Myasthenia gravis-Vincent2001
重症肌无力
12
六.辅助检查
3. 神经电生理检查
重复神经电刺激(RNS) 低频RNS:2~5Hz,波幅递减在10~15%以上 高频RNS:>10Hz,递减程度在30%以上
常规肌电图和神经传导速度:一般正常
13
单纤维肌电图:颤抖增宽和(或)阻滞
6
五. 临床表现
大多隐袭起病,可有诱因 进展性、缓解与复发交替性 或持续性 首发症状多为眼外肌受累,儿童更常见 肌肉无力的分布:
全身骨骼肌均可受累 颅神经支配肌肉更易受累
肌肉无力的特点
易疲劳性和波动性:晨轻暮重,休息缓解
7
五. 临床表现
肌肉无力的好发部位:
眼外肌:多首发,上睑下垂、斜视、复视,甚至眼球固定 球部肌肉:说话鼻音、饮水呛咳、吞咽困难 面部肌肉:苦笑面容、闭眼示齿无力、咀嚼无力 胸锁乳突肌和斜方肌:颈软、抬头困难、转颈和耸肩无力 四肢肌肉:以近端为重 呼吸肌:危象,致死
同III型,常合并胸腺瘤 V:较早伴有明显的肌萎缩者
9
临床分型(OSSERMAN)
2. 儿童型重症肌无力 占20%,多仅限于眼外肌,少有全身骨骼肌受累 两种特殊亚型:
新生儿型:母亲MG;生后48小时内;治疗后数日或数 周缓解
先天性MG:婴儿期出现,眼外肌麻痹多见,可有家族史
3.少年型重症肌无力 14-18岁起病,多为单纯眼外肌麻痹,部分伴吞咽困
.
重症肌无力 (MYASTHENIA GRAVIS, MG)
1
一. 概念
是累及神经肌肉接头突触后膜处AchR的自身免疫性 疾病
麻醉生理学名词解释考试重点双语
第一章绪论1.internal environment(内环境)指机体内围绕在各细胞周围的细胞外液2.homeostasis(内环境稳态)内环境的各种物理,化学性质保持相对恒定的状态3.anesthesia(麻醉)指使用药物或其他方法使患者整体或局部暂时时期感觉,以达到无痛目的为进一步手术或其他治疗创造条件4.perioperative period(围术期)从确定手术治疗时起,至与本次手术有关的治疗基本结束为止的一段时间5.stress(应激反应)人体对一系列有害刺激做出的保护自己的综合反应第二章麻醉与神经系统1.resting potential(静息电位)指静息状态下神经元膜两侧外正内负的电位差。
2.action potential(动作电位)指神经元在静息电位基础上接受有效刺激后发生可迅速传导的膜电位波动。
3.electroencephalogram EEG (脑电图)在无明显刺激情况下,在头皮表面记录到的自发性生物电活动。
4.inhibitory postsynaptic potential IPSP (抑制性突触后电位)抑制性递质作用受体后,导致负离子通道开放,以Cl-内流为主,产生突触后膜的超极化。
5.consciousness(意识)机体对周围环境,自身生理和心理活动的觉知或体验。
a(昏迷)最严重的意识障碍,患者意识持续中断或完全丧失,各种强刺激均不能唤醒,随意运动消失,按严重程度可将昏迷分为三级,浅昏迷,中昏迷,深昏迷。
7.分离麻醉氯胺酮能引起脑部特定部位兴奋和其他部位抑制的状态,导致EEG-BIS始终处于清醒状态,并有梦境等表现,但意识,对外界刺激的相关反应和记忆均消失,即所谓分离麻醉,属明确的顺行性遗忘作用。
8.intraoperative awareness(术中知晓)指全麻下的患者在手术过程中出现了有意识的状态,并且在术后可以回忆起术中发生的与手术相关联的事件。
9.pain(疼痛)一种与组织损伤或潜在的损伤相关的不愉快的主观感觉和情感体验,是大多数疾病的共有症状,为人类共有且差异很大的一种不愉快的感觉。
多次误诊为支气管哮喘的重症肌无力一例
Hainan Med J,Aug.2023,Vol.34,No.15海南医学2023年8月第34卷第15期多次误诊为支气管哮喘的重症肌无力一例王强1,招远祺2,许浩游21.贵州中医药大学,贵州贵阳550002;2.广东省中医院,广东广州510030【摘要】报告一例MuSK -Ab 阳性重症肌无力(myasthenia gravis ,MG)病例,总结诊治经验,探讨其临床特点和误治经过。
患者以呼吸困难为主要临床表现,多次误诊为“支气管哮喘”。
转入神经内科后确诊为重症肌无力(MGFA 分型V 型),治疗后症状明显改善。
临床上如出现不明原因呼吸困难患者,务必要警惕是否有神经-肌肉接头疾病的可能,避免失治误治。
【关键词】重症肌无力;支气管哮喘;骨骼肌特异性酪氨酸激酶抗体;治疗;误诊【中图分类号】R746.1【文献标识码】D【文章编号】1003—6350(2023)15—2245—03One case of myasthenia gravis repeatedly misdiagnosed as bronchial asthma.WANG Qiang 1,ZHAO Yuan-qi 2,XU Hao-you 2.1.Guizhou University of Traditional Chinese Medicine,Guiyang 550002,Guizhou,CHINA;2.Guangdong Provincial Hospital of Traditional Chinese Medicine,Guangzhou 510030,Guangdong,CHINA【Abstract 】One case of MuSK-Ab positive myasthenia gravis was reported,the experience of diagnosis and treatment was summarized,and its clinical characteristics and mistreatment process were discussed.The patient had dys-pnea as the main clinical manifestation and was repeatedly misdiagnosed as "bronchial asthma"by the Respiratory De-partment.The patient was then diagnosed as myasthenia gravis (MGFA type V)after being transferred to the Department of Neurology,and the symptoms were significantly improved after treatment.Clinically,for patients with unexplained dyspnea,we must be alert to the possibility of neuromuscular junction disease to avoid mistreatment.【Key words 】Myasthenia gravis;Bronchial asthma;MuSK-Ab;Treatment;Misdiagnosis ·个案报道·doi:10.3969/j.issn.1003-6350.2023.15.026基金项目:国家自然科学基金(编号:81960856);贵州省中医药管理局项目(编号:QZYY-2021-126)。
重症肌无力的临床表现及诊断
药理学特征:皮下注射胆碱酯酶抑制剂甲基硫酸新斯 的明后;以改善最显著时的单项绝对分数计算相对评 分;各单项相对评分中有一项阳性者;即为新斯的明 实验阳性
电生理学特征:低频重复神经电刺激检查示波幅递减 10%或15%以上;单纤维肌电图提示颤抖增宽;伴 有或不伴有传导阻滞
血清学特征:可以检测到AChR抗体
1976年血浆置换疗法在重症肌无力的实验鼠身上取得 了成功
2000年Angela Vincent在抗乙酰胆碱受体抗体阴性患者 的血清中发现了抗Musk抗体
重症肌无力的发病机理
乙酰胆碱受体抗体介导 补体参与 累及神经肌肉接头突触后膜乙酰胆碱受体 细胞免疫依赖
重症肌无力的流行病学资料
平均年发病率约为7 4/百万人;患病率约为1/5000 重症肌无力在各个年龄阶段均可发病;发病率呈现双
抗骨骼肌特异性受体络氨酸激酶抗Musk抗体检测: 部分AChR抗体阴性的全身型患者可检测到抗Musk抗 体;一般该类患者起病年龄<40岁;女性居多;以颅面 肌 咽喉肌和呼吸肌受累为主;对胆碱酯酶抑制剂不 敏感;但对激素及免疫抑制剂反应较好
抗横纹肌抗体 包括抗titin抗体 抗RyR抗体等;发病年龄>40岁 伴 有胸腺瘤且对治疗不敏感的患者中此类抗体阳性率较 高
腾喜龙实验: 1实验方法:先静脉注射腾喜龙每安瓿含10mg 2mg;若无不良反应;则于30秒内将剩余8mg注入 2结果判断:若为肌无力危象;则呼吸肌无力于0 51 分钟内好转;45分钟后又恢复无力 若为胆碱能危 象;则会有无力暂时性加重伴肌束震颤 若为反拗性 危象;则无反应
血清学检查
AChR抗体检测: 伴有胸腺瘤的患者阳性率达8693%;全身型患者阳性 率达8090%;而单纯眼肌型患者阳性率为3050%; 抗体检测阴性不能排除重症肌无力诊断
重症肌无力疲劳试验标准
重症肌无力疲劳试验标准
重症肌无力(Myasthenia gravis,MG)疲劳试验是一种帮助诊断和评估MG疾病严重程度的常用方法。
下面是一些常见的重症肌无力疲劳试验标准:
1. 末梢肌疲劳试验(Peripheral Muscle Fatigability Test):通过检查患者的末梢肌肌力变化来评估肌无力。
这可以通过要求患者保持重复肌肉运动(如握力测试)或持续进行特定动作(如闭眼眼球运动)来完成。
在MG患者中,肌肉疲劳的程度更快、更显著。
2. 简单疲劳试验(Simple Fatigability Test):这个试验要求患者保持特定的肌肉活动一段时间,例如伸直手臂或举起双腿。
如果在持续活动后肌肉力量明显下降,则可能是MG症状。
3. 跳跃疲劳试验(Tensilon Test):这是一项常用的诊断肌无力的试验。
在试验中,将琼脂球碱(Tensilon)注射患者体内后观察症状变化。
如果肌无力症状显著改善,则可能是MG。
4. 静脉疲劳试验(Intravenous Fatigability Test):在这个试验中,患者经历一系列静脉注射及活动,以检测肌肉疲劳及其恢复情况。
需要注意的是,以上试验仅为常见的评估MG疲劳程度的方法之一,具体的试验方法和标准可能会根据个体情况和医生的判断而略有不同。
因此,在进行任何疲劳试验之前,请务必咨询医生以获得准确的诊断。
Myasthenia gravis
Myasthenia gravis manifests itself by rapid and profound fatigue of striated muscles. The muscles most severely involved are those in most active use: the extraocular muscles and those of the face, tongue and extremities. The primary danger to these patients is the involvement of the respiratory muscles, which may lead to asphyxia. Usually the disease follows a long chronic course, interspersed with periods of spontaneous remission.
The prognosis is highly variable and is not predictable in any one patient. Treatment with adrenal corticosteroids is quite beneficial, presumably owing to their immunosuppressive action.
Myasthenia gravis 重症肌无力 Myasthenemitting neuromuscular disorder characterized by weakness and pronounced fatigability of the skeletal muscles. The disease may occur at any age, but the peak age of onset is 20 years; a second, smaller peak occurs in late adult life, at which time males are predominantly affected.
重症肌无力及运动神经元疾病患者的麻醉
重症肌无力及运动神经元疾病患者的麻醉第一节重症肌无力患者的麻醉重症肌无力(myasthenia gravis,MG)是一种由乙酰胆碱受体(acetylcholine receptor,AChR)抗体介导、细胞免疫依赖、补体系统参与,主要累及神经-肌肉接头突触后膜AChR的自身免疫性疾病,主要临床表现为骨骼肌极易疲劳、活动后症状加重、休息和应用胆碱酯酶抑制剂治疗后症状明显减轻。
一、主要病理生理1.运动神经末梢与骨骼肌的连接部位形成神经肌肉接头。
2.神经肌肉接头可分为三部分:运动神经末梢及其末端的接头前膜;肌纤维的终板膜即接头后膜;介于接头前后膜之间的神经下间隙。
3.正常情况下,当运动神经兴奋传至末梢时,轴突末端释放乙酰胆碱(Ach),作用于突触后膜上的乙酰胆碱受体(AchR),改变其离子通道,引起膜电位变化使肌膜去极化,进而触发了兴奋-收缩耦联,引起肌纤维收缩。
4.MG患者神经-肌肉接头突触后膜上AchR数目大量减少,可能的机制为患者体内产生乙酰胆碱受体抗体,在补体参与下与乙酰胆碱受体发生应答,使80%的肌肉乙酰胆碱受体达到饱和,经由补体介导的细胞膜溶解作用使乙酰胆碱受体大量破坏,导致突触后膜传导障碍而产生肌无力。
5.在80%~90%重症肌无力患者外周血中可检测到乙酰胆碱受体特异性抗体,而在其他肌无力中一般不易检出,因此对诊断本病有特征性意义。
二、临床表现1.该病起病缓慢,病程特点为症状加重和缓解交替;早晨较轻,劳动后和傍晚加重,休息后好转。
2.肌肉麻痹最先累及眼外肌,表现为间歇性上睑下垂和复视,其次是面肌、咀嚼肌、咽喉肌、颈肌、肩胛带肌和髋部的屈肌,严重时累及呼吸肌。
延髓受累时可出现构音障碍、咀嚼和吞咽困难、口腔分泌物清除困难、误吸等。
3.神经病学检查、疲劳试验和新斯的明试验阳性。
4.感染、外伤等因素易诱发肌无力危象,甚至导致呼吸衰竭或死亡。
三、治疗1.目前治疗方法主要有5大类,即抗胆碱酯酶药物、肾上腺皮质激素、血浆置换、胸腺切除和其他免疫抑制药,其中抗胆碱酯酶药是治疗重症肌无力最常用的药物。
为什么说重症肌无力是由乙酰胆碱受体抗体介导的?
为什么说重症肌无力是由乙酰胆碱受体抗体介导的?重症肌无力(Myasthenia Gravis,MG)是一种自身免疫性疾病,主要特征是肌肉快速疲劳和无力,最常见的病因是乙酰胆碱受体(AChR)抗体的介导。
首先,了解乙酰胆碱受体抗体(AChR-Ab)在重症肌无力中的作用机制是理解其为什么是引起该病的主要因素的关键。
AChR是存在于肌肉细胞膜上的蛋白质,它的主要功能是接收神经递质乙酰胆碱并促使肌肉收缩。
AChR-Ab是一种免疫球蛋白G(IgG)类的抗体,它与AChR结合并阻碍乙酰胆碱的结合,导致肌肉无法正常接收神经信号,从而出现无力症状。
其次,研究表明,AChR-Ab在重症肌无力患者血清中的阳性率高达80-90%。
这意味着患者体内存在大量的AChR-Ab抗体,这些抗体会通过结合AChR破坏其结构和功能,从而引起肌肉无力和疲劳。
此外,AChR-Ab的存在还与患者病情的严重程度相关,高滴度的AChR-Ab常常与严重的疾病表现相关。
再次,实验证据支持了AChR-Ab对重症肌无力的重要作用。
小鼠实验表明,当小鼠体内注射AChR-Ab后,它们出现了与人类重症肌无力类似的无力和疲劳症状。
此外,当小鼠体内注射AChR-Ab的效应后,通过观察到小鼠前纹肌膈神经和骨骼肌切片的变化,研究人员发现AChR-Ab与神经肌肉连接部位的破坏有关,进一步证明AChR-Ab介导的机制有效。
另外,研究还发现,除了AChR-Ab,肌肉特异性酪氨酸激酶抗体(MuSK-Ab)也被认为是造成重症肌无力的原因之一。
然而,与AChR-Ab相比,MuSK-Ab仅在约5-10%的重症肌无力患者中找到。
并且,某些患者即使在AChR-Ab和MuSK-Ab阴性的情况下,也被确诊为重症肌无力。
这些结果再次支持了AChR-Ab是引起该疾病的重要原因的观点。
最后,抗体介导的自身免疫反应是重症肌无力的病理基础之一。
除了AChR-Ab,免疫系统中还存在其他自身抗体,如结局性子单位抗体(MeAChR-Ab)等。
_重症肌无力的认识发展史(医学史话)
重症肌无力的认识发展史(医学史话)大约300多年前人类对重症肌无力(MG)几乎一无所知,直至1672年Willis最早描述MG患者的临床表现。
自从1895年Jolly提出重症肌无力(myasthenia gravis)一词的命名历经100多年的探索历程,最终发现神经-肌肉接头突触后膜上乙酰胆碱受体(AChR)受损的自身免疫发病机制,推进了MG治疗的进步。
现代神经病学的奠基人Charcot曾说过:“疾病是非常古老的,它本身从不曾改变,唯一改变的是我们,以及我们对于将未知转化为已知所作出的努力。
”重症肌无力的认识与发展史正是对这一说法最好的诠释。
一、虽雾里看花,却初窥端倪——340年前Willis首次描述“假性麻痹”追溯重症肌无力的历史,不能不提到Thomas Willis的名字(图1-1)。
Willis出生于英国威尔特郡,1642年作为艺术硕士毕业于牛津大学,他精通拉丁语为他之后的医学著作奠定了基础。
后来他转攻医学在1646年取得医学学士学位并获得行医执照。
由于他接受强调临床实践的非传统医学教育,造就了一代学识广博的大师。
图1-1. 英国卓越的解剖学家和著名医生Thomas Willis画像。
Willis是一名卓越的解剖学家,他对大脑作了大量的描述与图解,命名大脑的许多结构。
他最早发现并准确描述了大脑动脉环,阐述其生理学重要性,后人将这一重要结构命名为Willis动脉环,纪念他杰出的贡献[1]。
在神经病理学方面他观察了一例长期偏瘫患者的对侧内囊萎缩,首次描述了皮质脊髓束变性。
Willis同时是著名的医生,他的临床观察与研究涉及感染、糖尿病、代谢及胃肠疾病等方面。
他曾出版了脑解剖学(Cerebri Anatome)、脑病理学(Pathologiae Cerebri)以及关于脑功能的De Anime Brutorum三本重要教科书,均以拉丁文写成,这些著作奠定了神经病学的基本理论,对神经病学发展产生了重要影响。
1例利妥昔单抗治疗难治性重症肌无力患者的药学监护
196.[10]㊀RHODESAꎬEVANSLEꎬALHAZZZNIWꎬetal.Survivingsepsiscampaign:internationalguidelinesformanagementofsepsisandsepticshock:2016[J].IntensiveCareMedꎬ2017ꎬ43(3):304-377.[11]㊀DIPIROJTꎬTALBERTRLꎬYEEGCꎬetal.Pharmacothe ̄rapy:Apathophysiologicppproach[M].9thEdition.NewYork:McGraw ̄Hillꎬ2016:1110-1112.1例利妥昔单抗治疗难治性重症肌无力患者的药学监护任刘丽1ꎬ胡云珍2(1.安徽医科大学第一附属医院药剂科ꎬ合肥㊀230022ꎻ2.浙江大学医学院附属第一医院药学部ꎬ杭州㊀310003)摘㊀要㊀目的㊀探讨临床药师在利妥昔单抗治疗重症肌无力患者中开展药学监护的作用ꎮ方法㊀以1例临床病例为切入点ꎬ分析临床药师在利妥昔单抗治疗重症肌无力患者中的药学监护点ꎬ从利妥昔单抗的使用剂量㊁给药方法ꎬ对药物不良反应㊁并发症等方面提出药学建议ꎮ结果㊀通过实施药学监护ꎬ临床药师参与解决患者粒细胞减少㊁变态反应㊁感染等症状的处理ꎮ结论㊀临床药师通过对患者开展全程个体化药学监护ꎬ关注患者用药安全性和有效性ꎬ改善患者预后ꎮ关键词㊀利妥昔单抗ꎻ重症肌无力ꎻ药学监护ꎻ临床药师中图分类号㊀R971㊀㊀文献标识码㊀B㊀㊀文章编号㊀1004-0781(2020)12-1746-04DOI㊀10.3870/j.issn.1004 ̄0781.2020.12.030㊀㊀㊀开放科学(资源服务)标识码(OSID)㊀㊀重症肌无力(myastheniagravisꎬMG)是一种获得性自身免疫性疾病ꎬ主要是由乙酰胆碱受体(AChR)抗体介导㊁细胞免疫依赖及补体参与㊁累及神经肌肉接头突触后膜而引起神经肌肉接头传递障碍ꎬ最终导致骨骼肌收缩无力[1]ꎮ目前MG的主要治疗方法包括胆碱酯酶抑制药㊁免疫抑制药㊁免疫球蛋白㊁血浆置换和胸腺切除ꎮ其中免疫抑制药包括糖皮质激素㊁硫唑嘌呤㊁环孢素㊁吗替麦考酚酯㊁环磷酰胺㊁他克莫司及利妥昔单抗等[2]ꎮ笔者在本文通过对1例利妥昔单抗治疗难治性重症肌无力患者治疗过程进行药学监护和分析ꎬ以期为此类患者的临床药学工作提供参考ꎮ1㊀病例资料㊀患者ꎬ女ꎬ53岁ꎬ体质量65kgꎬ身高162cmꎮ因 双侧眼睑下垂伴四肢无力3年ꎬ加重半年余 入院ꎮ患者3年前无明显诱因下出现双侧眼睑下垂ꎬ伴眼球运动障碍ꎬ出现复视ꎬ伴四肢乏力ꎬ当时患者尚能正常行走ꎬ无畏寒乏力ꎬ无言语障碍ꎬ无咀嚼困难ꎬ无胸闷胸痛等不适ꎬ外院就诊影像学检查发现胸腺瘤ꎬ遂行胸腺瘤切除术ꎬ结合患者病史诊断为 重症肌无力 ꎮ患者收稿日期㊀2019-04-16㊀修回日期㊀2019-05-24作者简介㊀任刘丽(1990-)ꎬ女ꎬ安徽阜阳人ꎬ药师ꎬ硕士ꎬ研究方向:临床药学ꎮORCID:0000 ̄0002 ̄7014 ̄3950ꎬ电话:0551-62922422ꎬE ̄mail:812535603@qq.comꎮ通信作者㊀胡云珍(1979-)ꎬ女ꎬ浙江宁波人ꎬ主任药师ꎬ硕士ꎬ研究方向:临床药学ꎮ电话:0571-87233411ꎬE ̄mail:huhu49@163.comꎮ术后出现肌无力危象ꎬ予呼吸机等抢救措施后症状好转ꎬ出院时患者眼睑下垂及四肢乏力较前明显好转ꎬ无明显呼吸困难等不适ꎬ予泼尼松片50mgꎬqd㊁溴吡斯的明片90mgꎬqid出院治疗ꎮ期间患者仍有眼睑下垂及四肢乏力ꎬ予每月减量泼尼松片5mgꎬ并加用硫唑嘌呤片25mgꎬqd治疗ꎬ但患者白细胞下降至0.64ˑ109 L-1ꎬ换用他克莫司胶囊0.5mgꎬqd后患者出现严重腹泻ꎬ换用环孢素胶囊75mgꎬbid后患者症状好转ꎬ持续使用2年后(期间激素减停)患者自诉眼睑无明显下垂ꎬ肢体运动行走无明显障碍ꎬ可步行数公里ꎬ无呼吸困难等不适ꎬ半年前患者环孢素胶囊减量至早晨50mg晚上25mg后ꎬ再次出现眼睑下垂㊁四肢乏力ꎬ遂就诊ꎬ予加用甲泼尼龙片40mgꎬqd㊁免疫球蛋白治疗ꎬ并将环孢素胶囊加量至50mgꎬbidꎬ患者症状好转ꎮ出院后患者出现四肢乏力ꎬ无明显眼睑下垂ꎬ无呼吸困难ꎬ甲泼尼龙片加量至60mgꎬqdꎬ环孢素胶囊50mgꎬbid后患者四肢乏力症状仍进一步加重ꎬ表现为站立困难㊁双下肢运动困难ꎬ就诊外院经肌肉活检诊断为 类固醇肌病 ꎬ遂予甲泼尼龙片减量至停用ꎬ予环孢素胶囊加量至75mgꎬbidꎬ并予辅酶Q10等治疗后患者肢体肌力较前好转ꎬ可在搀扶下行走ꎬ劳累后呼吸困难ꎬ伴眼睑下垂ꎬ眼球运动困难ꎬ出现复视ꎬ伴抬头㊁咀嚼㊁言语困难ꎬ予使用便携式呼吸机ꎬ患者为求进一步诊治来院ꎬ以 重症肌无力 收住入院ꎮ患者既往慢性乙型肝炎病史ꎬ长期口服恩替卡韦治疗ꎻ自诉长期口服糖皮质激素致胃肠道不适ꎬ有胃溃疡病史ꎮ患者有青霉素过敏史ꎬ为皮试阳性ꎮ入院诊断:①重症肌无力ꎻ②类固醇肌病ꎻ③慢性乙型肝炎(大三阳)ꎻ④右侧股骨头坏死ꎮ2㊀治疗过程㊀患者既往服用多种免疫抑制药ꎬ但均出现较严重的不良反应ꎮ患者目前口服溴吡斯的明片60mgꎬtidꎬ环孢素胶囊50mgꎬbidꎬ治疗效果不佳ꎮ评估患者情况后ꎬ拟给予利妥昔单抗注射液600mgꎬ静脉滴注ꎬ每周1次ꎬ4周为1个疗程ꎮ入院后第2天ꎬ第9天ꎬ第30天给予患者利妥昔单抗注射液600mgꎬ静脉滴注ꎬ因期间患者出现粒细胞下降㊁发热㊁变态反应等症状ꎬ故未严格按照每周1次给药ꎬ并给予患者对症处理并将环孢素胶囊减量至25mgꎬbidꎮ第44天患者症状较前好转ꎬ要求出院ꎮ患者出院时体温正常ꎬ皮疹消退ꎬ呼吸困难好转ꎬ非平卧可不使用便携式呼吸机ꎬ无复视ꎬ建议患者据门诊复查结果择期行第4次利妥昔单抗治疗ꎮ表1㊀患者住院期间主要治疗药物㊀药物与用法用药时间/d地塞米松注射液5mgꎬ静脉推注异丙嗪针25mgꎬ肌内注射利妥昔单抗针100mg+地塞米松注射液5mg+氯化钠第2天/第9天/㊀注射液250mLꎬ静脉滴注㊀第30天利妥昔单抗针500mg+0.9%氯化钠注射液500mLꎬ㊀静脉滴注环孢素胶囊100mgꎬpoꎬbid第1天 第14天环孢素胶囊50mgꎬpoꎬbid第14天 第30天环孢素胶囊25mgꎬpoꎬbid第30天 第44天溴吡斯的明片60mgꎬpoꎬtid第1天 第44天人免疫球蛋白针25gꎬ静脉滴注ꎬqd第15天 第19天头孢呋辛针1.5g+0.9%氯化钠注射液100mLꎬ第14天 第20㊀静脉滴注ꎬq12h天/第35天㊀第37天骨化三醇软胶囊0.25μgꎬ口服ꎬqd第1天 第44天辅酶Q10胶囊20mgꎬ口服ꎬtid第1天 第44天碳酸钙D3片600mgꎬ口服ꎬqd第1天 第44天恩替卡韦分散片0.5mgꎬ口服ꎬqn第1天 第44天泮托拉唑针40mg+0.9%氯化钠注射液100mLꎬ第14天 第29天㊀静脉滴注ꎬqd奥司他韦胶囊75mgꎬ口服ꎬbid第15天 第19天3㊀讨论㊀3.1㊀利妥昔单抗在MG中的应用㊀利妥昔单抗是一种人鼠嵌合性单克隆抗体ꎬ能特异性地与跨膜抗原CD20结合ꎬ为MG治疗的二线药物ꎬ适用于对糖皮质激素和传统免疫抑制药物治疗无效的患者ꎬ特别是针对肌肉特异性受体酪氨酸激酶(MuSK)抗体阳性的患者ꎮ在MG患者中AChR抗体和抗MuSK抗体具有高度特异性的ꎬ提示自身免疫受累ꎮ此过程中T淋巴细胞发挥重要作用ꎬ主要作用是刺激B细胞产生抗体[3]ꎮCD20抗原位于前B和成熟B淋巴细胞的表面ꎬ利妥昔单抗与B细胞上的CD20抗原结合后ꎬ启动介导B细胞溶解的免疫反应[4]ꎮ利妥昔单抗治疗MG的用法用量可参照淋巴瘤的给药方法ꎬ即375mg (m2)-1体表面积ꎬ每周给药1次ꎬ共4周ꎻ或参照类风湿关节炎给药方法1000mgꎬ2周后重复1次[2]ꎬ1个疗程的利妥昔单抗治疗后ꎬ可维持低B细胞水平6~9个月ꎮ近年来有些研究证实小剂量利妥昔单抗治疗MG有效ꎬ但均为小样本试验[5 ̄7]ꎮ本例患者参照淋巴瘤的用法用量给药ꎬ计算患者的体表面积为1.722m2ꎬ理论给药剂量为每次645.75mgꎬ实际给药剂量为每次600mgꎬ同时利妥昔单抗治疗期间减少环孢素的给药剂量ꎮ利妥昔单抗治疗MG属超说明书用药ꎬ且价格昂贵ꎬ应用前应充分告知患者及家属疗效及可能存在的风险ꎬ并做好超说明书备案及知情同意工作ꎮ患者利妥昔单抗治疗期间CD19+B细胞显著下降ꎬ其变化趋势见表2ꎮ患者出院时呼吸困难好转ꎬ非平卧可不使用便携式呼吸机ꎬ无复视ꎬ进食可ꎬ但患者治疗期间出现感染㊁粒细胞降低㊁变态反应等不良反应ꎬ根据患者个体情况ꎬ给予患者3次利妥昔单抗治疗ꎬ建议患者定期复查随诊ꎬ必要时给予第4次治疗ꎮ表2㊀患者利妥昔单抗治疗期间CD19+B细胞变化㊀住院时间CD19+B细胞/(个 μL-1)㊀第2天100㊀第10天2㊀第15天1住院时间CD19+B细胞/(个 μL-1)第31天1第44天13.2㊀抗感染用药及用药监护㊀患者入院第13天出现发热ꎬ体温最高39.1ħꎬCRP29.7mg L-1ꎬ肺CT示两肺炎症ꎮ考虑患者免疫功能低下ꎬ给予人免疫球蛋白针25gꎬqd治疗5dꎬ并加用头孢呋辛针1.5gꎬq12h抗感染治疗ꎮ研究表明ꎬMG患者肺部感染的发生率高ꎬ致病菌主要是革兰阴性菌ꎬ其中患者基础疾病㊁长期应用糖皮质激素或免疫抑制药㊁侵入性操作㊁住院时间等是肺部感染的主要危险因素[8 ̄11]ꎮ此外ꎬ利妥昔单抗在一定程度上削弱了细胞免疫ꎬ因此患者对抗各种感染的能力下降ꎮ由于MG患者病理生理状态特殊ꎬ多种抗菌药物具有神经 ̄肌肉阻滞作用ꎬ可能会加重症状或发生肌无力危象ꎬ如已有证据表明可加重症状的抗菌药物有氨基苷类㊁喹诺酮类㊁多粘菌素等ꎬ以及可能有影响的大环内酯类和四环素类[2]ꎮMG患者选择抗菌药物应尽量避免上述药物ꎬ宜选用青霉素类或头孢菌素类ꎮ该患者既往有青霉素过敏史(表现为皮试阳性)ꎬ肝肾功能正常ꎬ临床药师建议选用头孢呋辛针1.5gꎬq12hꎬ可覆盖常见革兰阴性杆菌如肺炎链球菌㊁流感嗜血杆菌和革兰阳性菌如金黄色葡萄球菌ꎬ同时行痰培养㊁血培养等相关检查明确病原菌及药敏ꎮ患者头孢呋辛皮试阴性ꎬ治疗期间监测患者体温㊁血常规㊁CRP等感染指标变化ꎬ关注有无过敏症状㊁胃肠道反应ꎬ定期监测肾功能ꎮ患者痰培养提示正常菌群ꎬ血培养(左侧肢体)示人葡萄球菌ꎬ考虑为污染菌可能ꎬ抗感染治疗后患者体温及感染指标逐渐好转ꎮ见表3ꎮ表3㊀患者住院期间体温变化㊀住院时间/d体温/ħ136.5236.7336.6537.2836.81137.21238.21339.1住院时间/d体温/ħ1636.82237.22636.93236.83438.63836.84436.83.3㊀不良反应监护㊀3.3.1㊀白细胞及中性粒细胞减少㊀患者第2次利妥昔单抗治疗后出现粒细胞水平下降ꎬ第20天白细胞计数1.9ˑ109 L-1ꎬ中性粒细胞计数0.3ˑ109 L-1ꎮ患者住院期间白细胞及中性粒细胞计数水平见表4ꎮ利妥昔单抗所致血液系统损伤主要是引起外周血白细胞减少㊁中性粒细胞减少ꎬ部分患者可伴有血小板减少[12]ꎮ白细胞和(或)中细粒细胞减少可能会增加感染风险或加重已有感染ꎬ但其引起白细胞或中性粒细胞下降一般是可逆的ꎬ在停用和(或)使用升细胞药物后可恢复正常ꎮ因患者同时合并肺部感染及过敏症状ꎬ建议医师第3次利妥昔单抗推迟应用ꎬ暂不给予升白细胞药物治疗ꎬ观察患者粒细胞水平ꎬ若较前改善且患者感染症状好转再考虑利妥昔单抗治疗ꎮ第29天患者白细胞计数3.7ˑ109 L-1ꎬ中性粒细胞计数1.6ˑ109 L-1ꎬ较前略有升高ꎬ于第30天给予患者第3次利妥昔单抗化疗ꎬ密切监测患者粒细胞变化ꎮ3.3.2㊀变态反应㊀患者第1次输注利妥昔单抗2~3d后ꎬ双手掌及颈部可见多个环形红斑风团ꎬ瘙痒明显ꎮ给予对症抗过敏治疗后症状有好转ꎬ在第2ꎬ3次应用利妥昔单抗后ꎬ仍出现上述症状ꎮ变态反应是静脉滴注利妥昔单抗最常见的输注相关综合征ꎮ因利妥昔单抗是一种人鼠嵌合性单克隆抗体ꎬ含有异种蛋白ꎬ可导致I型超敏反应ꎬ其发生机制可能是由于炎性递质ꎬ如肿瘤坏死因子和干扰素等介导[13]ꎮ首次输注利妥昔单抗发生率高达77%ꎬ且变态反应的发生与滴注速度过快相关[14]ꎮ为了避免出现变态反应ꎬ临床药师建议医生在静脉滴注利妥昔单抗前给予患者肌内注射异丙嗪㊁静脉推注地塞米松预防ꎮ医生给予医嘱利妥昔单抗针100mg与地塞米松注射液5mg混合配制于250mL氯化钠注射液ꎬ虽两者无配伍禁忌ꎬ但不建议在生物制品利妥昔单抗注射液中加用任何其他制剂ꎮ同时告知护士ꎬ利妥昔单抗的起始滴速为50mg h-1ꎬ如无不适ꎬ每30分钟增加滴速50mg h-1ꎬ直至最大滴注速度400mg h-1ꎮ若输注过程中出现输液相关不良反应如皮疹㊁瘙痒㊁低血压㊁寒战㊁发热等应减慢滴速或停止输注ꎮ表4㊀患者住院期间白细胞及中性粒细胞计数变化趋势ˑ109 L-1住院时间/d白细胞计数中性粒细胞计数16.93.595.33.0137.95.7201.90.3242.50.6273.11.2292.91.1住院时间/d白细胞计数中性粒细胞计数313.71.6333.52.4344.92.4375.83.9394.81.9443.41.43.3.3㊀乙肝病毒激活㊀利妥昔单抗可导致B细胞溶解ꎬ从而使乙肝病毒(HBV)激活ꎮ有报道显示利妥昔单抗应用可致乙型肝炎再激活ꎬ包括爆发性肝炎ꎮ利妥昔单抗致乙型肝炎再活动多出现于停药后ꎬ其可能的机制为患者接受利妥昔单抗治疗后ꎬ免疫功能受到抑制ꎬ体内HBV在肝细胞中大量复制ꎬ停药后ꎬ宿主B细胞数量及功能逐渐恢复ꎬ免疫激活ꎬ清除HBVꎬ同时破坏了感染HBV的肝细胞ꎬ致肝脏炎症活动ꎬ甚至肝衰竭[15]ꎮ文献报道使用利妥昔单抗后导致乙型肝炎再活动的发生率估计为22%~55%ꎬ30%~38%出现乙型肝炎再活动的患者死亡[16]ꎮ所以建议在开始利妥昔单抗治疗前ꎬ对所有患者ꎬ均应进行HBV的筛查ꎮ乙型肝炎病毒携带者和具有乙型肝炎病史的患者在使用利妥昔单抗治疗期间和治疗后几个月内ꎬ应密切监测活动性HBV感染的临床体征和实验室指标ꎮ推荐乙肝患者在使用利妥昔单抗前进行抗病毒治疗ꎮ患者既往慢性乙型病毒性肝炎病史ꎬ入院查乙肝表面抗原:阳性ꎬ入院后建议继续给予口服恩替卡韦片0.5mgꎬpoꎬqnꎬ抗乙肝治疗ꎮ因进食影响恩替卡韦的吸收ꎬ建议患者空腹服用ꎬ可于晚餐后2h服用ꎬ同时嘱咐患者出院后仍应规律服用抗乙肝病毒药物ꎬ并定期复查HBV相关检查ꎮ3.3.4㊀其他药学监护㊀利妥昔单抗可维持低B细胞水平3~6个月ꎬ建议患者定期监测淋巴细胞亚群计数ꎮ文献报道[17 ̄18]ꎬ利妥昔单抗可致反复呼吸道感染㊁流感样症状ꎬ少数患者可引起免疫球蛋白持续降低㊁阵发性心房颤动等ꎬ嘱咐患者注意保暖ꎬ适当运动ꎬ避免感冒ꎬ同时定期进行免疫球蛋白亚群㊁心电图等相关检查ꎮMG病程较长ꎬ难治易复发ꎬ需要长期药物治疗ꎬ嘱咐患者出院后严格遵医嘱服药ꎬ不可擅自减药㊁停药ꎬ避免使用加重MG的药物ꎬ如氟喹诺酮类㊁氨基苷类等抗菌药物ꎮ本例患者为多种免疫抑制药治疗存在明显不良反应且合并乙型肝炎的患者ꎬ入院后给予利妥昔单抗治疗ꎬ治疗过程中患者出现感染㊁变态反应㊁粒细胞下降等不良反应ꎬ临床药师与医师㊁护士及患者有效地沟通㊁密切配合ꎬ深入临床ꎬ对临床用药进行合理干预与指导ꎬ及时发现㊁解决㊁预防潜在的或实际存在的药物相关问题ꎮ积极参与患者治疗的全过程ꎬ通过检索相关疾病诊治指南及药物治疗手册ꎬ在治疗方案制定及实施上协助医师ꎮ在治疗过程中ꎬ针对药物引起的不良反应制定有效的药学监护计划ꎬ并及时发现㊁解决相关问题ꎬ保证患者用药的有效性和安全性ꎮ参考文献[1]㊀中华医学会神经病学分会神经免疫学组ꎬ中国免疫学会神经免疫学分会.中国重症肌无力诊断和治疗指南2015[J].中华神经科杂志ꎬ2015ꎬ48(11):934-940. [2]㊀SANDERSDBꎬWOLFEGIꎬBENATARMꎬetal.Internationalconsensusguidanceformanagementofmyastheniagravis:executivesummary[J].Neurologyꎬ2016ꎬ87(4):419-425.[3]㊀MUTOKꎬMATSUINꎬUNAIYꎬetal.MemoryBcellresur ̄gencerequiresrepeatedrituximabinmyastheniagravis[J].NeuromusculDisordꎬ2017ꎬ27(10):918-922. [4]㊀SMITHMR.Rituximab(monoclonalanti ̄CD20antibody):mechanismsofactionandresistance[J].Oncogeneꎬ2003ꎬ22(47):7359-7368.[5]㊀JINGSꎬSONGYꎬSONGJꎬetal.Responsivenesstolow ̄doserituximabinrefractorygeneralizedmyastheniagravis[J].JNeuroimmunolꎬ2017ꎬ311:14-21.[6]㊀BLUMS.Useandmonitoringoflowdoserituximabinmy ̄astheniagravis[J].JNeurolNeurosurgPsychiatryꎬ2011ꎬ82(6):659-663.[7]㊀CIRONJꎬAUDOINBꎬBOURREBꎬetal.Recommendationsfortheuseofrituximabinneuromyelitisopticaspectrumdisorders[J].RevueNeurologiqueꎬ2018ꎬ174(4):1-10. [8]㊀吴静ꎬ童伟ꎬ陈虹ꎬ等.1例免疫功能受损肺部感染患者的药学监护[J].医药导报ꎬ2017ꎬ36(12):1422-1425. [9]㊀徐仙女.重症肌无力患者肺部感染临床分析[J].中华医院感染学杂志ꎬ2011ꎬ21(4):687-688.[10]㊀庄严ꎬ吕燕华ꎬ王丹丹ꎬ等.重症肌无力住院患者发生肺部感染的影响因素分析[J].现代预防医学ꎬ2013ꎬ40(6):1024-1028.[11]㊀彭伟ꎬ李悦ꎬ张旻ꎬ等.重症肌无力患者院内肺部感染的相关因素分析[J].中国神经免疫学和神经病学杂志ꎬ2010ꎬ17(6):435-438.[12]㊀储珊珊ꎬ陈邓ꎬ朱丽娜ꎬ等.利妥昔单抗治疗难治性重症肌无力有效性和安全性的Meta分析[J].中国现代神经疾病杂志ꎬ2018ꎬ18(7):494-500.[13]㊀郭锦辉ꎬ陈美玲ꎬ王颖ꎬ等.利妥昔单抗致过敏1例[J].中国医院药学杂志ꎬ2014ꎬ34(19):1071.[14]㊀诸慧ꎬ周丰ꎬ金剑.56例利妥昔单抗不良反应文献分析[J].中国药物警戒ꎬ2018ꎬ15(1):52-56.[15]㊀WATANABETꎬTANAKAY.Reactivationofhepatitisviru ̄sesfollowingimmunomodulatingsystemicchemotherapy[J].HepatolResꎬ2013ꎬ43(2):113-121.[16]㊀TSUTSUMIY.HepatitisBvirusreactivationwitharituxim ̄ab ̄containingregimen[J].WorldJHepatolꎬ2015ꎬ7(21):2344-2351.[17]㊀AFANASIEVVꎬDEMERETSꎬBOLGERTFꎬetal.Resis ̄tantmyastheniagravisandrituximab:amonocentricretrospectivestudyof28patients[J].NeuromusculDisordꎬ2017ꎬ27(3):251-258.[18]㊀PERESJꎬMARTINSRꎬALVESJDꎬetal.Rituximabingeneralizedmyastheniagravis:clinicalꎬqualityoflifeandcost ̄utilityanalysis[J].PortoBiomedJꎬ2017ꎬ2(3):81-85.。
重症肌无力历史和发病机制
注射前
新斯的明1~1.5mg肌注+阿托品 0.5mg, 1小时内每10分钟评分一 次 ,20-30分钟最好
结果判定:相对记分>70%为阳性,
<30%为阴性,介于二者之间为可疑。
注射后
38
注意事项: 因该试验会使胃肠道蠕动增强,故宜在餐后2小时以后行此试
验;又因它会引起支气管平滑肌痉挛和心律改变,故有支气 管哮喘和心律紊乱者慎用。 服用胆碱酯酶抑制剂者,应在服药2小时以后行此试验。若结 果可疑,则应于3小时后复查。 由于不同肌群受累程度可以不同,行此试验时可能会出现对 某些肌群已显示胆碱酯酶抑制剂过量,而另一些肌群仍处于 用量相对不足的状态。故应重点观察影响最大的肌群,或呼 吸肌和球部肌群。 此试验能使胆碱能危象加重到危及生命的程度,故此试验应 在有相应急救设施的条件下进行。 晚期、严重病例,可因神经-肌肉接头处突触后膜上乙酰胆碱 受体破坏过重而试验结果阴性。故不能单凭此试验阴性来否 定MG的诊断。
4
Myasthenia Gravis(MG)
my: muscle asthenia: weakness gravis: severe
免疫异常导致骨骼肌NMJ的AChR减少伴神经 肌肉传递障碍的自身免疫性疾病。
5
发病原因 病理改变 临床症状 辅助检查 诊断和鉴别诊断 治疗和护理 病程与预后
6
历史和发病机制(1)
主要由AChR-ab介导的自身免疫性疾病
8
历史和发病机制(3)
2000年 AChR-ab阴性患者出现抗MuSK抗体等其他抗体, 提示:MG可由非AChR的其他抗原所致
自身抗体导致 NMJ 突触后膜的 AChR 破坏, 造成 NMJ 的信息传递障碍,导致肌无力的 发生
重症肌无力眼型治愈标准
重症肌无力眼型治愈标准
重症肌无力(Myasthenia Gravis,MG)是一种慢性、进展性
的自身免疫性疾病,特点是运动神经末梢突触转运缺陷和抗乙酰胆碱受体抗体阳性。
治疗重症肌无力眼型的目标是减少症状,改善生活质量,尽可能达到疾病的缓解甚至是治愈。
目前对于重症肌无力眼型的治愈并没有确定的标准,主要是通过以下几个方面的评估来判断治愈与否:
1. 症状缓解:经治疗后症状得到显著缓解,比如眼睑下垂减轻或消失、眼肌轻度或无瘫痪,并且症状持续缓解的时间较长。
2. 体征改善:神经肌肉联结测试(Neuro-Muscular Junction Test)结果正常,眼球活动恢复正常,无外斜视等异常体征。
3. 抗体水平下降:血清抗神经肌肉抗体水平明显下降,甚至消失。
4. 无需用药:不再需要使用药物进行控制症状,并且长期停药后仍能保持稳定。
需要注意的是,重症肌无力眼型是一种慢性疾病,治愈并不是常见情况,而是能够通过规范的治疗和药物管理达到症状缓解和控制,提高生活质量。
如果病情得到有效控制,能够维持稳定状态,即使没有完全治愈,也能够正常生活。
治疗的具体方案需要根据患者具体情况进行个体化制定,包括使用抗胆碱酯酶药物、免疫调节治疗等措施。
神经肌肉接头自身免疫性疾病---临床与电生理
(1)在正常NMJ均有安全机制,保证终板电位的波幅足以产生动作电位; 在MG患者,低波幅的终板电位使得这种安全机制下降,表现为颤抖增 宽、出现阻滞,FD多正常;
(2)在诊断MG的方法中,SFEMG比AchRAb滴度测定和RNS更敏感
(Srivastava A,2007)。
提示经皮三叉神经刺激术对MG的RNS是一好的补充。 ◆对MG患者鼻肌和小鱼际肌行RNS,结果显示,眼肌和球
肌麻痹的MG患者其鼻肌的RSN阳性率达100%。提示MG 患者不同的肌肉受累其RNS敏感性不同,须选择不同的刺
激神经(生理学诊断及研究手段--RNS技术
临床神经电生理学诊断及研究手段--- SFEMG技术
❖ 单纤维肌电图(single fiber electromyography,SFEMG)技术是借 助于一根特制的只有很小记录面积(直径25μm)的针电极来记录单个 肌纤维电位,用于在神经末梢、单个肌纤维以及神经肌肉接头水平对运 动单位进行研究。
◆MG的颤抖存在三个特点:
(1)颤抖与肌无力程度的关系:程度越重,颤抖增加的机率越高;而 在力弱程度相似时,颤抖变异大,不足用颤抖推断病情;
(2)颤抖与临床分型的关系:电生理异常比临床所见范围大; (3)颤抖的动态变化与病情改善的关系:呈现正相关。
临床神经电生理学诊断及研究手段---SFEMG技 术
❖ 抗核抗体、类风湿因子也可阳性。
临床神经电生理学 在MG诊断及研究中的应用
临床神经电生理检查的意义
❖ 与功能性疾病鉴别; ❖ 与诈病鉴别; ❖ 药理学试验难于判断患者; ❖ 电生理检查较客观,且可用作治疗前后比较的指标。
临床神经电生理学诊断及研究手段
藏在英文里的希腊词根(三)
Copyright©博看网. All Rights Reserved.
英语世界 2022·03
92 词林漫步
自拉丁文,跟 neuro- 有关。这个成分的谱系比较简单,我以精简明了的条 列式来介绍:
neurology(神经内科;神经病学):neuro-(神经)+ -ology(专业;学问) 一个类似但不同的专业是精神科(或精神病学),英文是 psychiatry, 精神科医生(或精神病学家)的英文是 psychiatrist,由 psycho(- 心理)和 -iatry (治疗)结合而成,容后再仔细介绍。 neurosurgery(神经外科):neuro-(神经)+ surgery(手术;外科) 神经外科就是要给神经动手术的,神经外科医生是 neurosurgeon。在医 学的分科里,外科(或外科学)就是 surgery,外科医生是 surgeon,内科(或 内科学)是 internal medicine,内科医生可统称为 physician。 neuralgia(神经痛):neuro-(神经)+ -algia(疼痛的病症) 另 一 个 词 根 -algia 是 由 -alg-( 疼 痛 ) 和 -ia( 病 症 ) 组 合 而 成, 这 个词根还会出现在描述其他部位疼痛的词中,如 myalgia(肌肉痛)。另 外,镇痛剂(或止痛药)的英文,较为专业的说法是 analgesic(口语可说 painkiller):an-(无 / 没有,为 a- 的变体)+ alg(疼痛)+ -esic(形容词后缀, 此转作名词)。 neurasthenia(神经衰弱):neuro-(神经)+ a-(无;没有)+ sthen(力气) + -ia(病症) 神经没有力气的病症,神经无力症,就是神经衰弱。还记得 myasthenia (肌无力)吗?后一半的 asthenia(无力)是一样的。 neuron(神经元):neuro-(神经)+ -on(名词后缀,此指“最小成分 的单位”) 神经元就是神经细胞(nerve cell),是神经的最小单位。-on 这个后缀, 还出现在 electron(电子)、proton(质子)、neutron(中子)、photon(光子) 等指称“最小粒子”的词汇中。 neurosis(神经症;精神官能症):neuro-(神经)+ -osis(名词后缀,此 表“疾病”) 这 是 种 神 经 方 面 的 疾 病, 常 有 焦 虑、 缺 乏 安 全 感 甚 至 莫 名 的 恐 惧。 neurosis 的形容词是 neurotic(神经症的;精神官能症的),neurotic 也有“神 经过敏的”非专业意思,形容词 neurotic 也可转作名词,意思是“神经症患者; 神经过敏的人”。-osis 这个后缀还出现在 hypnosis(催眠)、metamorphosis(变 形)等字眼中,其他例子将来碰到再说。 由 neuro-(神经)派生出来的常见专业词汇,我们就暂且讲到这里。
MuSK抗体阳性的重症肌无力诊断及治疗最新进展
MuSK-MG的首选药物,可抑制自身免疫反应,缓解 神经-肌肉接头的传递功能。治疗方法可分为大剂
量冲击疗法和小剂量递增疗法。大剂量冲击疗法:
甲泼尼龙1000 mg/d,连用3 d后逐渐减量,后改为 醋酸泼尼松,晨顿服,病情稳定后逐渐减量至最低有
剂量$
治
, 部分
病重
象,甚至出现危象,应密切观察患者的一般情况$小
武警医学 2020 年 12 月 第 31 卷 第 12 期 Med J Chin PAP, Vol. 31,No. 12,December,2020
1081
法,使其敏感性得提高。CBA是近年来新开发的利 用表达自身抗原的细胞系进行的一种免疫细胞化学 分析方法,敏感性高于RIPA,能检测出常规检测方 法无法检测出的自身抗体,但不能进行抗体滴度的
重症肌无力(myasthenia gravis, MG)是一-种由 神经-肌肉接头传递功能障碍引起的,以疲劳性肌无 力为临床症状的获得性自身免疫性疾病[1]$其发 病机制是患者血液中出现针对位于神经肌肉接头重 要蛋白的相关抗体,主要包括抗乙酰胆碱受体抗体 (anetylcholine receptoa antibody, AChRAb ) & 肌肉特 异性酪氨酸激酶抗体(muscle specifie tyrosine ki nase, MuSK)& 低密度脂蛋白受体相关蛋白4抗体 (low-density lipoprotein receptor-related protein 4 anti body, LRP4 Ab "等+2,3]o 80% -90% 的 MG 是由 AChRAb介导的,MG中5% - 10%为抗MuSK抗体 阳性⑷。由于其抗原抗体不同,MuSK-MG在致病机 制、临床表现上与传统的抗AChR抗体阳性重症肌 无力(AChR-MG)存在较大差别,两者检测诊断及治 疗方法也不尽相同。笔者就近年来MuSK-MG诊断 及治疗进展进行综述,旨在提高MuSK-MG患者的 诊治效果$
osserman's分类
osserman's分类
Osserman's分类是用于评估重症肌无力(Myasthenia Gravis, MG)病情严重程度的一种方法。
它将MG患者的症状和体征分为五个类别,从最轻微的症状到最严重的症状。
具体如下:
1. 轻型:仅在活动后出现肌无力症状,休息后恢复。
2. 中间型:在活动和休息时都出现肌无力症状,但休息后可以缓解。
3. 重型:在休息和活动时都出现肌无力症状,且不能通过休息来缓解。
4. 极重型:在休息和活动时都出现肌无力症状,且病情非常严重。
5. 危重型:出现呼吸肌无力,可能危及生命,需要紧急治疗。
Osserman的分类方法主要用于指导MG的治疗和预后评估,但它并不是一种诊断标准,不能用于确定MG的诊断。
如果怀疑自己患有MG,应及时就医并接受专业医生的诊断和治疗。
第1页/ 共1页。
myasthenia词根
myasthenia词根Myasthenia词根,源于希腊语,“myasthenia”意为“肌无力”。
这个词根已经被广泛地应用在医学领域中,用于描述一系列与肌肉功能相关的异常病变。
以下将分步骤阐述。
1. 词根起源“Myasthenia”这个词根最初是由希腊医学家所提出的。
该词根可以被拆分为两个部分:myo-表示“肌肉”,asthenia 表示“虚弱”或“无力”。
于是人们便将“myasthenia”用来描述与肌肉虚弱有关的疾病。
2. 疾病和症状肌无力症(Myasthenia Gravis)是最常见的与“myasthenia”有关的疾病,它是一种自身免疫疾病,身体免疫系统抗攻击人体神经-肌肉接头,导致患者肌肉无力或疲劳,特别是在运动或长时间使用肌肉后。
这些症状在面部和喉部肌肉中最为明显,包括眼瞼下垂、双重视觉、肢体无力、面部表情呆板、发音不清等。
3. 治疗方法虽然目前无法治愈肌无力症,但可以通过治疗来减轻症状和延缓疾病进程。
一些经典的治疗方法包括抗胆碱酯酶药物、免疫抑制剂以及静脉免疫球蛋白等。
这些方法的作用是通过增加神经-肌肉联系以及减轻免疫系统攻击的力度来缓解症状。
4. 扩展应用除了肌无力症之外,Myasthenia词根还可以用于描述其他形式的肌肉无力症,说明一个人在日常生活或特定活动中肌肉动作异常或困难。
这种症状通常与神经或肌肉疾病有关,包括肌营养不良、多发性硬化等。
综上所述,Myasthenia词根已经成为描述与肌肉无力和虚弱有关的疾病和症状的常用术语。
医学界的工作人员可以通过这个词根来更好地理解和描述这些疾病及其相关症状。
同时,患者和家属也可以从这个词根中深入了解自己或他们所患疾病的起源和治疗方法,并从中获得支持和启示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
might only be obvious with tests of fatigue—eg, repetitive shoulder abduction or up-gaze (which might need to be sustained for 1 min, to precipitate ptosis). Tendon reflexes are normal and sensory involvement is absent. Myasthenic crises are life-threatening episodes of respiratory or bulbar paralysis. Cholinergic crises are caused by excessive anticholinesterase medication, leading to a depolarisation block of neuromuscular transmission that exacerbates weakness. Cholinergic crises are characterised by the associated cholinergic symptoms of hypersalivation, lacrimation, sweating, vomiting, and miosis.Heterogeneity of myasthenia gravisAlthough myasthenia gravis is generally caused by autoantibodies to the AChR, or, to a smaller extent, by antibodies to other neuromuscular junction protein(s), the management and prognosis differs depending on several associated factors. Figure 2 shows the incidence rates and age at onset in patients with generalised disease.Childhood myasthenia gravis is rare in caucasians, but common in oriental populations.11,12A high proportion of caucasian, but not oriental,12childhood patients are seronegative for antibodies to AChR, making diagnosis difficult.Early-onset myasthenia gravis is defined as presenting before age 40 years and is more common in women. Many patients present during adolescence or early adult life. Most are positive for AChR antibodies, and the thymus gland is enlarged. These patients seldom have antibodies to other muscle antigens, but might have other organ-specific autoantibodies.7,8,10About 60% of early-onset patients are HLA-B8 and DR3 positive.12 Late-onset myasthenia gravis is usually defined as first presenting in people older than 40 years, with a small bias to men. The thymus gland is not enlarged, but there is an HLA association with B7 and DR2.10Perhaps because of the increasing age of the population, and the ability to diagnose myasthenia gravis by a serum antibody test that is widely available, the recognition of this form of the disease is increasing, and patients with late-onset disease now represent more than 60% of all those diagnosed every year (figure 2).Thymoma-associated myasthenia gravis presents at any age, but the peak onset is during the fourth to sixth decades. There are no clear HLA associations. The patients usually have antibodies to other muscle antigens such as titin and ryanodine receptor.17,18In about 10% of patients, the thymic tumour recurs as mediastinal or pleural metastases, and therefore, long-term follow-up, including chest scans (computed tomography or magnetic resonance imaging), is required.Ocular myasthenia gravis is restricted to the eye muscles. However, electromyography and in-vitro studies on muscle biopsy samples indicate that the disease is probably present subclinically in other muscles.19,20The titres of antibodies to AChR are lowest in this subgroup, and undetectable in 40–60% of patients. If symptoms and signs remain confined to the eyes for longer than 2 years, the risk of subsequent development to generalised myasthenia gravis is low, but if the disease does progress, the acetylcholine receptor antibody assay might become positive.AChR antibody negative generalised myasthenia gravis is not distinguishable clinically from AChR antibody positive cases. The development of neonatal disease in babies born to seronegative mothers with myasthenia gravis,21the success of plasma exchange inpatients with seronegative myasthenia gravis, and otherexperimental evidence,22indicates that this form of thedisease is also antibody mediated. Hoch andcolleagues’23findings, indicate that a high proportion ofpatients with seronegative myasthenia gravis haveantibodies to a muscle-specific receptor tyrosine kinase,MuSK. Further information about the frequency andclinical relevance of this antibody is awaited.Maternally-mediated formsNeonatal myasthenia gravis occurs in about 10% ofbabies born to women with the disease,7,8,16and canoccasionally occur when the mother is symptomfree.24Itis caused by placental transfer of maternal IgG AChRantibodies. Babies present with feeble cry and feedingdifficulties. Symptomatic improvement can be obtainedfrom anticholinesterase medication, and spontaneousresolution usually occurs within a few weeks.The syndrome of antibody mediated arthrogryposismultiplex congenita describes the presence of multiplejoint contractures at birth and results from absence offetal movement, whatever the cause. Occasionally,arthrogryposis occurs in babies of mothers withmyasthenia gravis,25and two cases have been reportedin offspring of women without evidence of the disease,who had AChR antibodies26(A Vincent, unpublishedobservations). The mothers had very high titres ofantibodies specific for the fetal isoform of the AChR,and low concentrations of antibodies directed towardsthe adult isoform of the AChR.26Although only a rarecause of arthrogryposis, the presence of AChRantibodies should be looked for in women with affectedbabies, since thymectomy, plasma exchange, andimmunosuppression could result in further successfulpregnancies (S Huson, J Newsom-Davis, A Vincentunpublished observations).PathophysiologyIn most patients, myasthenia gravis is caused bypathogenic antibodies to the muscle form of thenicotinic AChR. The antibodies bind to the extracellulardomains of the native molecule. They can be detectedby immunoprecipitation of iodine-125 ␣-bungarotoxin-labelled AChRs extracted from human muscle,27or fromhuman muscle-like cell lines.28␣-Bungarotoxin is a snake toxin that binds specifically and irreversibly to theAChRs (this, and similar neurotoxins are commoncauses of neuromuscular failure in countries whereenvenoming is common).The role of the antibodies in causing myastheniagravis was clearly established in the 1970s. Plasmaexchange, which removes circulating antibodies, leads toa substantial but transient improvement in musclefunction lasting up to 2 months.29Injection of patients’IgG antibodies into laboratory animals, usually mice,led to loss of AChRs, and variable muscle weakness inthe recipients.30Confirmation that antibodies to AChRalone could cause myasthenia gravis, came fromimmunisation against purified AChRs,31and the factthat monoclonal antibodies to AChR can producesimilar effects in laboratory animals.32The antibodies inpatients with the disease are IgG but heterogenous inlight chain, subclass, and in their reactivity withdifferent regions on the AChR.33A variable proportionin each patient binds to a region on each of the two ␣subunits, called the main immunogenic region.34The neuromuscular junction can be seen by stainingmuscle fibres for acetylcholinesterase (AChE). Inmyasthenis gravis, it is typically elongated, and electronmicroscopy shows a reduction in the length of the postsynaptic membrane that contains the AChRs.35 There are deposits of immunoglobulins, complement components, and the final lytic membrane-attack complex in the synaptic cleft.36These changes show the damage that occurs when antibodies bind to the AChRs and initiate pathogenic mechanisms. The muscle fibres are not usually abnormal in myasthenia gravis. Antibodies in myasthenia gravis are thought to lead to a loss of functional AChRs at the neuromuscular junction by three mechanisms. First, the antibodies cause complement-dependent lysis of the postsynaptic membrane.35,36Second, the antibodies, because they are divalent, are able to cross-link AChRs on the surface of the membrane, which leads to an increase in the rate of internalisation and degradation of the AChRs.37Third, in some patients, antibodies inhibit AChR function directly.38The importance of these mechanisms in individual patients is unclear; for instance, there is a compensatory increase in AChR synthesis that may offset the increased degradation.39Thus, complement-mediated damage to the whole postsynaptic membrane may be the most important determinant of loss of functional AChR.Despite the absence of antibodies to the AChR, seronegative myasthenia gravis is clearly an antibody-mediated disease.21,22Although the presence of MuSKantibodies in patients with seronegative disease has only been reported recently, these antibodies seem to be able to inhibit the function of MuSK in cultured cells.23 MuSK is a receptor tyrosine kinase that is an essential component of the developing neuromuscular junction; its role in adult life is unclear, but it might be involved in the maintenance of the high density of AChRs at the neuromuscular junction. Interference with this function could be occurring in patients with MuSK antibodies, and MuSK antibodies might cause complement-mediated damage to the neuromuscular junction.The thymus gland is thought to be necessary for the deletion of auto-reactive T cells, and seems to have an important role in the pathogenesis of myasthenia gravis. In early-onset patients, the thymus is typically enlarged, and contains many germinal centres with T and B cell areas very similar to those seen in lymph nodes.40B cells obtained from the thymus spontaneously synthesise anti-AChR,41and thymic T cells are clonally restricted.42 A few T cells cloned from the thymus have proved specific for AChR epitopes.43AChR is expressed both in the thymus of patients with myasthenia gravis, and in healthy controls, on muscle-like myoid cells that are embedded in the thymic medullary epithelium.44In late-onset disease patients, the thymus is usually atrophic. The relation between thymomas and myasthenia gravis has not been explained.17The tumour in thymoma-associated disease is typically epithelial in nature, but usually contains many lymphocytes (unless the patient has been given steroids). AChR epitopes may be expressed by the neoplastic epithelium. It seems probable that the thymoma epithelium sensitises T cells to these AChR epitopes, and that the T cells leave the thymus and initiate antibodies against AChR, and other muscle antigens, in the periphery.18Buckley and colleagues45showed that mature T cells generated by the thymoma can persist in the periphery for several years after removal of the tumour. The number of these T cells increases substantially if the tumour recurs, potentially providing a new technique for identifying tumour recurrence.DiagnosisAChR antibodies are positive in about 85% of patients with generalised disease, and when identified, are diagnostic for myasthenia gravis. The classic neurophysiological finding is an increased decrement (Ͼ10%) of the evoked compound muscle action potential in response to repetitive supramaximum nerve stimulation at 3Hz.46More sensitive, but less widely available, is single fibre electromyography. This test measures the firing time of two muscle fibres within the same motor unit. In neuromuscular junction disorders, and in denervation, there is increased variability (jitter), and occasional blocking of impulses.46In the edrophonium (Cambridge Laboratories, Newcastle-upon-Tyne, England) (tensilon or camsilon) test, a shortacting anticholinesterase is given intravenously. There is rapid (within 2 min) but short-lived (less than 5 min) improvement in strength in most patients with myasthenia gravis. However, false-positive and false-negative results can occur, and there is a small risk of cardiorespiratory collapse. Once the diagnosis has been made, computed tomography or magnetic resonance imaging of the chest should be done to exclude an associated thymoma. Thyroid function and thyroid antibodies should be measured, because of the increased frequency of thyroid disease.The differential diagnosis of myasthenia gravis is wide (panel), although in practice, most patients do not present major diagnostic difficulties. As noted, a positive AChR antibody test is diagnostic of the disease, since false positives are very rare. A particularly common difficulty is the differentiation of ocular myasthenia gravis (of whom about 50% are AChR antibody-negative), and mitochondrial cytopathy. Another major practical problem is patients with generalised weakness, who are negative for AChR antibodies—their differential diagnosis includes neuropathies and myopathies (panel), and other disorders of the neuromuscular junction (in which neurophysiological studies might show changes similar to those of myasthenia gravis).Differential diagnosis of myasthenia gravisGeneralised myastheniaOther neuromuscular junction disorders:Lambert-Eaton myasthenic syndromeCongenital myasthenic syndromesNeurotoxinsBotulismVenoms (snakes, scorpions, spiders)Idiopathic inflammatory demyelinating polyradiculoneuropathies Acute (Guillain-Barré)-motor typeMiller Fisher syndromeChronicMany myopathies (idiopathic inflammatory, metabolic, dystrophies [rarely])Bulbar myastheniaBrain stem strokeMotor-neurone disease (pseudobulbar palsy)Ocular myastheniaMitochondrial cytopathy (chronic progressive external ophthalmoplegia)Oculopharyngeal muscular dystrophyThyroid ophthalmopathyOther causes of ptosis eg, contact-lens syndromeBrain-stem lesionsTreatmentOral anticholinesterase treatment, such as pyri-dostigmine, is the first-line treatment in patients with mild myasthenia gravis. High concentrations of these drugs can precipitate a cholinergic crisis, and the daily dose of pyridostigmine should only very rarely exceed 450 mg. Muscarinic anticholinergic agents such as propantheline may be used to counteract occasionally troublesome gastrointestinal side-effects, such as abdominal cramping, and diarrhoea.47,48Thymectomy is currently done early in young-onset, AChR antibody-positive patients with generalised myasthenia gravis as a therapeutic option. Evidence from retrospective uncontrolled studies suggests benefits, but is not conclusive.49Surgery alone, or with radiotherapy and chemotherapy, is indicated for the treatment of thymoma, but does not usually improve myasthenia.14Thymectomy is not usually beneficial in late-onset patients, and is seldom done in ocular disease. It is also not undertaken in AChR antibody-negative patients at some centres, because such patients rarely show thymic abnormalities. If symptoms are not well controlled on such treatments then immunosuppression treatment is indicated.47,48 Prednisolone is the mainstay of treatment. An alternate day regimen is used to keep side-effects to a minimum (and osteoporosis prophylaxis is mandatory). Treatment is best started at a low dose and gradually increased, because high doses might exacerbate myasthenic weakness. On remission, the dose is gradually reduced, and the minimum dose needed to maintain remission established. Azathioprine can be added, either initially, or later, as an effective steroid-sparing agent, although it might take over 1 year to achieve maximum benefit.50 Prednisolone with azathioprine is more effective, and better tolerated, than prednisolone alone.50 Ciclosporin, methotrexate, and cyclophosphamide can be useful in poor responders, or in those who are not able to tolerate azathioprine. In severely affected patients, plasma exchange,29or intravenous immunoglobulins can produce a striking, albeit temporary improvement, and can also be useful in the reduction of severe weakness that poses an anaesthetic risk before thymectomy.51Myasthenia gravis is one of the best examples of a disease caused by autoimmunity to a specific antigen; there are many possibilities for more antigen-specific therapies that have, so far, only been tested in animals.Other neuromuscular junction disorders Although other neuromuscular junction disorders are much less common, they might be misdiagnosed as seronegative myasthenia. The Lambert–Eaton myasthenic syndrome is caused by antibodies to voltage-gated calcium channels on the presynaptic nerve terminal of the motor nerve. Electromyographic findings can be distinguished from those of myasthenia gravis by the presence of a small compound muscle action potential at rest, and an increase in the amplitude of the action potential after maximum voluntary contraction.3,52Diagnosis can be confirmed in most patients by detection of antibodies to voltage-gated calcium channels. In about 50% of patients there is an associated small-cell lung cancer that can postdate the onset of this paraneoplastic syndrome by up to several years. In these patients, neurological signs frequently improve after removal of the tumour. Small-cell lung carcinoma can also be associated with cerebellar ataxia. Antibodies to a neuronal nuclear protein called Hu, or calcium-channel antibodies, or both, can be seen in such patients.533,4-diaminopyridine prolongs the motor-nerve action potential, thereby increasing neurotransmitter release, and is frequently a highly effective treatment for the Lambert-Eaton myasthenic syndrome. It can be used in combination with anticholinesterases. In the UK, 3,4-diaminopyridine is restricted to specialist pharmacies, on a named patient basis only. In patients who do not respond to 3,4-diaminopyridine, prednisolone combined with azathioprine or ciclosporin can be effective in those without cancer, whereas prednisolone alone is usually used in patients with cancer.Acquired neuromyotonia is another autoimmune disorder, frequently caused by antibodies to the voltage-gated potassium channels being present at motor-nerve terminals. Most patients present with muscle twitches (fasciculations and myokymia) and cramps. However, the disorder can co-exist with neuropathies or with myasthenia gravis (particularly if a thymoma is present), and muscle weakness can be the major complaint. Antibodies to potassium channels can be measured in specialist centres, but the diagnosis rests on characteristic electromyographic findings. Membrane stabilisers such as carbamazepine and phenytoin are sometimes sufficient to control the hyperactivity. Immunomodulatory treatments are occasionally necessary.2,54Congenital myasthenic syndromes are rare, but need to be distinguished from myasthenia gravis because, although patients might respond to anticholinesterases, and/or 3,4–diaminopyridine, they should not receive immunosuppressive treatments or thymectomy. The syndromes are a heterogeneous group of disorders, many already with identified genetic mutations.3,55,56 Presynaptic, synaptic, and postsynaptic forms exist. Most are autosomally recessively inherited. They typically present before the age of 2 years with similar symptoms to myasthenia gravis. The disorder might be difficult to distinguish from rare cases of very early-onset disease without AChR antibodies, and from mitochondrial myopathies.The most common congenital disorder of the neuromuscular junction is a postsynaptic reduction in the number of AChRs caused by mutations in the ⑀subunit (specific to the adult isoform) of the AChR. The non-lethal nature of the mutation is probably accounted for by persistence of the fetal form of the AChR receptor, which uses a ␥instead of an ⑀subunit. Other rarer postsynaptic syndromes involve abnormal AChR channel opening kinetics, such as the slow channel syndrome. This syndrome can present in infancy, or in adult life, and characteristically involves the scapular and forearm muscles. It differs from other congenital myasthenic syndromes in that it is dominantly inherited, has additional electromyographic and pathological findings, and might be worsened by anticholinesterases and 3,4–diaminopyridine. Acetylcholinesterase deficiency is caused by a mutation in the collagen-like molecule that anchors AChE in the synaptic cleft. There is severe weakness and wasting, and characteristically, a slow pupillary response to light. Patients with this deficiency do not respond to anticholinesterase drugs. Finally, mutations in the enzyme that synthesises acetylcholine have been demonstrated in a presynaptic form of congenital myasthenic syndrome with episodic apnoea.57We thank Prof John Newsom-Davis for his helpful comments.References1Simpson JA. Myasthenia gravis: a new hypothesis. Scott Med J1960;5:419–39.2Newsom-Davis J. Autoantibody-mediated channelopathies at the neuromuscular junction. Neuroscientist1997;3:337–46.3Engel AG. Congenital myasthenic disorders. In: Engel AG, ed.Myasthenia gravis and myasthenic disorders. Oxford: OxfordUniversity Press. Contemporary Neurology Series, 1999:251–97.4Oosterhuis HJGH. Clinical aspects and epidemiology. In: Oosterhuis HJGH, ed. Myasthenia gravis. Groningen: Groningen Neurological Press, 1997: 17–48.5Somnier F. Myasthenia gravis. Dan Med Bull 1996;43:1–10.6Sanders DB, Andrews PI, Howard JF, Massey JM. Seronegative myasthenia gravis. Neurology1997;48(suppl 5):S40–S45.7Oosterhuis HJGH. The natural course of myasthenia gravis: a long term follow up study. J Neurol Neurosurg Psychiatry1989;52:1121–27.8Grob D. Natural history of myasthenia gravis. In: Engel AG, ed.Myasthenia gravis and myasthenic disorders. Oxford: OxfordUniversity Press. Contemporary Neurology Series, 1999: 131–45.9MacDonald BK, Cockerell OC, Sander JW, Shorvon SD. The incidence and lifetime prevalence of neurological disorders in aprospective community-based study in the UK. Brain2000,123:665–76.10Maggi G, Casadio C, Cavallo A, Cianci R, Molinatti M, Ruffini E.Thymoma: results of 241 operated cases. Ann Thorac Surg1991;51: 152–56.11Garlepp MJ, Dawkins RL, Christiansen FT. HLA antigens and acetylcholine receptor antibodies in penicillamine inducedmyasthenia gravis. BMJ1983;286:338–40.12Compston DAS, Vincent A, Newsom-Davis J, Batchelor JR.Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in maysthenia gravis. Brain1980;103:579–601.13Uono M. Clinical statistics of myasthenia gravis in Japan. Int J Neurol1980:14:87–99.14Chiu H-C, Vincent A, Newsom-Davis J, Hsieh K-H, Hung T-P.Myasthenia gravis: population differences in disease expression and acetylcholine receptor antibody titers between Chinese andCaucasians.Neurology1987;37:1854–57.15Hawkins BR, Chan-Lui WY, Choi EKK, Ho AY. Strong association of HLA BW46 with juvenile onset myasthenia gravis in Hong Kong Chinese.J Neurol Neurosurg Psychiatry 1984;47:555–57.16Oosterhuis HJGH, ed. Myasthenia gravis. Groningen: Groningen Neurological Press. 1997.17Aarli JA, Skeie GO, Mygland A, Gilhus NE. Muscle striation antibodies in myasthenia gravis. Diagnostic and functionalsignificance.Ann N Y Acad Sci1998;841:505–15.18Marx A, Schultz A, Wilisch A, Helmreich M, Nenninger R, Muller-Hermelink HK. Paraneoplastic autoimmunity in thymus tumors.Dev Immunol1998;6:129–40.19Somner N, Melms A, Weller M, Dichgans J. Ocular myasthenia gravis. A critical review of clinical and pathophysiological aspects.Documentia Opthalmologica 1993;84:309–33.20Evoli A, Tonali P, Bartoccioni E, Le Monaco M. Ocular myasthenia: diagnostic and therapeutic problems. Acta Neurol Scand 1988;77:31–35.21Mier AK, Havard CW. Diaphragmatic myasthenia in mother and child.Postgrad Med J1985;61:725–27.22Mossman S, Vincent A, Newsom-Davis J. Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity.Lancet1986:1:116–19.23Hoch W, McConville J, Melms A, Newsom-Davis J, Vincent A.Autoantibodies to the receptor tyrosine kinase MuSK in patientswith myasthenia gravis without acetylcholine receptor antibodies.Nat Med2001;7:365–68.24. Newsom-Davis J. Autoimmune and genetic disorders at theneuromuscular junction. The 1997 Ronnie Mac Keith lecture. Dev Med Child Neurol1998;40:199–206.25Barnes PRJ, Kanabar DJ, Brueton L, et al. Recurrent congenital arthrogryposis leading to a diagnosis of myasthenia gravis in aninitially asymptomatic mother. Neuromuscul Disord 1995;5:59–65. 26Brueton LA, Huson SM, Cox PM, et al. Asymptomatic maternal myasthenia as a cause of Pena-Shokeir phenotype. Am J Med Genet 2000;92:1–6.27Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis.Prevalence, clinical correlates and diagnostic value. Neurology1976;26:1054–59.28Beeson D, Jacobson L, Newsom-Davis J, Vincent A. A transfected human muscle cell line expressing the adult subtype of the humanmuscle acetylcholine receptor for diagnostic assays in myastheniagravis.Neurology1996;47:1552–55.29Newsom-Davis J, Pinching AJ, Vincent A, Wilson SG. Function of circulating antibody to acetylcholine receptor in myasthenia gravis: investigation by plasma exchange. Neurology1978;28:266–72.30Toyka KV, Drachman DB, Griffin DE, et al. Myasthenia gravis: study of humoral immune mechanisms by passive transfer to mice.N Engl J Med 1977;296:125–31.31Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor.Science1973;180:871–72.32Lennon VA, Lambert EH. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature1980;285: 238–40.33Vincent A, Whiting PJ, Schluep M, et al. Antibody heterogeneity and specificity in myasthenia gravis. Ann N Y Acad Sci 1987;505: 106–20.34Tzartos SJ, Seybold ME, Lindstrom JM. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patientsmeasured by monoclonal antibodies. Proc Natl Acad Sci USA 1982;79:188–92.35Engel AG. Myasthenia gravis and myasthenic syndromes. Ann Neurol1984;16:519–34.36Engel AG, Arahata K. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann N Y Acad Sci 1987;505:326–32.37Drachman DB, Angus DW, Adams RN, Michelson JD, Hoffman GJ. Myasthenia antibodies cross-link acetylcholine receptors toaccelerate degradation. N Engl J Med 1978;298:1116–22.38Drachman DB, Adams RN, Josifek LF, Self SG. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 1982;307:769–75.39Guyon T, Lavasseur P, Truffault F, Cottin C, Gaud C, Berrih Aknin S. Regulation of acetylcholine receptor ␣subunitvariants in human myasthenia gravis: quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerasechain reaction. J Clin Invest 1994;94:16–24.40Kirchner T, Schalke B, Melms A, von Kugelgen T,Muller-Hermelink HK. Immunohistochemical patterns of non-neoplastic changes in the thymus in myasthenia gravis. VirchowsArchiv1986;52:237–57.41Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology1981;31:935–43.42Truffault F, Cohen-Kaminsky S, Khalil I, Levasseur P, Berrih-Aknins S. Altered intrathymic T-cell repertoire in humanmyasthenia gravis. Ann Neurol1997;41:731–41.43Ong B, Willcox N, Wordsworth P, et al. Critical role for the Val/Gly86HLA-DR␣dimorphism in autoantigen presentation tohuman T cells. Proc Natl Acad Sci USA1991;88:7343–47.44Schluep M, Willcox N, Vincent A, Dhoot GK, Newsom-Davis J.Acetylcholine receptors in human thymic myoid cells in situ: animmunohistological study. Ann Neurol 1987;22:212–22.45Buckley C, Douek D, Newsom-Davis J, Vincent A, Willcox N.Mature, long-lived CD4+and CD8+T cells are generated by thethymoma in myasthenia gravis. Ann Neurol(in press).46Lange DJ. Electrophysiologic testing of neuromuscular transmission.Neurology1997;48(suppl 5):S18–S22.47Massey JM. Treatment of acquired myasthenia gravis. Neurology 1997;48(suppl 5):S46–S51.48Newsom-Davis J. Myasthenia gravis. Prescribers’ J2000:40:93-98. 49Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.Neurology2000;55:7–15.50Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of predniosolone alone or with azathioprine in myastheniagravis.Neurology1998;50:1778–83.51Gajdos P, Chevret S, Clair B, Tranchant C, Chastang C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann Neurol. 1997; 41:789–96.52Newsom-Davis J, Lang B. The Lambert-Eaton myathenic syndrome. In: Engel AG, ed. Myasthenia Gravis and myasthenicdisorders. Contemporary Neurology Series, Oxford University Press.1999; 205–28.53Trivedi R, Mundanthanam G, Amyes E, Lang B, Vincent A.Autoantibody screening in subacute cerebellar ataxia. Lancet2000;356:565–66.54Hart IK. Acquired neuromyotonia: a new autoantibody-mediated neuronal potassium channelopathy. Am J Med Sci2000;319:209–16.。