初二基本型之等边三角形截长补短法
八年级上册数学截长补短法
八年级上册数学截长补短法一、截长补短法的概念。
1. 定义。
- 截长补短法是几何证明题中一种常用的辅助线添加方法。
“截长”就是将一条较长的线段截成两段或几段,使得其中的一段或几段与已知线段相等;“补短”就是将一条较短的线段延长,使得延长后的线段与已知的较长线段相等。
- 例如,在三角形ABC中,要证明AB = AC+CD(假设AB>AC),“截长”的做法可以是在AB上截取AE = AC,然后去证明BE=CD;“补短”的做法可以是延长AC到F,使CF = CD,然后去证明AB = AF。
2. 适用情况。
- 当题目中出现证明两条线段之和等于第三条线段或者两条线段之差等于第三条线段等类型的问题时,常常考虑使用截长补短法。
- 比如在四边形或者三角形的边的关系证明中经常用到。
如在等腰三角形的相关证明中,如果要证明等腰三角形腰长与底边一部分线段的关系时,可能就需要用到这种方法。
二、截长补短法的解题步骤。
1. 截长法解题步骤。
- 第一步:观察图形和已知条件,确定要截的线段。
一般选择较长的那条线段进行截取。
- 第二步:根据已知条件截取合适的长度,使得截取后的线段与其他已知线段有一定的联系。
例如,在三角形中,如果有角平分线的条件,可能会截取与角平分线到角两边距离相等的线段。
- 第三步:连接截取点与其他点,构造全等三角形或者其他特殊的几何关系。
- 第四步:利用全等三角形的性质或者其他几何定理进行推理,得出要证明的结论。
- 例如:在三角形ABC中,AD是∠BAC的角平分线,∠C = 2∠B,求证:AB = AC+CD。
- 证明(截长法):在AB上截取AE = AC,连接DE。
- 因为AD是角平分线,所以∠EAD = ∠CAD。
- 在△AED和△ACD中,AE = AC,∠EAD = ∠CAD,AD = AD,根据SAS(边角边)定理,△AED≌△ACD。
- 所以∠AED = ∠C,CD = ED。
- 又因为∠C = 2∠B,∠AED = ∠B + ∠EDB,所以∠B = ∠EDB。
初二数学全全等三角形截长补短知识点及练习题含答案
初二数学全全等三角形截长补短知识点及练习题含答案一、全等三角形截长补短1.如图1,在ABC 中,AB AC =,AC 平分BCD ∠,连接BD ,2ABD CBD ∠=∠,BDC ABD ACD ∠=∠+∠.(1)求A ∠的度数:(2)如图2,连接AD ,AE AD ⊥交BC 于E ,连接DE ,求证:DEC BAE ∠=∠; (3)如图3,在(2)的条件下,点G 为CE 的中点,连接AG 交BD 于点F ,若32ABC S =△,求线段AF 的长.2.如图1,在四边形ABCD 中,AC 交BD 于点E ,△ADE 为等边三角形.(1)若点E 为BD 的中点,AD =4,CD =5,求△BCE 的面积;(2)如图2,若BC =CD ,点F 为CD 的中点,求证:AB =2AF ;(3)如图3,若AB ∥CD ,∠BAD =90°,点P 为四边形ABCD 内一点,且∠APD =90°,连接BP ,取BP 的中点Q ,连接CQ .当AB =2,AD =2,tan ∠ABC =2时,求CQ +10BQ 的最小值.3.如图,ABC 中,点D 在AC 边上,且1902BDC ABD ∠=+∠.(1)求证:DB AB =;(2)点E 在BC 边上,连接AE 交BD 于点F ,且AFD ABC ∠=∠,BE CD =,求ACB ∠的度数.(3)在(2)的条件下,若16BC =,ABF 的周长等于30,求AF 的长.4.在△ABC 中,AB =AC ,点D 与点E 分别在AB 、AC 边上,DE //BC ,且DE =DB ,点F 与点G 分别在BC 、AC 边上,∠FDG 12=∠BDE . (1)如图1,若∠BDE =120°,DF ⊥BC ,点G 与点C 重合,BF =1,直接写出BC = ; (2)如图2,当G 在线段EC 上时,探究线段BF 、EG 、FG 的数量关系,并给予证明; (3)如图3,当G 在线段AE 上时,直接写出线段BF 、EG 、FG 的数量关系:_____________.5.如图,△ABC 中,AB=AC ,∠EAF=12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结 CF .(1)如图 1 所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图 2 所示,当∠EAF 的边 AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .6.(1)如图①,Rt ABC 中,AB AC =,90BAC ∠=︒,D 为BC 边上的一点,将ABD △绕点A 逆时针旋转90°至ACF ,作AE 平分DAF ∠交BC 于点E ,易证明:222BD CE DE +=.若2DE BD =,则以BD 、DE 、EC 为边的三角形的形状是______;(2)如图②,四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,若四边形ABCD 的面积是32,2CD =,求BC 的长度;(3)ABC 是以BC 为底的等腰直角三角形,点D 是ABC 所在平面内一点,且满足4=AD ,6BD =,2CD =,请画草图并求ADC ∠的度数.7.已知等腰△ABC 中,AB=AC ,点D 在直线AB 上, DE ∥BC ,交直线AC 与点E ,且BD=BC ,CH ⊥AB ,垂足为H .(1)当点D 在线段AB 上时,如图1,求证DH=BH+DE ;(2)当点D 在线段BA 延长线上时,如图2,当点D 在线段AB 延长线上时,如图3,直接写出DH ,BH ,DE 之间的数量关系,不需要证明.8.已知等腰ABC ∆中,AB AC =,点D 在直线AB 上,//DE BC ,交直线AC 于点E ,且BD BC =,CH AB ⊥,垂足为H .(1)当点D 在线段AB 上时,如图1,求证BH DE DH +=;(2)当点D 在线段BA 的延长线上时,如图2;当点D 在线段AB 延长线时,如图3,线段BH ,DE ,DH 又有怎样的数量关系?请直接写出你的猜想,不需要证明. 9.在平行四边形ABCD 中,DE 平分ADC ∠交BC 于点E ,连接AE .点O 是DE 的中点,连接CO 并延长交AD 于点F ,在CF 上取点G ,连接AG .(1)若4tan 3B =,5AB =,6BC =,求ABE △的周长. (2)若60B EAG ∠=∠=︒,求证:AF CG =.10.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)90A ∠=︒;(2)见解析;(3)4【分析】(1)设.DBC x ∠=推出2ABC x ∠=,3ABC ACB ACD x ∠=∠=∠=,5D x ∠=,利用三角形内角和定理构建方程求出x 即可;(2)先依据ASA 证明BEA CDA △≌△,再依据全等三角形的性质得到AE AD =,结合AE AD ⊥,依据三角形内角和求出45AED ∠=︒,再依据三角形外角的性质及等式的基本性质即可求证;(3)根据直角三角形的面积公式求出AB ,延长AG 至K ,使GK AG =,连接CK ,先依据SAS 证明AEG KCG △≌△,结合等量代换得到AE KC AD ==,ACK BAD ∠=∠,再依据SAS 证明AKC BDA △≌△,依据全等的性质求得CAG ABD ∠=∠215=⨯︒30=︒,从而得到60BAF ∠=︒,继而得到90AFB ∠=︒,最后依据直角三角形30度角的性质解决问题.【详解】()1解:如图1中,设DBC x ∠=.2ABD DBC ∠=∠,AB AC =,2ABD x ∴∠=,3ABD ACB x ∠=∠=, AC 平分BCD ∠,3ACD ACB x ∴∠=∠=,26DCB ACB x ∠=∠=,5D ABD ACD x ∠=+∠=,又∵在BCD ∆中,180D DBC DCB ∠+∠+∠=︒,56180x x x ∴++=︒,15x ∴=︒,45ABC ACB ∴∠=∠=︒,30ABD ∠=︒,180454590A ∴∠=︒-︒-︒=︒;(2)AE AD ⊥,90EAD ∴∠=︒,90BAC EAD ∠=∠=︒,BAC EAC EAD EAC ∴∠-∠=∠-∠,BAE CAD ∴∠=∠,=345ABE x ACD ∠=︒=∠,AB AC =()BEA CDA ASA ∴△≌△AE AD ∴=,又∵90EAD ∠=︒,∴45AED ADE ∠=∠=︒又AEC ABE BAE AED DEC ∠=∠+∠=∠+∠,DEC BAE ∴∠=∠;(3)延长AG 至K ,使GK AG =,连接CK点G 为CE 的中点,EG CG ∴=,AGE KGC ∠=∠,()AEG KCG SAS ∴△≌△,AE KC ∴=,AEG KCG ∠=∠,AE KC AD ∴==,45ACK ACB KCG AEC ∠=∠+∠=︒+∠4590ABE BAE BAE BAD =︒+∠+∠=︒+∠=∠AB AC =()AKC BDA SAS ∴△≌△21530CAG ABD ∠=∠=⨯︒=︒60BAF ∴∠=︒90AFB ∴∠=︒32ABC S =211=3222AB AC AB ∴⨯= 8AB ∴=142AF AB ∴==. 【点睛】本题属于三角形综合题,考查了三角形内角和定理,三角形外角的性质,三角形全等的判定和性质,含30度的直角三角形的性质,第(1)问的关键在于设未知数,列方程;第(2)问的关键得到了等腰直角三角形和利用三角形的外角性质建立起了两个待证量之间的等式;第(3)问的关键在于作辅助线证明了30CAG ∠=︒.2.(1)3923S BCE =△证明见解析(3)CQ +1010BQ 的最小值为5【分析】(1)根据点E 是BD 的中点,可得BCE CDE S S =△△ ,在作边CE 的高DF ,根据等边三角形三线合一DF 也是AED 的高,根据勾股定理计算出DF 的长度,在直角三角形DFC 中利用勾股定理计算出CF ,得出CE 的值,利用三角形的面积公式计算出面积.(2)延长AF ,是2AF =AG ,证明ADF CF ≅△△G ,得出CM=AD ,再根据ACD BDC ∠+∠= 60°,得出ACG ∠ =ABE ∠ ,从而证明ABE AMC ≅△△ ,得出AB=AG ,得出结论.(3)根据APD ∠ =90°,知道点P 的运动轨迹是以AD 为直径的圆,圆心记为N ,点Q 是BP 的中点,得到点Q 的运动轨迹是以BN 的中点为圆心,半径为2 的圆。
《截长补短法》课件
04
截长补短法的实例
实例一:几何图形
总结词
通过图形直观展示
详细描述
在PPT中,我们可以使用几何图形来展示截长补短法的应用。例如,在平面几何中,我们可以通过将一个不规则 图形切割成几个规则图形,然后进行补充,从而得到一个新的规则图形。这种方法可以帮助学生更好地理解几何 图形的性质和特点。
实例二:数据可视化
原理的数学解释
截长补短法是一种基于几何和代数知识 的解题方法,其原理可以通过数学公式
和定理进行解释。
在几何学中,截长补短法可以用于证明 一些线段或角度的性质和关系,例如通 过截取线段来证明两个三角形相似或通 过补全角度来证明一个四边形是平行四
边形。
在代数中,截长补短法可以用于解决一 些方程和不等式问题,例如通过将一个 复杂的多项式方程进行截取和补全,来
索其在其他领域的应用。
拓展应用范围
尝试将截长补短法与其他几何 作图方法结合,拓展其应用范 围,解决更多复杂的几何问题 。
提高教学水平
在数学教学中,加强对截长补 短法的介绍和讲解,帮助学生 更好地理解和掌握该方法。
激发学习兴趣
通过引导学生运用截长补短法 解决实际问题,激发他们对数
学学习的兴趣和热情。
THANKS
简单、更易于解决的小问题。
补全短线段
补全短线段是指在解题过程中,将一些较短的线段或步骤进行补充和整合,使其形 成一个完整的解决方案。
通过补全短线段,可以将零散的信息和步骤整合起来,形成一个完整的知识体系或 解决方案。
在数学问题中,补全短线段通常用于将一些分散的条件和信息整合起来,形成一个 完整的证明或解题过程。
找到满足条件的解。
03
截长补短法的步骤
初二数学 全全等三角形截长补短知识归纳总结及解析
初二数学 全全等三角形截长补短知识归纳总结及解析一、全等三角形截长补短1.已知:在ABC 中,90BAC ︒∠=,AB AC =.将ABC 按如图所示的位置放置在平面直角坐标系中,使得点(0,)A m 落在y 轴的负半轴上,使得点(,0)B n 落在x 轴的正半轴上,点C 在第二象限,并且,m n 满足2268250m n m n ++-+=.(1)由题意可知OA =_____,OB =_____(直接写答案);(2)求点C 的坐标;(3)ABC 的斜边BC 交y 轴于D ,直角边AC 交x 轴于E .在AC 上截取AF CE =,连接DF .探究线段DF AD BE 、、的数量关系并证明你的结论.2.数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠;在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明.3.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是.(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=1∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,2请给出证明;若不成立,请说明理由.4.如图,△ABC中,,AD是BC边上的高,如果,我们就称△ABC为“高和三角形”.请你依据这一定义回答问题:(1)若,,则△ABC____ “高和三角形”(填“是”或“不是”);(2)一般地,如果△ABC是“高和三角形”,则与之间的关系是____,并证明你的结论5.已知:线段AB及过点A的直线l,如果线段AC与线段AB关于直线l对称,连接BC交直线l于点D,以AC为边作等边△ACE,使得点E在AC的下方,作射线BE交直线l于点F,连接CF.(1)根据题意将图1补全;(2)如图1,如果∠BAD=α(30°<α<60°).①∠BAE=_______,∠ABE=_______(用含有α代数式表示);②用等式表示线段FA,FE与FC的数量关系,并证明.(3)如图2,如果60°<α<90°,直接写出线段FA,FE与FC的数量关系,不证明.6.如图,在ABC 中,AB AC =,30ABC ∠<︒,D 是边BC 的中点,以AC 为边作等边三角形ACE ,且ACE △与ABC 在直线AC 的异侧,连接BE 交DA 的延长线于点F ,连接FC 交AE 于点M .(1)求证:FB FC =;(2)求证:FEA FCA ∠=∠;(3)若8FE =,2AD =,求AF 的长.7.在△ABC 中,AB =AC ,点D 与点E 分别在AB 、AC 边上,DE //BC ,且DE =DB ,点F 与点G 分别在BC 、AC 边上,∠FDG 12=∠BDE . (1)如图1,若∠BDE =120°,DF ⊥BC ,点G 与点C 重合,BF =1,直接写出BC = ; (2)如图2,当G 在线段EC 上时,探究线段BF 、EG 、FG 的数量关系,并给予证明; (3)如图3,当G 在线段AE 上时,直接写出线段BF 、EG 、FG 的数量关系:_____________.8.已知等边三角形ABC ,D 为△ABC 外一点,BDC 120∠=︒,BD=DC ,MDN 60∠=︒,射线DM 与直线AB 相交于点M ,射线DN 与直线AC 相交于点N . (1)当点M 、N 在边AB 、AC 上,且DM=DN 时,直接写出BM 、NC 、MN 之间的数量关系;(2)当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜想①中的结论还成立吗?若成立,请证明;(3)当点M 、N 在边AB 、CA 的延长线上时,请画出图形,并求出BM 、NC 、MN 之间的数量关系.9.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积. 10.如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上. (1)如图①,当//MN BC 时,则AMN 的周长为______;(2)如图②,求证:BM NC MN +=.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)3,4;(2)(3,1)C -;(3)BE=DF+AD ,理由见解析【分析】(1)由非负数的性质求出m ,n 即可;(2)如图,作CH ⊥y 轴于点H ,只要证明△ACH ≌△BAO 即可解决问题;(3)在OB 上取一点K ,使得OK=DH ,则△CHD ≌△AOK ,再证明DF=EK ,AD=BK 即可解决问题.【详解】解:(1)∵2268250m n m n ++-+=∴22(3)(4)0m n ++-=,∵2(3)0+≥m ,2(4)0n -≥,∴3,4m n =-=,∴(0,3)A -,(4,0)B∴OA=3,OB=4,故答案为:3,4(2)如图,作CH ⊥y 轴于点H ,∵∠CHA=∠AOB=∠CAB=90°,∴∠CAH+∠ACH=90°,∠CAH+∠BAO=90°,∴∠ACH=∠BAO ,∵AC=BC ,∴△ACH ≌△BAO ,∴AH=OB=4,CH=OA=3,∴OH=1,∴(3,1)C -(3)结论为:BE=DF+AD理由:如图,在OB 上取一点K ,使得OK=DH ,∵CH=OA ,∠CHD=∠AOK=90°,DH=OK ,∴△CHD ≌△AOK (SAS ),∴CD=AK ,∵AD=BK ,AB=AC ,∴△AKB ≌△CDA (SSS ),∴∠KAB=∠ACD=45°,∴∠EAK=45°=∠FCD ,∵CE=AF ,∴CF=AE ,∵CD=AK ,∴△CDF ≌△AKE (SAS )∴DF=KE ,∵BE=EK+BK ,∴BE=DF+AD【点睛】本题考查三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、非负数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明△ABE ≌△CAM ,得出BE AM =和M BEA ∠=∠,从而证明△NFC ≌△MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.【详解】解:(1)∵在△ABE 和△ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ),ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=,AF BE ⊥,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠=,45HCF x ∴∠=︒-,FP CD ⊥,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在△ABE 和△CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩, ABE CAM ∴∆≅∆(ASA ),BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC ∴∆≅∆(ASA ),FM FN ∴=,M FNC ∠=∠,FNC BEA ∴∠=∠,PN PE ∴=,∴BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度. 3.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.【详解】(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.4.(1)是(2);见解析【解析】【分析】(1)在BC 上截取,根据,可得△ABE 为等边三角形,,问题得解;(2)在△ABC 中,在DC 上截取,由AD 是BC 边上的高且,进而证明,△ABD ≌△AED (SAS )就可以得到结论. 【详解】解:(1)如图,Rt △ABC 中,,,, 在BC 上截取,则△ABE 为等边三角形, ∴, ∵,, ∴, ∴,∴ ∵,且△ABE 为等边三角形, ∴∴,∴是高和三角形.(2); 证明:如上图,在△ABC 中,在DC 上截取. ∵, ∴, ∵AD 是BC 边上的高且, ∴,△ABD ≌△AED (SAS ), ∴,, ∴. 【点睛】 本题主要考查全等三角形的判定与性质,根据题意构造全等三角形,理解“高和三角形”的定义是解题关键.5.(1)作图见解析;(2)①260α-︒,120α︒-;②FA=FC +FE ,证明见解析;(3)AF=FC-EF .【分析】(1)先根据轴对称的性质作出线段AC ,再分别以A 、C 为圆心,AC 长为半径画弧,两弧交于点E ,可得等边△ACE ,最后根据题意画出图形即可;(2)①根据轴对称的性质可得∠BAC=2∠BAD=2α,根据等边三角形的性质可知∠EAC=60°,根据角的和差关系即可表示出∠BAE ;根据轴对称的性质和等边三角形的性质可得AB=AE ,根据等腰三角形的性质及三角形内角和定理即可表示出∠ABE ;②在FA 上截取FG=EF ,连接EG ,利用三角形内角和定理可得∠AFB=60°,即可证明△EFG 是等边三角形,根据角的和差故选可得∠AEG=∠CEF ,利用SAS 可证明△AEG ≌△CEF ,即可得出AG=CF ,根据线段的和差关系即可得结论;(3)由60°<α<90°可知点E 在直线l 右侧,根据题意画出图形,在FA 上截取FG=EF ,根据轴对称的性质可得AF ⊥BC ,BF=CF ,根据(2)中结论可得∠FBC=∠FCB=30°,利用三角形外角性质可得∠GFE=60°,可证明三角形EFG 是等边三角形,利用SAS 可证明△AEF ≌△CEG ,可得FA=CG ,根据线段的和差关系即可得答案.【详解】(1)补全图形如下:(2)①260α-︒,120.α︒-①∵AB 、AC 关于直线l 对称,∴∠BAD=∠CAD ,AB=AC ,∵△ACE 是等边三角形,∴∠EAC=60°,AE=AC=EC ,∵∠BAD=α,∴∠BAC=BAD+∠CAD=2∠BAD=2α,∴∠BAE=∠BAC-∠EAC=2α-60°.∵AB=AC ,AC=AE ,∴AB=AE ,∴∠ABE=12(180°-∠BAE )=120°-α. 故答案为:2α-60°,120°-α②数量关系是FA =FC +FE ,证明如下:在FA 上截取FG=EF ,连接EG ,由①得,∠ABE=120°-α,∠BAD=α,∴∠AFB=180°-∠ABE-∠BAD=60°,∴△EFG 为等边三角形,∴EG=FE=FG ,∠GEF=60°,∵△AEC 是等边三角形,∴∠AEC=60°,AE=CE ,∴∠AEC=∠GEF=60°,∴∠AEC-∠GEC=∠GEF-∠GEC,即∠AEG=∠CEF,在△AEG和△CEF中,EG EFAEG CEF AE CE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△CEF,∴AG=FC∴FA=AG+FG=FC+FE,(3)AF=FC-EF.∵60°<α<90°,∴如图所示,点E在直线l右侧,在FA上截取FG=EF,连接EG,∵AB、AC关于直线l对称,点F在直线l上,∴AF⊥BC,BF=CF,∴∠ABC=∠ACB=90°-α,由(2)可知∠ABE=120°-α,∴∠FBC=∠FCB=120°-α-(90°-α)=30°,∴∠EFG=∠FBC+∠FCB=60°,∴△EFG是等边三角形,∴∠FEG=60°,∵∠AEC=60°,∴∠AEF+∠AEG=∠CEG+∠AEG=60°,∴∠AEF=∠CEG,在△AEF和△CEG中,EF EGAEF CEG AE CE=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△CEG,∴AF=CG,∴AF=FC-EF.【点睛】本题考查轴对称的性质、等边三角形的判定与性质及全等三角形的判定与性质,根据轴对称的性质正确得出对应边并熟练掌握相关性质及判定定理是解题关键.6.(1)见解析;(2)见解析;(3)4【分析】(1)利用AD 所在直线是BC 的垂直平分线,点F 在直线AD 上即可得出结论. (2)由ACE △是等边三角形,得AC=AE=AB 推得ABF FEA ∠=∠.易证ABF ≌ACF (SSS ),ABF FCA FEA ∠=∠=∠即可,(3)延长AD 至点P 处,使DP AD ,连接CP .先证直角三角形ADC ≌PDC△(SAS ),推出AC CP CE ==,ACD PCD ∠=∠.再证60EFC EAC ∠=∠=︒.求出,FBD 30FCD ∠=∠=︒.用ACD ∠表示30ECF ACD ∠=︒+∠.而30FCP ACD ∠=︒+∠,得ECF FCP ∠=∠.可证ECF △≌PCF (SAS ),可推得AF EF AP =-即可.【详解】(1)证明:∵AB AC =,D 是边BC 的中点,∴AD 所在直线是BC 的垂直平分线,又∵点F 在直线AD 上∴FB FC =.(2)证明:∵ACE △是等边三角形,∴60EAC ACE ∠=∠=︒,AC AE =.∵AB AC =,∴AB AE =,∴ABF FEA ∠=∠.由(1)可知,FB FC =,又∵AF AF =,AB AC =,∴ABF ≌ACF (SSS ),∴ABF FCA ∠=∠,∴FEA FCA ∠=∠.(3)解:如图,延长AD 至点P 处,使DP AD ,连接CP .∵AB AC =,D 是边BC 的中点,∴90ADC PDC ∠=∠=︒.∵ACE △是等边三角形,∴AC CE =,60EAC ∠=︒.∵AD DP =,ADC PDC ∠=∠,CD CD =,∴ADC ≌PDC △(SAS ),∴AC CP CE ==,ACD PCD ∠=∠.由(2)可知,FEA FCA ∠=∠,∵AMC FME ∠=∠,∴60EFC EAC ∠=∠=︒.由(1)可知,BF CF =, ∴()18060260BFD CFD ∠=∠=︒-︒÷=︒,∴906030FCD ∠=︒-︒=︒.∵FCA FCD ACD ∠=∠-∠,∴30FCA ACD ∠=︒-∠.∵ECF ECA FCA ∠=∠-∠,∴()303030ECF ECA ACD ECA ACD ACD ∠=∠-︒-∠=∠-︒+∠=︒+∠. ∵FCP FCD PCD ∠=∠+∠,∴30FCP ACD ∠=︒+∠,∴ECF FCP ∠=∠.∵FC FC =,CE CP =,∴ECF △≌PCF (SAS ),∴FE FP =,∴2FE FA AP AF AD =+=+,∴2822=4AF EF AD =-=-⨯.【点睛】本题考查线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,掌握线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,会利用引辅助线构造三角形全等转化线与线关系,角与角关系来解决问题.7.(1)4;(2)FG=BF+EG ,见解析;(3)FG=BF-EG【分析】(1)解直角三角形分别求出DF ,CF 即可解决问题.(2)如图2中,结论:FG=BF+EG .在EA 上截取EH ,使得EH=BF .利用两次全等,证明FG=GH 即可解决问题.(3)如图3中,结论:FG=BF-EG .在射线EA 上截取EH ,使得EH=BF .利用两次全等,证明FG=GH 即可解决问题.【详解】(1)∵DE ∥BC ,∴∠BDE+∠ABC=180°,∵∠BDE=120°,∴∠ABC=60°,∵DF ⊥BF ,∴∠BFD=90°,∴DF=BF•tan60°133=⨯=, ∵∠CDF 12=∠BDE=60°,∠DFC=90°, ∴CF=DF•tan60°333=⨯=, ∴BC=BF+CF=1+3=4;(2)如图2中,结论:FG=BF+EG .理由:在EA 上截取EH ,使得EH=BF .∵AB=AC ,∠B=∠C ,∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴∠ADE=∠AED ,∴∠DEH=∠B ,在△DBF 和△DEH 中,BF EH B DEH BD DE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△DEH (SAS ),∴DF=DH ,∠BDF=∠EDH ,∵∠FDG 12=∠BDE , ∴∠BDF+∠EDG=∠EDH+∠EDG=∠GDH 12=∠BDE , ∴∠GDF=∠GDH ,在△DGF 和△DGH 中,GDF GDH DG DG ⎪∠=∠⎨⎪=⎩,∴△DGF ≌△DGH (SAS ),∴FG=HG ,∵HG=EG+HE=EG+BF ,∴FG=BF+EG ;(3)如图3中,结论:FG=BF-EG .理由:在射线EA 上截取EH ,使得EH=BF .∵AB=AC ,∠B=∠C ,∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴∠ADE=∠AED ,∴∠DEH=∠B ,在△DBF 和△DEH 中,BF EH B DEH BD DE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△DEH (SAS ),∴DF=DH ,∠BDF=∠EDH ,∴∠BDE=∠FDH ,∵∠FDG 12=∠BDE 12=∠FDH , ∴∠GDF=∠GDH ,在△DGF 和△DGH 中,GDF GDH DG DG ⎪∠=∠⎨⎪=⎩,∴△DGF ≌△DGH (SAS ),∴FG=HG ,∵HG=HE-GE=BF-EG ,∴FG=BF=-EG .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.(1)BM+NC=MN ,证明见解析;(2)成立,证明见解析;(3)NC-BM=MN ,证明见解析.【分析】(1)由DM=DN ,∠MDN=60°,可证得△MDN 是等边三角形,又由△ABC 是等边三角形,CD=BD ,易证得Rt △BDM ≌Rt △CDN ,然后由直角三角形的性质,即可求得BM 、NC 、MN 之间的数量关系 BM+NC=MN ;(2)在CN 的延长线上截取CM 1=BM ,连接DM 1.可证△DBM ≌△DCM 1,即可得DM=DM 1,易证得∠CDN=∠MDN=60°,则可证得△MDN ≌△M 1DN ,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN 上截取CM 1=BM ,连接DM 1,可证△DBM ≌△DCM 1,即可得DM=DM 1,然后证得∠CDN=∠MDN=60°,易证得△MDN ≌△M 1DN ,则可得NC-BM=MN .【详解】解(1)BM 、NC 、MN 之间的数量关系:BM+NC=MN .证明如下:∵BD=DC ,DM=DN ,MDN 60∠=︒∴∠BDC=∠DCB=180302BDC ,△MDN 为等边三角形, ∴MN=MD=DN ,∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∴∠ABD=∠ACD=90°,∴Rt △BDM ≌Rt △CDN (HL ),∴∠BDM =∠CDN=302BDC MDN , ∴11,22BM DM NC DN , ∴BM+NC=MN . (2)猜想:结论仍然成立.证明:在CN的反向延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,(3)证明:在CN上截取CM1=BM,连接DM1.与(2)同理可证△DBM≌△DCM1,∴DM=DM1,与(2)同理可证∠CDN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】本题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.9.(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;≌,则有(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证FGH FNK≌,故可求解.FK=FH,因为HM=GH+MN易证FMK FMH【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2; (2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌, ∴FH=FK ,又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S SS S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用. 10.(1)4;(2)见解析 【分析】(1)首先证明△BDM ≌△CDN ,进而得出△DMN 是等边三角形,∠BDM=∠CDN=30°,NC=BM=12DM=12MN ,即可解决问题; (2)延长AC 至点E ,使得CE BM =,连接DE ,首先证明BDM CDE △≌△,再证明MDN EDN △≌△,得出MN NE =,进而得出结果即可.【详解】解:(1)∵ABC 是等边三角形,//MN BC ,60AMN ABC ∴∠=∠=︒,60ANM ACB ∠=∠=︒∴AMN 是等边三角形,AM AN ∴=,则BM NC =,∵BDC 是顶角120BDC ∠=︒的等腰三角形,30DBC DCB ∴∠=∠=︒,90DBM DCN ∴∠=∠=︒,在BDM 和CDN △中,,,,BM CN MBD DCN BD CD =⎧⎪∠=∠⎨⎪=⎩()BDM CDN SAS ∴△≌△,DM DN ∴=,BDM CDN ∠=∠,∵60MDN ∠=︒,∴DMN 是等边三角形,30BDM CDN ∠=∠=︒,1122NC BM DM MN ∴===,MN MB NC ∴=+, ∴AMN 的周长4AB AC =+=.(2)如图,延长AC 至点E ,使得CE BM =,连接DE , ∵ABC 是等边三角形,BDC 是顶角120BDC ∠=︒的等腰三角形, 60ABC ACB ∴∠=∠=︒,30DBC DCB ∠=∠=︒, 90ABD ACD ∠∴∠==︒,90DCE ∴∠=︒,在BDM 和CDE △中,,,,BD CD MBD ECD BM CE =⎧⎪∠=∠⎨⎪=⎩()BDM CDE SAS ∴△≌△,MD ED ∴=,MDB EDC ∠=∠,120120MDE MDB EDC ∴∠=︒-∠+∠=︒,∵60MDN ∠=︒,60NDE ∴∠=︒,在MDN △和EDN △中,,60,,MD ED MDN NDE DN DN =⎧⎪∠=∠=︒⎨⎪=⎩()MDN EDN SAS ∴△≌△.MN NE ∴=,又∵NE NC CE NC BM =+=+,BM NC MN ∴+=.【点睛】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键.。
专题 全等三角形模型——截长补短与倍长中线(解析版)
全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
数学人教版八年级上册全等三角形-截长补短法
◎初中数学课堂教学实录与评点“截长补短”的思想在几何证明中的运用八年级数学组执教:江志雄点评:王胜峰【教学目标】●用“截长补短法”解决线段的和、差问题。
【教学重点】●用“截长补短法”解决线段的和、差问题。
【教学难点】●用“截长补短法”解决线段的和、差问题。
【教学用具】●电脑、课件三角尺、翻折全等三角形的纸张模型、多媒体课件。
【教学设计思路】本节课是根据八年级第一学期学习全等三角形后的一次专题讲解,主要要求学生掌握截长补短法来证明线段的和与差问题,体会数学上的转化思想。
线段的和差问题,常常借助于全等三角形的对应边相等,将不在一条直线的两条(或几条)线段转化到同一直线上.可以通过翻折构造全等三角形.在无法进行直接证明的情形下,利用"截长补短"作辅助线的方法,常可使思路豁然开朗,问题迎刃而解.【教学过程】一、导入新课明确环节师:上课!同学们好!生:老师好!师:同学们,在本周我们学习了三角形全等的性质与判定,今天我和大家一起来学习如何证明线段的和、差问题。
(课件显示学习目标)(师生看大屏幕)师:我们一起来齐读学习目标;生:用“截长补短法”解决线段的和、差问题;(声音洪亮)师:好!同学们的声音很洪亮,相信你们一定能完成学习目标。
请同学们画一画——画一画:线段AB=CD+EF 线段CD=AB-EF线段AB=10cm 线段CD=6cm 线段EF=4cm师:通过我们画两段线段的和与差是否等于另一段线段,生:是!师:请哪位同学总结一下我们所有的方法呢?生:截长补短法:“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。
【点评】通过教师的调动,让学生感受成功的机会,展示的机会,激发学生求知的欲望。
让学生通过画线段的和与差来体会截长补短法,鼓励学生,师生互动,营造良好的学习氛围。
板书课题、学习目标,使学生立即明确学习的目标,全身心投入我课堂的学习中来,积极探索新的方法,发散自己的思维。
初中经典几何模型01-截长补短模型证明问题
初中经典几何模型专题01 截长补短模型证明问题【专题说明】截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a+b=c时,用截长补短.【知识总结】1、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等有关性质加以说明,这种做法一般遇到证明三条线段之间关系时常用。
如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【类型】一、截长“截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。
【类型】二、补短“补短”指的是选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破,根据辅助线作法的不同也涉及四种不同的方法。
【基础训练】1、如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.2、如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD3、如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=180°,求证:AD平分∠CDE.4、已知四边形ABCD中,∠ABC+∠ADC=180°,AB=BC如图2,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,∠ADC求证:∠PBQ=90°-125、如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CE=AC.6、如图所示,AB∥CD,BE,CE分别是∠ABC,∠BCD的平分线,点E在AD上,求证:BC=AB+CD.7、四边形ABCD中,BD>AB,AD=DC,DE⊥BC,BD平分∠ABC (1)证明:∠BAD+∠BCD=180°(2)DE=3,BE=6,求四边形ABCD的面积.8、已知:在△ABC中,AB=CD-BD,求证:∠B=2∠C.9、如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD,CE交于点F,点G是线段CD上一点,连接AF,GF,若AF=GF,BD=CD.(1)求∠CAF的度数(2)判断线段FG与BC的位置关系,并说明理由.【巩固提升】1.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE交于点O,试判断BE,CD,BC的数量关系,并加以证明.2.如图,AD//BC,DC⊥AD,AE平分∠BAD,E是DC的中点.问:AD,BC,AB之间有何关系?并说明理由.3.如图,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC⊥BC,请问线段AB,CD和线段BC有何大小关系?并说明理由.4.如图,AB∥CD,B E,CE分别是∠ABC和∠BCD的平分线,点E在AD上.求证:BC=AB+CD.5.如图,在R t△ABC中,∠C=90°,BC=AC,∠B=∠CAB=45°,AD平分∠BAC交BC于D,求证:AB=AC+CD.6.如图,在△ABC中,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB,AD,CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.专题01 截长补短模型证明问题【专题说明】截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a+b=c时,用截长补短.【知识总结】1、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
2023学年八年级数学上册高分突破必练专题(人教版)-等边三角形常考作辅助线法(解析版)
等边三角形常考作辅助线法技巧1:作平行线法技巧2:截长补短法【典例1】(烟台)如图在等边三角形ABC中点E是边AC上一定点点D是直线BC上一动点以DE为一边作等边三角形DEF连接CF.【问题解决】如图1 若点D在边BC上求证:CE+CF=CD;【类比探究】如图2 若点D在边BC的延长线上请探究线段CE CF与CD之间存在怎样的数量关系?并说明理由.【答案】详见解答【解答】【问题解决】证明:在CD上截取CH=CE如图1所示:∵△ABC是等边三角形∴∠ECH=60°∴△CEH是等边三角形∴EH=EC=CH∠CEH=60°∵△DEF是等边三角形∴DE=FE∠DEF=60°∴∠DEH+∠HEF=∠FEC+∠HEF=60°∴∠DEH=∠FEC在△DEH和△FEC中∴△DEH≌△FEC(SAS)∴DH=CF∴CD=CH+DH=CE+CF∴CE+CF=CD;【类比探究】解:线段CE CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形∴∠A=∠B=60°过D作DG∥AB交AC的延长线于点G如图2所示:∵GD∥AB∴∠GDC=∠B=60°∠DGC=∠A=60°∴∠GDC=∠DGC=60°∴△GCD为等边三角形∴DG=CD=CG∠GDC=60°∵△EDF为等边三角形∴ED=DF∠EDF=∠GDC=60°∴∠EDG=∠FDC在△EGD和△FCD中∴△EGD≌△FCD(SAS)∴EG=FC∴FC=EG=CG+CE=CD+CE.【变式1-1】(2020秋•句容市期中)如图在等边三角形ABC中点E是边AC上一定点点D是射线BC上一动点以DE为一边作等边三角形DEF连接CF.【问题解决】如图1 点D与点B重合求证:AE=FC;【类比探究】(1)如图2 点D在边BC上求证:CE+CF=CD;(2)如图3 点D在边BC的延长线上请探究线段CE CF与CD之间存在怎样的数量关系?直接写出你的结论.【答案】详见解答【解答】证明:【问题解决】∵△ABC和△DEF是等边三角形∴AB=BC∠ABC=∠EDC=60°DE=DF∴∠ABC﹣∠EBC=∠EDC﹣∠EBC即∠ABE=∠CBF在△ABE和△CBF中∴△ABE≌△CBF(SAS)∴AE=CF;【类比探究】(1)如图2 在CD上截取CH=CE连接EH∵△ABC是等边三角形∴∠ECH=60°∴△CEH是等边三角形∴EH=EC=CH∠CEH=60°∵△DEF是等边三角形∴DE=FE∠DEF=60°∴∠DEH+∠HEF=∠FEC+∠HEF=60°∴∠DEH=∠FEC在△DEH和△FEC中∴△DEH≌△FEC(SAS)∴DH=CF∴CD=CH+DH=CE+CF∴CE+CF=CD;(2)线段CE CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形∴∠A=∠B=60°过D作DG∥AB交AC的延长线于点G如图3所示:∵GD∥AB∴∠GDC=∠B=60°∠DGC=∠A=60°∴∠GDC=∠DGC=60°∴△GCD为等边三角形∴DG=CD=CG∠GDC=60°∵△EDF为等边三角形∴ED=DF∠EDF=∠GDC=60°∴∠EDG=∠FDC在△EGD和△FCD中∴△EGD≌△FCD(SAS)∴EG=FC∴FC=EG=CG+CE=CD+CE.【变式1-2】(天心区期中)如图在等边△ABC中点D是边AC上一定点点E是直线BC上一动点以DE为一边作等边△DEF连接CF.(1)如图1 若点E在边BC上且DE⊥BC垂足为E求证:CD=2CE;(2)如图1 若点E在边BC上且DE⊥BC垂足为E求证:CE+CF=CD;(3)如图2 若点E在射线CB上请探究线段CE CF与CD之间存在怎样的数量关系?并说明理由.【答案】详见解答【解答】证明:(1)∵△ABC是等边三角形∴∠ACB=60°又∵DE⊥BC∴∠DEC=90°∠EDC=30°∴CD=2CE;(2)∵△DEF是等边三角形∴DE=DF∠EDF=60°∵∠EDC=30°∴∠FDC=30°=∠EDC DC=DC∴△EDC≌△FDC(SAS)∴CE=CF∴CD=2CE=CE+CF;(3)当点E在线段BC上如图2 结论:CD=CE+CF理由如下:如图2 在BC上截取CG=CD连接GD∵∠DCG=60°∴△DCG是等边三角形∴DG=DC∠GDC=60°∵△DEF是等边三角形∴DE=DF∠EDF=60°∵∠GDE+∠EDC=60°=∠EDC+∠CDF∴∠GDE=∠CDF∴△GDE≌△CDF(SAS)∴GE=CF∴CD=CG=CE+EG=CE+CF;当点E在射线BC延长线上如图3 结论:CE=CD+CF理由如下:如图3 在BC上截取CG=CD连接GD∵∠DCG=60°∴△DCG是等边三角形∴DG=DC∠GDC=60°∵△DEF是等边三角形∴DE=DF∠EDF=60°∵∠GDE+∠GDF=60°=∠GDF+∠CDF∴∠GDE=∠CDF∴△GDE≌△CDF(SAS)∴GE=CF∴CE=CG+EG=CD+CF.【典例2】(2020秋•湖南期末)如图△ABC是等边三角形点D、E分别是射线AB、射线CB上的动点点D从点A出发沿射线AB移动点E从点B出发沿BG移动点D、点E同时出发并且运动速度相同.连接CD、DE.(1)如图①当点D移动到线段AB的中点时求证:DE=DC.(2)如图②当点D在线段AB上移动但不是中点时试探索DE与DC之间的数量关系并说明理由.(3)如图③当点D移动到线段AB的延长线上并且ED⊥DC时求∠DEC度数.【答案】详见解答【解答】(1)证明:∵△ABC是等边三角形AD=DB∴∠DCB=∠ACB=30°AD=DB由题意得AD=BE∴BD=BE∴∠BDE=∠BED∵∠BDE+∠BED=∠ABC=60°∴∠BDE=∠BED=30°∴∠DCE=∠BED∴DE=DC.(2)解:DE=DC理由如下:作DF∥AC交BC于F则∠BDF=∠A=60°∠DFB=∠ACB=60°∴△DBF为等边三角形∴DB=DF=BF∠DBF=∠DFB=60°∴FC=AD=BE∠DBE=∠DFC在△DBE和△DFC中∴△DBE≌△DFC(SAS)∴DE=DC;(3)解:在BE上截取BH=BD连接DH∵∠DBH=∠ABC=60°∴△BDH为等边三角形∴DH=DB∠BDH=∠BHD=60°∴∠DHE=∠DBC=120°∵AD=BE BH=BD AB=BC∴HE=BC在△DHE和△DBC中∴△DHE≌△DBC(SAS)∴∠HDE=∠BDC∵∠EDC=90°∠HDB=60°∴∠HDE+∠BDC=30°∴∠HDE=∠BDC=15°∴∠DEC=∠DHC﹣∠HDE=45°.【变式2-1】(道外区期末)如图△ABC中AB=AC点D在AB边上点E在AC的延长线上且CE=BD连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC垂足为G求证:BC=2FG.【答案】详见解答【解答】证明:(1)过点D作DH∥AC DH交BC于H如图1所示:则∠DHB=∠ACB∠DHF=∠ECF∵AB=AC∴∠B=∠ACB∴∠B=∠DHB∴BD=HD∵CE=BD∴HD=CE在△DHF和△ECF中∴△DHF≌△ECF(AAS)∴EF=DF;(2)如图2 由(1)知:BD=HD∵DG⊥BC∴BG=GH由(1)得:△DHF≌△ECF∴HF=CF∴GH+HF=BH+CH=BC∴BC=2FG.【变式2-2】(东城区期末)(1)老师在课上给出了这样一道题目:如图1 等边△ABC边长为2 过AB边上一点P作PE⊥AC于E Q为BC延长线上一点且AP=CQ连接PQ交AC于D求DE的长.小明同学经过认真思考后认为可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2 当P为BA的延长线上一点时作PE⊥CA的延长线于点E Q 为边BC上一点且AP=CQ连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC当P为AB的延长线上一点时作PE⊥射线AC于点E Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点且AP=CQ连接PQ交直线AC于点D能使得DE的长度保持不变.(将答案的编号填在横线上)【答案】详见解答【解答】解:(1)如图过点P作PF∥BC交AC于点F∴∠Q=∠FPD∠APF=∠ABC∠AFP=∠ACB∵△ABC为等边三角形∴∠ABC=∠ACB=∠BAC=60°∴∠APF=∠AFP=∠BAC=60°∴△APF为等边三角形∴AP=AF=PF又∵PE⊥AC∴EF=AF∴PF=AP=CQ又∠PDF=∠CDQ∠Q=∠FPD∴△PDF≌△QDC(AAS)∴FD=CD=FC=(AC﹣AF)∴DE=DF+EF=(AC﹣AF)+AF=AC=1;(2)1、补全的图形如下过点P作PF∥BC交CE的延长线于点F∴∠DQC=∠FPD∠APF=∠ABC∠AFP=∠ACB ∵△ABC为等边三角形∴∠ABC=∠ACB=∠BAC=60°∴∠APF=∠AFP=∠F AP=60°∴△APF为等边三角形∴AP=AF=PF又∵PE⊥AC∴EF=AF∴PF=AP=CQ又∠PDF=∠CDQ∠DQC=∠FPD ∴△PDF≌△QDC(AAS)∴FD=CD=FC=(AC+AF)∴DE=DF﹣EF=(AC+AF)﹣AF=AC=1;2、过点P作PF∥BC交BC的延长线与点F.∴∠DQC=∠FPD∠APF=∠ABC∠AFP=∠ACB∵△ABC为等边三角形∴∠ABC=∠ACB=∠BAC=60°∴∠APF=∠AFP=∠BAC=60°∴△APF为等边三角形∴AP=AF=PF又∵PE⊥AC∴EF=AF∴PF=AP=CQ∠PDF=∠CDQ∠DQC=∠FPD∴△PDF≌△QDC(AAS)∴FD=CD=FC=(AF﹣AC)∴DE=EF﹣DF=(AC+CF)﹣CF=AC=1;答案为②.1.(2021秋•咸丰县期末)如图等边△ABC的边长为12cm D为AC边上一动点E为AB延长线上一动点DE交CB于点P点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC求BP的长.【解答】(1)证明:作DF∥AB交BC于F如图所示:∵△ABC是等边三角形∴∠A=∠ABC=∠C=60°∵DF∥AB∴∠CDF=∠A=60°∠DFC=∠ABC=60°∠DFP=∠EBP ∴△CDF是等边三角形∴CD=DF∵点P为DE中点∴PD=PE在△PDF和△PEB中∴△PDF≌△PEB(AAS)∴DF=BE∴CD=BE;(2)解:∵DE⊥AC∴∠ADE=90°∴∠E=90°﹣∠A=30°∴AD=AE∠BPE=∠ACB﹣∠E=30°=∠E∴BP=BE由(1)得:CD=BE∴BP=BE=CD设BP=x则BE=CD=x AD=12﹣x∵AE=2AD∴12+x=2(12﹣x)解得:x=4即BP的长为4.2.(2021秋•绵竹市期末)在等边△ABC中点E是AB上的动点点E与点A、B不重合点D在CB的延长线上且EC=ED.(1)如图1 若点E是AB的中点求证:BD=AE;(2)如图2 若点E不是AB的中点时(1)中的结论“BD=AE”能否成立?若不成立请直接写出BD与AE数量关系若成立请给予证明.【解答】(1)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵点E是AB的中点∴CE平分∠ACB AE=BE∴∠BCE=30°∵ED=EC∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED∴∠BED=30°∴∠D=∠BED∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC∠AFE=∠ACB.∵△ABC是等边三角形∴∠ABC=∠ACB=∠A=60°AB=AC=BC∴∠AEF=∠ABC=60°∠AFE=∠ACB=60°即∠AEF=∠AFE=∠A=60°∴△AEF是等边三角形.∴∠DBE=∠EFC=120°∠D+∠BED=∠FCE+∠ECD=60°∵DE=EC∴∠D=∠ECD∴∠BED=∠ECF.在△DEB和△ECF中∴△DEB≌△ECF(AAS)∴DB=EF∴AE=BD.3.(2020秋•旅顺口区期中)如图在等边三角形ABC中点E是边CA延长线上一点点D是直线BC上一动点以DE为一边作等边三角形DEF连接CF.(1)如图1 若点D在边BC上求证:CE=CF+CD;(2)如图2 若点D在边BC的延长线上请探究线段CE CF与CD之间存在怎样的数量关系并说明理由.【答案】详见解答【解答】(1)证明:在CA上截取CG=CD连接DG如图1所示:∵△ABC和△DEF是等边三角形∴∠B=∠ACB=∠EDF=60°BC=AC DE=DF∵CG=CD∴△CDG是等边三角形∴DG=DC=CG∠GDC=60°=∠EDF∴∠EDG=∠FDC在△DEG和△DFC中∴△DEG≌△DFC(SAS)∴GE=CF∵CE=GE+CG∴CE=CF+CD;(2)解:CD=CF+CE理由如下:在CA的延长线上截取CG=CD连接DG如图2所示:同(1)得:△CDG是等边三角形△DEG≌△DFC(SAS)∴DG=DC=CG GE=CF∵CG=GE+CE∴CD=CF+CE.4.(2020•安徽)如图D是等边△ABC的边AB上一点E是BC延长线上一点CE=DA连接DE交AC于F过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;(3)S△DGF=S△ADG+S△ECF.【答案】详见解答【解答】证明:(1)∵△ABC是等边三角形∴∠A=60°∵DG⊥AC∴∠AGD=90°∠ADG=30°∴AG=AD;(2)过点D作DH∥BC交AC于点H∴∠ADH=∠B∠AHD=∠ACB∠FDH=∠E∵△ABC是等边三角形∴∠B=∠ACB=∠A=60°∴∠A=∠ADH=∠AHD=60°∴△ADH是等边三角形∴DH=AD∵AD=CE∴DH=CE在△DHF和△ECF中∴△DHF≌△ECF(AAS)∴DF=EF;(3)∵△ABC是等边三角形DG⊥AC∴AG=GH∴S△ADG=S△HDG∵△DHF≌△ECF∴S△DHF=S△ECF∴S△DGF=S△DGH+S△DHF=S△ADG+S△ECF.5.(2020秋•花雨区校级月考)我们在前面曾遇到过这样一道题目:小明与同桌小聪讨论后进行了如下解答:(1)特殊情况探索结论当点E为AB的中点时如图1 确定线段AE与DB的大小关系请你直接写出结论:AE DB(填“>”、“<”或“=”)(2)一般情况证明结论:如图2 过点E作EF∥BC交AC于点F.请你继续完成对以上问题(1)中所填写结论的证明.(3)变式探究:如图3 △ABC是等边三角形D是边BC上一点点E在BA的延长线上且BD=AE此时CE和DE有何数量关系?请画出图形作出判断并说明理【答案】详见解答【解答】解:(1)∵E为等边三角形AB边的中点∴∠ECD=30∵DE=CE∴∠ECD=∠D=30°∵∠DEB=180°﹣∠D﹣∠DBE=30°∴∠DEB=∠D∴BD=BE∴AE=BD.(2)如图2∵在等边三角形ABC中EF∥BC∴BE=CF∵DE=CE∴∠D=∠ECD∵∠D+∠DEB=60°∠ECF+∠ECD=60°∴∠ECF=∠DEB在△CEF和△DBE中∴△CEF≌△DBE(SAS)∴AE=DB.(3)如图3 过D做DF∥AC则△BDF为等边三角形∴BD=BF=DF∵BD=AE∴AB=BF+AF=BD+AF=AE+AF=EF∴AC=EF∵DF∥AC∴∠DFE=∠EAC在△DEF和△ECA中∴△DEF≌△ECA(SAS)∴CE=DE.6.(2020秋•河西区期末)如图△ABC是边长为6的等边三角形P是AC边上一动点由A向C运动(与A、C不重合)Q是CB延长线上一点与点P同时以相同的速度由B 向CB延长线方向运动(Q不与B重合)过P作PE⊥AB于E连接PQ交AB于D.(1)当∠BQD=30°时求AP的长;(2)证明:在运动过程中点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变求出线段ED的长;如果变化请说明理由.【解答】(1)解:设AP=x则BQ=x∵∠BQD=30°∠C=60°∴∠QPC=90°∴QC=2PC即x+6=2(6﹣x)解得x=2即AP=2.(2)证明:如图过P点作PF∥BC交AB于F∵PF∥BC∴∠PF A=∠FP A=∠A=60°∴PF=AP=AF∴PF=BQ又∵∠BDQ=∠PDF∠DBQ=∠DFP∴△DQB≌△DPF∴DQ=DP即D为PQ中点(3)运动过程中线段ED的长不发生变化是定值为3 理由:∵PF=AP=AF PE⊥AF∴又∵△DQB≌△DPF∴∴.7.(2020秋•裕华区校级期末)知识链接:将两个含30°角的全等三角尺放在一起让两个30°角合在一起成60°经过拼凑、观察、思考探究出结论“直角三角形中30°角所对的直角边等于斜边的一半”.如图等边三角形ABC的边长为4cm点D从点C出发沿CA向A运动点E从B出发沿AB的延长线BF向右运动已知点D、E都以每秒0.5cm的速度同时开始运动运动过程中DE与BC相交于点P设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时运动时间为几秒?(3)求证:在运动过程中点P始终为线段DE的中点.【解答】解:(1)由题意得CD=0.5x则AD=4﹣0.5x;(2)∵△ABC是等边三角形∴AB=BC=AC=4cm∠A=∠ABC=∠C=60°.设x秒时△ADE为直角三角形∴∠ADE=90°BE=0.5x AD=4﹣0.5x AE=4+0.5x∴∠AED=30°∴AE=2AD∴4+0.5x=2(4﹣0.5x)∴x=;答:运动秒后△ADE为直角三角形;(3)如图2 作DG∥AB交BC于点G∴∠GDP=∠BEP∠DGP=∠EBP∠CDG=∠A=60°∠CGD=∠ABC=60°∴∠C=∠CDG=∠CGD∴△CDG是等边三角形∴DG=DC∵DC=BE∴DG=BE.在△DGP和△EBP中∴△DGP≌△EBP(ASA)∴DP=PE∴在运动过程中点P始终为线段DE的中点.8.(2021秋•营口期末)已知A(﹣10 0)以OA为边在第二象限作等边△AOB.(1)求点B的横坐标;(2)如下图点M、N分别为OA、OB边上的动点以MN为边在x轴上方作等边△MNE连结OE当∠EMO=45°时求∠MEO的度数.【解答】解:(1)如图过B作BD⊥OA于点D∵△AOB为等边三角形点A(﹣10 0)∴OA=OB=AB=10 ∠BAO=∠ABO=∠AOB=60°∵BD⊥OA∴AD=OD=OA=×10=5∴点B的横坐标为﹣5;(2)如图2 过点M作MF∥AB交OA于点F∵MF∥AB∴∠MFO=∠BAO=∠AOB=60°∴△MOF为等边三角形∴∠FMO=60°MF=MO∵△MNE是等边三角形∴∠NME=60°MN=ME∴∠FMN+∠NMO=∠NMO+∠OME=60°∴∠FMN=∠OME在△MFN和△MOE中∴△MFN≌△MOE(SAS)∴∠MFN=∠MOE=60°∵∠EMO=45°∴∠MEO=180°﹣∠MOE﹣∠EMO =180°﹣60°﹣45°=75°.。
八年级数学三角形全等中线段和差处理技巧---截长补短法
线段和差处理技巧---截长补短法
【方法技巧】在处理线段和差问题时,常考虑截长补短.截长法是在较长线段上
截取一段等于某一短线段,再证剩下的那一段等于另一短线段即可.补短法一般有两种方式:一种是将某短线段延长,使延长的一部分等于另一短线段.另一种是将某短线段直接延长至等于较长的线段.无论是截长法还是补短法都是要将几条线段的和差问题转
化为证两条线段相等的问题,一般都要通过构造出两对全等三角形来解决问题.例:如图,△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB于N.
[来源:Z,xx,]
(1)求证:∠1=∠2;
(2)求证:AE=CN+EN.(请用多种方法证明)
方法一:直接截长法
【解题过程】
证明:在AE上截取一段AF等于短边CN,再证EF=EN即可,[来源:学#科#网Z#X#X#K]
故可先证△AFC≌△CNB,再证△CFE≌△BNE.[来源:Z_xx_]
方法二:间接截长法[来源:]
【解题过程】
证明:作∠ACF=45°交AE于F,先证△ACF≌△CBN,再证△CFE≌△BNE,此法实质是间接地在AE上截取AF=CN.
[来源:学科网ZXXK]
方法三:直接补短法
【解题过程】。
三角形全等之截长补短 (整理)
三角形全等之截长补短 (整理)三角形全等之截长补短一、知识点概述截长补短是指在几何题目中,当出现线段和的情况时,可以考虑通过截取一段线段并加上一段等于原线段的线段,将原问题转化为线段等量的问题。
二、例题讲解1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.证明:可以通过截长法和补短法两种方法证明。
截长法:在AC上截取AF=AB,连接DF。
在△ABD和△AFD中,根据SAS准则可以得到△ABD≌△AFD,进而得到∠B=∠AFD,BD=FD。
又因为∠B=2∠C,所以∠AFD=2∠C。
因为∠AFD是△DFC的一个外角,所以∠AFD=∠C+∠XXX。
因为∠1=∠2,所以∠XXX∠C,进而得到∠AFD=2∠C=∠B。
因此,根据三角形内角和定理,可以得到∠A=180°-∠B-∠C=∠AFD+∠XXX∠C=2∠C+∠C+∠C=4∠C。
在△ABC中,∠B=2∠C,所以∠A=60°。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC (AAS),进而得到AE=AC。
因此,AC=AB+BD。
补短法:延长AB到E,使BE=BD,连接DE。
因为BE=BD,所以∠XXX∠BDE。
因为∠ABD是△XXX的一个外角,所以∠ABD=∠E+∠BDE=2∠E。
因为∠ABD=2∠C,所以∠XXX∠C。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC(AAS),进而得到AE=AC。
因此,XXX。
2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:XXX.证明:在△ADE和△BCE中,因为∠A=∠B=90°,所以AD=BC。
因为DE平分∠ADC,CE平分∠BCD,所以∠AED=∠DEC,∠XXX∠XXX。
因为∠AED+∠BCE=180°,所以∠DEC+∠CDE=180°。
透彻解析截长补短法
透彻解析截长补短法【知识汇总】截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a+b=c时,用截长补短.1、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
2、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【类型一】截长“截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。
方法一:如图2所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.图2方法二:如图2所示,在BF上截取FM=GC,可证四边形GCFM 为平行四边形,可得CM=FG=CF;可得∠BFC=∠BDC=45°,得∠MCF=90°;又得∠BMC=∠DFC=135°,于是△BMC≌△DFC(AAS),BM=DF,于是BF=FM+BM=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△BCD和△MCF。
人教版八年级上数学截长补短专题
ADBCE图2-1截长补短法人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC .求证:∠BAD +∠BCD =180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF ,在Rt △ADE 与Rt △CDF 中,⎩⎨⎧==CDAD DFDE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2.如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .~求证:CD =AD +BC .分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的.证明:在CD 上截取CF =BC ,如图2-2在△FCE 与△BCE 中,AB CD图1-1FEDCBA]图1-2ADB CEF1234图2-2⎪⎩=CE CE ∴△FCE ≌△BCE (SAS ),∴∠2=∠1.又∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠DCE +∠CDE =90°,}∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE 与△ADE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠43DEDE ADE FDE ∴△FDE ≌△ADE (ASA ),∴DF =DA , ∵CD =DF +CF ,∴CD =AD +BC .例3. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .求证:∠BAP +∠BCP =180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 】证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,⎩⎨⎧==BPBP PDPE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD .∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE .)在Rt △APE 与Rt △CPD 中,ABCDP12N图3-1P12NABCDE 图3-2⎪⎩=DC AE ∴Rt △APE ≌Rt △CPD (SAS),∴∠PAE =∠PCD 又∵∠BAP +∠PAE =180°,∴∠BAP +∠BCP =180° 例4.已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC .{证明:方法一(补短法)延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图4-2∴∠ACB =2∠E ,∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD E B 21 ∴△ABD ≌△AED (AAS ),∴AB =AE .、又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)在AB 上截取AF =AC ,如图4-3 在△AFD 与△ACD 中,DCB A 12图4-1EDCBA12图4-2FCA 12⎪⎩⎪⎨⎧=∠=∠=AD AD AC AF 21 ∴△AFD ≌△ACD (SAS ),∴DF =DC ,∠AFD =∠ACD . 又∵∠ACB =2∠B ,∴∠FDB =∠B ,∴FD =FB . ∵AB =AF +FB =AC +FD ,∴AB =AC +CD .上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。
初二基本型之等边三角形截长补短法
初二基本型之等边三角形截长补短法几何基本型是研究几何的重要基础,而让学生能够根据题目做出几何辅助线是我们培养学生数学思维的重要手段。
常用的几何基本型包括八字型、等边三角形的“V”型全等、角平分线对角互补角平分线型、角平分线与垂直平分线结合、手拉手问题、三垂直(k字形、一线三等角)、等腰直角三角形躺立全等问题等等。
常用的辅助线做法包括倍长中线法、等腰直角三线合一、旋转法、SSA到直角三角形转化、截长补短法等等。
本文介绍的是截长补短法在等边三角形中的应用。
等边三角形具有天然的边等角等条件,因此可以很好地应用于截长补短的思想中。
其基本方法是将长线段截成两个部分,用全等或等腰证明线段关系;将短线段补长,通过全等或等腰计算。
如果短线段之和等于长线段,则线段间夹角为60°,反之亦然。
举个例子,如图所示,点P是等边△ABC外一点,∠APC=60°,PA、BC交于点D,求证:PA=PB+PC。
由于题目给定了等边三角形外一点P,且出现了60°,需要用到截长补短法。
具体证明过程如下:在AP上截取PE,使得PE=PC,连接CE,因为∠APC=60°,所以△PEC是等边三角形,且PC=CE,∠ECP=60°。
同时,因为AC=BC,∠ACB=60°,所以∠ECP=∠ACB,ACE=∠PCB。
由于△BCP中AC=BC,∠ACE=∠PCB,CE=PC,所以△ACE≌△BCP(SAS),因此AE=BP。
又因为AP=AE+PE,所以AP=PB+PC。
最后再举一个例子,如图所示,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD。
根据三角形的基本性质,可以得出△ABC≌△___。
由此可知,AD=BD-AB,CD=BC-BD,因此AD+CD=BD-AB+BC-BD=BC-AB=BD,即AD+CD=BD。
在三角形△ACE中,汤和药都没有更换。
我们只需要注意到连接AC和△ABC等边,D是三角形外部的一个点。
全等三角形辅助线系列之三---截长补短类辅助线作法大全
全等三角形辅助线系列之三与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目.典型例题精讲【例1】如图,在ABC=+,求ABC∠的平分线,且AC AB BD∠的度∠=︒,AD是BAC∆中,60BAC数.AD CB【例2】已知ABC∠和.ACB∠,BD、CE交于点O,试判A∆中,60∠=︒,BD、CE分别平分ABC断BE、CD、BC的数量关系,并加以证明.AEDOCB【例3】 如图,已知在△ABC ,60BAC ∠=︒,40C ∠=︒,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ AQ AB BP +=+.QPCBA【例4】 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分∠ABC ,求证:180A C ∠+∠=︒.CDBA【例5】 点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BDC ∠=︒,60MDN ∠=︒,求证:MN MB NC =+.1BMNM DCBA【例6】 如图在△ABC 中,AB AC >,12∠=∠,P 为AD 上任意一点,求证:AB AC PB PC ->-.【例7】 已知MAN ∠,AC 平分MAN ∠.(1)在图1中,若︒=∠120MAN ,︒=∠=∠90ADC ABC .求证:AC AD AB =+. (2)图2中,若︒=∠120MAN ,︒=∠+∠180ADC ABC ,则(1)中的结论是否仍然成立? 若成立,请给出证明;若不成立,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二基本型之等边三角形截长补短法
几何基本型是学习几何的重要基础,而让学生能够根据题目做出几何辅助线是我们培养学生数学思维的重要手段。
基本的图形比如八字型,等边三角形的“V”型全等,角平分线对角互补角平分线型,角平分线与垂直平分线结合,手拉手问题,三垂直(k字形、一线三等角),等腰直角三角形躺立全等问题等等。
常用的辅助线做法比如倍长中线法(就是做平行线的方法,根据中点是否已知来进行构造求解),等腰直角三线合一,旋转法,SSA到直角三角形转化,截长补短法等等。
今天我们重点说下截长补短法的一个特例。
截长补短法在题目中有角度相等关系(如角平分线,等腰三角形)和线段和差关系时(一个线段等于另外两个线段之和,一条长线段,两条短线段),特别常用。
截长法就是把长线段截成两个部分,用全等或者等腰证明线段关系。
补短法就是把短线段补长了,通过全等或者等腰计算。
等边三角形有着天然边等角等的条件,可以很好的应用在截长补短的思想中。
其图形的基本特点是:先画出等边△ABC,P是等边△ABC外任意方向上的一点,连接P与三角形的三个顶点,PA、PB、PC,如果短线段之和等于长线段,则PA、PB、PC间线段夹角就会出现60°,反之依然。
基本方法就是截长补短。
下面用截长法进行介绍。
如图所示,点P是等边△ABC外一点,∠APC=60°,PA、BC交于点D,求证:PA=PB+PC.
题目给了等边三角形外一点P,出现了60°,而且求的是线段的和差关系,PA(长)是PB、PC(短)的和。
所以要用截长补短法。
为了用已知条件∠APC=60°,选取在∠APC侧进行截取,即在AP(长)截取PM=PC(短)。
这样会出现等边△PMC,然后再证一次全等就可以了。
具体证明如下
证明:在AP上截取PE,使得PE=PC,连接CE,
∵∠APC=60°,
∴△PEC是等边三角形
∴PC=CE,∠ECP=60°,∵△ABC 是等边三角形,∴
AC=BC,∠ACB=60°,∴∠ECP=∠ACB,∴∠ACE=∠PCB,在△ACE 和△BCP中AC=BC,∠ACE=∠PCB,CE=PC,
∴△ACE≌△BCP(SAS),
∴AE=BP,
∵AP=AE+PE,
∴AP=PB+PC.
下面我们看下最基本的变形
如图,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD
本题汤和药都没换,只需要注意到连接AC,△ABC等边,D是三角形外一点,发了三条线段DA、DB、DC还有夹角60°以后就没有压力了。
还是在BD上截取CD=DM,△CDM等边,之后证明△ADC≌△BMC即可。
关于等边三角形的截长补短问题我们简单介绍到这里,后续做题时会发现等边三角形的条件通常不直接给出,这类问题一般会出现在等边三角形手拉手问题、60°的菱形或者圆中,需要学生能找出这样的基本型。