第4课时分式及其运算
分式及其运算
分式函数:解决实际问题中的函数关系
03
分式不等式:解决实际问题中的不等关系
04
分式数列:解决实际问题中的数列关系
05
分式极限:解决实际问题中的极限关系
06
分式积分:解决实际问题中的积分关系
数学公式的推导
分式的定义:形如A/B,其中A、B
01
是整式,B≠0 分式的运算:包括加法、减法、乘
03
法、除法、乘方、开方等 分式的应用:包括求解方程、不等
整式,分式的值不变
分式的通分:将两个或 多个分式的分母化为相 同,以便进行加减运算
分式的约分:将分式的 分子、分母同时除以它 们的最大公因式,以简
化分式
分式的加减法:将分式 的分子、分母分别相加 或相减,得到新的分式
分式的乘除法:将分式 的分子、分母分别相乘 或相除,得到新的分式
分式的幂运算:将分式 的分子、分母分别进行 幂运算,得到新的分式
乘方和开方:分式乘方,分式开 方
添加标题
添加标题
添加标题
添加标题
分式除法:分子相除,分母相除
混合运算:分式乘法、除法、乘 方、开方混合运算
乘方和开方
01
乘方:分式乘方时,分子和 分母分别乘方,分母中如果 有平方项,需要先开方
03
运算顺序:先乘方,后开方, 遵循先乘除后加减的运算顺 序
开方:分式开方时,分子和 分母分别开方,分母中如果 有平方项,需要先开方
分式分解
01
分式分解的定义:将分式分解为两 个或多个分式的过程
02
分式分解的方法:提取公因式、分 组分解、公式分解等
03
分式分解的步骤:观察分式的结构, 选择合适的分解方法,进行分解
2021年中考复习数与式-第04讲 分式(教师版)A4
分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
第4课 分式及其运算
x -3 -3 时,分式 (2)当x=________ 的值为0. x-3 解析:当|x|-3=0,|x|=3,x=±3,
而x-3≠0,x≠3,故x=-3. (3)若分式 A.1
x-2 的值为0,则x的值为( D ) 2 x -1 B.-1 C.±1 D.2
解析:当x-2=0,x=2时,x2-1≠0,故选D.
3.分式的运算法则:
(1)符号法则:分子、分母与分式本身的符号,改变其中 任何两个,分式的值不变. 用式子表示为:a =- a = -a =- -a , b -b -b b - a = a = -a . b -b b (2)分式的加减法: a b a± b ± = 同分母加减法: c c ; c b d bc± ad ± = 异分母加减法: a c ac .
x-2 的值为0. x+2 解析:当x-2=0,x=2时,分母x+2=4,分式的值是0.
2 时,分式 (2)(2011· 泉州)当x=_______
知能迁移1
x 有意义的x的取值范围是________. x≠2 2x-4 解析:当2x-4≠0,x≠2时,分式有意义,
(1)使分式
故x的取值范围是x≠2.
A.x=-2 C.x=1
2x-5 3 = 的解是( C ) 2-x x-2 B.x=2
D.x=1或x=2
1-5= -3=3, 解析:当x=1时,方程左边= 2× 1-2 -1 右边= 3 =3,∴x=1是原方程的解. 2-1
题型分类 深度剖析
题型一 分式的概念,求字母的取值范围 1 【例1】 (1)当x=_______ 时,分式 2 无意义; x-1 解析:当x-1=0,x=1时,分式无意义.
这种变形叫做分式的通分,通分的根据是分式的基本性
第4讲 分式及其运算
【点评】
准确、灵活、简便地运用法则进行化
简,注意在取x的值时,要考虑分式有意义,不能
取使分式无意义的0与〒2.
1 3.(1)(2014· 十堰)已知 a -3a+1=0,则 a+a-2 的值为
2
( B) A. 5+1 B.1 C.-1 D.-5
x2-4 1 (2)(2014· (1- ), 娄底)先化简 2 ÷ 再从不等式 2x-3 x -9 x-3 <7 的正整数解中选一个使原式有意义的数代入求值 .
(x+2)(x-2) x-3-1 解:原式= ÷ = (x+3)(x-3) x-3 (x+2)(x-2) x-3 (x+2)(x-2) · = , (x+3)(x-3) x-4 (x+3)(x-4)
不等式 2x-3<7,解得 x<5,其正整数解为 1,2,3,4, 1 当 x=1 时,原式= 4
分式方程的解法
|x|-3 (2)当 x=__-3 __时,分式 的值为 0. x-3
分式的性质
【例 2】 (1)(2014· 贺州)先化简,再求值: a +2a+1 (a b+ab)÷ 其中 a= 3+1,b= 3-1. , a+1
22ຫໍສະໝຸດ a+1 解:原式=ab(a+1)· 2 =ab,当 a= 3+1, (a+1) b= 3-1 时,原式=3-1=2
杂的计算题,可应用逆向思维,把要求的算式和
已知条件由两头向中间凑的方式来求代数式的值
.
2.(1)(2012· 义乌)下列计算错误的是( A ) 0.2a+b 2a+b A. = 0.7a-b 7a-b a-b C. =-1 b-a x3y2 x B. 2 3= xy y 1 2 3 D. + = c c c
x2 x 3.(2012· 安徽)化简 + 的结果是( D ) x-1 1-x A.x+1 B.x-1 C.-x D. x m-1 m-1 4.(2014· 济南)化简 m ÷ m2 的结果是( A ) 1 1 A.m B. m C. m-1 D. m-1 4x-12 5.(2014· 安徽)方程 =3 的解是 x=__6__. x-2
分式及其运算
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
4、分式的概念、性质及运算-培优 数学张老师
4、分式的概念、性质及运算分式(fraction)包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 从整式到分式,我们可以形象地说是从“平房”到了“楼房”,在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分(changing fractions tO a common denom —inator)和约分(reduction of a fraction)是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具,分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有: 1.化整为零,分组通分;2.步步为营,分步通分;3.减轻负担,先约分再通分; 。
4.裂项相消后通分等.【例l 】(1)当m= 时,分式23)3)(1(2+---m mm m 的值为零;(2005年杭州市中考题)(2)要使分式||||11x x -有意义,则x 的取值范围是(“希望杯”邀请赛试题)思路点拨对于(2),当分式的分母不为零时,分式有意义,由于分式是繁分式,因此考虑问题应细致周密.【例2】已知a+b+C=0,,4111-=++cb a 那么222111cba++的值为( ).A .3B .8C .16D .20 。
(2006年“CASl0杯”武汉市选拔赛试题)思路点拨由222222)1()1()1(111Cb a cba++=++想到完全平方公式. 【例3】计算下列各式: ;4211)1(44322b a a ba a ba ba ⋅++++++- ;)()()()2(222222xyz y x z xy z zxy x z y zxy yzx z y x yz x ---+++++-+--++⋅(第12届“五羊杯”竞赛题);1)1(212211221)3(22233233-+--+-+++++-x x x x x x x x x x(江西省赣州市竞赛题)⋅+--+--+-+-+--+-++---)2)(2())(()2)(2())(()2)(2())(()4(z y x x z y z y z x x z y z y x y x y z x y x z y x x z x y(安徽省马鞍山市竞赛题)思路点拨 因各分式复杂,故须观察各式中分母的特点,恰当运用通分的相关策略与技巧.对于(1),分步通分;对于(2),拆项再通分;对于(3),先约分再通分;(4)注意到分母与分子的项与项之间的关系,如.x —2y+z=(x —y)一(y —z),采用换元法简化式子.【例4】 已知,1)1(112222-++⋅=--+x C xB xA x x x x 其中A 、B 、c 为常数.求A+B+c 的值.. (第17届“五羊杯”竞赛题) 思路点拨将右边通分,比较分子,建立A 、B 、C 的等式.【例5】 (1)n 为自然数,著n+6︱n 3+1996,则称n 为1996的吉祥数,如4+6︱43+1996,4就是l996年的一个吉祥数.试求l996年的所有吉祥数的和;(北京市竞赛题) (2)计算:⋅+-++-+++-++-500099009999500010050002002250001001122222222k k k. (上海市“宇振杯”竞赛题)思路点拨(1)由于n3 + 1996的次数高于n+6的次数,所以,通过变形将两个整式整除的问题转化为一个分式的问题来解决,是解本例的b键;(2)首尾配对,考查一般情形,把数值计算转化为分式的运算.1.(1)若使分式aaa Z23114++- 没有意义,则a 的值为(2)若,32=a 则1273222+---a a a a 的值等于(2005年天津市中考题)2.已知,511=+yx则=+++-yxy x y xy x 2252(第16届“希望杯”邀请赛试题)3.已知22-+x b x a 与的和等于,442-x x 则a= ,b=(山东省竞赛题)4.学校用一笔钱买奖品,若以1枝钢笔和2本日记本为一份奖品,则可买60份奖 品;若以l 枝钢笔和3本日记本为一份奖品,则可买50份奖品.那么,这笔钱全部用来买钢笔可以买 枝. (江苏省镇江市中考题) 5.已知式子1||)1)(8(-+-x x x 的值为零,则2的值为( ).A .±lB .一lC .8D .一l 或8(第15届江苏省竞赛题) 6.计算:22224421b ab a ba ba ba ++-÷+--的结果是( ). ba b A +.ba b B +-. ba a C +.ba a D +-..(2005年河南省竞赛题)7.若x 取整数,则使分式1236-+x x 的值为整数的x 的值有( ).A .3个B .4个C .6个D .8个(第17届江苏省竞赛题)8.若a 、b 、C 满足a+b+c=0,abc=8,则cb a 111++的值是( ).A .正数B .负数C .零D .正数或负数 、(第13届“希望杯”邀请赛试题) 9.化简下列各题:;12).2142)(1(2-+---x x x x x(2004年陕西省中考题));2.(121)2(y x xy x yx x--++-(2005年苏州市中考题)(3)请将下面代数式尽可能化简,再选择一个你喜欢的数代入求值:⋅--++-11)1(22a a a a(2005年安徽省中考题) 10.甲、乙两个公司用相同的价格购粮,他们各购两次,已知两次的价格不同,甲公司每次购粮1万千克,乙公司每次用l 万元购粮,那么两次平均价格较低的是哪个公司?(第16届“希望杯”邀请赛试题)11.若,1321161814121218168232xxxxxxxa ++++++++++-=-则a 的值是 .(2005年河南省竞赛题)12.若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是 .(湖北省选拔赛试题)13.代数式1112++=x x y 的值为整数的全体自然数x 的和是(2005年全国初中数学联赛题)14.已知612602-+a a是正整数,则正整数a=(第14届“希望杯”邀请赛试题)15.设a 、b 、c 均为正数,若,ac b cb a ba C +<+<+ 则a 、b 、C 三个数的大小关系是A .c<a<bB .b<c<口C .a<b<cD .c<b<a 16.计算))(())(())((b c a c c a b c b b c a b a a --+--+--的值是( ).))((2.c a b a a A -- ))((2.c b b a b B -- ))((2.c b c a c C -- 0.D(2004年河北省竞赛题)17.分式221012622++++x x x x 可取的最小值为( ).A .4B .5 .C .6D .不存在 18.设有理数a 、b 、C 都不为零,且a+b+C=0,则+-++-+22222211ba c ac b 2221cb a -+的值是( ).A .正数B .负数C .零D .不能确定(2004年重庆市竞赛题)19.计算下列各题:;1814121111)1(842+-+-+-+--x x x x x;1113421793)2(2322-++---+-+++x x x x x x x x x⋅+---++----+---abbc ac c ba acab bc b a c bc ac ab a cb 222)3(20.某工程,甲队单独做所需天数是乙、丙两队合做所需天数的n 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的C 倍,求11111+++++c cb a 的值.(江苏省竞赛题)21.已知正整数n 大于30,且使得4n--1整除2002n ,求n 的值.(第14届“五羊杯”邀请赛试题)22.已知,321)3)(2)(1(60++-++=+-+x C x B x A x x x 其中A 、B 、C 为常数,求A+B+C 的值.(第16届“五羊杯”邀请赛试题) 答案:。
2024年中考数学一轮复习提高讲义:分式及其运算
分式及其运算知识梳理1.分式的概念表示两个整式相除,且除式中含有字母,像这样的代数式就是分式.注意:分式中字母的取值不能使分母为零.当分母的值为零时,分式没有意义.2.分式的基本性质和变号法则(1)分式的基本性质:AB =A×MB×M=A÷MB÷M(2)分式的变号法则:−a−b =−−a+b=−a−b=ab3.分式的运算(1)分式的乘除:①分式的乘法:ab ⋅cd=acbd②分式的除法:ab ÷cd=ab⋅dc=adbc当分子、分母是多项式时,先进行因式分解再约分.(2)分式的加减①同分母分式相加减:ac ±bc=a±bc②异分母分式相加减:ba ±dc=bcac±adac=bc±adac(3)分式的乘方:应把分子分母各自乘方,即(ab )′′=a nb n(n为正整数).4.分式求值(1)先化简,再求值.(2)由化简后的形式直接代入所求分式的值.(3)式中字母表示的数隐含在方程等题设条件中.典型例题例 1分式x2−4x+2的值为0,则( ).A. x=-2B. x=±2C. x=2D. x=0分析分式的值为0的条件:分子等于0,且分母不等于0. 解由题意,得x²−4=0,且x+2≠0,解得x=2.故选 C.例 2若ab+a-b-1=0,试判断1a−1,1b+1是否有意义.分析要判断1a−1,1b+1是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a-1,b+1与零的关系.解因为ab+a-b-1=0,所以a(b+1)-(b+1)=0,即(b+1)(a-1)=0,所以b+1=0或a-1=0,所以1a−1,1b+1中至少有一个无意义.例3计算:1+n−mm−2n ÷m2−n2m2−4mn+4n2.分析分式运算时,若分子或分母是多项式,应先因式分解.解原式=1−m−nm−2n ⋅(m−2n)2 (m+n)(m−n)=1−m−2nm+n =m+n−m+2nm+n=3nm+n例 4已知 abc=1,求 a ab+a+1+b bc+b+1+cac+c+1的值.分析 若先通分,计算就复杂了,我们可以用abc 替换待求式中的“1”,将三个分式化成同分母,运算就简单了. 解 原式 =a ab+a+1+ab abc+ab+a +abca 2bc+abc+ab =a ab+a+1+ab 1+ab+a +abca+1+ab =a+ab+1ab+a+1 =1 双基训练1.下列代数式中: x π,12x −√a−b √a+b x 2−y 2x+y ,1x+y x−y,是分式的有 . 2.下列式子中是分式的是( ).A. x/2B. 2x C.x π D.x+y 23.下列分式中,最简分式有( ).a 33x 2,x−yx 2+y 2,m 2+n 2m 2−n 2,m+1m 2−1,a 2−2ab+b 2a 2−2ab−b 2A. 2个B. 3 个C. 4 个D. 5 个 4.下列变形不正确的是( ). A.2−a −a−2=a−2a+2B.1x+1=x−1x 2−1(x ≠1) C.x+1x 2+2x+1=12 D.6x+33y−6=2x+1y−25.若2x+y=0,则x 2+xy+y 22xy−x 2的值为( ).A.−15B.−35C. 1D.无法确定 6.若把分式 x+yxy 中的x 和y 都扩大2倍,那么分式的值( ). C.缩小为原来的 12 D.缩小为原来的 14A.扩大 2倍 B. 不变7.若x+y=1,且x≠0,则(x+2xy+y2x )÷x+yx的值为 .8.已知分式2x+1x−2,当x= 时,分式没有意义;当. x=时,分式的值为0;当x=-2时,分式的值为 .9. 分式1x−1,1x,2x2−2x+1的最简公分母是 .10.某校组织学生春游,有m 名师生租用n座的大客车若干辆,共有3个空座位,那么租用大客车的辆数是 (用m,n 的代数式表示).11. 化简.(1)a2−4a2+2a−8÷(a2−4)⋅a2−4a+4a−2;(2)x2−1x2−4x+4÷(x+1)⋅x2−3x+2x−1.12. 当x 取何值时,式|x|−2x2+3x+2有意义?当x取什么数时,该式的值为零?13. 先化简(1x−1−1x+1)÷x2x2−2,再求当x=2时的分式值.14.有一道题:“先化简,再求值:(x−2x+2+4xx2−4)÷1x2−4其中,x=-3”.小玲做题时把“x=−3”错抄成了x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?15. 已知3x²+xy−2y²=0(x≠0,y≠0),求xy −yx−x2+y2xy的值.16.已知实数 m,n 满足关系1m+n +1m−n=nm2−n2,求2mn+n2m2的值.17.课堂上,李老师给大家出了这样一道题:当x=3,5−2√2,7+√3时,求代数式x2−2x+1x2−1÷2x−2x+1的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体的解题过程.18.先化简: (3x+1−x+1)÷x2−4x+4x+1,然后从-1≤x≤2中选一个合适的整数作为x的值代入求值.19.已知:非零实数a,b,c 满足1a −1b=1b−1c,求证:ab+bc=2ac.20.已知分式: A=2x2−1,B=1x+1+11−x.(x≠±1).有下面三个结论:①A,B 相等;②A,B 互为相反数;③A,B 互为倒数.上述结论中哪个正确?为什么?能力提升21.已知Mx2−y2=2xy−y2x2−y2+x−yx+y,则M=.22.已知分式x−5x2−4x+a,当x=55时,分式的值为零,求a 的取值范围;当x 取任何值时,这个分式一定有意义,求a 的取值范围 .23.如果记 y =x 21+x2=f (x ),并且f(1) 表示当x=1时y 的值,即 f (1)=121+12=12; f (12)表示当 x =12时y 的值,即f (12)=(12)21+(12)2=15; 那么f (1)+f (2)+f (12)+f (3)+f (13)+⋯+f (n )+f (1n)=¯(结果用含n 的代数式表示).24. 若 a²+b²=3ab,则 (1+2b 3a 3−b 3)÷(1+2ba−b )的值等于( ). A. 12B.0C. 1D.2325.若 P =12012−12013,Q =20112012−20102011,R =20122013−20112012,那么 P,Q,R 的大小关系为( ).A. P>Q>RB. P<Q<RC. P=R>QD. P=R<Q 26.已知:方程 a x−3=1x 的解为x=-3,求 a a−1−1a 2−a 的值.27.已知:a+b+c=0, abc=8,求证: 1a +1b +1c <0.28.已知 a²−6a +9与|b-1|互为相反数,求代数式 (4a 2−b2+a+bab 2−a 2b)÷a 2+ab−2b 2a 2b+2ab 2+ba的值.29.若 A =99991111+199992222+1,B =99992222+199993333+1,试比较A 与B 的大小.30.设a,b,c,d 都不等于 0,并且 ab =cd ≠1,按照下面的步骤探究 a+ba−b 和 c+dc−d 之间的关系.(1) 请你任意取3组a,b,c,d 的值,通过计算猜想a+ba−b 和c+dc−d之间的关系.(2)证明你的猜想. 拓展资源31.已知a,b,c 为实数,且aba+b =13,bcb+c=14,cac+a=15,那么abcab+bc+ca的值是多少?32.当x 的值变化时,求分式8−2(x+1)2+1的最小值.33.已知4x-3y-6z=0,x+2y-7z=0,xyz≠0,求x+y−zx−y+2z的值.34.(1) 已知恒等式x³−x²−x+1=(x−1)(x²+kx−1),求 k 的值.(2)若x 是整数,求证x3−x2−x+1x2−2x+1是整数.35.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1) 设A=3xx−2−xx+2,B=x2−44,求 A 与 B 的积.(2)提出(1)的一个“逆向”问题,并解答这个问题.第二十二讲1.x2−y2x+y ,1x+yx−y2. B3. C4. C5. B6. C7.18.2,- 12, 349. x(x-1)²10.m+3n11.(1) 原式=a2−4(a−2)(a+4)⋅1a2−4⋅(a−2)2a−2=1a+4.(2) 原式=(x+1)(x−1)(x−2)2⋅1x+1⋅(x−1)(x−2)x−1=x−1x−2,12. 由x²+3x+2=(x+1)(x+2)=0,得x=-1或-2所以,当x≠-1和x≠-2时,原分式有意义.由分子|x|-2=0得x=±2,当x=2时,分母x²+3x+2≠0;当x=-2时,分母x²+3x+2=0,原分式无意义. 所以当x=2时, |x|−2x2+3x+2的值为零.13. 原式=x+1−x+1(x+1)(x−1)÷x2(x+1)(x−1)=x+1−x+1(x+1)(x−1)⋅2(x+1)(x−1)x=4x,当x=2时,原式=2.14.原式计算的结果等于x²+4,所以不论x 的值是+3还是-3结果都为13.15.先化简,得原式=−2yx,又因3x²+xy−2y²=0,所以(3x-2y)(x+y)=0,所以x=23y或x=-y,当x=23y时,原式=-3;当x=-y时,原式=2.16. 由1m+n +1m−n=nm2−n2可得:n=2m;则2mn+n2m2=2nm+n2m2=4+4=8.17. 原式=(x−1)2(x+1)(x−1)⋅x+12(x−1)=12.由于化简后的代数中不含字母x,故不论x取任何值,所求的代数式的值始终不变.所以当x=3,5−2√2,7+√3时,代数式的值都是12.18.化简得原式=x+22−x,当x=1时,原式=3.19. 因为1a −1b=1b−1c,所以b−aab=c−bbc,所以c(b-a)=a(c-b),所以bc-ac=ac-ab,所以ab+bc=2ac.20.②的结论正确.理由如下:因为B=1x+1+11−x=x−1(x+1)(x−1)−x+1(x+1)(x−1)=(x−1)−(x+1)(x+1)(x−1)=−2x2−1=−A所以 A,B互为相反数.21. x² 22. a≠-5,a>4 23.n−1224. A 2 5. D26. 因为方程ax−3=1x的解为.x=-3.所以a−3−3=−13,解得a=2,所以aa−1−1a2−a=a2a(a−1)−1a(a−1)=(a+1)(a−1)a(a−1)=a+1a;当a=2时,原式=2+12=32.27.证明:因为a+b+c=0,)所以( (a+b+c)²=0,即a²+b²+c²+2ab+2bc+2ac=0,所以ab+bc+ac=−12(a2+b2+c2),又因为1a +1b+1c=bc+ac+ababc=−116(a2+b2+c2),且已知abc=8,所以a,b,c均不为零, 所以a²+b²+c²>0,所以1a +1c+1c<0.28. 由已知得a--3=0,b-1=0,解得a=3,b=1.原式 =[4(a+b )(a−b )+a+b ab (b−a )]÷a 2+ab−2b 2ab (a+2b )+ba=[−(a−b )2ab (a−b )(a+b )]÷a 2−b 2+ab−b 2ab (a+2b )+ba=−(a−b )2ab (a−b )(a+b )⋅ab (a+2b )(a−b )(a+2b )+ba=−1a+b +ab把a=3,b=1代入得:原式 =114.29. 设a=9999¹¹¹¹,则 A =a+1a 2+1,B =a 2+1a 3+1 所以 A −B =a+1a 2+1−a 2+1a 3+1=a 4+a 3+a+1−a 4−2a 2−1(a 2+1)(a 3+1)=a (a−1)2(a 2+1)(a 3+1)>0所以 A>B.30.(1) 可取a=1,b=2,c=2,d=4;a=1,b=2,c=3,d=6;a=2,b=3,c=6,d=9,再分别代入 a+b a−b和c+d c−d中进行计算,由计算结果可得到 a+b a−b 利 c+dc−d 的关系是相等.(2) 证明:因为a,b,c,d 都不等于0,并且 a b =cd ≠1, 所以 a =cd ⋅b,所以 a+ba−b =cd ⋅b+b cd⋅b−b =c d +1c d−1=c+dc−d .31.由已知条件得: 1a +1b =3,1b +1c =4,1c +1a =5.所以 2(1a +1b +1c )=12即 1a +1b +1c =6,又因为ab+bc+caabc=1c+1b +1a =6,所以 abc ab+bc+ca =16. 32. 因为( (x +1)²≥0,所以( (x +1)²+1的最小值为1,所以 2(x+1)2+1的最大值为2,所以 8−2(x+1)2+1的最小值为6.33. 因为4x-3y-6z=0①,x+2y-7z=0②由①,②解得 {x =3z y =2z,所以 x+y−z x−y+2z =3z+2z−z 3z−2z+2z =43.34.(1) 由题设知, (x −1)(x²+kx −1)=x³+(k −1)x²−(k +1)x +1,所以 x³−x²−x +1=x³+(k −1)x²−(k +1)x +1,从而有k-1=-1,-k-1=-1,解得k=0. (2) 由(1)知k=0,则 x³−x²−x +1=(x −1)(x²−1)=(x −1)²(x +1), 所以 x 3−x 2−x+1x 2−2x+1=(x−1)2(x+1)(x−1)2=x +1.又因为x 是整数,所以x+1是整数.所以x 3−x 2−x+1x 2−2x+1是整数.35.(1)A ⋅B =(3x x−2−xx+2)⋅x 2−4x=2x (x+4)(x−2)(x+2)⋅x 2−4x=2x +8;(2)“逆向问题”:已知 A ⋅B =2x +8,B =x 2−44,求 A. 解答: A =(A ⋅B )÷B =2x +8xx 2−4=2x 2+8x x 2−4.。
人教版八年级上册数学教案15.2 分式的运算(5课时)
15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
分式的约分与通分及其运算规则
分式的约分与通分及其运算规则分式是数学中常见的一种数形式,由分子和分母组成,表示为a/b的形式。
分式的约分与通分是分式运算的基础,它们在分式的运算过程中起到了重要的作用。
本文将介绍分式的约分与通分的概念和运算规则。
一、分式的约分与通分的概念1. 约分:约分是指将分式中的分子和分母同时除以它们的公因数,使得分式的值保持不变且分子与分母互素(即它们的最大公约数为1)。
约分后的分式与原式等值,但其分子与分母通常会更小。
2. 通分:通分是指将两个或多个分式的分母进行相同的乘积操作,使它们拥有相同的分母。
通分后的分式可以方便地进行相加、相减、相乘、相除等运算。
二、约分与通分的运算规则1. 约分运算规则:a) 分式的分子与分母可以同时除以一个相同的非零整数,得到等值的分式。
b) 分式的分子与分母可以同时乘以一个相同的非零整数,得到等值的分式。
2. 通分运算规则:a) 对于两个分式a/b和c/d,若它们的分母相等,则可以直接相加、相减、相乘、相除等运算。
b) 对于两个分式a/b和c/d,若它们的分母不等,则需要进行通分操作,即将它们的分母相乘,并将分子按相应倍数扩大,使得它们的分母相等,然后再进行相加、相减、相乘、相除等运算。
三、约分与通分的实例演示1. 约分实例:分式4/8可以约分为1/2,因为它们的最大公约数是4。
分式6/15可以约分为2/5,因为它们的最大公约数是3。
分式12/18可以约分为2/3,因为它们的最大公约数是6。
2. 通分实例:分式1/3和2/5需要进行通分操作才能相加。
首先,它们的分母分别为3和5,所以它们的最小公倍数为15。
将1/3乘以5/5,得到5/15;将2/5乘以3/3,得到6/15。
现在,它们的分母相等,所以可以相加,结果为5/15 + 6/15 =11/15。
四、总结分式的约分与通分是数学中重要的运算规则,能够简化分式表达式和方便分式的运算。
约分能够使分式的分子和分母互素,降低分式的大小;通分能够使不同分式的分母相等,进而方便进行分式的加减乘除等运算。
分式运算课件ppt
详细描述
在进行分数与小数的混合运算时,应先将小数转换为分数,然后 按照分数的运算法则进行计算。例如,计算(2/3) + (3/4)时,可 以先将小数0.75转换为分数3/4,然后进行分数的加法运算,得到 结果为5/6。
总结词
理解分数与整数的混合运算规则,避免运算错误。
详细描述
在进行分数与整数的混合运算时,应先将整数看作分数,然后 进行分数的加减乘除运算。例如,计算(2/3) + 3时,可以将整 数3看作分数9/3,然后进行分数的加法运算,得到结果为 11/3。
统计学
分式在统计学中用于表示概率、频率 等统计量,以及进行数据分析和预测 。
乘除混合运算的注意事项
总结词
注意约简和化简运算过程
详细描述
在进行乘除混合运算时,应注意分子和分母的约简,以简化表达式。例如,将$frac{2a}{4b} times frac{3c}{6d} div frac{4e}{2f}$化简为$frac{a}{2b} times frac{c}{2d} div frac{2e}{f}$。
总结词
理解分式除法在数学和实际问题中的应用
详细描述
分式除法在解决实际问题,如速度、密度、面积等问题中 有着广泛的应用。通过分式除法可以方便地计算出一个比 例与另一个比例的倒数之积。
乘除混合运算的注意事项
总结词
掌握乘除混合运算的顺序和规则
详细描述
在进行乘除混合运算时,应遵循“先乘后除”的原则,即先进行乘法运算再进行 除法运算。例如,计算$frac{a}{b} times frac{c}{d} div frac{e}{f}$时,应先进行 $frac{a}{b} times frac{c}{d}$的乘法运算,然后再进行除法运算。
第1部分 第1章 第4节 分式
第四节分式知识点考点分值考频等级考查难度常见题型分式分式的有关概念3~4分☆☆☆易选择题、填空题分式有意义、无意义的条件3~4分☆☆☆☆☆易选择题、填空题分式的基本性质3~4分☆☆☆易选择题、填空题分式的有关运算3~6分☆☆☆☆☆易、中选择题、填空题、解答题考点一:分式的有关概念核心点拨1.分式定义:一般地,形如AB(A,B是整式,且B中含有字母)的式子叫做分式.其中A叫做分式的分子,B叫做分式的分母.判断分式的关键:看分母是否有字母.考点二:分式有意义、无意义的条件核心点拨2.分式有无意义的条件(1)分式有意义的条件:分母不等于0.分式是否有意义,关键是看分母:分母为0,则无意义,反之有意义.(2)分式无意义的条件:分母等于0.(3)分式值等于0的条件:①分子等于0,②分母不等于0.分式是否有意义,关键是看分母:分母为0,则无意义,反之有意义.考点三:分式的基本性质核心点拨3.分式的基本性质(1)基本性①语言叙述:分式的分子与分母都乘(或除以)同一个不等于分式的基本性质是分式约分和通分的理论基础.示:a b ±c b =a ±cb .②异分母分式相加减,先通分,变为同分母的分式,再加减.用式子表示:a b ±d c =ac bc ±bdbc =ac ±bd bc .1 分式有意义及分式的值为0的条件 基础点考向1| 分式有意义的条件(2022·新泰月考)要使分式1x +2有意义,x 的取值应满足( ) A .x ≠0 B .x ≠-2 C .x ≥-2D .x >-2根据分母不等于0,求x 的取值范围. B 解析:∵ 分式1x +2有意义, ∴ x +2≠0. ∴ x ≠-2.故选B .1-1 (2022·泰山区模拟)若分式13-x有意义,则x 的取值范围是________. x ≠3 解析:∵ 3-x ≠0, ∴ x ≠3.故答案为x ≠3.考向2| 若分式的值为0的条件若分式x 2-4x +2的值为0,则( )A .x =-2B .x =±2C .x =2D .x =0分子等于0,且分母不等于0.C 解析:x 2-4x +2=0,即x 2-4=0且x +2≠0,得x =±2,且x ≠-2,所以x=2.故选C .2-1 (2022·北部湾经济区)当x =________时,分式2xx +2的值为零.0 解析:由题意得2x =0,且x +2≠0,解得x =0. 故答案为0.2 最简分式 基础点 下列分式中,最简分式是( )A .x 2-1x 2+1B .x +1x 2-1C .x 2-2xy +y 2x 2-xyD .x 2-362x +12(1)分子、分母能因式分解的先因式分解; (2)观察分子、分母是否有公因式.A 解析:A .x 2-1x 2+1是最简分式,符合题意.B .x +1x 2-1=x +1(x +1)(x -1)=1x -1,此项不是最简分式,不符题意. C .x 2-2xy +y 2x 2-xy =(x -y )2x (x -y )=x -yx ,此项不是最简分式,不符题意. D .x 2-362x +12=(x +6)(x -6)2(x +6)=x -62,此项不是最简分式,不符题意.故选A .3-1 (2022·岱岳区月考)下列分式属于最简分式的是( ) A .6xy5x 2 B .x -yy -xC .x 2+y 2x +yD .x 2-9y 2x +3yC 解析:A .原式=6xy 5x 2=6y5x ,不符合题意; B .原式=-1,不符合题意; C .符合题意;D .x 2-9y 2x +3y=x -3y ,不符合题意.故选C .3 分式的运算 能力点考向1| 分式的乘除(2022·宁阳检测)化简⎝ ⎛⎭⎪⎫1+1a -1÷a 2a 2-1的结果是( )A .a +1B .a +1aC .a -1aD .a +1a 2(1)先通分再因式分解,变除法为乘法;(2)分子、分母约分.B解析:原式=a-1+1a-1·(a+1)(a-1)a2=aa-1·(a+1)(a-1)a2=a+1a.故选B.4-1(2022·东平月考)化简x2-1x÷(1-1x)的结果为()A.x+1 B.x-1 xC.x D.1 xA解析:原式=(x+1)(x-1)x÷x-1x=(x+1)(x-1)x·xx-1=x+1.故选A.考向2| 分式的加减(2022·新泰模拟)化简a2a-1-a-1的结果是( )A.1a-1B.-1a-1C.2a-1a-1D.-2a-1a-1(1)把-a-1看成-a+11,再通分;(2)按照同分母分式的减法法则运算.A 解析:a 2a -1-a -1=a 2-a 2+1a -1=1a -1.故选A .5-1 (2022·山西)化简1a -3-6a 2-9的结果是( ) A .1a +3B .a -3C .a +3D .1a -3A 解析:1a -3-6a 2-9=a +3(a +3)(a -3)-6(a +3)(a -3)=a +3-6(a +3)(a -3)=a -3(a +3)(a -3)=1a +3.故选A . 5-2 (2022·怀化)计算x +5x +2-3x +2=__________.1 解析:x +5x +2-3x +2=x +5-3x +2=x +2x +2=1. 故答案为1.考向3| 分式的混合运算(2021·滨州)计算:⎝ ⎛⎭⎪⎫x -1x 2-4x +4-x +2x 2-2x ÷x -4x -2.(1)将括号内的式子通分;(2)将括号外的除法转化为乘法,再约分. 答案:-1x 2-2x解析:原式=⎣⎢⎢⎡⎦⎥⎥⎤x -1(x -2)2-x +2x (x -2)·x -2x -4=x 2-x -x 2+4x (x -2)2·x -2x -4=-(x -4)x (x -2)·1x -4=-1x 2-2x.6-1 (2021·济宁)计算a 2-4a ÷⎝ ⎛⎭⎪⎫a +1-5a -4a 的结果是( ) A .a +2a -2B .a -2a +2C .(a -2)(a +2)a D .a +2aA 解析:原式=a 2-4a ÷[a (a +1)-(5a -4)a ]=(a +2)(a -2)a ÷a 2+a -5a +4a=(a +2)(a -2)a ·a(a -2)2 =a +2a -2.故选A .1.分数线除了具有除法的作用,还具有括号的作用.进行分式的加减时,通分后,要把每个分式的分子添上括号,再进行加减,这样可避免出现符号错误.2.分式与整式加减时,可把整式看作是分母是1的式子. 3.最后的结果要化成最简分式,并且不带括号.4 分式的化简求值 综合点例 7 (2021·威海)先化简⎝ ⎛⎭⎪⎫a 2-1a -3-a -1÷a +1a 2-6a +9,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.(1)小括号内进行通分,对多项式进行因式分解; (2)除法转化为乘法,化简约分;(3)由分式有意义的条件得到a 的取值,代入求值. 答案:2a -6 -4或-6解析:原式=⎣⎢⎢⎡⎦⎥⎥⎤a 2-1a -3-(a +1)÷a +1(a -3)2 =a 2-1-(a +1)(a -3)a -3·(a -3)2a +1=2(a +1)a -3·(a -3)2a +1=2(a -3)=2a -6.∵ a =-1或3时,原式无意义,∴ a 只能取1或0. 当a =1时,原式=2-6=-4; 当a =0时,原式=0-6=-6.7-1 (2022·肥城模拟)先化简,再求值:⎝ ⎛⎭⎪⎫a +1-3a -1÷a 2+4a +4a -1,其中a=tan 45°+⎝ ⎛⎭⎪⎫12-1-π0.答案:a -2a +20 解析:(a +1-3a -1)÷a 2+4a +4a -1=(a 2-1a -1-3a -1)÷(a +2)2a -1=a 2-4a -1÷(a +2)2a -1 =(a +2)(a -2)a -1·a -1(a +2)2=a -2a +2.∵ a =tan 45°+⎝ ⎛⎭⎪⎫12-1-π0=1+2-1=2, ∴ 原式=a -2a +2=2-22+2=0.分式命题点1| 分式的相关概念1.(2022·怀化)代数式25x ,1π,2x 2+4,x 2-23,1x ,x +1x +2中,属于分式的有( )A .2个B .3个C .4个D .5个B 解析:分母中含有字母的是2x 2+4,1x ,x +1x +2,∴ 分式有3个.故选B .2.(2022·肥城检测)要使分式1x +2有意义,x 的取值应满足( ) A .x ≠0 B .x ≠-2 C .x ≥-2 D .x >-2B 解析:要使分式1x +2有意义, 则x +2≠0.解得x ≠-2.故选B . 3.(2021·桂林)若分式x -2x +3的值等于0,则x 的值是( ) A .2B .-2C.3D.-3A解析:∵x-2x+3=0,∴⎩⎪⎨⎪⎧x-2=0,x+3≠0.解得x=2.故选A.4.若ab=13,则分式ab-a的值为______.12解析:∵ab=13,∴b=3a.∴ab-a=a3a-a=a2a=12.故答案为12.命题点2| 分式的基本性质1.(2022·北京)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2+xx-yB.2xx-yC.2+xxy D.x2x+yB解析:A.2+3x3x-3y≠2+xx-y,不符合题意.B.2×3x3x-3y=2xx-y,符合题意.C.2+3x3x×3y≠2+xxy,不符合题意.D.(3x)23x+3y≠x2x+y,不符合题意.故选B.2.(2022·东平模拟)将分式5m2x210mx2约分时,分子分母同时除以()A.5m B.5mxC.mx D.5mx2D解析:5m2x2和10mx2的公因式为5mx2.故选D.3.(2022·宁阳检测)化简1-xx2-1的结果是()A.-1x+1B.1x-1C.1x+1D.11-xA解析:1-xx2-1=-(x-1)(x+1)(x-1)=-1x+1.故选A.4.下列分式中是最简分式的是()A.a2-b2a+bB.1510xC.4ab10a2D.xx+yD解析:A.a2-b2a+b=(a+b)(a-b)a+b=a-b,故此选项不是最简分式;B.1510x=32x,故此选项不是最简分式;C.4ab10a2=2b5a,故此选项不是最简分式;D.xx+y的分子与分母没有公因式,故此选项是最简分式.故选D.命题点3| 分式的有关运算1.(2021·贵阳)计算xx+1+1x+1的结果是()A.xx+1B.1x+1C.1D.-1C解析:xx+1+1x+1=x+1x+1=1.故选C.2.(2022·山西)化简1a-3-6a2-9的结果是()A .1a +3B .a -3C .a +3D .1a -3 A 解析:1a -3-6a 2-9 =a +3(a +3)(a -3)-6(a +3)(a -3) =a +3-6(a +3)(a -3)=a -3(a +3)(a -3) =1a +3.故选A . 3.(2022·新泰检测)计算(a -1b )÷(1a -b )的结果是( )A .-a bB .a bC .-b aD .b aA 解析:⎝ ⎛⎭⎪⎫a -1b ÷⎝ ⎛⎭⎪⎫1a -b =ab -1b ÷1-ab a =ab -1b ·a -(ab -1)=-a b .故选A . 4.(2022·自贡)化简:a -3a 2+4a +4·a 2-4a -3+2a +2=________. a a +2 解析:a -3a 2+4a +4·a 2-4a -3+2a +2=a -3(a +2)2·(a +2)(a -2)a -3+2a +2=a -2a +2+2a +2=a a +2.故答案为aa+2.5.(2021·沈阳)化简:(1x-4-8x2-16)·(x+4)=________.1解析:(1x-4-8x2-16)·(x+4)=[x+4(x+4)(x-4)-8(x+4)(x-4)]·(x+4)=x-4(x+4)(x-4)·(x+4)=1.故答案为1.6.(2021·包头)化简:(2mm2-4+12-m)÷1m+2=______.1解析:(2mm2-4+12-m)÷1m+2=[2m(m+2)(m-2)-m+2(m+2)(m-2)]÷1m+2=1m+2·(m+2)=1.故答案为1.。
分式及其运算(完整版)ppt课件
(1)x2
x 2x
(
x2
)
(分子分母都乘以 x)
(2)3x2 3xy xy
6x2
(
)
(分子分母都除以 3x)
例3(补充)判断下列变形是否正确.
(1)
a b
a2 b2
(
)
(2) b bc a ac
(c≠0)
(
)
(3) b b 1 ( )
a a 1
(4)
2x 2x 1
x x 1
(
)
(四)课堂练习
无意
-1 义 -1 0
思考:
1、第2个分式在什么情况下无意义? 2、 这三个分式在什么情况下有意义? 3、这三个分式在什么情况下值为零?
练习3:
A
1、归纳:对于分式 B
(1) 分式无意义的条件是 B=0 。
(2)分式有意义的条件是 B≠0
。
(3)分式的值为零的条件是 B≠0且A=0 。
2、当x ≠2 时,分式 x 有意义。 x2
5a2b2
4ab3cd
2bd .
10a2b2c2
5ac
课堂练习
练习1 计算:
( 1 ) b a ; ( 2 ) 2b; ( 3 ) n y m y. ac a2 a m x n x
课堂练习
练习2 计算:
(1)3a 4b
196ab2 ; (2)
3xy
2y2 3x
;
(3)12xy 8x2y;(4)x y y x.
解: 即2011年与2010年相比,森林面积增长率提 高了 S 1 S 3 - S 2 2 . S1S 2
八年级 上册
15.2 分式的运算
分式的乘方及分式乘除、乘方混合运算
七年级数学下册分式的基本性质及其运算
Ⅳ、保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
知识点六分式的四则运算与分式的乘方
①分式的乘除法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:
分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为
4.若 则 。
5.已知 ,则 的值是()A. B. C.1D.
【练习】1.已知 ,则分.已知a2-6a+9与│b-1│互为相反数,则式子( )÷(a+b)的值为____.
5.已知实数a,b满足ab-a-2b+2=0,那么 的值等于( ).
十.化简、求值
②分式的乘方:把分子、分母分别乘方。式子
③分式的加减法则:
同分母分式加减法:分母不变,把分子相加减。式子表示为
异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为
整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
④分式的加、减、乘、除、乘方的混合运算的运算顺序
知识点二:与分式有关的条件
分式有意义:分母不为0( )
分式无意义:分母为0( )
分式值为0:分子为0且分母不为0( )
④分式值为正或大于0:分子分母同号( 或 )
分式值为负或小于0:分子分母异号( 或 )
分式值为1:分子分母值相等(A=B)
分式值为-1:分子分母值互为相反数(A+B=0)
知识点三:分式的基本性质
二.分式的值
【例题】
1.当a时,分式 有意义;2.当_____时,分式 无意义;
分式的运算技巧
分式概念形如(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
八年级-人教版-数学-上册-[综合训练]第4课时-分式的混合运算
第4课时 分式的混合运算1.两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比是p ∶1,而另一个瓶子中是q ∶1,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( ).A .2p q +B .22p q p q ++C .2pq p q +D .22pq p q p q ++++ 2.如果a ,b ,c 是正数,满足a +b +c =2,111a b b c c a +++++=4,那么b a b a a b c c c +++++的值为( ).A .1B .5C .4D .23.已知a 是满足不等式组200a a -≤⎧⎨>⎩的整数解,则代数式2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭的值为____________.4.定义:若分式M 与分式N 的差等于它们的积,即M -N =MN ,则称分式N 是分式M 的“关联分式”.∴2211x y ⎛⎫+ ⎪+⎝⎭的“关联分式”,求实数m ,n 的值.参考答案1.【答案】D【解析】设瓶子的容积是1,即酒精与水的和是1. 则纯酒精之和为:1111p q p q ⋅+⋅++=11p q p q +++, 水之和为:1111p q +++, 所以混合液中的酒精与水的容积之比为:11p q p q ⎛⎫+ ⎪++⎝⎭∶1111p q ⎛⎫+ ⎪++⎝⎭=(1)(1)11(1)(1)(1)(1)p q q p q p p q p q ++++++÷++++=22pq p q p q ++++. 2.【答案】B【解析】∵a +b +c =2,111a b b c c a+++++=4, ∴b a b a a bc c c +++++ =2()2()2()a b a c b c a b a c b c +++++---+++ =222111a b a c b c -+-+-+++ =11123a b a c b c ⎛⎫⨯ ⎪⎝+++⎭+-+ =2×4-3=5.3.【答案】13【解析】2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭=21211(1)a a a a -+-⋅-+=2111(1)a a +⋅+=11a +. 由不等式组200a a -≤⎧⎨>⎩解得0<a ≤2. ∵a 是满足不等式组200a a -≤⎧⎨>⎩的整数解,且a +1≠0,a -1≠0, ∴a =2,∴当a =2时,11a +=121+=13.4.【答案】解:(2N -N ,∴123a b N a b -⎛⎫+ ⎪+⎝⎭N; (3)①观察(1)(2)的结果,找到规律:如果分式M 是分式N 的“关联分式”,那么它们的分子相同,分式M 的分母=分式N 的分母+它们的分子.. ②由①的规律可知:424242m n mx m mx n m +=-⎧⎨+=+++⎩,, ∴132n m n m -=⎧⎨+=-⎩,, ∴m =-34,n =14.。
专题04 分式及其运算
专题04 分式及其运算☞考点归纳归纳1:分式的有关概念分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零.注意问题归纳:1.分式有意义的条件是分母不为0,无意义的条件是分母为0.2.分式值为0要满足两个条件,分子为0,分母不为0.【例1】使分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x =1 C .x ≤1 D .x ≥1【例2】分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数归纳2:分式的性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C C B C A B A注意问题归纳:1.分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;2.将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;3.巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.【例3】化简2244xy y x x --+的结果是( ) A .2x x + B .2x x - C .2y x + D .2y x - 【例4】已知x +y =xy ,求代数式11x y+-(1-x )(1-y )的值.归纳3:分式的加减运算基础知识归纳:加减法法则:① 同分母的分式相加减:分母不变,分子相加减 ② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.1.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母.【例5】计算:1a a 11a +--的结果是. 【例6】化简21639x x ++-的结果是 归纳 4:分式的乘除运算1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x 1x x .x 1x 2x 1--⋅+-+ 归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.注意问题归纳:注意运算顺序,计算准确.【例8】化简:222x 2x 6x 3x 1x 1x 2x 1++-÷+--+全 国 中 考 体 验(2.4分式)1.要使分式有意义,x 应满足的条件是( ) A .x >3 B .x=3 C .x <3 D .x ≠32.化简的结果是( ) A . B . C . D .3.(2017济南,6,3分)化简a 2+ab a -b ÷ab a -b 的结果是( )A .a 2B .a 2a -b C .a -b b D .a +b b 4.(3分)如果a 2+2a ﹣1=0,那么代数式(a ﹣a 4)•22-a a 的值是( ) A .﹣3 B .﹣1 C .1D .3 5.计算﹣的结果是( )A . B . C . D . 6.若式子21x -在实数范围内有意义,则x 的取值范围是 7.若分式241x x -+的值为0,则x 的值为 8.化简:xx x x 112++-9.(3分)计算:a−1a +2+3a +2= . 10. 化简:23332x x x x x -⎛⎫+= ⎪---⎝⎭ ______ 11.计算:22x y xy y x x x ⎛⎫--+-= ⎪⎝⎭. 12.化简:2225(1)14x x x x -+⋅++- 13.计算:(+a ﹣2)÷.14. )化简:bb a a b a 222)(-÷- 2442x x x x ---22x x -+26x x -+2x x -+2x x -15. 先化简,再求值:(1﹣)÷,其中x=﹣116.(本小题满分5分) 先化简144)111(22-+-÷--x x x x ,再从不等式612<-x 的正整数解中选一个适当的数代入求值.17. 先化简,再求值:,其中 18.先化简,再求值:,其中,。
八年级-人教版-数学-上册-第4课时-分式的混合运算
算乘方,除法变乘法.
=
1 a
1 9a
约分,做乘法
= 8.
9a
异分母分式相加减
归纳
式与数的混合运算有相同的运算顺序,即先算乘方,再算乘除, 最后算加减.
有括号时,按照小括号、中括号、大括号的顺序,先做括号内 的运算,再做括号外的运算.
在运算的过程中,我们也可以适当地运用一些运算律,从而达 到简化运算的目的.
例3
先化简,再求值:
x2
x2 1 2x 1
x
1
x x
1 ,其中
1
x=-2.
分析:先根据分式的运算法则进行化简,再代入求值.
解:
x2 1
x 1
x2
2x
1
x
1
x
1
=
(x
1)(x 1) (x 1)2
(x
1)
x x
1 1
=1-(x-1) =2-x.
当x=-2时,原式=2-(-2)=4.
结果要化成最简分式或整式
例2 计算:
(1)
m
2
2
5 m
2m 4 3m
;
(2)
x x2
2 2x
x2
x 1 4x
4
x
x
4.
将其分母视为 1,然后进行通分.
解:(1)
m
2
2
5
m
2m 4 3m
= (m 2)(2 m) 5 2m 4
2m
3m
= 9 m2 2(m 2) = (3 m)(3 m) 2(2 m)
b d b c bc
3.分式的乘方法则: 分式乘方要把分子、分母分别乘方.
上述法则可以用式子表示为
分式的运算法则
分式的运算一.通分的方法:1.分式通分的涵义和分数通分的涵义有类似的地方;(1)把异分母分式化为同分母分式;(2)同时必须使化得的分式和原来的分式分别相等;(3)通分的根据是分式的基本性质,且取各分式分母的最简公分母,否则使运算变得烦琐.2.求最简公分母是通分的关键,其法则是:(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数最高的.这样取出的因式的积,就是最简公分母.例1.通分:解:∵8,12,20的最小公倍数为120,字母因式x、y、z的最高次幂分别为x3、y3、z2,所以最简公分母是120x3y3z2.∴.通分过程中,如果字母的系数是负数,一般先把负号提到分式的前面.例2.通分:解:将分母分解因式:a2-b2=(a+b)(a-b);b-a=-(a-b)∴最简公分母为(a+b)(a-b)2∴[分子,分母同乘以(a-b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)(a-b)]=-[分子作整式乘法]说明: (1)分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘。
(2)通分是和约分相反的一种变换.约分是把分子和分母的所有公因式约去.将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式。
约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的。
二.分式的乘除法:1.同分数乘除法类似,分式乘除法的法则用式子表示是:,其中a、b、c、d可以代表数也可以代表含有字母的整式.2.分式乘除法的运算.归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分。
3.整式和分式进行运算时,可以把整式看成分母为1的分式。