【鲁教版】中考数学一轮复习各知识点练习题分层设计十四:反比例函数部分

合集下载

2023年中考九年级数学一轮复习提升练习 综合题 :反比例函数

2023年中考九年级数学一轮复习提升练习 综合题 :反比例函数

2023年中考九年级数学一轮复习提升练习(综合题):反比例函数一、综合题1.已知:如图1,函数y1=k x和y2=xk(k>1)的图象相交于点A和点B.(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H.①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x(x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM△x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x…-4-3-2-1−12−13−141413121234…y…−414−313−212−2−212−313−4144143132122212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;(4)方程x+1x=−2x+1是否有实数解?说明理由.8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y= kx(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=k x的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=n x与y2=4n x的图象上,对角线AC△BD于点P,AC△x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC△x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= k x(k>0)的图象过CD的中点E.(1)求证:△AOB△△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m x的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤ mx的解集.14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1x与y2=k2x(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C.当OA=1时,AB=,BC=,BCAB=;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB=12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=k x(x>0)的图象交于点M,过M 作MH△x轴于点H,且tan△AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.答案解析部分1.【答案】(1)解:由题意,联立 {y =k x y =x k,解得 {x =k y =1 或 {x =−ky =−1 , ∵ 点 A 在第一象限,点 B 在第二象限,且 k >1 ,∴A(k ,1),B(−k ,−1)(2)解:①△CEF 是等腰直角三角形,理由如下: 设直线 BC 的解析式为 y =k 0x +b 0 ,将点 B(−k ,−1),C(1,k) 代入得: {−kk 0+b 0=−1k 0+b 0=k ,解得 {k 0=1b 0=k −1 , 则直线 BC 的解析式为 y =x +k −1 ,当 y =0 时, x +k −1=0 ,解得 x =1−k ,即 F(1−k ,0) , 同理可得:点 E 的坐标为 E(1+k ,0) , ∴CF =√(1−k −1)2+(0−k)2=√2k , CE =√(1+k −1)2+(0−k)2=√2k , EF =1+k −(1−k)=2k ,∴CE =CF ,CE 2+CF 2=4k 2=EF 2 , ∴△CEF 是等腰直角三角形;②由题意,设点 D 的坐标为 D(m ,k m ) ,则 m >k >1 , ∵△CEF 是等腰直角三角形, ∴∠CFE =∠CEF =45° , ∴∠BFH =∠AEG =135° ,设直线 BD 的解析式为 y =k 1x +b 1 ,将点 B(−k ,−1),D(m ,k m ) 代入得: {−kk 1+b 1=−1mk 1+b 1=k m ,解得 {k 1=1m b 1=k−m m, 则直线 BD 的解析式为 y =1m x +k−m m,当 y =0 时, 1m x +k−m m =0 ,解得 x =m −k ,即 H(m −k ,0) ,同理可得:点 G 的坐标为 G(k +m ,0) ,∴DH=√(m−k−m)2+(0−k m)2=k m√1+m2,DG=√(k+m−m)2+(0−k m)2=k m√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4 x(2)解:由题意可得:(△)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ).(△)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s 3k−1)3.【答案】(1)12(2)解:由题意D(m,6 m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6 m).∵B(2m,0),C(3m,6 m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G. ∵EF//CG,∴CEBE=FGBF=√2+1)m(√2+1)m−2m=√2√2−1=√2;(4)解:∵CEBE=√2∴BE=√2+1,要使得BE最小,只要AD最小,∵AD=√m2+36m2=√(m−6m)2+12,∴AD的最小值为2√3,∴BE的最小值为2√3√2+1=2√6−2√3.4.【答案】(1)解:将A(﹣3,m+8)代入反比例函数y= mx得,m−3=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣6 x,将点B(n,﹣6)代入y=﹣6x得,﹣6n=﹣6,解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1, =3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2,联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k×(﹣1)=2(1+k 2)>0,∴x 1、x 2 是方程的两根,∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k=5√22,整理得:2k 2+5k+2=0, 解得:k=﹣2,或 k=12;(3)解:∵直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F, ∴ F (√2,√2). 如图:设P (x ,1x ),则M (﹣1x +√2,1x),则PM=x+1x ﹣√2=√(x +1x −√2)2=√x 2+1x 2−2√2(x +1x )+4, ∵PF=√(x −√2)2+(1x −√2)2=√x 2+1x2−2√2(x +1x )+4, ∴PM=PF .∴PM+PN=PF+PN≥NF=2,当点P 在NF 上时等号成立,此时NF 的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3).把D(2,3)代入y=1−2mx,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x+1x=﹣2x+1没有实数解,理由为:y=x+1x与y=﹣2x+1在同一直角坐标系中无交点.8.【答案】(1)解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC△BD,AE=EC= √62−32=3 √3,∴△DCA=30°,△EDC=60°,Rt△DEM中,△DEM=30°,∴DM= 12DE= 32,∵OM△AB,∴S菱形ABCD= 12AC•BD=CD•OM,∴12×6√3×6=6OM,OM=3 √3,∴D(﹣32,3 √3)(2)解:(3)解:如图1,①∵DC=BC,△DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH△BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴△FCB=△FBC=30°,∴△ABF=△ABC﹣△CBF=120°﹣30°=90°,∴AB△BF,CP△AB,Rt△ABF中,△FAB=30°,AB=6,∴FB=2 √3=CP,∴P(92,√3);②如图2,∵四边形QPFC是平行四边形,∴CQ△PH,由①知:PH△BC,∴CQ△BC,Rt△QBC中,BC=6,△QBC=60°,∴△BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE△AC,∴QA=QC=6 √3,∴△QAC=△QCA=60°,△CAB=30°,∴△QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5√3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= k x,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN△x轴,且CN=12,∴点C的坐标为(2,1 2).∵点C在反比例函数y1=nx的图象上,∴n=2× 12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,5 2).当y=52时,2x=52,8x=52,解得:x=45,x=165,∴点B的坐标为(45,52),点D的坐标为(165,52),∴BP=2﹣45=65,DP=165﹣2=65,∴BP=DP.又∵AP=CP,AC△BD,∴四边形ABCD为菱形.(3)解:∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=12n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,12n),AC=32n,∴点P的坐标为(2,54 n).同理,点B的坐标为(45,54n),点D的坐标为(165,54n),BD=125.∵AC=BD,∴32n=125,∴n=8 5,∴点A的坐标为(2,165),点B的坐标为(45,2).设直线AB的解析式为y=kx+b(k≠0),将A(2,165),B(45,2)代入y=kx+b,得:{2k+b=16545k+b=2,解得:{b=65k=1,∴直线AB的解析式为y=x+ 6 5.当x=0时,y=x+ 65=65,∴点E的坐标为(0,6 5),∴当四边形ABCD为正方形时,OE的长度为6 5.12.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC△x轴,∴△AOB=△DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB△Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG△△DCA,∴FG=CA=1,BF=DC=2,△BFG=△DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB=2OA=3OD=12∴OA=6,OD=4∴A(6,0),B(0,12)把A(6,0),B(0,12)分别代入y=kx+b得:{6k+b=0b=12,解之得:m=−4×20=−80∴一次函数的解析式为y=−2x+12令x=−4,则y=20∴C(−4,20)把C(−4,20)代入y=mx得:m=−4×20=−80∴反比例函数的解析式为y=−80 x;(2)解:解方程组{y=−2x+12y=−80x得:{x1=−4y1=20,{x2=10y2=−8∴E(10,−8)∴SΔCDE=SΔADC+SΔADE=12AD⋅(CD+|y E|)=12×(4+6)×(20+8)=140(3)解:如图:当x<-4时,y=mx的图象在y=kx+b的下方,即kx+b>mx;当−4≤ x<0时,y=mx的图象在y=kx+b的上方,即kx+b≤mx;当0<x<10时,y=mx的图象在y=kx+b的下方,即kx+b>mx;当x≥10时,y=mx的图象在y=kx+b的上方,即kx+b≤mx;综上可得,不等式kx+b≤ mx的解集为−4≤ x<0或x≥10.14.【答案】(1)2;4;2;23;43;2;2 数学思考:(2)BCAB=k2−k1 k1证明:∵AB·OA=k1,AC·OA=k2,∴AC·OA−AB·OA=BC·OA=k2−k1,∴BCAB=BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b).∵k2=12,BCAB=k2−k1k1=12,∴12−k1k1=12,解得:k1=8.∵点B在y=8x图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4).15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan△AHO=2,∴OH=1,∴H (1,0),∵MH△x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ=S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=xk2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG△y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,1 4),∴PG =4−14=154,∴S△ABP=12PG(x A−x B)=12×154×8=15(3)解:PE=PF.理由如下:∵点P(a,b)在y1=4x的图象上,∴b=4 a,∵点B的坐标为(−4,−1),设直线PB的表达式为y=mx+n,∴{am+n=4a−4m+n=−1,∴{m=1an=4a−1,∴直线PB的表达式为y=1a x+4a−1,当y=0时,x=a−4,∴E点的坐标为(a−4,0),同理:直线PA的表达式为y=−1a x+4a+1,当y=0时,x=a+4,∴F点的坐标为(a+4,0),过点P作PH△x轴于H,如图所示,∵P点坐标为(,∴H点的坐标为(a,0),∴EH =x H−x E=a−(a−4)=4,FH =x F−x H=a+4−a=4,∴EH=FH,∴PE=PF.。

九年级中考数学一轮复习教案:反比例函数复习精选全文

九年级中考数学一轮复习教案:反比例函数复习精选全文

精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

2021年九年级数学中考一轮复习知识点中考真题演练14:反比例函数(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练14:反比例函数(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:反比例函数(附答案)1.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣2.关于反比例函数y=的图象,下列说法正确的()A.经过点(2,3)B.分布在第二、第四象限C.关于直线y=x对称D.x越大,越接近x轴3.已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.4.如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.105.如图,l1是反比例函数y=在第一象限内的图象,且经过点A(1,2).l1关于x轴对称的图象为l2,那么l2的函数表达式为()A.y=(x<0)B.y=(x>0)C.y=﹣(x<0)D.y=﹣(x>0)6.如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)7.如图,点A在反比例函数y1=(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=(x>0)的图象于点C.P为y轴上一点,连接P A,PC.则△APC 的面积为()A.5B.6C.11D.128.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.9.如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣10.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.11.将代入反比例函数中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2020=.12.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是.13.如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于(结果保留π).14.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)15.如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.16.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.17.若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.19.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?20.如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B (﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.21.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.22.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B (14﹣2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.23.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.24.如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.参考答案1.解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.2.解:A、把点(2,3)代入反比例函数y=得2.5≠3不成立,故A选项错误;B、∵k=5>0,∴它的图象在第一、三象限,故B选项错误;C、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故C选项正确;D、反比例函数有两条对称轴,y=x和y=﹣x;当x<0时,x越小,越接近x轴,故D选项错误.故选:C.3.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a<0时,b<0,直线y=bx+a经过第二、三、四象限,故B错误,C正确.故选:C.4.解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.5.解:A(1,2)关于x轴的对称点为(1,﹣2).所以l2的解析式为:y=﹣,因为l1是反比例函数y=在第一象限内的图象,所以x>0.故选:D.6.解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,∵OB经过原点O,∴设OB的解析式为y=mx,∵OB经过点D(3,2),则2=3m,∴m=,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,∴S△OBC=××(﹣a),∴2×××(﹣a)=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.7.解:连接OA和OC,∵点P在y轴上,AB∥y轴,则△AOC和△APC面积相等,∵A在上,C在上,AB⊥x轴,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的面积为6,故选:B.8.解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCP+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.9.解:∵DE∥BC,∴△EOD∽△BOC,∵OE:EB=1:2,∴=,∴=,∴=,解得:S△EOD=,∵AB∥DO,∴△ABE∽△DOE,∵=,∴=4,∴S△ABE=4×=3,∴四边形ABCD的面积为6+3=9,如图,过A作AF⊥x轴于F,则S矩形ABOF=S平行四边形ABCD=9,即|k|=9,又∵函数图象在二、四象限,∴k=﹣9,即函数解析式为:y=﹣.故选:C.10.解:由题意得,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴﹣==;故选:C.11.解:x=时,y1=﹣,x=﹣+1=﹣;x=﹣时,y2=2,x=2+1=3;x=3时,y3=﹣,x=﹣+1=;x=时,y4=﹣;按照规律,y5=2,…,我们发现,y的值三个一循环2020÷3=673........1,y2020=y1=.故答案为:﹣.12.解:一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是x<﹣1或0<x<2.13.解:由题意得,图中阴影部分的面积即为一个圆的面积.⊙A和x轴y轴相切,因而A到两轴的距离相等,即横纵坐标相等,设A的坐标是(a,a),点A在函数y=的图象上,因而a=1.故阴影部分的面积等于π.故答案为:π.14.解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.15.解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.16.解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.17.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.18.解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3.故答案为:﹣3.19.解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2时,x2<x1.20.解:(1)∵比例函数y=﹣(x<0)的图象过点B(﹣3,a),∴a=﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD∴===,∴AD=•OE==3,OD=•BE==∴A(,3),∵反比例函数y=(x>0)的图象过点A,∴k=×=9;(2)由(1)可知AD=3,OD=,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y=上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.21.解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=(x>0);(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∴∠AOE=∠AEO,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.22.解:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.23.解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=55时,y=<1,故一班学生能安全进入教室.24.解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).。

专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习

专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题14 反比例函数及其应用(知识点总结+例题讲解)一、反比例函数、图像、性质:1.反比例函数的概念: (1)定义:一般地,函数ky x(k 是常数,k ≠0)叫做反比例函数; (2)变形:反比例函数的解析式也可以写成y=kx -1或xy=k(k ≠0)的形式;(3)自变量x 的取值范围:x ≠0的一切实数,函数的取值范围也是一切非零实数。

【例题1】下列函数是y 关于x 的反比例函数的是( ) A .y =1x−1 B .y =1x 3C .y =−3xD .y =−x4【答案】C【解析】利用反比例函数定义进行分析即可.解:A 、不是y 关于x 的反比例函数,故此选项不合题意; B 、不是y 关于x 的反比例函数,故此选项不合题意; C 、是y 关于x 的反比例函数,故此选项符合题意;D 、不是y 关于x 的反比例函数,是正比例函数,故此选项不合题意;故选:C . 【变式练习1】若y =(a +1)x a2−2是反比例函数,则a 的取值为( )A .1B .﹣1C .±1D .任意实数【答案】A【解析】先根据反比例函数的定义列出关于a 的方程组,求出a 的值即可. 解:∵此函数是反比例函数,∴{a +1≠0a 2−2=−1,解得a =1.故选:A .2.反比例函数的图象:(1)反比例函数的图像是双曲线;它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限;它们关于原点对称;(2)反比例函数关于直线y=x和y=-x成轴对称;(对称中心:原点)(3)由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图【例题2】(2020•德州)函数y=kx象可能是( )【答案】D【解析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.和y=﹣kx+2(k≠0)中,解:在函数y=kx的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四当k>0时,函数y=kx象限,故选项A、B错误,选项D正确;的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三当k<0时,函数y=kx象限,故选项C错误。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

2023年中考数学一轮专题练习 ——反比例函数(含解析)

2023年中考数学一轮专题练习 ——反比例函数(含解析)

2023年中考数学一轮专题练习 ——反比例函数2一、单选题(本大题共10小题)1. (湖北省武汉市2022年)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是( ) A .120y y +<B .120y y +>C .12y y <D .12y y >2. (湖北省宜昌市2022年)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为( )A .a b >B .a b ≥C .a b <D .a b ≤3. (湖北省十堰市2022年)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .94. (江苏省泰州市2022年)已知点在下列某一函数图像上,且那么这个函数是( )A .B .C .D .5. (湖北省荆州市2022年)如图是同一直角坐标系中函数和的图象.观察图象可得不等式的解集为( ) ()()()1233,,1,,1,y y y --312y y y <<3y x =23y x =3y x=3y x=-12y x =22y x=22x x>A .B .或C .或D .或6. (四川省内江市2022年)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣227. (黑龙江省绥化市2022年)已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是( )11x -<<1x <-1x >1x <-01x <<10x -<<1x>A .B .C .D .8. (湖北省省直辖县级行政单位潜江市2022年)如图,点A 在双曲线4y x=上,点B 在双曲线12y x=上,且AB//x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A .4B .6C .8D .129. (江苏省宿迁市2022年)如图,点A 在反比例函数()20=>y x x的图像上,以OA 为一边作等腰直角三角形OAB ,其中∠OAB =90°,AO AB =,则线段OB 长的最小值是( )A .1B .C .D .410. (山东省滨州市2022年)在同一平面直角坐标系中,函数1y kx =+与ky x=- (k 为常数且0k ≠)的图象大致是( )A .B .C .D .二、填空题(本大题共6小题)11. (四川省成都市2022年)关于x 的反比例函数2m y x-=的图像位于第二、四象限,则m 的取值范围是 .12. (四川省广元市2022年)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是 .13. (湖北省鄂州市2022年)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 .14. (四川省凉山州2022年)如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB 的面积为3,则k = .15. (四川省内江市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是 .16. (2022年四川省乐山市)如图,平行四边形ABCD的顶点A在x轴上,点D在y=k x(k>0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=32,则k= .三、解答题(本大题共10小题)17. (吉林省2022年)密闭容器内有一定质量的气体,当容器的体积V(单位:3m)变化时,气体的密度ρ(单位:3kg/m)随之变化.已知密度ρ与体积V是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V的函数解析式;(2)当3m10V=时,求该气体的密度ρ.18. (湖南省岳阳市2022年)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集. 19. (湖北省恩施州2022年)如图,在平面直角坐标系中,O 为坐标原点,已知∠ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围. 20. (湖南省衡阳市2022年)如图,反比例函数my x=的图象与一次函数y kx b =+的图象相交于()3,1A ,()1,B n -两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB 交y 轴于点C ,点M ,N 分别在反比例函数和一次函数图象上,若四边形OCNM 是平行四边形,求点M 的坐标.21. (四川省遂宁市2022年)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如()1,1-,()2022,2022-都是“黎点”. (1)求双曲线9y x-=上的“黎点”; (2)若抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,当1a >时,求c 的取值范围.22. (四川省遂宁市2022年)已知一次函数11y ax =-(a 为常数)与x 轴交于点A ,与反比例函数26y x=交于B 、C 两点,B 点的横坐标为2-.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C 的坐标,并根据图象写出当12y y <时对应自变量x 的取值范围; (3)若点B 与点D 关于原点成中心对称,求出△ACD 的面积.23. (四川省自贡市2022年)如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数ny x=的图象交于()()1,2,,1A B m -- 两点.(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作直线AD l⊥于D,点C是直线l上一动点,若2DC DA=,求点C的坐标.24. (湖北省咸宁市2022年)如图,已知一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-12),B(12,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.25. (四川省南充市2022年)如图,直线AB与双曲线交于(1,6),(,2)A B m-两点,直线BO 与双曲线在第一象限交于点C,连接AC.(1)求直线AB与双曲线的解析式.(2)求ABC的面积.26. (四川省眉山市2022年)已知直线y x =与反比例函数ky x=的图象在第一象限交于点(2,)M a .(1)求反比例函数的解析式;(2)如图,将直线y x =向上平移b 个单位后与ky x=的图象交于点(1,)A m 和点(,1)B n -,求b 的值;(3)在(2)的条件下,设直线AB 与x 轴、y 轴分别交于点C ,D ,求证:AOD BOC ≌△△.参考答案1. 【答案】C 【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系. 【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点, ∴11226x y x y ==. ∵120x x <<, ∴120y y <<. 故选:C . 2. 【答案】A 【分析】根据电流I 与电路的电阻R 是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断 【详解】∵电流I 与电路的电阻R 是反比例函数关系 由表格:5,20I R ==;1,100I R == ∴在第一象限内,I 随R 的增大而减小 ∵204080100<<< ∴51a b >>> 故选:A 3. 【答案】B 【分析】设PA =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k+t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论. 【详解】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0). ∴点D 的坐标为(3,23k ), ∴点C 的坐标为(3-t ,23k +t ). ∵点C 在反比例函数y =2k x的图象上, ∴(3-t )(23k +t )=k2,化简得:t =3-23k , ∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k, ∴点B 的坐标为(3,6-23k ), ∴3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B . 4. 【答案】D 【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案. 【详解】解:A .把点代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件不符,故选项错误,不符合题意;B .把点代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件不符,故选项错误,不符合题意;C . 把点代入y =,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件不符,故选项错误,不符合题意; D . 把点代入y =-,解得y 1=1,y 2=3,y 3=-3,所以,这与已知条件相符,故选项正确,符合题意;()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<()()()1233,,1,,1,y y y --3x312y y y <<312y y y <<5. 【答案】D 【分析】根据图象进行分析即可得结果; 【详解】 解:∵ ∴由图象可知,函数和分别在一、三象限有一个交点,交点的横坐标分别为, 由图象可以看出当或时,函数在22y x=上方,即12y y >, 故选:D . 6. 【答案】D 【分析】设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =,则PQ =PM +MQ =,再根据ab =8,S △POQ =15,列出式子求解即可. 【详解】解:设点P (a ,b ),Q (a ,),则OM =a ,PM =b ,MQ =, ∴PQ =PM +MQ =. ∵点P 在反比例函数y =的图象上, ∴ab =8. ∵S △POQ =15, ∴PQ •OM =15, ∴a (b ﹣)=15. ∴ab ﹣k =30. ∴8﹣k =30, 解得:k =﹣22. 故选:D . 7. 【答案】B 【分析】根据2y ax bx c =++的函数图象可知,0a >,240b ac ->,即可确定一次函数图象,根据2x =时,420y a b c =++>,即可判断反比例函数图象,即可求解.22x x>12y y >12y x =22y x=11x x ==-,10x -<<1x >12y x =k a ka-kb a-k a k a-kb a-8x1212ka解:∵二次函数2y ax bx c =++的图象开口向上,则,与轴存在2个交点,则240b ac ->,∴一次函数24y ax b ac =+-图象经过一、二、三象限,二次函数2y ax bx c =++的图象,当2x =时,420y a b c =++>,∴反比例函数42a b cy x++=图象经过一、三象限 结合选项,一次函数24y ax b ac =+-与反比例函数42a b cy x++=在同一平面直角坐标系中的图象大致是B 选项 故选B 8. 【答案】C 【分析】过点A 作AE ⊥y 轴于点E ,利用反比例函数系数k 的几何意义,分别得到四边形AEOD 的面积为4,四边形BEOC 的面积为12,即可得到矩形ABCD 的面积. 【详解】过点A 作AE ⊥y 轴于点E , ∵点A 在双曲线4y x=上, ∴四边形AEOD 的面积为4, ∵点B 在双曲线12y x=上,且AB//x 轴, ∴四边形BEOC 的面积为12, ∴矩形ABCD 的面积为12-4=8, 故选:C .9. 【答案】C 【分析】如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMA AHB 证明,AOM BAH ≌ 可得,,OM AH AM BH 设2,,A mm则0a >x222,,,,AM m OMMH mBD m mm m可得 22,,B mm m m 再利用勾股定理建立函数关系式,结合完全平方公式的变形可得答案. 【详解】解:如图,过A 作AM x ∥轴,交y 轴于M ,过B 作BD x ⊥轴,垂足为D ,交MA 于H ,则90,OMAAHB 90,MOA MAO,,AO AB AO AB 90,MAO BAH设2,,A m m则222,,,,AM m OMMH mBD m mmm∴ 22,,B mm m m22222282,OBmm m mmm 0,m > 而当0,0a b >>时,则a b +≥ 2222882228,m m m m∴2282m m 的最小值是8, ∴OB故选:C .10. 【答案】A 【分析】根据题意中的函数解析式和函数图象的特点,可以判断哪个选项中的图象是正确的. 【详解】解:根据函数可得,该函数图象与y 轴的交点在x 轴上方,排除B 、D 选项,,MOA BAH ,AOM BAH ≌,,OMAH AMBH =1y kx =+当k >0时,函数的图象在第一、二、三象限,函数在第二、四象限,故选项A 正确, 故选:A . 11. 【答案】2m < 【分析】根据反比例函数的性质即可确定m-2的符号,从而求解. 【详解】根据题意得:m-2<0, 解得:m <2. 故答案为:m <2. 12. 【答案】4 【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解. 【详解】解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数ky x=的图象上, ∴设. ∵的面积为6, ∴, ∴.∵点C 是AB 的中点, ∴. ∵点C 在反比例函数的图象上, 1y kx =+ky x =-B m n (,)OAB 12OA n=12,0A n ⎛⎫ ⎪⎝⎭12,22mn n C n+⎛⎫⎪⎝⎭ky x=∴, ∴, ∴. 故答案为:4. 13. 【答案】2 【分析】设点A 的坐标为(m ,2m ),根据OA 的长度,利用勾股定理求出m 的值即可得到点A 的坐标,由此即可求出k . 【详解】解:设点A 的坐标为(m ,2m ), ∴, ∴或(舍去), ∴点A 的坐标为(1,2), ∴, 故答案为:2. 14. 【答案】6 【分析】设点A 的坐标为(,)(0,0)A a b a b >>,则,OB a AB b ==,先利用三角形的面积公式可得6ab =,再将点(,)A a b 代入反比例函数的解析式即可得.【详解】解:由题意,设点A 的坐标为(,)(0,0)A a b a b >>,AB x ⊥轴于点B ,,OB a AB b ∴==,OAB 的面积为3,, 解得, 将点(,)A a b 代入ky x=得:, 故答案为:6. 15. 【答案】 【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围. 【详解】当PQ 平行于x 轴时,点Q 的坐标为,代入中,可得; 当PQ 平行于y 轴时,点Q 的坐标为,可得;1222mn nmn n +⋅=4mn =4k=OA =1m =1m =-122k =⨯=11322OB AB ab ∴⋅==6ab =6k ab ==223m <<(),3m 2y x =23m =()2,n 2m =∵一次函数随的增大而增大, ∴的取值范围是, 故答案为:. 16. 【答案】3 【分析】连接OD 、DE ,利用同底等高的两个三角形面积相等得到S △ADE = S △ABE =32,以及S △ADE =S △ADO =32,再利用反比例函数的比例系数k 的几何意义求解即可.【详解】解:连接OD 、DE ,∵四边形ABCD 是平行四边形, ∴点B 、点D 到对角线AC 的距离相等, ∴S △ADE = S △ABE =32,∵AD ⊥x 轴, ∴AD ∥OE ,∴S △ADE =S △ADO =32,设点D (x ,y ) ,∴S △ADO =12OA ×AD =12xy =32,∴k =xy =3. 故答案为:3. 17. 【答案】(1)()100V Vρ=> (2)13kg/m 【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.y x m 223m <<223m <<(1)设密度ρ关于体积V 的函数解析式为()0,0kV k Vρ=>≠, 把点A 的坐标代入上式中得: 2.54k=, 解得:k =10, ∴. (2)当时,(). 即此时该气体的密度为1. 18. 【答案】(1)2y x=-(2)4(3)1x <-或01x << 【分析】(1)把点()1,2A -代入()0ky k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式kmx x<的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∴2k =-,∴反比例函数的解析式为2y x=-;(2)∵反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∴()1,2B -,∵点C 是点A 关于y 轴的对称点, ∴()1,2C , ∴2CD =,∴()122242ABC S =⨯⨯+=△.(3)根据图象得:不等式kmx x<的解集为1x <-或01x <<. ()100V Vρ=>3m 10V =10110ρ==3kg/m 3kg/m19. 【答案】(1)反比例函数的解析式为y 1=24x; (2)当12y y >时,0<x <4或x <-6. 【分析】(1)利用等腰直角三角形的性质以及S △ABC =3S △ADC ,求得DC =2,得到D (6,4),利用待定系数法即可求解;(2)利用待定系数法求得直线AB 的解析式,解方程x +2=24x,求得直线y 2= x +2与反比例函数y 1=24x的图象的两个交点,再利用数形结合思想即可求解. (1)解:∵A (0,2),C (6,2), ∴AC =6,∵△ABC 是等腰直角三角形, ∴AC =BC =6, ∵S △ABC =3S △ADC , ∴BC =3DC , ∴DC =2, ∴D (6,4),∵反比例函数y 1=kx(k ≠0)的图象经过点D ,∴k =6×4=24,∴反比例函数的解析式为y 1=24x; (2)∵C (6,2),BC =6, ∴B (6,8),把点B 、A 的坐标分别代入2y ax b =+中,得682a b b +=⎧⎨=⎩,解得:12a b =⎧⎨=⎩,∴直线AB 的解析式为22y x =+, 解方程x +2=24x, 整理得:x 2+2x -24=0, 解得:x =4或x =-6,∴直线y 2= x +2与反比例函数y 1=24x的图象的交点为(4,6)和(-6,-4), ∴当12y y >时,0<x <4或x <-6.20. 【答案】(1)反比例函数解析式为3y x =,一次函数解析式为2y x =-(2)M或( 【分析】(1)分别将(3,1)A ,(1,)B n -代入反比例函数解析式,即可求得m ,n 的值,再将A ,B 两点坐标代入一次函数解析式,求得k ,b 的值;(2)若四边形OCNM 是平行四边形,则//MN OC ,且MN OC =,即M N y y OC -=,由此进行求解.(1)解:将点(3,1)A ,代入, 得,解得, 点,反比例函数的解析式为;将点,代入, 得,解得, 一次函数的解析式为.(2)解:将代入,得,,.若四边形是平行四边形,则,且,设,, 则, 解得或.21. 【答案】(1)9y x-=上的“黎点”为()3,3-,()3,3- (2)09c <<【分析】(1)设双曲线9y x -=上的“黎点”为(),m m -,构建方程求解即可; (1,)B n -m y x=131m m n ⎧=⎪⎪⎨⎪=⎪-⎩33m n =⎧⎨=-⎩∴(1,3)B --3y x=(3,1)A (1,3)B --y kx b =+133k b k b =+⎧⎨-=-+⎩12k b =⎧⎨=-⎩∴2y x =-0x =2y x =-2y =-∴(0,2)C -∴2OC =OCNM //MN OC 2MN OC ==3(,)M t t(,2)N t t -3(2)2M N MN y y t t=-=--=t =∴M ((2)抛物线27y ax x c =-+(a 、c 为常数)上有且只有一个“黎点”,推出方程()270ax x c x a -+=-≠有且只有一个解,3640ac ∆=-=,可得结论.(1) 设双曲线9y x -=上的“黎点”为(),m m -, 则有9m m --=,解得3m =±, ∴9y x-=上的“黎点”为()3,3-,()3,3-. (2)∵抛物线27y ax x c =-+上有且只有一个“黎点”,∴方程()270ax x c x a -+=-≠有且只有一个解, 即260ax x c +=-,3640ac ∆=-=,9ac =, ∴9a c=. ∵1a >,∴.22. 【答案】(1)11y x =-,画图象见解析(2)点C 的坐标为(3,2);当12y y <时,2x <-或03x <<(3)2ACD S =△【分析】(1)根据B 点的横坐标为-2且在反比例函数y 2=6x的图象上,可以求得点B 的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可; (2)将两个函数解析式联立方程组,即可求得点C 的坐标,然后再观察图象,即可写出当y 1<y 2时对应自变量x 的取值范围;(3)根据点B 与点D 关于原点成中心对称,可以写出点D 的坐标,然后点A 、D 、C 的坐标,即可计算出△ACD 的面积.(1)解:∵B 点的横坐标为-2且在反比例函数y 2=6x的图象上, ∴y 2=62-=-3, ∴点B 的坐标为(-2,-3),∵点B (-2,-3)在一次函数y 1=ax -1的图象上,∴-3=a ×(-2)-1,解得a =1,∴一次函数的解析式为y =x -1,∵y =x -1,09c <<∴x=0时,y=-1;x=1时,y=0;∴图象过点(0,-1),(1,0),函数图象如图所示;;(2)解:解方程组16y xyx=-⎧⎪⎨=⎪⎩,解得32xy=⎧⎨=⎩或23xy=-⎧⎨=-⎩,∵一次函数y1=ax-1(a为常数)与反比例函数y2=6x交于B、C两点,B点的横坐标为-2,∴点C的坐标为(3,2),由图象可得,当y1<y2时对应自变量x的取值范围是x<-2或0<x<3;(3)解:∵点B(-2,-3)与点D关于原点成中心对称,∴点D(2,3),作DE⊥x轴交AC于点E,将x=2代入y=x-1,得y=1,∴S△ACD=S△ADE+S△DEC= (31)(21)(31)(32)22-⨯--⨯-+=2,即△ACD的面积是2.23. 【答案】(1)y=2x-,y=﹣x+1;(2)(2,8)或(2,﹣4)【分析】(1)把点A (﹣1,2)代入n y x=求出n 的值,即可得到反比例函数的解析式,把B (m ,﹣1)代入求得的反比例函数的解析式得到m 的值,把A 、B 两点的坐标代入一次函数y kx b =+,求出k ,b 的值,即可得出一次函数的解析式;(2)根据已知条件确定AD 的长及点D 的坐标,由DC =2AD 得到DC =6,从而求得点C 的坐标.(1)解:把点A (﹣1,2)代入ny x =得,2=1n-,解得n =﹣2,∴反比例函数的解析式是y =2x -,把B (m ,﹣1)代入y =2x -得,﹣1=2m ,解得m =2,∴ 点B 的坐标是(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y kx b =+得,221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,∴一次函数的解析式为y =﹣x +1;(2)解:∵直线l y 轴,AD ⊥l ,点A 的坐标是(﹣1,2),点B 的坐标是(2,﹣1),∴ 点D 的坐标是(2,2),∴ AD =2-(﹣1)=3,∵ DC =2DA ,∴ DC =6,设点C 的坐标为(2,m ),则|m -2|=6,∴ m -2=6或m -2=﹣6,解得m =8或﹣4,∴ 点C 的坐标是(2,8)或(2,﹣4)24. 【答案】(1)1132y x -=,23(0)y x x =->;(2)162x <<; (3)2.【分析】(1)将两函数A 、B 的坐标值分别代入两个函数解析式求出未知系数即可; (2)由图像可知当x 在A 、B 两点之间时y 1<y 2,,所以x 取值在A 、B 两点横坐标之间;(3)根据平移性质可知DE AB ∥,CF =t ,求出两直线之间的距离即为△ACD 的高CG ,通过A 、C 坐标求出线段AC 长,列出△ACD 面积=1·2AC CG 的代数式求解即可.(1)∵一次函数y 1=kx +b 的图像与函数y 2=m x(x >0)的图像交于A (6,-12),B (12,n )两点, ∴16212k b k b n ⎧+=-⎪⎪⎨⎪+=⎪⎩, 1262m n m ⎧-=⎪⎨⎪=⎩, 解得:1132k b =⎧⎪⎨=-⎪⎩, 36m n =-⎧⎨=-⎩, ∴y 1、y 2的解析式为:1132y x -=,23(0)y x x=->; (2) 从图像上可以看出,当x 在AB 两点之间时,y 1<y 2,∴x 的取值范围为:162x <<; (3)作CG ⊥DE 于G ,如图,∵直线DE 是直线AB 沿y 轴向上平移t 个单位长度得到,∴DE AB ∥,CF =t ,∵直线AB 的解析式为1132y x -=, ∴直线AB 与y 轴的交点为C 130,2⎛⎫- ⎪⎝⎭,与x 轴的交点为13,02⎛⎫ ⎪⎝⎭, 即直线AB 与x 、y 坐标轴的交点到原点O 的距离相等,∴∠FCA =45°,∵CG ⊥DE , DE AB ∥,∴CG ⊥AC ,CG 等于平行线AB 、DE 之间的距离,∴∠GCF =∠GFC =45°,∴CG==, ∵A 、C 两点坐标为:A (6,-12),C 130,2⎛⎫-⎪⎝⎭, ∴线段AC∴11322ACD S AC CG t =⋅=⨯=, ∵△ACD 的面积为6,∴3t =6,解得:t =2.25. 【答案】(1)直线AB 的解析式为y =2x +4;双曲线解析式为6y x=;(2)16【分析】(1)根据点A 的坐标求出双曲线的解析式,求出点B 的坐标,再利用待定系数法求出直线AB 的解析式;(2)求出直线OB 的解析式为y =x ,得到点C 的坐标,过点B 作BE ∥x 轴,交AC 的延长线于E ,求出直线AC 的解析式,进而得到点E 的坐标,根据的面积=S △ABE -S △BCE 求出答案.(1)解:设双曲线的解析式为,将点A (1,6)代入, 得,∴双曲线解析式为, ∵双曲线过点B (m ,-2),∴-2m =6,解得m =-3,∴B (-3,-2),设直线AB 的解析式为y =nx +b ,23ABC k y x=166k =⨯=6y x =得,解得, ∴直线AB 的解析式为y =2x +4;(2)设直线OB 的解析式为y =ax ,得-3a =-2,解得a =, ∴直线OB 的解析式为y =x , 当时,解得x =3或x =-3(舍去), ∴y =2,∴C (3,2),过点B 作BE ∥x 轴,交AC 的延长线于E ,∵直线AC 的解析式为y =-2x +8,∴当y =-2时,得-2x +8=-2,解得x =5,∴E (5,-2),BE =8,∴的面积=S △ABE -S △BCE==16.26. 【答案】(1)4y x=(2)3b =(3)见解析【分析】 (1)先根据一次函数求出M 点坐标,再代入反比例函数计算即可; (2)先求出A 的点坐标,再代入平移后的一次函数解析式计算即可; (3)过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F ,即可根据A 、B 坐标证明()AOE BOF SAS △≌△,得到AOE BOF ∠=∠,OA OB =,再求出C 、D 坐标即可得到OC =OD ,即可证明AOD BOC ≌△△.632n b n b +=⎧⎨-+=-⎩24n b =⎧⎨=⎩2323263x x=ABC 11888422⨯⨯-⨯⨯(1)∵直线y x =过点(2,)M a ,∴2a =∴将(2,2)M 代入k y x=中,得4k =, ∴反比例函数的表达式为4y x =(2)∵点(1,)A m 在4y x=的图象上, ∴4m =,∴(1,4)A 设平移后直线AB 的解析式为y x b =+,将(1,4)A 代入y x b =+中,得4=1+b ,解得3b =.(3)如图,过点A 作AE y ⊥轴于点E ,过B 点作BF x ⊥轴于点F .∵(,1)B n -在反比例函数4y x=的图象上, ∴n =-4,∴B (-4,-1)又∵(1,4)A ,∴AE BF =,OE OF =,∴AEO BFO ∠=∠∴()AOE BOF SAS △≌△, ∴AOE BOF ∠=∠,OA OB =又∵直线3y x 与x 轴、y 轴分别交于点C ,D , ∴(3,0)C -,(0,3)D ,∴OC OD =在AOD △和BOC 中,OA OB AOE BOF OD OC =⎧⎪∠=∠⎨⎪=⎩ ∴()AOD BOC SAS △≌△.。

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。

有时也用k xy =或1−=kx y 表示。

2. 反比例函数的图像:反比例函数的图像是双曲线。

3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y 随x 的增大而增大。

对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。

鲁教版初中数学九年级上册《反比例函数》同步练习1

鲁教版初中数学九年级上册《反比例函数》同步练习1

《反比例函数》同步练习一、判断题1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小.( )2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数.( )3.如果一个函数不是正比例函数,就是反比例函数.( )4.y 与x 2成反比例时y 与x 并不成反比例.( )5.y 与2x 成反比例时,y 与x 也成反比例.( )6.已知y 与x 成反比例,又知当x =2时,y =3,则y 与x 的函数关系式是y =6x . ( )二、填空题1.y =xk (k ≠0)叫__________函数.x 的取值范围是__________. 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________.3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________.4.如果函数y =222-+k kkx 是反比例函数,那么k =________,此函数的解析式是________.三、辨析题兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:(1)写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).(2)虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x 是成反例吗?四、请你列举几个生活中的一对变量,使其中的一个变量是另一个变量的反比例函数,并尝试给出某个数值,从而求出这一对变量之间的函数关系式.参考答案一、1.× 2.× 3.× 4.√ 5.√ 6.√ 二、1.反比例 x ≠02.aS 2 反比例函数 3.反比例4.-1或21 y =-x -1或y =121 x 三、(1)y =30-x (2)y 与x 不成反比例.四、略。

鲁教版中考数学一轮复习各知识点练习题分层设计五分式部分

鲁教版中考数学一轮复习各知识点练习题分层设计五分式部分

选做题 1
16.已知 x2-3x-1=0,求 x2+x2的值.
鲁教版中考数学一轮复习各知识点练习题分层设计(分式部分)
A 级 基础题 1
1.要使分式x有意义,x 的取值范围满足( ) A.x=0 B.x≠0 C.x>0 D.x<0
x
2.使代 数式2x-1有意义的 x 的取值范围是( )
1
1
A.x≥0 B.x≠2 C.x≥0 且 x≠2
D.一切实数
3. 在括号内填入适当的代数式,是下列等式成立:
1 x 1

x2
2x 1
x2 1

÷x+1,其中
x=2.
a-2
14
.先化简,再求值:a2-1÷

a
1
2a 1 a 1
,其中
a
是方程
x2-x=6
的根.
C 级 拔尖题
ab+a b-1 1 5.先化简再求值:b2-1+b2-2b+1,其中 b-2+36a2+b2-12ab=0.
B 级 中等 题 x-1
11.若分式x-1x-2有意 义,则 x 应满 足的条件是( ) A.x≠1 B.x≠2 C.x≠1 且 x≠2 D.以上结果都不对
x+2
12.先化简,再求值:

3x x2
4 1

x
2 1
÷-2x+1.
13.先化简,再求值.
x-1

x2-2x-3 6.当 x=______时,分式 x-3 的值为零.
x2 1 8.先化简x-1+1-x,再选取一个你喜欢的数代入求值.
x-2 x 9.先化简,再求值:x2-4-x+2,其中 x=2.
m
10.化简:

反比例函数2024年中考数学第一轮总复习

 反比例函数2024年中考数学第一轮总复习
x
(2)求直线AB的函数关系式;
y
(3)动点P在y轴上运动,当PA-PB最大时,求点P的坐标.
(2)S△BOE=S梯形
(3)P(0,4)
AMFE=S
S△AOB
梯形
B (m,6/m
)
A(6,1)
1 AMFB
6 m
8 (
6
)
2
m 6
m1=2,m2=-18(舍去
1 )ห้องสมุดไป่ตู้
y x4
2
E
O
F
M
x
中考数学第一轮总复习
专题3.3 反比例函数
知识梳理
典例精讲
考点聚焦
查漏补缺
提升能力
01
图象与性质
02
K的几何意义
考点聚焦
03
与一次函数的综合
04
与几何图形的综合
精讲精练
考点聚焦
反比例函数的图象与性质
知识点一
k
形如_____(k≠0)的函数,叫做反比例函数,反比例函数的解析式也可写成
y
x

-1
y=kx 或xy=k
S△ABF;④m=8/3,其中正确的有_______.
提升能力
强化训练
反比例函数
提升能力
7.如图,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴
k
x < 0)
-32
的轴上,函数 y = (的图象经过顶点B,则k的值为____.
x
H
8.如图,点A在双曲线y=4/x上,点B在双曲线y=k/x上,
x
的图象可以是(
)C
01
02
K的几何意义
考点聚焦

专题14 反比例函数【知识点清单】-2022年中考数学一轮复习精讲+热考题型(全国通用)

专题14 反比例函数【知识点清单】-2022年中考数学一轮复习精讲+热考题型(全国通用)

专题14 反比例函数【知识要点】知识点一 反比例函数的基础反比例函数的概念:一般地,形如y =k x (k 为常数,k ≠o )的函数称为反比例函数。

【注意】1)反比例函数y =k x 的自变量x ≠0,故函数图象与x 轴、y 轴无交点。

2)变式xy=k (定值)、1-=kx y 、 xky 1=(k ≠0) 反比例函数解析式的特征:1)等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.2)比例系数k ≠03)自变量x 的取值为一切非零实数,函数y 的取值是一切非零实数。

待定系数法求反比例函数解析式的一般步骤(考点):1)设反比例函数的解析式为y =k x (k 为常数,k ≠0);2)把已知的一对x ,y 的值带入解析式,得到一个关于待定系数k 的方程;3)解方程求出k 值,并将将k 值代入所设解析式中。

知识点二 反比例函数的图象和性质(基础)反比例函数图象的画法的画法(描点法):1)列表(自变量的取值应取绝对值相等而符号相反的一对数值,尽量多取一些数值)。

2)描点(由小到大的顺序依次连线)3)连线(用光滑的曲线连接,不能用折线)反比例函数的性质: 反比例函数图象的特征:1)反比例函数的图像是双曲线,双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

【易错】双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。

2)反比例函数是轴对称图形和中心对称图形。

①图象关于原点对称,即若(a ,b )在双曲线的一支上,则(-a ,-b )在双曲线的另一支上.②图象关于直线x y = 对称,即若(a ,b )在双曲线的一支上,则(b ,a )在双曲线的另一支上;③图象关于直线x y -=对称,即若(a ,b )在双曲线的一支上,则(-b ,-a )在双曲线的另一支上。

3)k 的取值与函数图象弧度之间的关系: ①|k|越大,图象的弯曲度越小,离原点越远。

初三中考一轮复习(11)反比例函数 题型分类 含答案(全面 非常好)

初三中考一轮复习(11)反比例函数  题型分类 含答案(全面 非常好)

教学主题 一轮复习反比例函数教学目标掌握反比例函数题型重 要 知识点 1.反比例函数 2. 3. 易错点教学过程反比例函数考点1:反比例函数的图象和性质 1、一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数,其图象是叫双曲线。

2、当k >0时,图象的两个分支分别在第一、三象限。

在每个象限内,y 随x 的增大而减小。

当k <0时,图象的两个分支分别在第二、四象限。

在每个象限内,y 随x 的增大而增大。

3、对于双曲线上的点A 、B ,有两种三角形的面积(S △AOB)要会求(会表示),如图所示.考点1、反比例函数图像与性质1、函数2y x =与函数1y x-=在同一坐标系中的大致图像是 ( )【答案】B2、如图是我们学过的反比例函数图象,它的函数解析式可能是 ( )【答案】 BA .2y x =B .4y x=C .3y x=-D .12y x =3、若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则1y 2y (填“>”,“<”“=”). 【答案】> 4、如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D6.如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当y 2<2时自变量x 的取值范围.【答案】(1)∴P ′(2,4).(2) k =8,自变量x 的取值范围x <0或x >4. 考点3:反比例函数解析式中k 的几何意义 相关知识:设()P x y ,是反比例函数ky x=图象上任一点,过点P 作x 轴、y 轴的垂线,垂足为A ,则(1)△OPA 的面积111222OA PA xy k ===g .(2)矩形OAPB 的面积OA PA xy k ===g 。

【鲁教版】中考数学一轮复习:各知识点练习题分层设计(打包24套)(已纠错)

【鲁教版】中考数学一轮复习:各知识点练习题分层设计(打包24套)(已纠错)

(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。

中考数学一轮复习练习七(反比例函数) 鲁教版

中考数学一轮复习练习七(反比例函数) 鲁教版

(反比例函数)命题方向:本部分内容相对一次函数和二次函数来说,出题的数量要少些,难度也小些。

反比例函数的图象和性质,以及函数关系式的确定,往往是以选择题和填空题的形式出现,比较容易解答。

但也有一些省市的中考题将反比例函数与生活情境结合,与其他知识结合出一些解答题。

备考攻略:这类问题难度不大,很容易上手解决问题。

关键是掌握反比例函数的有关概念、图象和性质。

巩固练习:1.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为2.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.3.如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.4.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A (﹣1,n ). (1)求反比例函数y=的解析式;(2)若P 是坐标轴上一点,且满足PA=OA ,直接写出点P 的坐标.(5.如图,在平面直角坐标系xOy 中,已知直线l :y=﹣x ﹣1,双曲线y=,在l 上取一点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,…记点A n 的横坐标为a n ,若a 1=2,则a2=,a 2013= ;若要将上述操作无限次地进行下去,则a 1不可能取的值是 .( )6. 在平面直角坐标系中,已知反比例函数满足:当时,y 随x 的增大而减小.若该反比例函数的图象与直线都经过点P ,且则实数k=_________.【答案】. 7.(2011江苏南京,15,2分)设函数与的图象的交战坐标为(a ,b ),则的值为__________.【答案】 8. 如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,xOy 2(0)ky k x=≠0x <3y x k =-7OP =372y x =1y x =-11a b-12-D 在双曲线y=上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k =_____. 【答案】129. 如图:点A 在双曲线上, A B ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-4 10. 函数 , 的图象如图所示,则结论: 点A 的坐标为(3 ,3 ) ② 当时, ③ 当 时, BC = 8 ④当逐渐增大时,随着的增大而增大,随着 的增大而减小.其中正确结论的序号是_ . 【答案】①③④11 如图,点A 在双曲线上,点B在双曲线上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 的面积为矩形,则它的面积为 . 【答案】212. 如图,双曲线经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与轴正半轴的夹角,AB ∥轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 . 【答案】213.如图,函数的图象与函数()的图象交于A 、B 两点,与轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数的表达式和B 点的坐标;(2)观察图象,比较当时,与xkky x=1(0)y x x =≥xy 92=(0)x >3x >21y y >1x =x 1y x 2y x 1y x =3y x=)0(2x xy =x x b x k y +=11xk y 22=0>x y 1y 0>x 1y 2y A第9题图 yy 1=x y 2=9xx第11题图BC14.已知一次函数与反比例函数,其中一次函数的图象经过点P (,5). ①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标15. 如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1. (1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.2y x =+ky x=2y x =+k 12y x =ky x=(0)k ≠A A x M OAM ∆B B A B x P PA PB +xA(第3题)。

【鲁教版】最新中考数学一轮复习:教学设计(表格版,14份打包)(加精)

【鲁教版】最新中考数学一轮复习:教学设计(表格版,14份打包)(加精)

实数的有关概念一个数的相反数和绝对值,会比较实数的大小能用数轴上的点表示实数,an)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之整数集合{为零.2、 一个数的倒数的相反数是115,则这个数是( ) A .65 B .56 C .65 D .-56、一个数的绝对值等于这个数的相反数,这样的数是() .分类讨b=___________. |AB|=|BO|=|b|=|a综上,数轴上A、B两点之间的距离|AB|=|a-b|(2)回答下列问题:的取值范围是(实数的运算)念、掌握有理数运算法则、运算委和运算顺序,实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的。

互为相反的数相乘,积的符号由①除以一个数,等于_________________________<【经典计算三个住宅区在年国内2003)本周内该股票收盘时的最高价、最低价分别是多少?(数的开方与二次根式)的概念,会辨别最简【知识梳理的立方根;一个负))),在合并同类二次根式;④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

为何值时,下列各式在实数范围内有意义b-)2)2+;⑥)36+26当7.计算“先化简下式,再求值:a+误的;代数式的初步知识能分析简单问题的数量关系加、减、乘、除、乘方、开方B.0.15a贩将原来每桶价格_____________就个数的和是个数应该是7.颗.颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:上面数表中第9行,第7列的数是_________.观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;整式式,的积的代数式叫做单项式。

)去括号法则:括号前是“+”号,括号前是“-”号,6÷2.①④阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来)请仿照上)按题目要求写出一个与上述不同的代数恒.等式,画出与所写代数恒等生对应的平面几何图形即可(答案不唯一).n=_____)…(1.则化学老师做三⑵由此可以猜想:3+n(n+1)(n+2)=______-.(因式分解)1)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

中考数学一轮复习 各知识点练习题分层设计十四(反比例函数部分)(无答案) 鲁教版

中考数学一轮复习 各知识点练习题分层设计十四(反比例函数部分)(无答案) 鲁教版

(反比例函数部分)A 级 基础题1.如图X3-3-1,某反比例函数的图象过点(-2,1),则此反比例函数表达式为( )A .y =2xB .y =-2xC .y =12xD .y =-12x2.对反比例函数y =1x,下列结论中不正确的是( ) A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大3.若反比例函数y =k x与一次函数y =x +2的图象没有交点,则k 的值可能是( ) A .-2 B .-1 C .1 D .24.已知直线y =ax (a ≠0)与双曲线y =k x(k ≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是( ) A .(-2,6) B .(-6,-2) C .(-2,-6) D .(6,2)5.已知反比例函数的图象y =m -1x 如图所示,则实数m 的取值范围是( )A .m >1B .m >0C .m <1D .m <06.(江苏无锡)若双曲线y =k x与直线y =2x +1一个交点的横坐标为-1,则k 的值为( )A .-1B .1C .-2D .27.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )8.一次函数y 1=kx +b (k ≠0)与反比例函数y 2=m x(m ≠0),在同一直角坐标系中的图象如图X3-3-3所示,若y 1>y 2,则x 的取值范围是( )A .-2<x <0或x >1B .x <-2或0<x <1C .x >1D .-2<x <19.已知反比例函数y =k x的图象经过点(1,-2),则k =________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m 的值为__________.11.如图,一次函数y =kx +b 与反比例函数y =6x(x >0)的图象交于A (m,6),B (n,3)两点. (1)求一次函数的解析式;(2)根据图象直接写出,当kx +b -6x>0时,x 的取值范围.B 级 中等题12.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =-3x的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 313.如图,反比例函数y 1=k1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k1x >k 2x ,则x 的取值范围是( )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >1。

中考数学专题复习全国各地反比例函数试题归类训练鲁教版_

中考数学专题复习全国各地反比例函数试题归类训练鲁教版_

y中考数学专题复习全国各地反比例函数试题归类训练鲁教版_考点1 正确理解反比例函数的概念,会求反比例函数的解析式 类型一、根据解析式求字母的值1、若是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数 解:∵此函数是反比例函数, ∴,解得a=1.规律方法:本题考查的是反比例函数的定义,先根据反比例函数的定义列出关于a 的不等式组,求出a 的值即可.本题易错点是:解答时易把系数a+1≠0漏掉而错得a=±1. 类型二、根据一个点的坐标求解析式2.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的对角线长分别是6和4,反比例函数y=(x<0)图象经过点C ,则k 的值为______-6_____考点:反比例函数图象上点的坐标特征分析:先根据菱形的性质求出C 点的坐标特征,再把C 点坐标代入反比例函数的解析式中类型三、根据面积直接求解析式3.如图,矩形AOBC 的面积为4,反比例函数的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )(A)(B)(C)(D)类型四、根据面积转换求解析式4.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()分析:本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、□OABC的面积与|k|的关系,列出等式求出k值.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故选C.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,老师们应高度关注.考点二、灵活运用反比例函数的图象和性质解决问题类型一、比较函数值的大小1、已知点A(1,)、B(2,)、C(-3,)都在反比例函数的图象上,则的大小关系是()A. B. C. D.y3<y2<y1【答案】:D【解析】:将A(1,)、B(2,)、C(-3,)代入得到=6,=3,=-2变式:改为反比例函数能用代入法吗?本题易错点是:.反比例函数的增减性要强调在同一个象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若顾客在甲商场购买了 510 元的商品,付款时应付多少钱? (2)若顾客在甲商场购买商品的总金额为 x(400≤x<600)元,优惠后得
到商家的优惠率为 p(p=购买优商惠品的金总额金额),写出 p 与 x 之间的函数关系 式,并说明 p 随 x 的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是 x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
B.(-6,-2) C.(-2,-6)
D.(6,2)
5.已知反比例函数的图象 y=m-x 1如图所示,则实数 m 的取值范
围是( )
A.m>1 B.m>0 C.m<k与直线 y=2x+1 一个交点的横坐标为-1,则
k 的值为( )
A.-1 B.1 C.-2 D.2
(反比例函数部分)
A 级 基础题
1.如图 X3-3-1,某反比例函数的图象过点(-2,1),
则此反比例函数表达式为( )
A.y=2x
B.y=-x2
C.y=21x
D. y=-21x
2.对反比例函数 y=x1,下列结论中不正确的是(
)
A.图象经过点(-1,-1)
B.图象在第一、三象限
C.当 x>1 时,0<y<1
选做题 19.如图,一次函数 y1=k x+b 的图象与反比例函数 y2=xm的图象相交
于点 A(2,3)和点 B,与 x 轴相交于点 C(8,0). (1)求这两个函数的解析式; (2)当 x 取何值时,y1>y2.
20.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学 校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知 药物在燃烧机释放过程中,室内空气中每立方米含药量(单位;毫克)与燃 烧时间(单位;分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点 及其右侧的部分),根据图象所示信息,解答下列问题:
(1)写出从药物释放开始,y 与 x 之间的函数关系式及自变量的取值范 围;
(2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害 作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?
3),B(1,3)两点,若kx1>k 2x,则 x 的取值范围是(
)
A.-1<x<0 B.-1<x<1
C.x<-1 或 0<x<1 D.-1<x<0 或 x>1
14.如图,直线 y=k1x+b 与双曲线 y=kx2交于 A,B 两点,其横坐标分别为 1 和 5,则不等式 k1x<kx2+b 的解集是____________. 15.如图,点 A 在双曲线 y=kx上,AB⊥x 轴于 B,且△AOB 的面积 S△AOB=2, 则 k=________. 16.如图在平面直角坐标系 xOy 中,一次函数 y1=k1x+1 的图象与 y 轴交 于点A,与 x 轴交于点 B,与反比例 y2=kx2的图象分别交于点 M,N,已知△ AOB 的面积为 1,点 M 的纵坐标为 2.
7.矩形的长为 x,宽为 y,面积为 9,则 y 与 x 之间的函数关 系用图象表示大致为( )
m 8.一次函数 y1=kx+b(k≠0)与反比例函数 y2=x(m≠0),在同一直角坐标 系中的图象如图 X3-3-3 所示,若 y1>y2,则 x 的取值范围是( )
A.-2<x<0 或 x>1 B.x<-2 或 0<x<1 C.x>1 D.-2<x<1 9.已知反比例函数 y=xk的图象经过点(1,-2),则 k=________. 10.已知反比例函数的图象经 过点(m,2)和(-2,3),则 m 的值为 __________. 11.如图,一次函数 y=kx+b 与反比例函数 y=6x(x>0)的图象交于 A(m,6),B(n,3)两点. (1)求一次函数的解析式; (2)根据图象直接写出,当 kx+b-6x>0 时,x 的取值范围.
(1)求一次函数与反 比例函数的解析式; (2)直接写出 y1>y2 时,x 取值范围.
C 级 拔尖题 17.如图,在平面直角坐标系 xOy 中,梯形 AOBC 的边 OB 在 x 轴的正半轴 上,AC∥OB,BC⊥OB,过点 A 的双曲线 y=kx的一支在第一象限交梯形对角 线 OC 于点 D,交边 BC 于点 E.
B 级 中等题 12.点 A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数 y=-x3的图象上,
若 x1<x2<0<x3,则 y1,y2,y3 的大小关系是( ) A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3 13.如图,反比例函数 y1=kx1和正比例函数 y2=k2x 的图象交于 A(-1,-
D.当 x<0 时,y 随着 x 的增大而增大
3.若反比例函数 y=kx与一次函数 y=x+2 的图象没有交点,则 k 的值
可能是( )
A.-2 B.-1 C.1 D.2
4.已知直线 y=ax(a≠0)与双曲线 y=xk(k≠0)的一个交点坐标为(2,6),
则它们的另一个交点坐标是( )
A.(-2,6)
(1) 填 空 : 双 曲 线 的 另 一 支 在 第 ________ 象 限 , k 的 取 值 范 围 是 ________;
(2)若点 C 的坐标为(2,2),当点 E 在什么位置时?阴影部分面积 S 最 小?
(3)若OODC=21,S△OAC=2,求双曲线的解析式.
18.甲、乙两家商场进行促销活动,甲商场采用“满 200 减 100”的促 销方式,即购买商品的总金额满 200 元但不足 400 元,少付 100 元;满 400 元但不足 600 元,少付 200 元;…,乙商场按顾客购买商品的总金额打 6 折促销.
相关文档
最新文档