数学大题题型通解

合集下载

数学运算题型解析

数学运算题型解析

行测数学运算题型(1)尾数计算问题1.尾数计算法知识要点提示:尾数这是数学运算题解答的一个重要方法,即当四个答案全不相同时,我们可以采用尾数计算法,最后选择出正确答案例1 99+1919+9999的个位数字是()。

A.1 B.2 C.3 D.7 (2004年中央A、B类真题)解析:答案的尾数各不相同,所以可以采用尾数法。

9+9+9=27,所以答案为D2.自然数N次方的尾数变化情况知识要点提示:我们首先观察2n 的变化情况21的尾数是222的尾数是423的尾数是824的尾数是625的尾数又是2我们发现2n的尾数变化是以4为周期变化的即21、25、29……24n+1的尾数都是相同的。

2n是以“4”为周期进行变化的,分别为2,4,8,6,2,4,8,6,........3n是以“4”为周期进行变化的,分别为3,9,7,1,3,9,7,1 ……7n是以“4”为周期进行变化的,分别为7,9,3,1,7,9,3,1 ……8n是以“4”为周期进行变化的,分别为8,4,2,6,8,4,2,6 ……4n是以“2”为周期进行变化的,分别为4,6,4,6,……9n是以“2”为周期进行变化的,分别为9,1,9,1,……5n、6n尾数不变。

例1 19881989+19891988的个位数是(2000年中央真题)A.9 B.7 C.5 D.3解析:由以上知识点我们可知19881989 的尾数是由81989的尾数确定的,1989÷4=497余1,19881989 的尾数为8。

我们再来看19891988的尾数是由91988的尾数确定的,尾数为1。

综上我们可以得到19881989 + 19891988 尾数是8+1=9,。

(2)、容斥容斥原理关键就两个公式:1. 两个集合的容斥关系公式:A+B=A∪B+A∩B2. 三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C请看例题:【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( )A.22B.18C.28D.26【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50;A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。

最新10月全国自学考试高等数学(工本)试题及答案解析

最新10月全国自学考试高等数学(工本)试题及答案解析

全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。

敬献给李政道博士——五猴分桃类型题简易通解公式上传.doc2

敬献给李政道博士——五猴分桃类型题简易通解公式上传.doc2

敬献给若贝尔奖获得者李政道博士——五猴分桃类型题简易通解公式(完善版)序:“五猴分桃问题”的前身是国外著名的“水手分椰子问题”,剧说,最早是由伟大物理学家狄拉克于1926年提出来的, 随后, 在经过美国数学科普大师马丁* 加德纳的介绍、推广后,该题得到了更为广泛的流传。

1979年,“诺贝尔奖”获得者李政道博士, 序:“五猴分桃问题”的前身是国外著名的“水手分椰子问题”,剧说, 在“中国科技大学少班”讲学时,特意提到此题。

此后, 研究该题的简易计算方法,迅速风靡国内曾对“水手分椰子”的广泛流传起过重要作用的, 著名现代数理逻辑学家怀德海, 对此题给出过一个答案为(-4)巧妙的特解。

在后来者的不断努力下,一些比较简便的方法也逐步出现。

但严格的来说:目前所取得的成果,基本上还是局限于“五猴分桃”这一个具体题目上,离全面而又简捷地求解所有这种类型的题目,还存在着较大的距离。

1979年,本人有幸在月刊《中国青年》看到了“五猴分桃”一题,并用不定方程求得其解。

随后演算推导出能解决所有这种类题型目的简易通解公式:y=a n -db/c 。

但直到前段时期才惊呀发现: 寻找“五猴分桃”类型题的简易计算方法,竟是一个国内、外已研讨了数十年的热门话题,而且至今仍未找到较好解决办法。

于是本人通过继续对该问题的分析研究,进一步完善了该简易通解公式的求解体系,现发表与大家共同分享:一,五猴分桃类型题简易通解公式及特殊形式:1.五猴分桃问题的简易通解公式 y=a(a/m)n-1-db/c其中:y ── 被分的桃子的总个数n ── 总共分的次数(可为任意数)a ── 每次分的份数, (可为任意数)b ── 每次分a 份后的余数.c ──每次分a份后拿走的份数,d ──每次分a份后拿走c份后,剩下再分的份数.m —— (a/d)的最大公约数注:(1)在上试公式中,按照这种类型题题意的要求;y、a、b、c、d、n、m都为正整数,(2)当b/c不为正整数时,题目本身无解;若b/c为正整数时,则题目必定有解(后面会有论述)。

大二高等数学试卷及答案

大二高等数学试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在区间(a,b)内连续,则其在(a,b)内一定可积的是:A.有界函数B.无界函数C.奇函数D.偶函数2.微分方程y''5y'+6y=0的通解为:A.y=C1e^x+C2e^3xB.y=C1e^2x+C2e^3xC.y=C1e^x+C2e^-6xD.y=C1e^2x+C2e^-3x3.级数∑n=1∞(n^2/n!)的收敛性是:A.绝对收敛B.条件收敛C.发散D.无法确定4.在空间直角坐标系中,曲面z=x^2+y^2的切平面方程在点(1,1,2)处为:A.z=2x+2y1B.z=x+y1C.z=2x+2y+1D.z=x+y+15.设矩阵A为对称矩阵,则A的特征值:A.一定全为实数B.一定全为正数C.一定互不相同D.一定存在复数特征值二、判断题(每题1分,共5分)1.若函数f(x)在点x=a处可导,则f(x)在点x=a处一定连续。

()2.若函数f(x)在区间(a,b)内单调增加,则其导数f'(x)在(a,b)内一定大于0。

()3.级数∑n=1∞1/n^2是发散的。

()4.多元函数的极值点一定是函数的驻点。

()5.若矩阵A和B可交换,即AB=BA,则A和B一定有共同的特征向量。

()三、填空题(每题1分,共5分)1.函数f(x)=x^33x在x=______处取得极小值。

2.微分方程y''+4y=0的通解为y=______。

3.级数∑n=1∞(-1)^(n-1)/n的值为______。

4.曲线x^2+y^2=1在点(√2/2,√2/2)处的切线方程为______。

5.若矩阵A的特征值为λ1,λ2,λ3,则矩阵A^3的特征值为______。

四、简答题(每题2分,共10分)1.简述罗尔定理及其应用。

2.解释什么是函数的泰勒展开。

3.什么是拉格朗日中值定理?给出一个应用实例。

4.简述多元函数的极值和最值的区别。

一类数学问题的巧证和通解

一类数学问题的巧证和通解
< < 成立 ・
又 詈 < 然 立故 理 因 < 显 成 ,定 得
证 .
例 1 求 满 足 下列 条 件 的最小 正 整数 n , 这类 数 学 问题 看 似 简 单 , 解 起 来 却 极 但
易 出错 , 是 得 到 正 确 解 答 的一 些 方 法 也 都 就 不具 有通 法 的功 能 . 因此 , 文将 给 出 上述 问 本
铮< < 铮< 一< 2 导o 2
6— 0 6— 0 3
铮 _



讲 完 全类 同 于辗 转 相 除 法 , 由于 它 的 理 论 基 础 是建 立 在初 等数 论 中的 “ 分 数 ” 论 的基 连 理 础 之 上 , 明起来 比较 繁琐 ( 兴趣 的读 者 可 证 有 参 阅 文 [ ] , 只举 几 个 简 单 的例 子 来 说 明 1) 故
维普资讯
l 4ቤተ መጻሕፍቲ ባይዱ
中 等 数 学

莫 数 学 问题 的巧 证 和 通 解 *
别、文 仙
(i西 省 阳 泉 教 育学 院 ,400 1 j 0 50 )
在不 少数 学 杂志 和 各类 数 学 竞 赛 中 都 曾 出现 过类 似 于如下 命题 的一些 题 目:
同 可 号 詈 . 理 得 < , 7 < 。
因 l 以 等 两 同 】 l >, 不 式 边 减[ = 所 8


< 一1 铮 <T <
/ 7 ,


/一 7 ,
<6;




了 < < ‘
再 取 两边之 倒 数 又可 得 6<_, <7 ¨ .
( 第五届“ 希望杯” 全国数学邀请赛培训题) 解: 由定理 知

学生做数学题的一题多解释

学生做数学题的一题多解释

学生做数学题的一题多解释(一题多解)是一种很好的学习方法,它有助于学生从多个角度理解问题,培养创新思维和解决问题的能力。

下面是一个例子:
题目:一个圆形的半径是5厘米,求它的面积。

方法一:使用圆的面积公式
我们知道,圆的面积可以通过公式 A = πr² 来计算,其中 A 是面积,r 是半径。

将 r = 5 代入公式,得到 A = π × 5² = 25π 平方厘米。

方法二:使用圆的面积与直径关系
我们知道,圆的面积与直径的关系是:A = (d/2)²π,其中 d 是直径。

由于 r = d/2,所以可以将 d = 10 代入公式,得到 A = (10/2)²π = 25π 平方厘米。

方法三:使用正方形近似法
我们可以将圆近似为一个正方形,这个正方形的边长就是圆的直径。

因此,圆的面积可以看作是正方形的面积。

所以,A = d²/4 = 10²/4 = 25π 平方厘米。

通过以上三种方法,我们可以得到相同的答案,这有助于学生从多个角度理解问题,提高解决问题的能力。

考研数学考点解析及必考题型总结

考研数学考点解析及必考题型总结

考研数学考点解析及必考题型总结考研数学考点分析及和考题型总结考研数学的卷种分三种,分别为数学一、数学二、数学三。

这三个卷中针对的专业不同,须使用数学一的招生专业为工学门类中的力学、机械工程、光学工程、仪器科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、交通运输工程、传播与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业,授工学学位的管理科学与工程的一级学科。

工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科,专业的选用数学一,对数学要求较高的选用数学二。

专业不同对数学的要求自然不同,从难度看数学一最难,其次是数学二,最后是数学三,从考试范围看,数学一考试范围最多,数学三次之,最后,数学二,三种卷中大部分考试内容是一样的,数一数二数三又各有自己特点和单独考查的内容。

下面跨考教育数学教研室边一老师就数学一单独考查内容进行一一盘点。

一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。

以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。

其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,今年(2017年)考查了第一型曲面积分及投影曲线,散度旋度常见于小题。

高等数学(一)答案解析

高等数学(一)答案解析

高等数学(一)答案解析一、单项选择题1.当x →0时,以下函数是无穷小量的是 A.x eB.()ln 2x +C.sin xD.cos x【解析】0limsin 0x x →=【考点】无穷小的定义;等价无穷小 【答案】C2.平面2348x y z -+=与直线12234x y z-+==-的位置关系是 A.平行B.垂直C.相交但不垂直D.直线在平面上【解析】直线的方向向量(2,-3,4)和平面的法向量一致,故垂直直线过(1,-2,0),带入平面方程等式成立,点在平面内,故相交 【考点】平面与直线的位置关系 【答案】B3.微分方程780y y y '''+-=的通解为 A.812x x y C e C e -=+ B.812x x y C e C e --=+ C.812x x y C e C e =+D.812x x y C e C e -=+【解析】27801,8r r r r +-=⇒==- 【考点】齐次微分方程通解 【答案】D4.曲线32231y x x =+-的拐点是 A.11,22⎛⎫-- ⎪⎝⎭B.11,22⎛⎫- ⎪⎝⎭C.()1,0-D.()0,1-【解析】322111166;1260,2312222y x x y x x y ⎛⎫⎛⎫'''=+=+=⇒=-=⨯-+--=- ⎪ ⎪⎝⎭⎝⎭【考点】拐点的计算 【答案】A5.以下级数收敛的为 A.232112n n n n ∞=-+∑B.1sin 3n n π∞=∑C.211ln 1n n ∞=⎛⎫+ ⎪⎝⎭∑D.213ln 21n nn ∞=+∑【解析】排除法:通项趋于0(n →∞)AC 符合,BD 不符合;而23211A :~2n n n n -+,由11nn -∑发散知A 发散;故选C 【考点】级数的敛散性 【答案】C 二、填空题 6.函数()f x =的定义域为 .【解析】1033xx -≥⇒≥ 【考点】定义域 【答案】[)3,+∞ 7.曲线12ln y x x=+在点(1,1)点处的切线方程为 .【解析】1221221,|1x x y y x x x=-''=-+==,切线:()()111y x y x -=-⇒= 【考点】曲线在一点切线方程 【答案】y=x8.若()1,[2()3()]8bbaaf x dx f xg x dx =+=⎰⎰,则()baf g x dx =⎰.【解析】[2()3()]23()8bbaaf xg x dx g x dx +=+=⎰⎰,则()2bag x dx =⎰【考点】定积分的性质 【答案】29.已知两点A (-1,2,0)和B (2,-3AB 同方向的单位向量为 .【解析】222(3,3(5)36AB =-+-+=单位化:3515,,6626⎛⎛-=- ⎝⎭⎝⎭【考点】向量的表达;单位化【答案】152,,266⎛⎫- ⎪ ⎪⎝⎭10.已知函数(),f x y 在R 2上连续,设12201(,)(,)xxI dx f x y dy dx f x y dy -=+⎰⎰⎰⎰,则交换积分顺序后I = .【解析】2;22y x x y y x x y ===-⇒=-【考点】二重积分【答案】2120(,)yy d y f x y dx -⎰⎰ 三、解答题11.求极限3223lim 2x x x x x x →∞+-++【解析】32222322lim lim 222x x x x x x x x x x x →∞→∞+--==++++ 12.求极限203sin limxx t dt x →⎰【解析】2220322000sin sin 1limlim lim 333xx x x t dt x x x x x →→→===⎰ 13.求不定积分ln x x+ 【解析】2ln ln 12ln ln 2(ln )2x x x dx x xd x x x c x x+=+==+⎰⎰ 14.求过点(1,-2,2)且与两平面x +2y-z =1和2x+y+3z =2都垂直的平面方程. 【解析】该平面法向量为121(7,5,3)213i j kn =-=--该平面方程为()()()7152320x y z --+--=,化简:7x -5y -3z =11 15.已知函数sin yz x x=,求2z x y ∂∂∂.【解析】sin cos z y y yx x x x∂=-∂ 22211sin cos cos cos sin sin z y y y y y y y y yx y y x x x x x x x x x x x∂∂⎛⎫=-=-+= ⎪∂∂∂⎝⎭ 16.计算二重积分()22cos Dx y dxdy +⎰⎰,其中D 是由直线3,33y x y x ==与圆222x y π+=所围成的第一象限的闭区域. 【解析】()222222232206111cos cos cos sin sin626262212Dy x y dxdy d r rdr r dr r ππππππππππθ+=====⎰⎰⎰⎰⎰17.求微分方程x y y e x '+=+的通解. 【解析】设()()1,x p x q x e x ==+则()11dx dx x y e C e x e dx -⎡⎤⎰⎰=++⎢⎥⎣⎦⎰()x x x e C e x e dx -⎡⎤=++⎢⎥⎣⎦⎰()x x x e C e x de -⎡⎤=++⎢⎥⎣⎦⎰212x x x x e C e xe e -⎡⎤=++-⎢⎥⎣⎦112x x Ce e x -=++-18.求幂级数201n n x n +∞=+∑的收敛域及和函数.【解析】(1)321lim||12n n n x n x n x ++→∞+=<+ x =1时,011n n ∞=+∑发散 x =-1时,200(1)(1)11n nn n n n +∞∞==--=++∑∑收敛 收敛域为[-1,1)(2)设2100()11n n n n x x S x x n n ++∞∞====++∑∑记110()1n n x S x n +∞==+∑,则()()1S x xS x =()11011x n n S x x∞+='==-∑ 101()ln(1)1xS x dx x x==---⎰()()ln 1S x x x =--19.求曲线24y x =-+与直线y =-2x +4所围成图形的面积. 【解析】画图象;()2204(24)S x x dx =-+--+⎰()2202x x dx =-+⎰232013x x ⎛⎫=-+ ⎪⎝⎭ 43=20.证明:当x >1时,ln 3x x +>. 【解析】设()ln 3F x x x =+-1()1F x x '=+-= 1x =时()0F x '=,()0F x =x >1时,()0F x '>,()F x 单调递增 故x >1时,()0F x >,即ln 3x x +>21.设函数()f x 在[0,1]上连续,且()11f =,证明:对于任意λ∈(0,1),存在ξ∈(0,1),使得2()f λξξ=. 【解析】 由结论处2()f λξξ=提示可设()()2F x x f x λ=-,则()F x 在[0,1]上连续且()00F λ=-<,()()110,01F λλ=-><<则()()010F F <,由零点定理,至少存在一点ξ∈(0,1),使得()0F ξ=,即()2f λξξ=2020年山东专升本考试 高等数学(Ⅲ)参考答案一、单选题二、填空题 11、[3,+∞) 12、2 13、24x e 14、4 15、6e -三、计算题16、由()11x f x x +=-,可知11()11[()]1()111x f x x f f x x x f x x +++-===+---.17、2222221limlim lim 132(2)(1)1x x x x x x x x x x →→→--===-+---18、0011lim lim 122x x x x e x e x →→+-+==19、()00sin 0lim ()lim x x a x f f x b a b x +'+→→⎛⎫==+=+ ⎪⎝⎭ ()000lim ()lim ,(0)22x x x f f x a a f +--→→⎛⎫==-=-= ⎪⎝⎭且 ∵函数()f x 在点x =0处连续,∴22a b a +=⎧⎨-=⎩,即a =-2,b =420、222ln(21)21dy x xx dx x =+++,122ln 33x dy dx =∴=+ 21、2222cos 431132cos43sin 42x x dx xdx dx x C x x x-=-=++⎰⎰⎰ 22t =,则2x t =,2dx tdt =,且当x =1时,t =1;当x =4时,t =2 2422211111ln 22(12ln )24ln t tdt t dt tdt t +∴==+=+⎰⎰⎰⎰22211124ln 4(ln )28ln 2418ln 22t t t t dt dt '=+-=+-=-⎰⎰四、应用题23、2()66126(2)(1)f x x x x x '=--=-+, 令()0f x '=,解得122,1x x ==- 而()126,(2)180,(1)180f x x f f ''''''=-=>-=-<∴()f x 的极小值为f (2)=-15,()f x 的极大值为f (-1)=1224、211222010111131ln ln 24488x x dx x dx x x x x ⎛⎫⎛⎫⎛⎫-+-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰山东省2020年专升本考试真题高等数学(III )一、单选题(本大题共10个小题,每小题3分,共30分) 1.以下区间是函数sin y x =的单调递增区间的是 A.0,2π⎡⎤⎢⎥⎣⎦B.[]0,πC.,2ππ⎡⎤⎢⎥⎣⎦D.3,zππ⎡⎤⎢⎥⎣⎦2.当x →0时,以下函数是无穷小量的是 A.x eB.1x +C.sin xD.cos x3.cos x x '⎛⎫= ⎪⎝⎭A.sin xB.sin x -C.2sin cos x x xx +D.2sin cos x x xx --4.极限ln lim 2x xx →+∞=+A.0B.1C.2D.+∞5.函数3y x =+dy =A.23x dx ⎛+ ⎝⎭ B.23x dx ⎛⎝C.2x dx ⎛ ⎝⎭D.2x dx ⎛⎝6.2tan x d t dt dx =⎰ A.2tan2x xB.22tan x xC.tan 2xD.2tan x7.不定积分()f x dx '=⎰ A.()f xB.()f x 'C.()f x C +D.()f x C '+8.点x =1是函数211x y x -=-的 A.连续点B.可去间断点C.跳跃间断点D.无穷间断点9.设()y y x =是由方程y e x y =-所确定的隐函数,则y'=10.己知函数()f x 在[-1,2]上连续,且01()2f x dx -=⎰,10(2)1f x dx =⎰,则21()=f x dx -⎰A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题3分,共15分) 11.函数y =的定义域为.12.曲线y =2ln x +1在点(1,1)处切线的斜率k =.13.已知函数()2x f x e =,则()=f x '' . 14.若1()2f x dx =⎰,1[3()2]f x dx -=⎰.15.极限10lim(12)xx x →-=.三、计算题(本大题共7个小题,每小题6分,共42分) 16.已知函数()11x f x x +=-,()1,x ∈+∞,求复合函数()f f x ⎡⎤⎣⎦ 17.求极限222lim32x x x x →--+18.求极限01lim 2x x e x x→+-19.已知函数sin ,0()2,0,02a xb x x f x x x a x ⎧+>⎪⎪==⎨⎪⎪-<⎩在x =0处连续,求实数a ,b 的值 20.已知函数()2ln 21y x x =+,求1x dydx = 21.求不定积分222cos 43x x dx x -⎰22.求定积分41⎰四、应用题(本大题共2个小题,第23小题6分,第23小题7分,共13分) 23.求函数()3223125f x x x x =--+的极值,并判断是极大值还是极小值. 24.求曲线1y x =与直线y=x ,14y x =所围成的在第一象限内的图形的面积.山东省2020年专升本真题试卷高等数学(二)答案解析一、单项选择题1.当x →0时,以下函数是无穷小量的是A.21x + C.sin xD.cos x 【解析】0limsin 0x x →=【考点】无穷小的定义;等价无穷小【答案】C2.以直线y =0为水平渐近线的曲线的是A.x y e =B.ln y x =C.tan y x =D.3y x =【解析】lim .0x x e A →-∞=(或根据四个函数图像判断)【考点】水平渐近线【答案】A3.若()2b a f x dx =⎰,()1b a g x dx =⎰,则[3()2()]ba f x g x dx -=⎰A.1B.2C.3D.4 【解析】[3()2()]32214ba f x g x dx -=⨯-⨯=⎰【考点】定积分的性质【答案】D4.微分方程2sin y dyx xdx e +=的通解为A.2cos y e x x C =++B.2cos y e x x C =-+C.2sin y x e x C =++D.2sin y x e x C =+-【解析】22sin cos y y e dy x xdx e x x C =+⇒=-+⎰⎰【考点】可分离变量微分方程通解【答案】B5.已知函数(),f x y 在R 2上连续,设21320(,)y y I d y f x y dx -=⎰⎰,则交换积分顺序后I = A.231320010(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰⎰B.213320010(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰⎰C.13320010(,)(,)x x dx f x y dy dx f x y dy -+⎰⎰⎰ D.31320010(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰ 【解析】2(0,1)x y y x y =⇒=;3322x x y y -=-⇒= 【考点】二重积分【答案】D二、填空题6.函数()3f x x =-的定义域为 .【解析】303x x ->⇒>【考点】定义域【答案】(3,+∞)7.已知函数()332f x x x =+-,()tan g x x =,则=4f g π⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦ .【解析】3[()](tan )3tan 2f g x x x =+-tan 14π⎛⎫= ⎪⎝⎭,所以=24f g π⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦【考点】复合函数【答案】28.曲线2ln y x x =+在点(1,2)点处的切线斜率为 . 【解析】112,3x y y x=''=+=【考点】曲线在一点切斜率;导数的应用【答案】39.曲线1y x=与直线x =1,x =3及x 轴所围成图形的面积为 . 【解析】311ln3ln1ln3dx x=-=⎰ 【考点】定积分的应用【答案】ln310.已知函数()2arctan 2z x y =,则全微分dz = . 【解析】2222222222arctan(2),,2arctan(2)1(2)1414z z x x x y x dz x y dx dy x y y y y ∂∂====+∂∂+++ 【考点】全微分【答案】2222arctan(2)14x dz x y dx dy y=++ 三、解答题11.求极限2211lim 322x x x x →⎛⎫- ⎪-+-⎝⎭【解析】22222111(1)21lim lim lim lim 1322(1)(2)(1)(2)1x x x x x x x x x x x x x x →→→→---⎛⎫-====- ⎪-+------⎝⎭ 12.求极限2030sin lim x x t dt x →⎰【解析】2220322000sin sin 1lim lim lim 333x x x x t dt x x x x x →→→===⎰ 13.已知函数2,0()1,0,0x x b x f x x ae b x ⎧->⎪==⎨⎪+<⎩在x =0处连续,求实数a ,b 的值【解析】在x =0处连续,则00lim ()lim ()(0)1x x f x f x f +-→→=== 20lim 11x x b b b +→-=-=⇒=-0lim 112x x ae b a b a a -→+=+=-=⇒= 14.求不定积分1ln x dx x +⎰【解析】21ln 1ln 1ln ln ln ln (ln )2x x dx dx dx x xd x x x C x x x +=+=+=++⎰⎰⎰⎰15.求定积分20π(1)cos x xdx -⎰.【解析】20(1)cos x xdx π-⎰2200cos cos x xdx xdx ππ=-⎰⎰2222200000sin sin sin sin 1cos 1222xd x x x x xdx x πππππππ=-=--=+-=-⎰⎰16.求微分方程1x y y e '+=+的通解.【解析】设()()1,1x p x q x e ==+则()111dx dx x y e C e e dx -⎡⎤⎰⎰=++⎢⎥⎣⎦⎰ ()1x x x e C e e dx -⎡⎤=++⎢⎥⎣⎦⎰ ()1x x x e C e de -⎡⎤=++⎢⎥⎣⎦⎰ 212x x x e C e e -⎡⎤=++⎢⎥⎣⎦ 112x x Ce e -++ 17.已知函数sin y z x x=,求2z x y ∂∂∂. 【解析】sin cos z y y y x x x x∂=-∂22211sin cos cos cos sin sin z y y y y y y y y y x y y x x x x x x x x x x x∂∂⎛⎫=-=-+= ⎪∂∂∂⎝⎭ 18.计算二重积分D xydxdy ⎰⎰,其中D 是由直线y=x ,y =5x 与y=-x + 6所围成的闭区域. 【解析】153601x x D x x xydxdy dx xydy dx xydy -+=+⎰⎰⎰⎰⎰⎰ 13320112186x dx x x dx =+-⎰⎰ ()314230139232023x x x =+-=+= 19.假设某产品的市场需求量Q (吨)与销售价格P (万元)的关系为Q (P )=45-3P ,其总成本函数为C (Q )=20+3Q ,P 为何值时利润最大,最大利润为多少?【解析】设利润为2()(453)[203(453)]354155f P QP C P P P P P =-=--+-=-+-()65409f P P P '=-+=⇒=P <9,f (P )单调递增;P >9,f (P )单调递减故P =9时利润最大,f (9)=88(万元)20.设函数()f x 在[1,2]上连续,在(1,2)内可导,且f (1)=4f (2),证明:存在(1,2)ξ∈,使得2()()0f f ξξξ'+=.【解析】由结论处2()()0f f ξξξ'+=提示可设()()2F x x f x =,则()F x 在[1,2]上连续,在(1,2)内可导且F (1)=f (1),F (2)=4f (2)=F (1),则由罗尔定理,至少存在一点(1,2)ξ∈,使得2()2()()0F f f ξξξξξ''=+=,则2()()0f f ξξξ'+=。

新考研数三真题及解析

新考研数三真题及解析

2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. 1 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.2 函数(,)f u v 由关系式[(),]()f xg y y x g y =+确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂.3 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.4 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为. 5 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .6 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN , 1,,21n X X X和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. 7 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界A 1 , 0.B 0 , 1.C 1 , 2.D 2 , 3.8 设f x 在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则A 0x =必是()g x 的第一类间断点.B 0x =必是()g x 的第二类间断点.C 0x =必是()g x 的连续点.D ()g x 在点0x =处的连续性与a 的取值有关.9 设()(1)f x x x =-, 则A 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点.B 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点.C 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.D 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.10 设有下列命题:① 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.② 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.③ 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. ④ 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以下命题中正确的是A①② B②③ C③④ D①④11 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 A 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . B 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . C 至少存在一点),(0b a x ∈,使得0)(0='x f .D 至少存在一点),(0b a x ∈,使得)(0x f = 0.12 设n 阶矩阵A 与B 等价, 则必有A 当)0(||≠=a a A 时, aB =||. B 当)0(||≠=a a A 时, a B -=||.C 当0||≠A 时, 0||=B .D 当0||=A 时, 0||=B . 13 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系A 不存在.B 仅含一个非零解向量.C 含有两个线性无关的解向量.D 含有三个线性无关的解向量.14设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 A 2αu . B 21αu-. C 21αu -. D αu -1.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. 15 本题满分8分求)cos sin 1(lim 2220xxx x -→.16 本题满分8分求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域如图.17 本题满分8分设f x , gx 在a , b 上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x a , b ,⎰⎰=babadt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.18 本题满分9分 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. I 求需求量对价格的弹性d E d E > 0;II 推导)1(d E Q dPdR-=其中R 为收益,并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. 19 本题满分9分设级数的和函数为()S x . 求:I ()S x 所满足的一阶微分方程;II ()S x 的表达式. 20本题满分13分设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,I β不能由321,,ααα线性表示;II β可由321,,ααα唯一地线性表示, 并求出表示式;III β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. 21 本题满分13分设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .I 求A 的特征值和特征向量; Ⅱ 求可逆矩阵P , 使得AP P 1-为对角矩阵.22 本题满分13分 设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 求I 二维随机变量),(Y X 的概率分布; II X 与Y 的相关系数 XY ρ; III 22Y X Z+=的概率分布.23 本题满分13分设随机变量X 的分布函数为其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,I 当1=α时, 求未知参数β的矩估计量;II 当1=α时, 求未知参数β的最大似然估计量; III 当2=β时, 求未知参数α的最大似然估计量.2004年全国硕士研究生入学统一考试数学三试题解析一、填空题 1答案1,4a b ==-详解本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,1 若()0g x →,则()0f x →;2 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x ae xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x 否则根据上述结论2给极限是0,而不是5,由 0lim()lim lim 10xx x x x ea e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = 4.因此,a = 1,b = 4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得因此,a = 1,b = 4. 2答案 2()()g v g v '-详解应先写出f u , v 的表达式,再求偏导数令()u xg y =,v y =,从而:()()u ux g y g v ==,于是由[(),]()f xg y y x g y =+, 推知 f u , v =)()(v g v g u+, 所以 )(1v g u f =∂∂,2fu v ∂∂∂1()f v u v g v ⎛⎫⎛⎫∂∂∂== ⎪ ⎪∂∂∂⎝⎭⎝⎭2()()g v g v '=- 3答案12- 详解方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222x x xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-. 4答案 2. 详解方法1:因为213232221321)()()(),,(x x x x x x x x x f ++-++=由二次型1211(,,,)n nn ij i j i j f x x x a x x ===∑∑中,ij ji a a =,所以二次型对应的矩阵的i j 行,列元素是i j x x 与乘积项系数的一半,其中.i j ≠于是题中二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=211121112A , 由初等变换得从而 2)(=A r , 由二次型的矩阵的秩等于二次型的秩,知二次型的秩为2. 方法2:因为213232221321)()()(),,(x x x x x x x x x f ++-++=2322321)(23)2121(2x x x x x -+++=2221232y y +=, 其中,21213211x x x y ++= 322x x y -=. 二次型的秩()r f =矩阵的秩()r A =正负惯性指数之和p q +,所以此二次型的秩为2.5 答案e1详解本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=6答案2σ.详解根据公式()()()E X Y E X E Y +=+和样本方差是总体方差的无偏估计量,又1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体简单随机样本,X 和Y 都服从正态分布即是12211[()]()1n i i E X X D X n σ=-==-∑,12211[()]()1n i i E Y Y D Y n σ=-==-∑. 所以有()1221[()]1n ii E XX n σ=-=-∑, ()1221[()]1n i i E Y Y n σ=-=-∑对于题给式子将分子分离出来即可出现上式,也就不难求出结果.22212121[(1)(1)]2n n n n σσσ=-+-=+-,故应填 2σ.二、选择题 7答案A 详解方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----, 220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----,22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----, 222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----,所以,函数f x 在1 , 0内有界,故选A.方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f x 在闭区间a , b 上连续,则f x 在闭区间a , b 上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选A. 8答案 D 详解考查极限)(lim 0x g x →是否存在,如果存在,是否等于g 0,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim()lim ()x x u g x f u f u x x →→→∞= = = a ,又(0)0g =, 所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选D. 9 答案C详解由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩, 从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.10答案B详解可以通过举反例及级数的性质来说明4个命题的正确性. ①是错误的,如令nnu )1(-=,lim 0n n u →∞≠,所以∑∞=1n n u 发散,而()()2121()1111n n n uu ∞-=+=-++-++∑收敛.②是正确的,因为级数∑∞=+11000n n u 比级数∑∞=1n n u 少了前1000项,改变、增加或减少级数的有限项,不改变级数的敛散性,所以这两个级数同敛散.③是正确的,因为由1lim 1>+∞→n n n u u ,从而有1lim 1n n n u u +→∞>,于是正项级数1n n u ∞=∑在项数充分大之后,通项严格单调增加,故lim0n n u →∞≠,从而lim 0n n u →∞≠,所以∑∞=1n n u 发散.④是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而11111()n n n u v n n n n ∞=⎛⎫⎛⎫+=-++-++⎪ ⎪⎝⎭⎝⎭∑收敛. 故选B.11答案D详解利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明D 是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明A 、B 、C 正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项C 正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项A 正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项B 正确,故选D.12答案D 详解方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选D. 方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选D.方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:1A 中某两行列互换得B ,则B A =-.2A 中某行列乘(0)k k ≠得B ,则B k A =. 3A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选D.13答案B详解由定理:若12,x x 是Ax b =的解,则12x x -是对应齐次方程组0Ax =的解,及12ξξ≠,得120ξξ-≠是0Ax =的解.由齐次线性方程组有非零解的充要条件,知()r A n <. ,0*≠A 由伴随矩阵的定义,知A 中至少有一个代数余子式0,ij A ≠即A 中有1n -子式不为零,由()A r =秩的充要条件是A 的非零子式的最高阶为r ,故()1,r A n ≥-再由上面的()r A n <,得()1r A n =-,故基础解系所含向量个数为(1)1n n --= ,故选B. 14答案C详解利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选C. 方法2:图一 图二如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选C.三、解答题15详解求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x 等2202(2)lim 6x x x →43=. 16详解利用对称性与极坐标计算. 方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y xy x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:1D σ化为极坐标:221{(,)|4}{(,)|02,02}D x y x y x y r θπ=+≤=≤≤≤≤所以1D σ20d πθ=⎰⎰2220d r dr πθ=⎰⎰;2D σ化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以2D σ32cos 22d πθπθ-=⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以)Dy d σ⎰⎰DDyd σσ=+⎰⎰16(32)9π=-. 方法2:)Dy d σ⎰⎰DDyd σσ=+⎰⎰D 20σ=+⎰⎰上半321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-. 17详解令()F x f x g x =-()(),⎰=xadt t F x G )()(. 因为已知⎰⎰≥xax adt t g dt t f )()(,所以 ()()x a G x F t dt =⎰[]()()xxxaaaf tg t dt f t dt g t dt =-=-⎰⎰⎰()()0≥,[,]x a b ∈()G a ()aaF t dt =⎰0=,又⎰⎰=babadt t g dt t f )()(,所以 ()()b aG b F t dt =⎰()()()()b b baaaf tg t dt f t dt g t dt =-=-⎰⎰⎰0=从而()b axF x dx ⎰()()G x F x ' =()b axdG x ⎰分部积分()()bba axG x G x dx -⎰()()0G a G b == ()b aG x dx -⎰,由于()0,[,]G x x a b ≥∈,故有0)(≤-⎰badx x G , 即()baxF x dx ⎰0≤也即是 []()()bax f x g x dx -⎰()()bbaaxf x dx xg x dx =-⎰⎰0≤因此⎰⎰≤ba b a dx x xg dx x xf )()(.18详解I 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; II 由R PQ =,得要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.19详解对()S x 进行求导,可得到()S x 所满足的一阶微分方程,解方程可得()S x 的表达式.I +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 (0)0S =, 因此()S x 满足下述一阶线性微分方程及相应的初始条件:()S x ')](2[2x S x x +=,(0)0S =. 即 3()()2x S x xS x '-=,(0)0S =II 3()()2x S x xS x '-=为一阶线性非齐次微分方程,其对应的线性齐次微分方程为:()()0S x xS x '-=,分离变量:()()dS x xdx S x =,两边积分:21ln ()2x S x C =+,22122()x x C S x e Ce +== 用常数变易法来求非齐次方程的通解:令()22()x S x C x e =于是:()()2222()x x S x xC x e C x e ''=+代入3()()2xS x xS x '-=:()()()22232222x x x x xC x e C x e xC x e'+-= 所以, ()2322x x C x e dx c -=+⎰ 因为(0)0S =,所以()20220102S ce =--+=1c ⇒=, 所以222()12x x S x e =--;或直接由通解公式,方程3()()2x S x xS x '-=的通解为由初始条件(0)0S =,得1C =. 故222()12x x S x e =--. 20详解β可否由321,,ααα线性表示的问题可以转化为线性方程组112233x x x αααβ++=是否有解的问题.因此,设可有数123,,,x x x 使得112233x x x αααβ++=. 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⨯2行3+3行111101000a b a b -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.(I)当0=a 时, b 是任意数时,有1111(,)001000A b b β-⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦.可知,),()(βA r A r ≠. 由非齐次线性方程组有解的充要条件:系数矩阵的秩等于增广矩阵的秩,知方程组无解, β不能由321,,ααα线性表示.(II)当0≠a , 且b a ≠时, 由可知,3),()(==βA r A r , 由非齐次线性方程组有解得充要条件:系数矩阵的秩等于增广矩阵的秩,方程组有解,由定理:设A 是m n ⨯矩阵,方程组Ax b =,则,1有唯一解()()r A r A n ⇔==;2有无穷多解()()r A r A n ⇔=<3无解:()1()r A r A ⇔+= 可知方程组有唯一解.由同解阶梯形方程求解,得:111x a =-, 21x a=, 30x =. 此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=.(III)当0≠a ,0≠=b a 时, 对矩阵),(βA 施以初等行变换, 由1111(,)010000A a a β-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111112011120000a a -⎡⎤⎢⎥⎢⎥÷--⎢⎥⎢⎥⎣⎦行行行1100110110000a a ⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 可知,2),()(==βA r A r ,由定理:设A 是m n ⨯矩阵,方程组Ax b =,则,2有无穷多解()()r A r A n ⇔=<,知方程组有无穷多解,其全部解为111x a =-, 21x c a=+, 3x c =, 其中c 为任意常数.β可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=.21分析这是具体矩阵的特征值和特征向量的计算问题, 可以直接用0||=-A E λ求特征值,和0)(=-x A E λ求特征向量或将A 分解令(1)A B b E =+-,其中[1]n n B b ⨯=,则()A f B =,f 是多项式,求B 的特征值、特征向量. 详解I 方法1:1 0≠b时,故,A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,因为矩阵的秩为1()(1)r E A n λ-=-,故方程组1()0E A x λ-=,基础解系的个数为1()n r E A λ--(1)1n n =--=,故有一个自由未知量.选1x 为自由未知量,取11x =, 解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为T k ξk )1,,1,1,1(1 = k 为任意不为零的常数.对b λλn -===12 ,1110001()000b ⎛⎫⎪⎪÷- ⎪⎪⎝⎭行,2,,.i n =矩阵的秩为()1,2,,.i r E A i n λ-== 故方程组()0,2,,i E A x i n λ-==,基础解系的个数为()i n r E A λ--1n =-,2,,.i n =故有1n -个自由未知量. 选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0);(0,1,,0);(0,0,,1)---,得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 n k k k ,,,32 是不全为零的常数.2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.方法2:111b b b b A b b⎛⎫⎪ ⎪= ⎪⎪⎝⎭(1)(1)(1)b b b bb b b b b b b b +-⎛⎫⎪+- ⎪= ⎪ ⎪+-⎝⎭[]111,1,,1(1)1b b E ⎡⎤⎢⎥⎢⎥=+-⎢⎥⎢⎥⎣⎦(1)bB b E =+-,其中[],1,1,,1TTB ααα==若B 有特征值λ,特征向量ξ,则当f 是多项式时,()f B 有特征值()f λ,其特征向量仍是ξ. 因()(),TTn ααααααα==故,n λ=是T αα的特征值,其对应特征向量为[]11,1,,1Tξα==.从而有(1)T A b b E αα=+-,有特征值111(1)nb b n b λ=+-=+-,其对应特征向量仍是[]11,1,,1Tξα==.又()T TTαααα=,TB αα=是实对称阵,由可知()1r B =,由实对称矩阵的特性:()r E A n k λ-=-,其中k 为特征值的重数,故0λ=是T B αα=的1n -重特征值,其对应的特征向量应满足(0)0T T E x x αααα-=-=,即只需满足120n x x x +++=,其基础解系的个数为1n -,故有1n -个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值 (1,0,,0);(0,1,,0);(0,0,,1)---. 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .从而知(1)TA b b E αα=+-有1n -重特征值(0)0(1)1f b b b λ==⨯+-=-.对应的特征向量仍是23,,,n ξξξ,其全部特征向量为 n n ξk ξk ξk +++ 3322n k k k ,,,32 是不全为零的常数.Ⅱ1当0≠b时,由A 与对角矩阵相似的充要条件:A 有n 个线性无关的特征向量,知,令),,,(21n ξξξP =,则2 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.22分析本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意;先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.详解I 由于1()()(|)12P AB P A P B A ==,,61)()()(==B A P AB P B P 所以 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y XP , )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P 或32121611211}0,0{=---===Y XP , 故(,)X Y 的概率分布为X 0 132 121 1 61 121II ,X Y 的概率分布分别为 所以,X Y 的概率分布为X 0 1 Y 0 1由01-分布的数学期望和方差公式,则61,41==EY EX,1334416DX =⨯=,1566DY =⨯ =365, 所以{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅=====121, 故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ III Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:23详解本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.当1=α时, X 的概率密度为1,1(,)01x f x x x βββ+⎧>⎪=⎨⎪≤⎩,, 有了概率密度函数(;)f x β就不难写出似然函数1()(;).nii L f x ββ==∏I 由于11(;),1EX xf x dx x dx xβββββ+∞+∞+-∞==⋅=-⎰⎰令X ββ=-1, 解得1-=X X β, 所以, 参数β的矩估计量为1X X β=-, 其中11ni i X X n ==∑II 对于总体X 的样本值n x x x ,,,21 , 似然函数为当),,2,1(1n i x i =>时,0)(>βL ,()L β与ln ()L β在相同的β点取得最大值; 所以等式两边取自然对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d ,解得∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.III 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32 对于总体X 的样本值n x x x ,,,21 , 似然函数为当),,2,1(n i αx i =>时, α越大,)(αL 越大, 但是必须满足条件i x α≤(1,2,,)i n =;所以α的最大似然估计值为 },,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为 },,,m in{ˆ21n X X X α=.。

2020年浙江专升本高等数学真题与答案解析(详细)

2020年浙江专升本高等数学真题与答案解析(详细)

浙江省2020年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、已知函数,则x =0是函数f(x)的( )A 、连续点B 、可去间断点C 、跳跃间断点D 、第二类间断点 2、已知f (x +3)=x 3+8,则f’(x)为( )A 、3x 2B 、3(x −3)2C 、3(x +3)2D 、3x 2+6x 3、当x →0是√1+ax 23−1与tan 2x 是等价无穷小,则a 的值为( ) A 、1 B 、2 C 、3 D 、4 4、下列结论不正确的是( )A 、设函数f(x)在闭区间[a,b ]上连续,且在这区间的端点取到不同的函数值,f (a )=A 和f (b )=B ,则对于A 和B 之间的任意一个数C ,在开区间(a,b )上至少有一点ξ,使得f (ξ)=C .B 、若函数f(x)满足在闭区间[a,b ]上连续,在(a,b )内可导,那么在(a,b )上至少有一点ξ,使得f (b )−f (a )=f′(ξ)(b −a)成立.C 、若函数f(x)满足在闭区间[a,b ]上连续,那么在[a,b ]上至少有一点ξ,使得等式∫f(x)ba dx =f (ξ)(b −a)成立.D 、若函数f(x)满足在闭区间[a,b ]上连续,那么在(a,b )内必能取得最大值与最小值.5、若函数y (x )=e 3x cos x 为微分方程y ′′+py ′+qy =0的解,则常数p 和q 的值为( )A 、p =−6,q =10B 、p =−6,q =−10C 、p =6,q =−10D 、p =6,q =10二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分) 6、极限lim x→∞(x−2x+3)2x=7、设函数f(x)在x =5处可导,并且极限lim x→5f (x )−f(5)(x−5)3=3,则f ′(5)=8、lim x→0+2x3+ln(1+x)= x =2t +cos ty =ln(3+t 2)9、设 则dydx =10、函数f (x )=x 3−3x 2−9x +1在闭区间[0,3]上的最大值为 11、定积分∫xe x2−110dx =12、设函数y =y (x )是方程2x +3y +sin(xy)=0确定的隐函数,则dy =13、设函数f (x )连续,则ddx ∫etx 21f (t )dt =14、由曲线y =√2x 及直线y =x2所围成的封闭平面图形面积等于 15、广义积分∫1(x−7)2+∞8dx =三、计算题(本大题共8小题,其中16-19题每小题7分,20-23小题每小题8分,共60分)16、求极限lim x→01−cos 2x√1+cos x tan x 217、求函数f (x )=e 3x sin 2x 在x =0处的二阶导数f′′(0).18、求不定积分∫x √x+6dx19、设f (x )= 确定常数a 和b ,使得f (x )在x =0处可导.x 3+ax +3,x ≤0e x −2x +b,x >020、求定积分∫(cos √|x |+sin x1+x )π2−π2dx21、求过点M 0(1,2,3)且平行于平面2x +3y −z +1=0,又与直线L:x+21=y−13=z 4垂直的直线方程。

4月全国自考高等数学(工本)试题及答案解析

4月全国自考高等数学(工本)试题及答案解析

1全国2018年4月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( )A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面2.设函数z =x 2y ,则=∂∂xz( ) A.212-y yxB.x xyln 2C.x x yln 22 D.()12-y yx3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( ) A.2C 1x +C 2cos x B.2Cx +cos x C.cos x +C (2x -cos x ) D.C (2x -cos x )5.设幂级数∑∞--1)3(n n nx a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛2C.发散D.敛散性不定二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数y x y z cos sin =,则=∂∂xz. 7.已知dy e dx e y x yx +++是某函数()y x u ,的全微分,则()=y x u , .8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 .三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,0)并且与直线321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,yz∂∂. 13.设方程xyx ln=确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程.16.计算二重积分()dxdy e I Dy x⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=22sin ππydx xxdy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段. 19.计算对坐标的曲线积分⎰+Lydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段3弧.20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解. 21.判断级数()∑∞=-+-131321n n nn 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数()y x xy y x y x f 311381021,22-----=的极值.24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程. 25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。

公务员考试行测49种常见数学题型解题技巧

公务员考试行测49种常见数学题型解题技巧

公务员考试行测49种常见数学题型解题技巧一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

2020年大学高等数学考试试题及解析

2020年大学高等数学考试试题及解析

2020年全国大学高等数学考试试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r ++=,则div(gradr))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ] (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则[ ](A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B [ ] (A) 合同且相似.(B) 合同但不相似. (C) 不合同但相似.(D) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于[ ](A)-1.(B) 0.(C)12. (D) 1.三、(本题满分6分)求dx ee xx⎰2arctan .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性.(2) 证明当t>0时,).(2)(t G t F π>九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布. 十二 、(本题满分8分) 设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数F(x);(2) 求统计量θˆ的分布函数)(ˆx F θ; (3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2020年全国大学高等数学考试试题与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r.grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=. 于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=0222111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x xO211 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D)【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.[ A ]【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由 1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想. (4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】 原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++. 四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.本题可先求导,再利用函数x-11的幂级数展开 +++++=-n x x x x2111即可,然后取x 为某特殊值,得所求级数的和.【详解】 因为).21,21(,4)1(2412)(202-∈--=+-='∑∞=x x x x f nn n n 又f(0)=4π, 所以 dt t dt t f f x f n n xxn n ]4)1([24)()0()(20⎰⎰∑∞=--='+=π=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π因为级数∑∞=+-012)1(n nn 收敛,函数f(x)在21=x 处连续,所以].21,21(,124)1(24)(120-∈+--=+∞=∑x x n x f n n n n π令21=x ,得 ∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n 五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ②因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑ , [1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f nππ∞=-⇒=-=⨯-=--∑.六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)【分析】 本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限.【详解】 (1) 设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以22101221a kx k kxdx W x ===⎰,).(2)(22222122221a x k x x k kxdx W x x -=-==⎰由12rW W =可得 2222ra a x =- 即 .)1(222a r x += ].)1([2)(22232223332a r x k x x k kxdx W x x +-=-==⎰ 由1223W r rW W ==可得 22223)1(a r a r x =+-,从而 a r r x 231++=,即汽锤击打3次后,可将桩打进地下am r r 21++.(2) 由归纳法,设a r r r x n n 121-++++= ,则)(222111n n x x n x x k kxdx W n n-==++⎰+=].)1([22121a r r x k n n -++++- 由于1121W r W r rW W nn n n ====-+ ,故得 22121)1(a r a r r x n n n =+++--+ ,从而 .11111a rr a r r x n nn --=+++=++于是 a rx n n -=+∞→11lim 1, 即若击打次数不限,汽锤至多能将桩打进地下a r-11m. 【评注】 本题巧妙地将变力作功与数列极限两个知识点综合起来了,有一定难度.但用定积分求变力做功并不是什么新问题,何况本题的变力十分简单.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f xθ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性.(2) 证明当t>0时,).(2)(t G t F π>【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分母的重积分,再根据导函数)(t F '的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为⎰⎰⎰⎰⎰⎰⎰==ttttrdrr f drr r f rdrr f d drr r f d d t F 020222002200022)()(2)(sin )()(πππθϕϕθ,202022])([)()()(2)(rdr r f drr t r r f t tf t F tt⎰⎰-=',所以在),0(+∞上0)(>'t F ,故F(t) 在),0(+∞内单调增加.(2) 因 ⎰⎰=ttdrr f rdrr f t G 0202)()()(π,要证明t>0时)(2)(t G t F π>,只需证明t>0时,0)(2)(>-t G t F π,即.0])([)()(0202222>-⎰⎰⎰tttrdr r f dr r f dr r r f令 ⎰⎰⎰-=tt trdr r f dr r f dr r r f t g 0202222])([)()()(,则 0)()()()(2022>-='⎰dr r t r f t f t g t,故g(t)在),0(+∞内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0). 又g(0)=0, 故当t>0时,g(t)>0,因此,当t>0时,).(2)(t G t F π>【评注】 本题将定积分、二重积分和三重积分等多个知识点结合起来了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明:dx x g dx x f dx x g x f bababa⎰⎰⎰⋅≤)()(])()([222,在上式中取f(x)为r r f )(2,g(x)为)(2r f 即可.九、【解】 由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a ba c a cbcba A ---++++=---==])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba ca c bcb aA ---++++-== =])()())[((3222a c cb b ac b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 ⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cb b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一、【解】 (1){|}(1),0,0,1,2,m m n mn P Y m X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ(1) 求总体X 的分布函数F(x);(2) 求统计量θˆ的分布函数)(ˆx F θ; (3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性. 【分析】 求分布函数F(x)是基本题型;求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立. 【详解】 (1).,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx(2) }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ =}),,,{m in(121x X X X P n >- =},,,{121x X x X x X P n >>>- =nx F )](1[1--=.,,0,1)(2θθθ≤>⎩⎨⎧---x x e x n(3) θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n因为 ⎰⎰+∞--+∞∞-==θθθθdx nxe dx x xf E x n )(2ˆ2)(ˆ=θθ≠+n21, 所以θˆ作为θ的估计量不具有无偏性. 【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.。

【考研数学】考研数学常考70题型通法

【考研数学】考研数学常考70题型通法

《高等数学部分》题型考点01极限的概念与性质【通用方法】极限与无穷小的关系:00lim (),()(1)x x f x A x x f x A o .题型考点02无穷小的比较(1)高阶无穷小、等价无穷小【通用方法】用定义转化成函数极限的计算问题.(2)无穷小排序【通用方法】利用0()lim0n x f x k x,解得n ,然后排序.题型考点03函数求极限【通用方法】(1)分析:把?x 代入极限,分析类型和化简方法(2)化简:①根式有理化②提公因子③计算非零因子④等价无穷小替换⑤拆分极限存在的项⑥幂指函数指数化⑦变量替换(尤其是倒代换)(3)计算:①洛必达法则②泰勒公式题型考点04极限的反问题(1)已知极限求另一极限【通用方法】加减乘除凑已知极限(2)已知极限求参数【通用方法】7种化简方法、泰勒公式、洛必达法则题型考点05函数的渐近线【通用方法】(1)垂直渐近线:若 )(lim x f ax ,则函数存在渐近线a x ;(2)水平渐近线:若b x f x)(lim ,则函数存在渐近线b y ;(3)斜渐近线:若b kx x f kx x f x x ])([lim )(lim ,则函数存在渐近线b kx y .题型考点06利用单调有界准则求数列极限【通用方法】(1)单调性①计算n n u u 1.若01 n n u u ,则}{n u 单调递增;若01 n n u u ,则}{n u 单调递减.②若)(1n n u f u ,构造函数)(x f ,单调数列应该有0)( x f ,若12u u ,则}{n u 单调递增;若12u u ,则}{n u 单调递减;另外,若0)( x f ,则数列不单调.(2)有界性①数学归纳法②均值不等式题型考点07求n 项和的数列极限【通用方法】①定积分定义②夹逼准则题型考点08判断函数的连续性与间断点【通用方法】①连续的定义②四种间断点的定义题型考点09一个点的导数【通用方法】一个点的导数用定义题型考点10切线方程与法线方程【通用方法】①求00(),()f x f x ②代入切线方程与法线方程.题型考点11各类函数求导(1)反函数求导【通用方法】反函数的导数等于原来函数导数的倒数.(2)复合函数求导【通用方法】从外层往内层逐层求导相乘.(3)隐函数求导【通用方法】把y 看成x 的函数,等式两边直接求导.(4)参数方程求导【通用方法】()()(),()()y t h t y h t y x t x t.(5)变限积分函数求导【通用方法】①设)()(21)()(x x dt t f x F,则)()]([)()]([)(1122x x f x x f x F ;②设xdt t xf x F 0)()(,则)()()()(00x xf dt t f dt t f x x F xx;注:被积函数中含有求导的变量时,要把变量分离出来,再求导.③设xdt t x f x F 0)()(,则令t x u , xdu u f x F 0)()(,)()(x f x F .注:被积函数中含有求导的变量但不能直接分离时,要通过换元分离,再求导.(6)分段函数求导【通用方法】分段函数分段求,分段点处定义求题型考点12求0x 处的n 阶导数【通用方法】利用泰勒公式的唯一性题型考点13判断函数的单调性、极值点与凹凸性、拐点【通用方法】求函数的一阶导数、二阶导数进行判断题型考点14不等式的证明【通用方法】利用单调性证明(1)移项到大于号一边,构造()F x (2)求()()F x F x ,,判断()F x 的单调性(3)找()F x 的最小值点,验证最小值大于等于0.题型考点15方程根的问题【通用方法】①单调性②零点定理题型考点16曲率与曲率半径(仅数一、二要求)【通用方法】曲率公式232)1(y y K,KR 1.题型考点17罗尔定理的证明题【通用方法】(1)证明一阶导等于零(0)( f ),找两个原函数的点相等;(2)证明二阶导等于零(0)( f ),找三个原函数的点相等,或者两个一阶导相等;(3)证明表达式的题目(0)](),(,[ f f G ),思路如下:草稿纸上:① 换成x 把要证明的表达式抄下来;②两边移项,目的是便于积分求原函数注:遇到)(x f 可以把它除到)(x f 下面去,积分为)(ln x f ;③两边积分,目的是构造有用的)(x F 试卷上:令 )(x F ,易知)(x F 在],[b a 上连续,),(b a 内可导,再证明)(x F 两个点相等即可.(4)双介值问题:解题思路:①分离介值,把含不同介值的表达式移到等号两边;②结合(3)的思路,分别使用微分中值定理证明左边C ,右边C 即可注:C 为某常数,需要通过其中一边C ,满足罗尔定理的情况下,求得.另外,若只是证明存在两个介值,则不需要把区间分段;若要求证明存在两个不同的介值,则必须把区间分段,证明介值分别来自两个不同的区间.题型考点18拉格朗日中值定理的证明题【通用方法】找对区间(一般需要将区间等分或者根据第一问提示点将区间分开),在各区间上使用拉氏定理,然后相加相减凑所证结论.题型考点19泰勒中值定理的证明题【通用方法】找对展开点(一般为区间中点或端点),然后写出泰勒展开式,带入端点值,相加相减凑所证结论.题型考点20不定积分的计算【通用方法】①凑微分②去根号③分部积分④有理函数积分题型考点21定积分的计算【通用方法】①牛顿莱布尼兹公式②定积分的换元法③区间再现④分段函数分段积分⑤含抽象函数的积分使用分部积分题型考点22积分不等式的证明【通用方法】①转化为函数不等式,利用单调性证明②积分中值定理题型考点23含变限积分函数的等式方程【通用方法】①初值②求导题型考点24反常积分的计算【通用方法】在瑕点处拆开,直接按定积分计算.题型考点25反常积分敛散性的判定【通用方法】根据比较审敛法的极限形式,与P 积分进行比较判断.题型考点26定积分的几何应用【通用方法】微元法(1)求平面图形的面积① dxx y x y S ba121② d r S2221③dtt t ydx S ba3(2)求旋转体的体积① dxx fV bax2②bay dxx xf V2③d y V Dx(3)求平面曲线的弧长d r r dt t y t x dxx y ds 222221(仅数一、二要求)(4)求旋转体的侧面积ydsd S 2 侧(仅数一、二要求)题型考点27定积分的物理应用(仅数一、二要求)【通用方法】微元法(1)变力沿曲线做功①FSW ②maF (2)静水侧压力①PS F ②ghP(3)引力问题①221r m m GF 万②221r Q Q kF 库题型考点28微分方程的求解【通用方法】根据各类微分方程的固定求解步骤进行即可.(1)一阶微分方程①可分离变量的方程②齐次方程③一阶线性微分方程(2)可降阶的微分方程①不显含y 的微分方程②不显含x 的微分方程(3)二阶常系数线性微分方程①二阶常系数线性齐次方程②二阶常系数线性非齐次方程(4)伯努利方程、欧拉方程(仅数一)通过换元化为常见方程求解题型考点29微分方程的物理应用(仅数一、二要求)【通用方法】从问题出发,找两个变量,列微分方程.题型考点30多元复合函数求偏导【通用方法】①画出复合函数关系图②从外往内逐层求偏导题型考点31多元隐函数求偏导【通用方法】①直接求②公式法③一阶微分形式不变性(全微分法)题型考点32偏积分【通用方法】注意对x 积分时加)(y C ,对y 积分时加)(x C .题型考点33多元函数极值【通用方法】①令偏导数等于0解得驻点②根据充分条件判断极值题型考点34多元函数条件极值【通用方法】①代入法②拉格朗日乘数法题型考点35多元函数求闭区域上的最值【通用方法】①开区域内求极值②边界上求条件极值③比大小题型考点36各类积分比大小【通用方法】①不等式性质②对称性③格林公式、高斯公式(仅数一)题型考点37二重积分的计算【通用方法】①画D②观察对称性③选择坐标系和积分次序④化为累次积分计算题型考点38数项级数敛散性的判断(仅数一、三)【通用方法】(1)正项级数①比较审敛法(极限形式)②比值(根植)审敛法(2)交错级数①加绝对值后判断是否绝对收敛②莱布尼兹判别法(3)一般级数①加绝对值后判断是否绝对收敛②级数敛散性的性质题型考点39幂级数的收敛域及和函数(仅数一、三)【通用方法】(1)收敛域比值法(2)和函数逐项积分,逐项求导(3)函数展开成幂级数①逐项积分,逐项求导②常见泰勒级数题型考点40函数展开成傅里叶级数(仅数一)【通用方法】(1)周期为 2的傅里叶级数①10sin cos 2~)(n n n nx b nx a a x f ,其中,2,1,sin )(1,)(1,2,1,cos )(1n nxdx x f b dx x f a n nxdx x f a n n.②余弦级数若)(x f 为偶函数,则10cos 2~)(n n nx a a x f ,其中.0,)(2,2,1,cos )(200n n b dx x f a n nxdx x f a③正弦级数若)(x f 为奇函数,则1sin ~)(n nnx bx f ,其中,2,1,sin )(2,2,1,0,00n nxdx x f b n a n n(2)周期为l 2的傅里叶级数10sincos 2~)(n n n lxn b l x n a a x f ,其中 l l n l l n dx lxn x f l b dx l x n x f l a sin )(1,cos )(1.(3)狄里克雷收敛定理设)(x f 是周期为 2的可积函数,且满足①)(x f 上],[ 连续或只有有限个第一类间断点;②)(x f 上],[ 只有有限个单调区间,则)(x f 的以 2为周期的傅里叶级数收敛,且2)0()0()(000x f x f x S .题型考点41空间解析几何(仅数一)【通用方法】(1)平面与直线①平面点法式②直线点向式(2)曲面与曲线①旋转曲面轨迹法②投影曲线消元法(3)空间曲面的切平面与空间曲线的切线①曲面的法向量),,(z y x F F F ②曲线的切向量))(),(),((t z t y t x 或))(),(,1(x z x y 等.题型考点42三重积分的计算(仅数一)【通用方法】①投影法②截面法③柱面坐标④球面坐标题型考点43曲线积分的计算(仅数一)【通用方法】(1)第一类曲线积分①对称性②参数法(2)第二类曲线积分①对称性②参数法③积分与路径无关④格林公式题型考点44曲面积分的计算(仅数一)【通用方法】(1)第一类曲面积分①对称性②一投二代三计算(2)第二类曲面积分①对称性②一投二代三定号③轮换投影法④高斯公式题型考点45多元积分学的应用(仅数一)【通用方法】(1)质心、形心①质心横坐标D Dd y x f d y x xf x),(),(;dVz y x f dV z y x xf x ),,(),,(;LL dsy x f ds y x xf x ),(),(;dSz y x f dS z y x xf x ),,(),,(.②形心横坐标(数二、三的同学要求掌握平面图形的形心)DDd xd x;dVxdV x ;L Ldsxds x ;dSxdSx .(2)转动惯量2mr I 题型考点46场论公式(仅数一)【通用方法】(1)方向导数①定义),()cos ,cos (lim 00000y x f y x f l.②可微函数cos cos y x f f l.(2)梯度),(),(y x f f y x gradf (3)散度zR y Q x P A div(4)旋度Qy j A rot题型考点47经济学应用(仅数三)【通用方法】(1)边际)(x f dxdy(2)弹性xdx y dy E yx《线性代数部分》题型考点01数值型行列式的计算【通用方法】边化零,边展开题型考点02抽象行列式的计算【通用方法】①化为乘法②特征值的乘积题型考点03方阵的幂【通用方法】(1)找规律(2)若1)( A r ,则A A 1n nl,其中)(A tr l .(3)若1A P ΛP ,则P ΛP A nn1.题型考点04矩阵的秩【通用方法】①化行阶梯形②利用秩的9个结论题型考点05具体方程组的求解【通用方法】①化行阶梯形②化行最简形③写出同解方程组④写出通解题型考点06抽象方程组的求解【通用方法】解的结构(1)齐次方程组的基础解系:①是解②无关③个数()n r A (2)非齐次方程组的通解: 通通特非齐非题型考点07向量组的线性相关性【通用方法】①秩②定义题型考点08向量组的线性表示【通用方法】①秩②定义题型考点09向量组的极大无关组【通用方法】①部分组②无关③个数()r A .题型考点10相似对角化【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)令123(,,) P ααα,则1P AP Λ.题型考点11正交变换法化二次型为标准形【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)正交化得:123,,βββ;(4)单位化得:123,,γγγ;(5)令123(,,) Q γγγ,则在正交变换x y Q 下,二次型的标准形为222112233y y y .题型考点12配方法化二次型为标准形【通用方法】①优先配交叉项少的变量②所用变换必须为可逆变换题型考点13二次型的正定型【通用方法】等价条件:①0,0Tx x x A ;②特征值均大于0;③正惯性指数为n ;④顺序主子式均大于0.《概率统计部分》题型考点01概率计算公式【通用方法】(1)加法公式()P A B C 加奇减偶(2)减法公式()()()P AB P A P AB (3)乘法公式()(|)()(|)()P AB P A B P B P B A P A (4)条件概率()(|)()P AB P A B P B(5)全概率公式1()(|)()nk k k P A P A B P B (6)贝叶斯公式(|)()(|)()k k k P A B P B P B A P A题型考点02概率密度与分布函数【通用方法】(1)概率密度①()1f x dx;(,)1xoyf x y d ②()0f x ;(,)0f x y (2)分布函数①规范性()0,()1F F ②右连续性00(0)()F x F x ③单调不减性题型考点03常见分布【通用方法】题型考点04二维连续型随机变量的分布【通用方法】(1)边缘概率密度()(,),()(,)X Y f x f x y dy f y f x y dx(2)条件概率密度(,)()()X Y Y f x y f x y f y(3)独立性若(,)()()X Y f x y f x f y ,则,X Y 独立(4)事件概率{(,)}(,)DP X Y D f x y d题型考点05随机变量函数的分布【通用方法】(1)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导(2)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导公式法:()(,(,))Z y f z f x y x z dx z(3)离散型+连续型随机变量函数的概率密度分布函数法:①定义②代入③全概率公式④讨论⑤求导题型考点06数字特征【通用方法】(1)随机变量的数字特征①期望 取值概率②方差性质化简,公式计算③协方差性质化简,公式计算④相关系数性质化简,公式计算(2)统计量的数字特征①E X EX②1D X DX n③2ES DX④2()E n n⑤2()2D n n题型考点07二维正态分布的性质【通用方法】若221212(,)~(,;,;)X Y N ,则:(1)边缘分布都是服从一维正态分布,即 221122~,,~,X NY N .(2)X 和Y 任意的非零线性组合aX bY 服从一维正态分布.(3)X 和Y 相互独立的充要条件是相关系数0 .(4)若12,Z Z 是,X Y 的非零线性组合,则 12,Z Z 也服从二维正态分布.题型考点08三大抽样分布【通用方法】(1)2分布:222212()nn X X X (2)F 分布:22()(,)()m mF m n n n(4)t 分布:()t n(5)若12,,,n X X X 为来自正态总体2~(,)X N 的简单随机样本,则:~(0,1)X N②222(1)~(1)n S n ~(1)X t n 题型考点09点估计【通用方法】(1)矩估计总体的矩等于样本的矩(2)最大似然估计①离散型1()()n i i L P X X ;1()ln(())ni i LnL P X X ②连续型1()()ni i L f x ;1()ln(())ni i LnL f x 题型考点10估计量的评选标准【通用方法】(1)无偏性 ()E(2)有效性若 12()()D D ,则 1 比 2更有效(3)一致性P。

考研数学题目

考研数学题目

考研数学题目第一篇考研数学题目:2021考研数学真题答案解析的内容我先说一下数学3,通过看了一下题目,总体上题目跟2021年相比难度下降。

计算量有肯定难度,但是按真正的计算量比2021年稍有所下降。

从总体来看,第一题,我讲解高数部分,选择题,是常规的极限题目,信任大家都能拿到分数,极限法问题,最终三小时给出了这样的方法。

第2题是求函数的极值点,多元函数极值,这也是我们在最终三小时和上课过程当中反复强调的问题。

那么第3题也是争论函数的性质。

总体来说,选择题难度不大,没有难题,大家应当把基础题拿到分。

之后再来看填空题,第一题也是常规的定积分运算,依靠于定积分的定义和奇偶性来得出结论。

是定积分的计算。

第10题是数3,考了差分方程,这也是我们最终三小时反复强调的题型。

应当是还有重根的状况。

第11题考察了边际,经济学应用,作为重点强调的内容以填空题形式消失,也不是很难。

第12题考察了全微分形式消失。

我们可以看出题目本身没有偏题难题怪题,是常规的题目,大家对于常规题目肯定要仔细去答给出正确答案。

我信任大家最终的成果会比较抱负。

重点看大题,计算量有一些,大题对大家略微有一些困难,第15题,平常的极限问题,和2021年、 2021年的反差不大,是变限积分,先做变换做进行处理。

先做代换。

第16题是二重积分的问题,这种题目要求题目不难,划出区域仔细积分就可以了。

要求把计算稳住,也不是难题。

第17题看似,17题本身不是很难的题目,它是一个定积分定义,转换成什么?转换成分布积分。

其实这种题目根据2021年标准是填空题的标准,2021年以一个大题消失,能不能看出来转成分布积分。

那么从高数15、16、17三个题,盼望大家把不难的题目拿下。

后面题目略微有一些难度18、19相对是一些难题。

19题,是一个级数问题,是一个跟,争论级数某些性质,有同学反应这道题稍显难度。

对于这种题不要想拿全分,把基本分拿到手,选择填空假如稳中分值不会差太多,应当取得比较抱负的分数。

高数试题分析、详解和评注

高数试题分析、详解和评注

=
(1, 2 , 3 )
3 . 3 �
【分析】 函数 u(x,y,z)沿单位向量 n = {cos α , cos β , cos γ }的方向导数为:
∂u ∂u ∂u ∂u = cos α + cos β + cos γ ∂n ∂x ∂y ∂z
因此,本题直接用上述公式即可. 【详解】 因为
∂u x ∂u y ∂u z = , = , = ,于是所求方向导数为 ∂x 3 ∂y 6 ∂z 9
∂u ∂n
(1, 2 , 3 )
=
1 1 1 1 1 1 3 ⋅ + ⋅ + ⋅ = . 3 3 3 3 3 3 3 �
【评注】 本题若 n = {m, n, l} 非单位向量,则应先将其单位化,从而得方向余弦为:
cos α =
m m + n +l
2 2 2
, cos β =
n m + n +l
′( x + y ) + ϕ ′′( x − y ) + ψ ′( x + y) −ψ ′( x − y ) , ∂x 2 ∂2 u = ϕ ′′( x + y) − ϕ ′′( x − y ) +ψ ′( x + y ) + ψ ′( x − y) , ∂x∂y ∂2 u = ϕ ′′( x + y ) + ϕ ′′( x − y ) + ψ ′( x + y) −ψ ′( x − y ) , ∂y 2
y′ +
于是通解为

2 y = ln x , x
2 2 dx dx 1 ∫ ∫ x y =e [ ∫ ln x ⋅ e x dx + C ] = 2 ⋅ [ ∫ x 2 ln xdx + C] x

高等数学通解的求法

高等数学通解的求法

高等数学通解的求法
求解高等数学中的通解可以使用不同的方法,具体选择哪种方法取决于所给的方程或问题的性质和特点。

以下列举几种常用的方法:
1. 分离变量法:适用于可分离变量的微分方程,通过将未知函数与自变量分离并各自积分,从而得到通解。

2. 齐次方程与常数变易法:适用于一阶线性常微分方程,通过将未知函数表示为某个常数乘以另一个函数的形式,从而将原方程化为齐次方程,并通过常数变易法求解。

3. 线性微分方程的常数变易法:适用于二阶或高阶线性常微分方程,通过假设通解为特解加上齐次方程的通解的形式,从而通过常数变易法求解。

4. 常系数线性微分方程的特征方程法:适用于常系数线性微分方程,通过寻找其特征方程的根,从而得到通解。

5. 变量可分离形式的方程可化为积分形式来进行解答。

以上仅列举了几种常用的方法,对于更复杂的微分方程,可能需要使用其他的特殊方法或定理。

因此,具体的求解方法需要根据具体问题的特点来选择。

差分方程的通解和特解总结

差分方程的通解和特解总结

差分方程的通解和特解总结1. 差分方程简介嘿,朋友们,今天咱们要聊聊差分方程,虽然它听上去有点“高深莫测”,但其实并没有那么复杂。

首先,差分方程其实就是一种“数学方程式”,用来描述某些“序列”的规律。

想象一下你每天都吃一根香蕉,然后问:“明天我会吃几根香蕉?”差分方程就像是解答这个问题的工具。

2. 差分方程的通解2.1 什么是通解?通解,就是解决差分方程的一种“万能钥匙”。

它能帮助你找到一类问题的所有可能解,像是一个“大宝库”,里面装满了所有能解这个方程的秘密武器。

要找通解,我们一般需要把差分方程变成一个“标准形式”,然后用一些“数学手段”找到它的通解。

这个过程有点像是在玩“寻宝游戏”,只不过这里的宝藏是一些公式和函数。

2.2 通解的求法说到求通解,那可真是个“技术活”。

我们常用的方法有“特征方程法”和“归纳法”。

特征方程法就像是做一道数学题时先找关键的提示,简化复杂的问题,然后用这些提示解题。

你会先把差分方程转化成一个代数方程,找到它的“特征根”,再用这些特征根写出通解。

至于归纳法,就像是一个科学家在实验中发现规律,逐步找到问题的解决方案。

3. 差分方程的特解3.1 什么是特解?特解,就是在所有可能的解中,找到满足特定条件的那一个。

可以这么理解,特解就是在“通解的大海”中,找到一个符合特定“风向”的小船。

特解的作用特别大,比如你有一个特殊的初始条件,特解就能帮你找到在这个条件下方程的具体解。

3.2 特解的求法求特解的步骤也不算太复杂。

通常,你会先找到一个合适的“猜测”,这个猜测一般是通过观察或者试错得到的,然后把这个猜测带入方程中。

如果结果满足方程,那就“万事大吉”了。

要是没有满足,那你就需要调整猜测,再试一试。

这个过程有点像在做“试衣服”,直到找到那件最合适的衣服为止。

4. 综合应用:通解与特解的结合好了,通解和特解都讲完了,现在让我们来看看如何把它们结合起来。

一般来说,你先用通解找到所有可能的解,再用特解找到符合具体条件的那个解。

广东省2022年专升本《高等数学》真题解析精选全文完整版

广东省2022年专升本《高等数学》真题解析精选全文完整版

广东省2022年普通高等学校专升本招生考试高等数学本试卷共20小题,满分100分。

考试时间120分钟。

一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一项符合题目要求)1.若函数1,1(),1x x f x a x +≠⎧=⎨=⎩,1x =在处连续,则常数a =( )A.-1B.0C.1D.22.1lim(13)xx x →-=()A.3e - B.13e-C.1D.3e 3.1lim 0n n x n u u ∞→==∑是级数收敛的( )A.充分条件B.必要条件1C.充要条件D.即非充也非公必要条件得分阅卷人4.2+1()()1f x f x dx x∞=⎰已知是函数的一个原函数,则( )A.2B.1C.-1D.-25.xf (x 2+y 2)dy 化为极坐标形成的二次积分,则 I =()110I dx =⎰⎰将二次积分 A.2sec ()400d f p dp πθθ⎰⎰ B.2c ()40cs d pf p dp πθθ⎰⎰B.2sec 2()04d f p dp πθθπ⎰⎰ D.2csc 2()04d pf p dp πθθπ⎰⎰二、填空题(本大题共5小题,每小题3分,共15分)6.若0→x 时,无穷小量x 2与x x m 32+等价,则常数m =7.2225,log t x t t dy dx y t=⎧=-=⎨=⎩设则8.椭圆13422=+y x 所围成的图形绕x 轴旋转一周而成的旋转体体积为9.微分方程2'=-y ex的通解是10.ln (,)(,)ye e Z xe e dz==函数在点处的全微分得分阅卷人三、计算题(本大题共8小题,每小题6分,共48分)12.2212=tan ,x d yy arc x dx=设求13.设函数21sin ,00,0x x x x ⎧≠⎪⎨⎪=⎩,利用导数定义(0)f '.14.求不定积分2.得分阅卷人15.已知tan ln cos xdx x C=-+⎰,求定积分24sec x xdx π⎰.16.2(,)2z z z Z f x y Z x y e y x y∂∂==--∂∂设是由方程所确定的隐函数,计算.17.cos ,sin (0)0,2Dxd D y x x y πσ=≤≤=⎰⎰计算二重积分其中是曲线和曲线2x π=围成的有界闭区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考大题中的通解思维数学大题表面上是很难,但是通过多年的教学积累和经验总结,我们发现数学整个学科的解题思维基本上趋于一致,能够形成通解,使我们在数学教学上大幅的简化,甚至不需要刻意的思考。

我们借助一下历年高考真题,看看是不是能够用一种方法或一种思维进行解答。

这里,我们全部采用全国I 卷的最后一题,发现是数列、函数或不等式题,没关系,题型不一样,看看是否能用固定的思维解法,解题步骤中存在什么样的共性: (全国卷)已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数g x x a x a x ()[,]=--∈323201,。

若对于任意x 101∈[],总存在x 001∈[],,使得)()(10x f x g =成立,求a 的取值范围。

解析:本题看似式子复杂,但是第一问直接可根据定义去做,这个分数必须拿到。

根据定义得出以下式子:解:(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-='到这步几乎大家都会,题目问的是的单调区间和值域,很多人看到这个式子不敢往下分析,其实仍旧跟据定义: 令0)(='x f 解得.2721==x x 或然后做表分析即可。

【思考:凭什么令0)(='x f ?】 当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)21,0(∈x 时,)(x f 是减函数;当)1,21(∈x 时,)(x f 是增函数.当]1,0[∈x 时,)(x f 的值域为[-4,-3].第二问很多人看题目就晕菜了,其实这道题即使你不会分析,大胆的往下做,就能把题目做对,我们思考下,题目给的条件和我们要求的差距点是什么?这道题的差距点虽然较大,但是用这种求差值的思想是能一步步走下去的,题目给的是g(x),x 1和x 0,并且给了范围,要我们求解a 的范围,要想求a 的值,就必须列出a 的表达式,a 的表达式想要列出,就必须从g (x )入手,题目给的信息除了区间就没有其他能利用的条件了。

既然题目给的是区间,因此我们不妨对函数)(x g 求导,得).(3)(22a x x g -='【思考:凭什么进行求导?目的是什么?】到了这一步,由于题目告诉我们1≥a ,所以当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈这个就是我们所要的缺失条件。

到这里可能同学们清楚了为什么要进行求导,因为题目给了我们取值区间,要想求出a 值,只要判断这个函数的增减性就行了,这就是条件差异弥补的推导思想。

由于知道函数的增减性,就容易了,马上可列出a 的表达式:又,2)0(,321)1(2a g a a g -=--=即当]1,0[∈x 时有].2,321[)(2a a a x g ---∈有人说这个不是表达式,还是个未知数,没关系,我们再用同样的思想去走,发现现在能利用的条件也异常清楚了(因为就这个没用上了):任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则[,][,]1232432---⊃--a a a即123412322--≤-<>-≥-<>⎧⎨⎩a a a 解得 351-≤≥a a 或; .23≤a 又1≥a ,故a 的取值范围为.231≤≤a 评析:这道题式子复杂,05年高考时候正确率非常之低,但是其中的解题过程并不复杂,思维方向也十分明确,只是考题将多个概念进行转换,条件隐蔽的相对较深。

数学题的核心就是知识点与逻辑能力的结合,但是总的思想是异常相似的,几乎全部的解答题都可以用一个思维来做,就是“条件差异弥补法”和“必要性思维”。

所谓的“必要性思维”指的是要想获取某个结果,必须获得的前提是什么,多属于逆推,两者的道理是一样的。

这里我们总结出这道题的思维步骤和解题步骤:全部的思维步骤:1、 严格按照题目的要求,判断要我们干什么2、 找出题目给的条件和我们要求的差距点是什么3、 利用“找后补”或“找前提”的方式弥补出这个差距4、 最终联系条件得出这个结论固定的解题步骤:1、 直接根据课本定义得出结论(某类题注意取值分析)2、 用求同存异的思想进行条件转换3、 函数用式子变形推出结果(引申:若是证明,数列用数学归纳法)我们来看下道题,是否能够套用以上结论:(全国卷)设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ; (Ⅱ)设2nn n T S =,1,2,3,n = ,证明:132n i i T =<∑解析:题目直接要求我们求首项和通项,由于我们知道通项和Sn 公式,就能直接根据定义来做。

解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2. 再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,… ② 将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n ),n=2,3, …做到这一步相信大家都会,那么我们要求a n 公式,通过这个式子,我们发现差距点在a n -a n -1,同时可以2n+1-2n 也是相差一次,因此直接提出后,可以得出: a n +2n =4(a n -1+2n -1),n=2,3, … , 这个就是我们所弥补的缺失点。

因而数列{ a n +2n }是首项为a 1+2=4,公比为4的等比数列,即 : a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …, 做到这里,我们要问自己凭什么这么转化,我们所求的a n 和得到的结果(a n 与a n -1)存在差异点,要想把这个差异点弥补,就把他们之间的关系列出,就能得出结论。

第二问是数学证明,首先可以考虑数学归纳法证明,但是这题题设与我们得到的结论差距较少,直接求解较快,如果为求稳妥,建议用数学归纳法。

看看直接求解的思路:题目让干嘛就干嘛,别多想,直接用定义。

题目给的是2nn nT S =这个式子,那么必须求出Sn 。

(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2) 【请思考】 = 23×(2n+1-1)(2n -1) ,然后求出Tn 和1nii T =∑(问题与题目的差距点,并想办法补上) T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1) 所以, 1n i i T =∑= 321(n i =∑12i-1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 32 评析:这题本身难度不高,但是第一步的难度较大,但是用上必要性思维和求差距思想,要想获得a n 通项,必须结合起来解答,全部的难点仅此而已。

总体而言,全部的解题思维是惊人的趋于一致的。

不信?看下道题:(全国卷)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,…. (07全国卷)解析:发现这题的做法思路完全和06年的一致,显然不能一步到位,还是先求出a n与某个数的关系式,题目告诉我们11)(2)n n a a +=+,说明差距体现在1上,用这个式子来决定我做题的方向:解(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(2)n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a 的通项公式为1)1n n a ⎤=+⎦,123n =,,,…. 这道题难在第一步不知道如何去想,题目告诉我们的条件似乎比较棘手,但是用这种“追求差异”并想法弥补的思维定式去做,很容易就将题目解答出来了。

对于高考,方法越简单越实用越好,尤其是第二步给出了个看似复杂的式子,我们没有必要花费过多的精力推导,直接用数学归纳法即可(过程略)。

评析:整体难度其实不大,但是看起来比较有难度。

我们只要沿用这种求同存异的“补差”思想,还是非常容易做的,甚至连计算都不难。

看到这里,大家应该能用这种思维去做其他题了吧,我们日常遇见的题型虽然各有差异,其实总的做题思维真的没有太多差距,并且在解题步骤上也十分类同。

大家不妨用这种思维去看看08的最后一题。

(全国卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数;(Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 简要解析:看看08高考题型结合函数了,依旧用同一个思想,第一步,依旧是题目让干嘛就干嘛,求函数增减性,直接用定义,要证明,数学归纳法。

解:第一步(略),第二步证明,发现第一步函数的增减性可以直接利用,直接用数学归纳法。

第三步较为复杂,没关系,这题表面是数列,其实考察的是不等式,无论是哪类题型,其根本点还是从条件中寻求差异,要我们证明1k a b +>,给的条件是设1(1)b a ∈,,整数11ln a b k a b-≥,依旧是以“必要性思维”来思考,要想获得1k a b +>这个结论,必须列出他们的表达,要想列出他们的表达,必须利用有这两个字母的条件,我们发现题目有()ln f x x x x =-和1()n n a f a +=,然后就能轻松的得出结论:由()ln f x x x x =-.1()n n a f a += ,kk k k a a b a b a ln 1--=-+11ln ki i i a b a a ==--∑到了这里,几乎全部出来了。

相关文档
最新文档