⎧=++-=+2)1()1(12y k x k y x 的解x 与y 相等,则k 的值为( ) A . 3 B .2 C .1 D .不能确定10.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法. 甲说:“这个题目好象条件不够,不能求解”; 乙说:“它们的系数有一定的规律,可以试试”; 丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是( )A .⎩⎨⎧==23y xB .⎩⎨⎧==43y xC .⎩⎨⎧==105y xD .⎩⎨⎧==86y x 二、认真填一填,填上最适合题的答案(每小题3分共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015学年浙江省绍兴市嵊州市谷来中学中考数学模拟试卷(4月份)一、选择题(本题有10小题,每小题4分,共40分)1.3的相反数是()A.3 B.﹣3 C.D.﹣2.下列运算正确的是()A.x+x=x2 B.x6÷x2=x3 C.x•x3=x4 D.(2x2)3=6x53.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108 B.46×108 C.4.6×109 D.0.46×10104.如图所示的几何体,其主视图是()A.B.C.D.5.化简可得()A.B.﹣C.D.6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位7.如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:1、作OD的中垂线,交⊙O于B,C两点,2、连接AB,AC,△ABC即为所求的三角形乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.2、连接AB,BC,CA.△ABC即为所求的三角形.对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确8.如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为()A.B.2C.D.9.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.10.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a3﹣a=.12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是m.13.箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是.14.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).15.如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为.16.如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示)三、解答题(本题有8小题,共80分)17.(1)计算:﹣22+﹣2cos60°+|﹣3|;(2)解不等式组:.18.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F 两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.19.如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.20.一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)4 5 6 7 8 9甲组(人)1 2 5 2 1 4乙组(人)1 1 4 5 2 2(1)请你根据上述统计数据,把下面的图和表补充完整.统计量平均分方差中位数合格率优秀率甲组 2.56 6 80.0% 26.7%乙组6.8 1.76 86.7% 13.3%(2)下面是小明和小聪的一段对话.请你根据(1)中的表,写出两条支持小聪的观点的理由.小明:我认为,因为甲组的优秀率高于乙组,所以甲组的成绩更好于乙组;小聪:我认为:乙组的成绩要好于甲组.21.(10分)(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.22.(12分)(2014•嵊州市校级模拟)小明和同桌小聪在课后复习时,对课本“目标与评定”中一道思考题,进行了认真的探索【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12得方程,解方程得x1=,x2=,∴点B将向外移动米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.23.(12分)(2012•绍兴)把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).24.(14分)(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2﹣4x﹣2经过A,B两点.(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A 出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.2015学年浙江省绍兴市嵊州市谷来中学中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分)1.3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列运算正确的是()A.x+x=x2 B.x6÷x2=x3 C.x•x3=x4 D.(2x2)3=6x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、利用合并同类项法则计算;B、利用同底数幂的除法计算;C、利用同底数幂的乘法计算;D、利用积的乘方计算,再分别判断对错.解答:解:A、x+x=2x,此选项错误;B、x6÷x2=x4,此选项错误;C、x•x3=x4,此选项正确;D、(2x2)3=8x6,此选项错误.故选C.点评:本题考查了合并同类项法则、同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是掌握相关运算的法则.3.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108 B.46×108 C.4.6×109 D.0.46×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.从物体正面看,看到的是一个等腰梯形.解答:解:从物体正面看,看到的是一个等腰梯形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.5.化简可得()A.B.﹣C.D.考点:分式的加减法.分析:先把原式通分,再把分子相减即可.解答:解:原式===﹣.故选B.点评:本题考查的是分式的加减法,在解答此类题目时要注意异分母分式的加减要转化为同分母分式的加减.6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位考点:坐标与图形变化-平移.分析:利用平面坐标系中点的坐标平移方法,利用点A的坐标是(0,2),点A′(5,﹣1)得出横纵坐标的变化规律,即可得出平移特点.解答:解:根据A的坐标是(0,2),点A′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B.点评:此题主要考查了平面坐标系中点的平移,用到的知识点为:左右移动横坐标,左减,右加,上下移动,纵坐标上加下减.7.如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:1、作OD的中垂线,交⊙O于B,C两点,2、连接AB,AC,△ABC即为所求的三角形乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.2、连接AB,BC,CA.△ABC即为所求的三角形.对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.专题:计算题.分析:由甲的思路画出相应的图形,连接OB,由BC为OD的垂直平分线,得到OE=DE,且BC与OD垂直,可得出OE为OD的一半,即为OB的一半,在直角三角形BOE中,根据一直角边等于斜边的一半可得出此直角边所对的角为30°,得到∠OBE为30°,利用直角三角形的两锐角互余得到∠BOE为60°,再由∠BOE为三角形AOB的外角,且OA=OB,利用等边对等角及外角性质得到∠ABO也为30°,可得出∠ABC为60°,同理得到∠ACB也为60°,利用三角形的内角和定理得到∠BAC为60°,即三角形ABC三内角相等,进而确定三角形ABC为等边三角形;由乙的思路画出相应的图形,连接OB,BD,由BD=OD,且OB=OD,等量代换可得出三角形OBD三边相等,即为等边三角形,的长∠BOE=∠DBO=60°,由BC垂直平分OD,根据三线合一得到BE为角平分线,可得出∠OBE为30°,又∠BOE为三角形ABO的外角,且OA=OB,利用等边对等角及外角的性质得到∠ABO也为30°,可得出∠ABC为60°,同理得到∠ACB也为60°,利用三角形的内角和定理得到∠BAC为60°,即三角形ABC三内角相等,进而确定三角形ABC为等边三角形,进而得出两人的作法都正确.解答:解:根据甲的思路,作出图形如下:连接OB,∵BC垂直平分OD,∴E为OD的中点,且OD⊥BC,∴OE=DE=OD,又OB=OD,在Rt△OBE中,OE=OB,∴∠OBE=30°,又∠OEB=90°,∴∠BOE=60°,∵OA=OB,∴∠OAB=∠OBA,又∠BOE为△AOB的外角,∴∠OAB=∠OBA=30°,∴∠ABC=∠ABO+∠OBE=60°,同理∠C=60°,∴∠BAC=60°,∴∠ABC=∠BAC=∠C,∴△ABC为等边三角形,故甲作法正确;根据乙的思路,作图如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC为等边三角形,故乙作法正确,故选A点评:此题考查了垂径定理,等边三角形的判定,含30°直角三角形的判定,三角形的外角性质,以及等腰三角形的性质,熟练掌握定理及判定是解本题的关键.8.如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为()A.B.2C.D.考点:圆锥的计算;菱形的性质.分析:连接OB,AC,BO与AC相交于点F,首先利用菱形的性质以及利用三角函数关系得出∠FOC=30°,进而得出底面圆锥的周长,即可得出底面圆的半径和母线长,利用勾股定理得出圆锥的高即可.解答:解:连接OB,AC,BO与AC相交于点F,∵在菱形OABC中,AC⊥BO,CF=AF,FO=BF,∠COB=∠BOA,又∵扇形DOE的半径为3,∴FO=BF=1.5,∵菱形OABC的边长为,cos∠FOC===,∴∠FOC=30°,∴∠EOD=2×30°=60°,∴==π,底面圆的周长为:2πr=π,解得:r=,圆锥母线为:3,则此圆锥的高为:=,故选:D.点评:此题主要考查了菱形的性质以及圆锥与侧面展开图的对应关系,根据圆锥的底面圆的周长等于扇形弧长是解题关键.9.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.考点:规律型:图形的变化类.分析:根据题意可得,第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n﹣1)=(40n﹣25)m,从而可计算出535m处哪个里程数是灯,也就得出了答案.解答:解:根据题意得:第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n﹣1)=(40n﹣25)m,故当n=14时候,40n﹣25=535m处是灯,则515m、525m、545m处均是树,故应该是树、树、灯、树,故选B.点评:本题考查了图形的变化类问题,解决本题的关键是从原图中找到规律,并利用规律解决问题.10.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:先写出AD、AD1、AD2、AD3的长度,然后可发现规律推出AD n的表达式,继而根据AP n=AD n即可得出AP n的表达式,也可得出AP6的长.解答:解:由题意得,AD=BC=,AD1=AD﹣DD1=,AD2=,AD3=,…,AD n=,又AP1=AD1,AP2=AD2…,∴AP n=AD n,故AP1=,AP2=,AP3=…APn=,故可得AP6=.故选:A.点评:此题考查了翻折变换的知识,解答本题关键是写出前面几个有关线段长度的表达式,从而得出一般规律,注意培养自己的归纳总结能力.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a3﹣a=a(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是10m.考点:二次函数的应用.分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.解答:解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.点评:本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.13.箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与第二个人摸出红球且第三个人摸出白球的情况,然后利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有24种等可能的结果,第二个人摸出红球且第三个人摸出白球的有8种情况,∴第二个人摸出红球且第三个人摸出白球的概率是:=.故答案为:.点评:此题考查了树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是④②(只需填序号).考点:函数的图象.分析:由于小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,所以表示母亲离家的时间与距离之间的关系的图象在20分钟的两边一样,由此即可确定表示母亲离家的时间与距离之间的关系的图象;而父亲看了10分报纸后,用了15分返回家,由此即可确定表示父亲离家的时间与距离之间的关系的图象.解答:解:∵小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,∴表示母亲离家的时间与距离之间的关系的图象是②;∵父亲看了10分报纸后,用了15分返回家,∴表示父亲离家的时间与距离之间的关系的图象是④.故答案为:④②.点评:此题考查了函数的图象,是一个信息题目,主要利用图象信息找到所需要的数量关系,然后利用这些关系即可确定图象.15.如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为.考点:翻折变换(折叠问题).分析:首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.解答:解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∵∠CB′C′=∠D=90°,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB,所以∠ACB=30°,∴∠BAC=60°,∴tan∠BAC=tan60°==,BC:AB的值为:.故答案为:.点评:此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.16.如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为或(用含n的代数式表示)考点:反比例函数综合题.专题:压轴题.分析:可设反比例函数解析式为y=,根据第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,可分两种情况:①与BC,AB平移后的对应边相交;②与OC,AB平移后的对应边相交;得到方程求得反比例函数解析式,再代入第n次(n>1)平移的横坐标得到矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值.解答:解:设反比例函数解析式为y=,则①与BC,AB平移后的对应边相交;与AB平移后的对应边相交的交点的坐标为(2,1.4),则1.4=,解得k=2.8=,故反比例函数解析式为y=.则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:﹣=;②与OC,AB平移后的对应边相交;k﹣=0.6,解得k=.故反比例函数解析式为y=.则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:﹣=.故第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为或.故答案为:或.点评:考查了反比例函数综合题,本题的关键是根据第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,分①与BC,AB平移后的对应边相交;②与OC,AB平移后的对应边相交;两种情况讨论求解.三、解答题(本题有8小题,共80分)17.(1)计算:﹣22+﹣2cos60°+|﹣3|;(2)解不等式组:.考点:解一元一次不等式组;实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据有理数的乘方运算,有理数的负整数指数次幂等于正整数指数次幂的倒数,60°角的余弦值等于,绝对的性质计算即可得解;(2)先求出两个不等式的解集,再求其公共解.解答:解:(1)﹣22+()﹣1﹣2cos60°+|﹣3|,=﹣4+3﹣2×+3,=﹣4+3﹣1+3,=﹣5+6,=1;(2)解不等式①,得2x+5<4x+8,解得x>﹣,解不等式②,得3x﹣3<2x,解得x<3,所以,原不等式组的解集是﹣<x<3.点评:本题主要考查了实数的运算,一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)18.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F 两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.考点:作图—复杂作图;全等三角形的判定.分析:(1)根据AB∥CD,∠ACD=114°,得出∠CAB=66°,再根据AM是∠CAB的平分线,即可得出∠MAB的度数.(2)根据∠CAM=∠MAB,∠MAB=∠CMA,得出∠CAM=∠CMA,再根据CN⊥AD,CN=CN,即可得出△ACN≌△MCN.解答:(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°;(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,,∴△ACN≌△MCN(AAS).点评:此题考查了作图﹣复杂作图,用到的知识点是全等三角形的判定、平行线的性质、角平分线的性质等,解题的关键是证出∠CAM=∠CMA.19.如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.考点:解直角三角形的应用-坡度坡角问题.分析:(1)在直角三角形ABC中利用∠BAC的正弦值和AB的长求得BC的长即可;(2)首先根据题意求得级高,然后根据10秒钟上升的级数求小明上升的高度即可.解答:解:(1)sin∠BAC=,∴BC=AB×sin32°=16.50×0.5299≈8.74米.(2)∵tan32°=,∴级高=级宽×tan32°=0.25×0.6249=0.156225∵10秒钟电梯上升了20级,∴小明上升的高度为:20×0.156225≈3.12米.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.20.一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分)4 5 6 7 8 9甲组(人)1 2 5 2 1 4乙组(人)1 1 4 5 2 2(1)请你根据上述统计数据,把下面的图和表补充完整.统计量平均分方差中位数合格率优秀率甲组 6.8 2.56 6 80.0% 26.7%乙组6.8 1.76 786.7% 13.3%(2)下面是小明和小聪的一段对话.请你根据(1)中的表,写出两条支持小聪的观点的理由.小明:我认为,因为甲组的优秀率高于乙组,所以甲组的成绩更好于乙组;小聪:我认为:乙组的成绩要好于甲组.考点:条形统计图;加权平均数;中位数;方差.分析:(1)根据加权平均数的求法,中位数的定义,可得答案;(2)根据方差的性质,可得乙的成绩稳定,再根据中位数、合格率的比较,可得答案.解答:解:(1)根据测试成绩表,补全统计图如图:∵甲组平均分(4×1+5×2+6×5+7×2+8×1+9×4)÷15=6.8,。