初中数学一次函数总结
初中数学知识归纳一次函数的概念与性质
初中数学知识归纳一次函数的概念与性质一次函数是初中数学中的重要内容,它具有简单的形式和规律性的特点。
本文将围绕一次函数的概念和性质展开论述。
一、一次函数的概念一次函数是指函数的最高次数为1的函数,可以表示为y = kx + b的形式,其中k和b为常数,x为自变量,y为因变量。
在一次函数中,自变量x的系数k称为斜率,表示了函数图像的倾斜程度,斜率正负表示了直线的上升或下降趋势;而常数b称为截距,表示了函数图像与y轴的交点。
二、一次函数的性质1. 函数图像为直线:由于一次函数的形式为y = kx + b,故其图像为一条直线。
直线可以用来表示两个变量之间的线性关系,如时间和距离的关系、成本和产量的关系等。
2. 斜率代表变化率:一次函数的斜率k反映了函数图像的倾斜程度。
斜率的绝对值越大,说明函数图像越陡峭;斜率为正表示上升趋势,斜率为负表示下降趋势。
3. 截距代表初始值:一次函数的常数b即截距,表示了函数图像与y轴的交点。
截距决定了函数图像的起点和y轴的交点位置,也可以理解为函数在x=0处的函数值。
4. 变量之间的线性关系:一次函数表示了两个变量之间的线性关系。
斜率k表示了两个变量之间的变化率,而截距b表示了变量在某个初始值时的数值。
三、一次函数的图像特点一次函数的图像有以下几个特点:1. 函数图像为一条直线,呈现出一致的斜率和截距;2. 当斜率为正时,函数图像从左下方朝右上方倾斜;当斜率为负时,函数图像从左上方朝右下方倾斜;3. 当截距为正时,函数图像与y轴的交点在y轴的正半轴上;当截距为负时,函数图像与y轴的交点在y轴的负半轴上;4. 斜率的绝对值越大,函数图像越陡峭;5. 斜率为零时,函数图像平行于x轴,表示了一个常数函数;6. 一次函数的图像可以通过两个点确定,其中一个点可以是截距,另一个点可以通过斜率确定。
四、一次函数的应用举例一次函数广泛应用于日常生活和工作中的各个领域。
以下是一些具体的应用举例:1. 距离和时间的关系:假设一个汽车以固定速度行驶,那么汽车的行驶距离与时间的关系可以用一次函数来表示。
一次函数知识点总结9篇
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
初中数学 什么是一次函数 它有什么特点
初中数学什么是一次函数它有什么特点一次函数,也被称为线性函数,是初中数学中的一个重要概念。
它是一个以x 的一次方程表示的函数,具有以下形式:f(x) = ax + b,其中a 和 b 是常数。
一次函数在数学中有着广泛的应用,并且具有一些特点和性质。
在本文中,我们将详细讨论一次函数的概念、特点和性质。
一次函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
其中a 被称为斜率,代表了函数图像的倾斜程度;b 被称为截距,表示函数图像与y 轴的交点。
一次函数的特点和性质如下:1. 直线图像:一次函数的图像是一条直线。
这是因为一次函数是一个一次方程,其图像是一个直线。
直线可以通过两个点来确定,因此我们只需要确定两个点就可以画出一次函数的图像。
2. 斜率:一次函数的斜率决定了函数图像的倾斜程度。
斜率表示了函数在x 方向上的变化率。
当斜率为正时,函数图像向上倾斜;当斜率为负时,函数图像向下倾斜;当斜率为零时,函数图像是水平的。
3. 截距:一次函数的截距决定了函数图像与y 轴的交点。
当x = 0 时,我们可以计算出函数的截距。
截距表示了函数图像与y 轴的位置关系。
4. 增减性:一次函数的增减性由斜率来决定。
当斜率为正时,函数是递增的,即随着x 的增大,函数值也增大;当斜率为负时,函数是递减的,即随着x 的增大,函数值减小。
5. 零点:一次函数的零点表示了函数图像与x 轴的交点。
当函数的值为零时,我们可以求解出函数的零点。
零点表示了函数在x 轴上的位置。
6. 平行和垂直:一次函数的平行和垂直关系可以通过斜率来确定。
如果两个一次函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的倒数的相反数,则它们是垂直的。
7. 线性关系:一次函数是一种线性关系。
线性关系表示了两个变量之间的直接关系。
在一次函数中,x 和f(x) 之间存在着线性关系,即x 的增加或减少会导致f(x) 的相应变化。
通过以上的讨论,我们可以了解一次函数的概念、特点和性质。
初中数学一次函数的图象、性质、解析式及应用
初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。
一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。
2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。
(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。
(3)对于直线,如果,且,那么这两条直线平行,反之也成立。
如果,那么这两条直线相交,反之也成立。
(4)直线y=kx+b可以看作是由直线y=kx平移而来。
(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。
3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。
(3)观察图象特征,判定函数类型。
(4)运用得到的经验公式,进一步求得所需要的结果。
例1、已知函数是一次函数,求m的值及函数关系式。
分析:一次函数满足:自变量的次数为1;自变量的系数不为0。
解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。
八年级数学之一次函数的图像知识点最新5篇
八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。
s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数知识点总结初中数学
变量与函数要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量.要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,s=60t,速度60千米/时是常量,时间t和里程s为变量.要点二、函数的定义一般地,在一个变化过程中. 如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.要点诠释:对于函数的定义,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)对于自变量x的取值,必须要使代数式有实际意义;(3)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有唯一确定的值与它相对应.(4)两个函数是同一函数至少具备两个条件:①函数关系式相同(或变形后相同);②自变量x的取值范围相同.否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变量x的取值范围有时容易忽视,这点应注意.要点三、函数值y是x的函数,如果当x=a时x=b,那么b叫做当自变量为a时的函数值.要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一y 中,当函数值为4时,自变量x的值为±个函数值对应的自变量可以是多个.比如:2x2.要点四、自变量取值范围的确定使函数有意义的自变量的取值的全体实数叫自变量的取值范围.要点诠释:自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义:(1)当解析式是整式时,自变量的取值范围是全体实数;(2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;(3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数;(4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数不为零;(5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义.要点五、函数的几种表达方式:变量间的单值对应关系有多种表示方法,常见的有以下三种:(1)解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式.(2)列表法:函数关系用一个表格表达出来的方法.(3)图象法:用图象表达两个变量之间的关系.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.要点六、函数的图象对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:由函数解析式画出图象的一般步骤:列表、描点、连线.列表时,自变量的取值范围应注意兼顾原则,既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或太小,以便于描点和全面反映图象情况.正比例函数(基础)要点一、正比例函数的定义1、正比例函数的定义一般的,形如kx y =(k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.2、正比例函数的等价形式(1)y 是x 的正比例函数;(2)kx y =(k 为常数且k ≠0);(3)若y 与x 成正比例;(4)k xy =(k 为常数且k ≠0);. 要点二、正比例函数的图象与性质正比例函数kx y =(k 为常数,且k ≠0)的图象是一条经过原点的直线,我们称它为直线kx y =.当k >0时,直线kx y =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当k <0时,直线kx y =经过第二、四象限,从左向右下降,即随着x 的y 增大反而减小.要点三、待定系数法求正比例函数的解析式由于正比例函数kx y =(k 为常数,且k ≠0)中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值.一次函数的图象与性质(基础)要点一、一次函数的定义一般地,形如b kx y +=(k,b 为常数,且k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,b kx y +=即kx y =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数b kx y +=(k,b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线b kx y +=是由直线kx y =向上平移b 个单位长度得到的; 当b <0时,直线b kx y +=是由直线kx y =向下平移|b |个单位长度得到的.2.一次函数b kx y +=(k,b 为常数,且k ≠0)的图象与性质:3. k ,b 对一次函数b kx y +=的图象和性质的影响:k 决定直线b kx y +=从左向右的趋势,b 决定它与y 轴交点的位置,k ,b 一起决定直线b kx y +=经过的象限.4. 两条直线l 1:11b x k y +=和l 2:22b x k y +=的位置关系可由其系数确定:(1)k 1≠k 2l 1与l 2相交; (2)k 1=k 2,且b 1≠b 2l 1与l 2平行;要点三、待定系数法求一次函数解析式一次函数b kx y +=(k,b 为常数,且k ≠0)中有两个待定系数k,b ,需要两个独立条件确定两个关于k,b 的方程,这两个条件通常为两个点或两对x,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数b kx y +=中有k,b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k,b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.⇔⇔一次函数与一次方程(组)(基础)要点一、一次函数与一元一次方程的关系一次函数b kx y +=(k,b 为常数,且k ≠0).当函数y =0时,就得到了一元一次方程0=+b kx ,此时自变量x 的值就是方程0=+b kx 的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线b kx y +=(k,b 为常数,且k ≠0),确定它与x 轴交点的横坐标的值.要点二、一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数42+-=x y 与21323-=x y 图象的交点为(3,-2),则⎩⎨⎧-==23y x 就是二元一次方程组⎪⎩⎪⎨⎧-=+-=2132342x y x y 的解. 2.当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组⎩⎨⎧+=-=1353x y x y 无解,则一次函数53-=x y 与13+=x y 的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.要点三、方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解的情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.一次函数与一元一次不等式(基础)要点一、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为b ax +>0或b ax +<0或b ax +≥0或b ax +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数b ax y +=的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于的一元一次不等式b ax +>0(a ≠0)的解集,从“数”的角度看,就是为何值时,函数b ax y +=的值大于0?从“形”的角度看,确定直线b ax y +=在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点二、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点三、如何确定两个不等式的大小关系d cx b ax +>+(a≠c ,且ac ≠0)的解集⇔b ax y +=的函数值大于d cx y +=的函数值时的自变量x 取值范围⇔直线b ax y +=在直线d cx y +=的上方对应的点的横坐标范围.x x。
初中生数学一次函数知识点总结9篇
初中生数学一次函数知识点总结9篇第1篇示例:初中数学是中学数学的起点,一次函数是数学学习的基础之一。
通过学习一次函数,初中生可以掌握数学思维和解决问题的能力,使其在学习数学的道路上更进一步。
下面将对初中生数学一次函数知识点进行总结。
一、一次函数的定义所谓一次函数,就是函数的自变量的最高次数为1的函数。
一次函数的一般形式为y=ax+b,其中a和b为常数,a≠0。
二、一次函数的图像一次函数的图像是一条直线,是通过两点确定的。
其中a决定了直线的斜率,斜率为正时,图像是上升的;斜率为负时,图像是下降的;斜率为0时,图像是水平的。
b决定了直线和y轴的交点。
三、一次函数的性质1. 一次函数的图像是一条直线;2. 一次函数的导数恒为常数,即该函数的增长速率恒定;3. 一次函数的解析式中的a决定了直线的斜率,b决定了与y轴的交点;4. 一次函数的定义域为一切实数,值域也为一切实数。
四、一次函数的运算1. 一次函数的加减运算:两个一次函数相加或相减仍然是一次函数;2. 一次函数的乘除运算:两个一次函数相乘或相除不一定是一次函数;3. 一次函数的复合运算:两个一次函数复合之后还是一次函数。
五、一次函数的应用1. 确定两点绘制直线:通过给定的两点,可以确定一条直线,进而解决相关问题;2. 求函数的零点:求一次函数的解析式中自变量为零时的函数值;3. 求函数的最值:通过一次函数的表达式求出极值点,可求出函数的最大值和最小值;4. 判断函数的单调性:通过分析一次函数的斜率,可得出函数的单调性。
初中生在学习一次函数时,应充分理解一次函数的定义、图像、性质和运算规律,灵活运用所学知识解决相关问题,提高数学思维和解决问题的能力。
多做练习、加强实践,不断巩固提升自己的数学水平,为将来更深入的学习打下坚实基础。
希望初中生能够在数学学习中取得更好的成绩,为未来的学习和发展打下良好的基础。
第2篇示例:初中生学习数学的一次函数是数学中的一个重要内容,也是数学知识体系中的基础部分。
初中数学一次函数的图象和性质
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
初中生数学一次函数知识点总结_会计基础知识点总结
初中生数学一次函数知识点总结_会计基础知识点总结一次函数是初中生学习的重要知识点,也是高中数学的重要基础,以下是一次函数的核心知识点总结。
一、一次函数的定义一次函数是一个变量的一次多项式,变量的最高次数为 1。
例如:y = kx + b(k、b是常数)就是一次函数。
二、一次函数的图像和通解1. 一次函数的图像是一条直线,在平面直角坐标系中,一次函数 y = kx + b 的函数图像为一条斜率为 k,截距为 b 的直线。
2. 一次函数的通解:如果 y = kx + b 是一次函数的一个例子,那么 y = ax + b 也是一次函数,并且都是 y = kx + b 的通解。
2. 单调性:如果 k > 0,那么 y = kx + b 的图像与 x 轴的夹角为锐角,即 y 值随着 x 的增加而增加(即单调递增)。
如果 k < 0,那么 y 值随着 x 的增加而减小(即单调递减)。
3. 零点:对于一次函数 y = kx + b,如果k ≠ 0,那么它的零点就是 x = -b/k。
4. 斜率和截距:对于一次函数 y = kx + b,k 表示的是函数图像在 x 轴方向上的增长率,也就是斜率;b 表示函数图像在 y 轴上与 x 轴的交点,也就是截距。
四、直线的方程式1. 点斜式:如果已知直线上一点的坐标(x₁, y₁)和直线的斜率 k,那么直线的方程式为 y - y₁ = k(x - x₁)。
会计基础知识点总结会计是现代社会重要的职业之一,以下是会计基础知识点总结。
会计是一门实用性很强的财务管理科学,是通过对企业的经济活动进行记录、分类、汇总、分析、报告等处理,使得企业的经济活动能够及时反映企业的财务状况和经营成果,为企业提供决策依据和经营管理服务的一门学科。
二、会计的基本原理1. 会计等式:会计等式是指企业中资产、负债和所有者权益之间的关系,即:资产= 负债 + 所有者权益。
2. 货币计量:会计处理的一切经济活动必须以货币作为计量单位,从而使复杂的经济活动简化为简单的数目,而且便于比较。
一次函数所有知识点讲解
一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。
在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。
一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。
当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。
四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。
当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。
2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。
因此,截距b可以用来确定函数的位置。
3. 一次函数的定义域为全体实数,值域为全体实数。
五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。
例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。
2. 一次函数可以用来描述经济问题中的成本和收益关系。
例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。
3. 一次函数可以用来描述物理问题中的速度和加速度关系。
例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。
一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。
初中数学一次函数公式
初中数学一次函数公式中学数学一次函数常用公式篇11、求函数图像的k值:(y1-y2)/(*1-*2)2、求与*轴平行线段的中点:(*1+*2)/23、求与y轴平行线段的中点:(y1+y2)/24、求任意线段的长:√[(*1-*2)^2+(y1-y2)^2 ]5、求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1*+b1 y2=k2*+b2 令y1=y2 得k1*+b1=k2*+b2 将解得的*=*0值代回y1=k1*+b1 y2=k2*+b2 两式任一式得到y=y0 那么(*0,y0)即为 y1=k1*+b1 与y2=k2*+b2 交点坐标6、求任意2点所连线段的中点坐标:[(*1+*2)/2,(y1+y2)/2]7、求任意2点的连线的一次函数解析式:(*-*1)/(*1-*2)=(Y-y1)/(y1-y2)(假设分母为0,那么分子为0)* y+,+(正,正)在第一象限-,+(负,正)在第二象限-,-(负,负)在第三象限+,-(正,负)在第四象限8、假设两条直线y1=k1*+b1//y2=k2*+b2,那么k1=k2,b1≠b29、如两条直线y1=k1*+b1⊥y2=k2*+b2,那么k1×k2=-110、y=k(*-n)+b就是直线向右平移n个单位y=k(*+n)+b就是直线向左平移n个单位口诀:右减左加(对于y=k*+b来说,只转变n)y=k*+b+n就是向上平移n个单位y=k*+b-n就是向下平移n个单位口诀:上加下减(对于y=k*+b来说,只转变b)11、直线y=k*+b与*轴的交点:(-b/k,0),与y轴的交点:(0,b)中学数学一次函数常用公式篇2设△ABC,∠C=90°(中学是锐角三角函数)AC=b,BC=a,AB=c,正割函数:sec∠A=c/b(斜边:邻边),y=sec*。
在y=sec*中,以*的任一使sec*有意义的值与它对应的y值作为(*,y)。
初中数学《一次函数》知识点总结及考点例题
一次函数知识点及考点例题分析一、函数1.函数的概念一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数(function),其中x是自变量,y是因变量.2.函数值对于自变量在取值范围内的一个确定的值x=a,函数都有惟一确定的对应值,这个对应值,叫作当x=a时的函数值.3.函数的表示法(1)解析法;(2)列表法;(3)图象法.二、一次函数1.定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(1inear function)(x 为自变量,y为因变量).2.图象一次函数y=kx+b的图象是经过点(0,b)且平行于直线y=kx的一条直线,b叫作直线y=kx+b在y轴上的截距.3.性质当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.4.正比例函数(1)定义函数y=kx(k是常数,k≠0)叫正比例函数.(2)图象正比例函数y=kx的图象是经过原点和(1,k)两点的—条直线.(3)性质当k>0时,它的图象在第一、三象限内,y随x的增大而增大;当k<0时,它的图象在第二、四象限内,y随x的增大而减小.函数的图象1.函数图象的定义把—个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).2.正比例函数及一次函数的图象(1)正比例函数y=kx(k是常数,k≠0)的图象是过(0,0),(1,k)两点的一条直线.因此.依据一个独立条件可确定k,即可求出正比例函数.(2)一次函数y=kx+b(k ,b 为常数,k≠0)的图象是过(0,b)、(kb ,0)两点的一条直线. 因此依据两个独立条件可确定k ,b ,即可求出一次函数.(3)基本量 是数学对象的一个本质概念,如正比例函数含有一个基本量k ;一次函数含有两个基本量k 、b ;确定一个平行四边形需3个基本量;长方形和菱形的基本量是2;正方形的基本量是1;三角形的基本量是3.【典型热点考题】例 1 选择题 把正确答案的代号填入题中括号内.如图6-19,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )(A)2.5米 (B)2米 (C)1.5米(D)1米明老师解析: 由图6-19得:将(8,64)分别代入t v S 11=、12t v S 22+=得8v 1=米/秒,5.6v 2=米/秒,故本题应选(C).例2 填空题已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数解析式是________.明老师解析: 设所求的函数解析式为y=k(x+1) ①将x=5,y=12代入①,得 12=k(5+1),所以k=2.故本题应填“y=2x+2”.例3 旅客乘车按规定可随身携带一定重量的行李,如果超过规定,则需购买行李票.设行李票y(元)是行李重量x(千克)的一次函数,如图6-20所示,求(1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李的重量. 分析 本题是以行李的重量为x 轴,行李票价为y 轴,由题意y 是x 的一次函数,通过对图形的观察知点(60,5)、(90,10)在此图象上,并且此图象与x 轴的正半轴交于一点,故应用待定系数法求解.明老师解析: (1)设一次函数的关系式为y=kx+b.因为点(60,5)和(90,10)在此函数的图象上,因此,得 60k+b=5,90k+b=10.分别整理得:b=5-60k. (1) b=10-90k. (2) 比较(1)、(2),得5-60k=10-90k ,即30k=5,61k . 得 b=-5.所以5x 61y -= 因为x>0,y≥0,所以05x 61≥-.所以x≥30. 故此函数的解析式为⎪⎩⎪⎨⎧≤<>-=)30x 0(0)30x (5x 61y(2)由(1)知0<x≤30时,y=0.故旅客最多可免费携带30千克的行李.例4 某商场计划投入一笔资金采购一批紧俏商品,经过市调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况如何购销获利较多? 明老师解析: 设商场投资x 元,在月初出售,到月末可获利1y 元;在月末出售,可获利2y 元.根据题意,得x 265.0)x %15x %(10x %15y 1=++=;700x 3.0700x %30y 2-=-=.(1)当21y y =时,0.265x=0.3x-700,x=20000; (2)当21y y <时,0.265x<0.3x-700,x>20000;(3)当21y y 时,0.265x>0.3x-700,x<20000.答:当商场投资20000元时,两种销售方式获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,第一种销售方式获利较多.[点拨] 本例为决策性问题,一般先列出算式或建立函数关系式,通过算式大小的比较或函数最值的确定作出相应的决策.例5 为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm ,椅子的高度(不含靠背)为xcm ,则y 应是x 的一次函数.下表列出两套符合条件的课桌椅的高度;(1)请确定y 与x 的函数关系式(不要求写出x 的取值范围);(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.明老师解析:(1)设y=kx+b,则有75.0=40.0k+b. (1)70.2=37.0k+b. (2)由(1),得b=75.0-40.0k (3)由(2),得b=70.2-37.0k (4)比较(3)、(4),得75.0-40.0k=70.2-37.0k,即k=1.6,将k=1.6代入(3),得b=11.所以y=1.6x+11.(2)当x=42.0时,y=1.6×42.0+11=78.2.所以这套桌椅是配套的.。
初中数学一次函数易错知识点总结
(每日一练)初中数学一次函数易错知识点总结单选题1、如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=−(x−2)2−1交于点B(1,−2),且它们分别与y轴交于点D、E.过点B作x轴的平行线,分别与两抛物线交于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当−3<x<1时,随着x的增大,y1−y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①②B.①②④C.③④D.①②③答案:B解析:①根据非负数的相反数或者直接由图像判断即可;②先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;③先根据题意得出−3<x<1时,观察图像可知y1>y2,然后计算y1−y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.①∵(x−2)2≥0,∴−(x−2)2≤0,∴y2=−(x−2)2−1≤−1,∴无论x取何值,y2总是负数,故①正确;②∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=−(x−2)2−1交于点B(1,−2),∴x=1,y=2,即−2=a(1+1)2+2,解得a=−1,∴抛物线G:y1=−(x+1)2+2,∴抛物线G的顶点(−1,2),抛物线H的顶点为(2,−1),将(−1,2)向右平移3个单位,再向下平移3个单位即为(2,−1),即将抛物线G向右平移3个单位,再向下平移3个单位可得到抛物线H,故②正确;③∵B(1,−2),∵将y=−2代入抛物线G:y1=−(x+1)2+2,解得x1=−3,x2=1,∴A(−3,−2),将y=−2代入抛物线H:y2=−(x−2)2−1,解得x1=3,x2=1,∴C(3,−2),∵−3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1−y2=−(x+1)2+2−[−(x−2)2−1]=−6x+6∴当−3<x<1,随着x的增大,y1−y2的值减小,故③不正确;④设AC与y轴交于点F,∵B(1,−2),∴F(0,−2),由③可知∴A(−3,−2),C(3,−2),∴AF=CF,AC=6,当x=0时,y1=1,y2=−5,即D(0,1),E(0,−5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:B .小提示:本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.2、若点A(2,−3),B(4,3),C(5,a)在同一条直线上,则a 的值是( )A .6或−6B .6C .-6D .6或3答案:B解析:根据一次函数的特点,设一次函数的解析式为y =kx +b ,然后把AB 点的坐标代入解析式,解方程组,即可求出一次函数的解析式,再将x =5代入解析式即可求出a 的值.解:设该直线对应的函数表达式为y =kx +b(k ≠0),把A(2,−3),B(4,3)代入y =kx +b ,得{−3=2k +b,3=4k +b, 解得{k =3,b =−9,∴y =3x −9,又∵点C(5,a)也在这条直线上,∴a =3×5−9=6.故选B .小提示:本题主要考查了待定系数法求函数解析式.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.解决本题的关键是根据一次函数解析式的特点先求出一次函数的函数关系式.3、下列图形中,表示一次函数y =ax +b 与正比例函数y =ax (a ,b 为常数,且ab ≠0)的图象的是( )A.B.C.D.答案:A解析:的符号,从根据一次函数的图象与系数的关系,由一次函数y=ax+b图象分析可得a、b的符号,进而可得ab 的图象是否正确,进而比较可得答案.而判断y=axb根据一次函数的图象分析可得:<0,故此选项正确,符合题意;A.由一次函数y=ax+b图象可知a<0,b>0;正比例函数的图象可知ab>0,矛盾,故此选项错误,不符合B. 由一次函数y=ax+b图象可知a<0,b>0;正比例函数的图象可知ab题意;C. 由一次函数y=ax+b图象可知a>0,b>0;正比例函数的图象可知a<0,矛盾,故此选项错误,不符合b题意;D. 由一次函数y=ax+b图象可知a>0,b<0;正比例函数的图象可知a>0,矛盾,故此选项错误,不符合b题意;故选:A.小提示:题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.4、如图,半径r=2√2的⊙M在x轴上平移,且圆心M在x轴上,当⊙M与直线y=x+2相切时,圆心M的坐标为()A.(0,0)B.(2,0)C.(-6,0)D.(2,0) 或(-6,0)答案:D解析:根据题意,进行分情况讨论,分别为圆位于直线右侧并与直线相切和位于直线左侧并于直线相切两种情况,进而根据相切的性质及等腰直角三角形的相关性质进行求解即可得解.①当圆位于直线右侧并与直线相切时,连接MA,如下图所示:∵y=x+2∴A(0,2),B(−2,0),△AOB是等腰直角三角形,∠ABO=45°∴AB=2√2∵r=2√2∴△ABM是等腰直角三角形,∠BAM=90°∴⊙M与直线AB相切于点A∵AO⊥BM∴OB=OM=2∴圆心M的坐标为(2,0);②当圆位于直线左侧并与直线相切时,过点M作MC⊥AB于点C,如下图所示:∵⊙M与直线AB相切,MC⊥AB∴MC=r=2√2根据直线AB的解析式:y=x+2可知∠ABO=∠MBC=45°∴△BCM是等腰直角三角形∴MB=√2MC=4∵B(−2,0)∴圆心M的坐标为(−6,0),综上所述:圆心M的坐标为(2,0)或(−6,0),故选:D.小提示:本题主要考查了切线的性质,等腰直角三角形的性质及动圆问题,熟练掌握相关几何求解方法并进行分类讨论是解决本题的关键.5、正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=x-k的图像大致是().A.B.C.D.答案:B解析:根据正比例函数y=kx的函数值y随x的增大而增大,得k>0;在结合一次函数y=x-k的性质分析,即可得到答案.∵正比例函数y=kx的函数值y随x的增大而增大∴k>0∴当x=0时,一次函数y=x−k=−k<0∵一次函数y=x-k的函数值y随x的增大而增大∴选项B图像正确故选:B.小提示:本题考查了一次函数的知识;解题的关键是熟练掌握一次函数、正比例函数的性质,从而完成求解.。
初二学生数学一次函数知识点总结8篇
初二学生数学一次函数知识点总结8篇第1篇示例:初二学生在学习数学的过程中,一次函数是一个非常重要的知识点。
一次函数也称为一元一次方程,是数学中最简单的一种函数形式,通常表示为y=ax+b。
在初中阶段,学生需要了解一次函数的基本概念、性质和应用。
一、一次函数的基本概念1. 一次函数的定义一次函数是由形如y=ax+b的函数所构成,其中a和b是常数,a 不等于0。
其中a称为斜率,b称为截距。
2. 一次函数的图像一次函数的图像是一条直线,其斜率决定了直线的斜度,截距决定了直线与y轴的交点。
3. 一次函数的定义域和值域一次函数的定义域是整个实数集,值域也是整个实数集。
4. 一次函数的自变量和因变量在一次函数中,自变量是x,表示输入的数值;因变量是y,表示输出的数值。
二、一次函数的性质1. 斜率的意义一次函数中,斜率a表示当自变量x增加1单位时,因变量y的增量。
斜率可以告诉我们函数的增减趋势。
2. 相关性质一次函数中,两条直线平行或重合的条件是它们的斜率相等,截距相等。
3. 函数值的计算根据一次函数的表达式,可以通过代入自变量的值计算出相应的因变量的值。
4. 求解一元一次方程一次函数也可以看作是一元一次方程,通过方程的变形求解可以得到未知数的值。
三、一次函数的应用1. 数据拟合在实际问题中,可以利用一次函数对数据进行拟合,从而预测未来的发展趋势。
2. 函数关系一次函数描述了两个变量之间的线性关系,可以用来研究变量之间的影响和规律。
3. 图像分析通过一次函数的图像,可以分析函数的特性,如斜率的大小、截距的位置等。
四、注意事项1. 理解斜率和截距的含义,掌握它们在一次函数中的作用。
2. 熟练掌握一次函数的基本运算,如加减乘除等。
3. 多做练习,加深对一次函数的理解和掌握。
4. 注意一次函数在实际问题中的应用,培养运用数学解决问题的能力。
一次函数是初中数学中的基础知识之一,掌握好一次函数的概念、性质和应用可以为学生打下坚实的数学基础,提升数学运用能力。
初中数学《一次函数》
初中数学《一次函数》
一次函数是代数中的一个基本概念,也称为线性函数。
它表示为 y = mx + b,其中 m 和 b 是常数,x 是变量。
以下是一些关于一次函数的重要知识点:
斜率(m):一次函数的斜率表示函数图像的倾斜程度或方向。
斜率等于直线上任意两点的纵坐标之差与横坐标之差的比值。
在一次函数的标准形式 y = mx + b 中,m 就是斜率。
截距(b):一次函数的截距表示直线与y 轴相交的点的纵坐标值,也就是当 x = 0 时,函数的值。
函数图像:一次函数的图像为一条直线。
斜率决定了直线的倾斜方向和陡峭程度,而截距决定了直线在 y 轴上的位置。
平行和垂直线:如果两条一次函数的斜率相等,它们是平行线;如果两条一次函数的乘积为 -1,它们是垂直线。
求解方程:一次函数常常用于求解方程。
例如,给定一次函数 y = 3x + 2,要求解 y = 0 时的 x 值,只需将 y 置为 0,并解方程 0 = 3x + 2,得到 x = -2/3。
函数关系:一次函数可以表示许多实际问题中的线性关系,例如速度和时间之间的关系、成本和产量之间的关系等。
通过确定斜率和截距,可以根据题目给定的条件建立一次函数模型,进而解决相关的问题。
这些是初中数学中关于一次函数的一些基本概念和应用。
通过理解和掌握这些知识点,可以帮助学生在数学学习中更好
地理解和应用一次函数的相关概念和方法。
初中生数学一次函数知识点总结9篇
初中生数学一次函数知识点总结9篇第1篇示例:初中生数学一次函数知识点总结一、一次函数的定义一次函数也称为线性函数,通常表示为y = kx + b,其中k 和b 是常数,且k 不等于0。
其中k 表示斜率,b 表示截距。
二、一次函数的图像及性质1. 一次函数的图像是一条直线,具有斜率和截距。
2. 斜率k 表示函数的增长速度,当k > 0 时,函数递增;当k < 0 时,函数递减;当k = 0 时,函数为常数函数。
3. 截距b 表示函数与y 轴的交点,当b > 0 时,函数图像在y 轴上方;当b < 0 时,函数图像在y 轴下方。
4. 一次函数的图像是一条直线,可以通过两个点确定一条直线,常用的方法有:用函数表达式求出两点,或者直接给出两个点的坐标。
三、一次函数的性质1. 一次函数是一种特殊的多项式函数,其最高次数为1。
2. 一次函数的图像永远是一条直线,不存在曲线段。
3. 一次函数的值域和定义域是所有实数。
4. 一次函数的斜率k 表示直线的倾斜程度,斜率越大,倾斜程度越大。
5. 一次函数的截距b 表示直线与y 轴的交点,也可以表示y 轴上的一个点。
四、一次函数的求解1. 求一次函数的斜率:通过函数表达式的系数k 求得斜率。
2. 求一次函数的截距:通过函数表达式的常数项b 求得截距。
3. 求一次函数的函数表达式:通过已知的点坐标和斜率求得函数方程。
4. 求一次函数的交点:当两条直线相交时,求出它们的交点坐标。
五、一次函数的应用1. 一次函数可以描述两个量的线性关系,如时间和距离的关系、价格和数量的关系等。
2. 一次函数可以用来解决实际问题,如刻画物体的直线运动、计算两直线的交点等。
3. 一次函数还可以用来描述事物的增长趋势,如人口增长问题、经济增长问题等。
初中生学习一次函数是数学学习的重要一环,通过学习和掌握一次函数的相关知识点,可以提高学生的数学素养和解决问题的能力。
希望通过以上的总结,能帮助初中生更好地理解和运用一次函数的知识。
初二数学上册知识点:一次函数
初二数学上册知识点:一次函数数学是一门重要且有趣的学科,它涵盖了广泛的知识点。
初中数学上册中,一次函数是一个重要的知识点。
本文将重点介绍一次函数的概念、特点以及相关的解题方法。
一、一次函数的概念一次函数又称为线性函数,是形如 y = kx + b 的函数,其中 k 和 b 都是常数。
在这个函数中,x 是自变量,y 是因变量。
一次函数的图像是一条直线,因此它也被称为线性函数。
一次函数的定义域是所有实数,值域也是所有实数。
我们可以通过给定的函数值和定义域中的横坐标求解一次函数的值。
二、一次函数的特点1.一次函数的图像是一条直线。
直线可以延伸到无穷远处,因此一次函数的定义域和值域都是所有实数。
2.一次函数的斜率 k 代表了直线的倾斜程度。
斜率为正表示直线上升,斜率为负表示直线下降。
斜率为零表示直线水平。
3.一次函数的截距 b 代表了直线与 y 轴的交点。
当横坐标 x=0 时,直线与 y 轴的交点就是 b。
4.一次函数的图像在坐标系中是直线对称的。
具体地说,当 (x, y) 是直线上的一点时,(-x, -y) 也是直线上的一点。
5.一次函数的图像可以通过两个点来确定。
只需要选择两个不重合的点,并将它们连接起来形成一条直线即可。
三、一次函数的解题方法在初中数学上册中,我们经常需要解决关于一次函数的问题。
以下是两个解题方法的具体步骤:方法一:利用斜率和截距1.确定一次函数的斜率 k 和截距 b。
2.如果已知一次函数的斜率和截距,求函数值时,将自变量的值代入一次函数的方程中即可。
3.如果已知一次函数的函数值和自变量的值,求斜率和截距时,可根据函数值和自变量的值列方程进行解题。
方法二:利用两点坐标1.选择两个不重合的点(x₁, y₁) 和(x₂, y₂)。
2.根据这两个点可以求出一次函数的斜率 k。
计算公式为k = (y₂ - y₁) / (x₂ -x₁)。
3.求出斜率之后,可以选择其中一个点,将该点的坐标代入 y = kx + b 求解截距 b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用考点·方法·破译1.在现实社会的生产生活中,营销策略、方案设计、工程与行程等实际间题中,往往需要运用一次函数的知识解决问题,这里关键是根据图象与表格等建立一次函数模型,结合方程与方程组,不等式与不等式组等知识使问题得到解决.经典·考题·赏析【例1】(温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销含额的2%作为奖金;B公司每月1600元的基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张l~6月份的销售额如下表:⑴小李与小张3 月份的工资各是多少?⑵小李l~6月份的销售额y1与月份x的函数关系式是y1=1200x+l0400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数关系式;⑶如果7~12月份两人的销售额也分别满足⑵中两个一次函数的关系,问几月份起小张的工资高于小李的工资.解:⑴小李3月份工资=2000+2%×14000=2280(元)小张3月份工资=1600+4%×11000=2040(元)⑵设y2=kx+b,取表中的2对数(1,7400),(2,9200)代入解析式,得740092002k bk b=+⎧⎨=+⎩,解得18005600kb=⎧⎨=⎩,即y2=1800x+5600,⑶小李的工资w1=2000+2%(1200x+10400)=24x+2208小张的工资w2=1600+4%(1800x+5600)=72x+1824当小张的工资w1>w2时,即72x+1824>24x+2208,解得x>8答:从9月份起,小张的工资高于小李的工资.【变式题组】01.(潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱的价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需要成本费2.4元.⑴若需要这种规格纸箱x(个别),请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)与x(个)的函数关系;⑵假设你是决策者,你认为应该选择哪种方案?并说明理由.【例2】(山东)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元.且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:⑴该厂对这两型挖掘机有哪几种生产方案?⑵该厂如何生产能获得最大利润?⑶根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0 ) ,该厂应该如何生产可获得最大利润?(注:利润=售价一成本)【解法指导】解:⑴设生产A型挖掘机x台,则B型挖掘机可生产(100-x)台,由题意得22400≤200x+240(100-x)≤22500,解得37.5≤x≤40,∵x取非负整数,∴x为38,39,40.∴有三种生产方案:A型38台,B型62台;A型39台,B型61台;A型40台,B型60台.⑵设获得利润W(万元),由翅意知W=50x+60(100-x)=6000-10x∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得利润最大.⑶由题意得知W=(50+m)x+60(100-x)=6000+(m-10)x.∴当0<m<10,则x=38时,W最大,即A型挖掘机生产38台,B型挖掘机生产62台;当m=10时,m-10=0,三种生产方案获得利润相等;当m>10时,则x=40时,W最大,即A型挖掘机生产40台,B型挖掘机生产60台.【变式题组】01.(天门)某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个l亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投人不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:养殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)甲鱼 1.5 2.5 0.2黄鳝 1 1.8 0.1⑴根据以上信息,该农户可以怎样安排养殖?⑵应怎样安排养殖,可获得最大收益?⑶根据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润将减少m万元.问该农户又该如何安排养殖,才能获得最大的收益?02.(成宁)某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现在将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D 两处的费用分别为每吨20元和每吨25元,从B地运往C、D两处的费用分别为每吨15元和每吨18元.设从B地运往C处的蔬菜为x吨.⑴请填写下表,并求两个蔬菜基地调运的运费相等时x的值;⑵设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;⑶经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,讨论总运费最小的调运方案.【例3】(荆州)某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份的全部销售利润,已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8 台,五月份支出包括这批器材进货款64万元和其他各项支出(即人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下右表,人员工资y1(万元)和杂项支出y2(万元)分别与总销售量x成一次函数关系(如图).⑴求y1与x的函数解析式;⑵求五月份该公司的总销售量;⑶设五月份售出甲种型号器材t台,五月份总销售利润为W(万元),求W与t的函数关系式;(销售利润=销售额-进价-其他各项支出)⑷请推测该公司这次向灾区捐款金额的最大值.【解法指导】解:⑴设y1=kx+b(x>0),则0.220 1.2bk b=⎧⎨+=⎩,解得0.050.2kb=⎧⎨=⎩,∴y1与x的函数关系式为y1=0.05x+0.2⑵依题意得y1+y2=0.05x+0.2+0.005x+0.3=3.8∴x=60∴五月份该公司的总销售量为60台.⑶设五月份售出乙型号器材p台,则售出丙型号器材(60-t-p)台.0.9t+1.2p+1.1(60-t-p)=64,p=2t-20∴W=1.2t+1.6(2t-20)+1.3(60-t-2t+20)-64-3.8W=0.5t+4.2⑷依题意有82208602208ttt t⎧⎪-⎨⎪--+⎩≥≥≥,∴14≤t≤24,∵t为正整数,∴t最大为24,∴W是关于t的一次函数,∴W随t的增大而增大.∴t=24时,W最大=0.5×24+4.2=16.2(万元)∴该公司这项向灾区捐款金额的最大值为16.2万元.【变式题组】01.(眉山)某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如下表所示:⑴求含x、y的代数式表示购进C种玩具的套数;⑵求y与x之间的函数关系式;⑶假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.①求利润P(元)与x(套)之间的函数关系式;②求利润的最大值,并写出此时三种玩具各多少套.02.(双柏县)今年我县水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.⑴假设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围.⑵设此次外销活动的利润为Q,求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.03.(河北)某公司装修需用A型板材240块、B型板材150块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得l50cm×30cm的标准板材.一张标准板材尽可能多的裁出A型、B型板材,共有下列三种裁法:(图中是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n⑴上表中,m=_________,n=___________;⑵分别求出y与x和z与x的函数关系式;⑶若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?【例4】(宜昌)2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛序幕,20日上午9时,参赛龙舟从黄陵庙同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系式如图所示.甲队在上午11时30分到达终点黄泊河港.⑴哪个队先到达终点?乙队何时追上甲队? ⑵在比赛过程中,甲、乙何时相距最远? 【解法指导】解:⑴乙队先到达终点,对于乙队,x =1时,y =16,所以y =16x ,对于甲队出发1小时后,设y 与x 关系为y =kx +b ,将x =1,y =20和x =2.5,y =35分别代入上式得:2035 2.5k b k b =+⎧⎨=+⎩,解得:y =10x +10,解方程组161010y xy x =⎧⎨=+⎩,得x =53,即出发1小时40分钟(或者上午10点40分)乙队追上甲队.⑵1小时之内,两队相距最远距离是4千米,乙队追上甲队后,两队的距离是16x -(10x +10),当x 为最大,即x =3516时,6x -10最大,此时最大距离为6×3516-10=3.125<4,所以比赛过程中,甲、乙两队在出后1小时(或者上午10时)相距最远.【变式题组】01.(佳木斯)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:⑴求乙车所行路程y与时问x的函数关系式;⑵求两车在途中第二次相遇时,他们距出发地的路程;⑶乙车出发多长时间,两车在途中第一次相遇?02.(牡丹江)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B 地,停留l小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米,下图是两车之间的距离y与乙车行驶的时间x(小时)之间的函数图象.⑴请将图中的()内填上正确的值,并直接写出甲车从A到B的行驶速度;⑵求从甲车返回到乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围;⑶求出甲车返回时行驶速度及A、B两地的距离.【例5】(自贡)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食全部转移到具有较强抗震能力的A、B两个仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨,从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨·千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8⑴若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;⑵当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?【解法指导】解:⑴依题意有:y=12×20x+10×25(100-x)+12×15(70-x)+8×20×[80-(70-x)]=-30x +39200∵700100080(70)0xxxx-⎧⎪⎪⎨-⎪⎪--⎩≥≥≥≥,∴0≤x≤70⑵上述一次函数中k=-30<0,∴y随x的增大而减小,∴当x=70吨时,总运费最省,最省的总运费为-30×70+39200=37100(元)【变式题组】01.(河北)光华农机租凭公司共有50台联合收割机,其中甲型有20台,乙型有30台,现在将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机租赁公司商定每天的租赁价格见下表:⑴设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;⑵若使农机租赁公司这50台联合收割机一天获得租金总金额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;⑶如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理的建议.02.(安庆)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县,根据灾区的情况,这批贩灾物资运往D县的数量比运往E县的数量的2倍少20吨.⑴求这批赈灾物资运往D、E两县的数量各是多少?⑵若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?⑶已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在⑵问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【例6】(荆州竞赛题)在底面积为100cm2、高为20m的长方体水槽内放入一个圆柱形烧杯(烧杯本身的质量、体积忽略不计),如图所示,向烧杯中注入流量一定....的水,注满烧杯后,继续注水,直到注满水槽为止(烧杯在水槽中的位置始终不变).水槽中水面.....上升的高度h与注水时间t之间的函数关系式如图所示.⑴求烧杯的底面积;⑵若烧杯的高为9cm,求注水的速度及注满水槽所用的时间.【解法指导】设烧杯底面积为Scm 2,高为h 1cm ,注水速度为Vcm 3/s ,注满水槽用时t 0s .⑴由图可知,当注水18s 时,烧杯刚好注满;当注水90s 时水槽内水面高恰好为h 1cm(烧杯高).于是为Sh 1=18V ,100h 1=90V ,则100h 1=118Sh 1×=90,∴S =20(cm 2),∴烧杯的底面积为20cm 2.⑵若h 1=90cm ,则V =10cm 3/s ,从而100×2010=200s .∴注水速度为10cm 3/s ,注满水槽所用时间为200s .【变式题组】01.某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q 1吨,加油飞机的加油油箱....余油量为Q 2吨,加油时间为t 分钟,Q 1、Q 2与t 之间的函数图象如图所示,结合图象回答下列问题:⑴加油飞机的加油油箱中装了多少吨油?将这些油全部加给运输机需要多少分钟? ⑵求加油过程中,运输飞机的余油量Q 1(吨)与时间t (分钟)的函数关系式;⑶运输飞机加完油后以原速度继续飞行,需要10小时到达目的地,油料是否够用呢?请你算一算,并说明理由.02.(黑龙江)某企业有甲、乙两个长方形的蓄水池,将甲池中的水以每小时6立方米的速度注人乙池,甲、乙两个蓄水池中水的深度y (米)与注水时间x (小时)之间的函数图象如图所示,结合图象回答下列问题:⑴分别求出甲、乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式; ⑵求注水多长时间甲、乙两个蓄水池中水的深度相同;⑶求注多长时间甲、乙两个蓄水池的蓄水量相同.03.(绥化)因南方早情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库即以管道运输的方式给予支援,下图是两水库的蓄水量y(万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:⑴甲水库每天的放水量是多少万立方米?⑵在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?⑶求直线AD的解析式.演练巩固反馈提高01.如图,把一次性纸杯整齐的叠放在一起,根据图中的信息,当一筒纸杯的高度为35cm时,则该筒纸杯有()A.40个B.45个C.50个D.55个02.王老师组织学生举行了一次手抄报活动,最后把十名优秀者的手抄报粘合在一起,在教室里展出.如图,知每张报纸长为38cm,宽为28cm,粘合部分的纸为2cm宽,则这10张报纸粘合后的长度为( )A .360cmB .362cmC .364cmD .380cm 03.(朝阳)如图是小明从学校到家里行进的路程S (米)与时间t (分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走的快,其中正确的有_________(填序号)04.(嘉兴)沪杭高速铁路已开工建设,某校研究性学习以此为课题,在研究列车的行驶速度时,得到一个数学问题,如图,若v 是关于t 的函数,图象为折线O —A —B —C ,其中A (t 1,350),B (t 2,350),C (1780,0),四边形OABC 的面积为70,则t 2-t 1=( )A .15B .316C .780D .3116005.(黄冈)小高从家门口骑车去单位上班,先走平路到达A ,再走上坡路到达B ,最后走下坡路到达工作单位,所用的时间与路程关系如图所示,下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A .12分钟B .15分钟C .25分钟D .27分钟 06.(宁波)如图,某电信公司提供了A 、B 两种方案的移动通信费用y (元)与通话时间x (分)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分钟,则A 方案比B 方案便宜20元B .若通话时间少于200分钟,则B 方案比A 方案便宜12元C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用差10元,则通话时间是145分或185分07.(贵州黔东南州)如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程S (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是()A.乙比甲先到终点B.乙测试的速度随时间增大而增大C.比赛进行到29.4秒时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快08.(长春)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树,设甲班植树的总量为y甲(裸),乙班植树的总蚤为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y甲、y乙分别与x之间的部分函数图象如图所示.⑴当0≤x≤6时,分别求y甲、y乙与x之间的函数关系式;⑵如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵;⑶如果6个小时以后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束,当x=8时,两班之间植树的总量相差20裸,求乙班增加人数后平均每小时植树多少裸.09.某服装厂现有A种布料35m,B种布料26m,现计划用这两种布料生产男、女两款式的时装共40套.已知做一套男时装需要A种布料0.6m、B种布料0.9m,可获利90元;做一套女时装需要A种布料1.lm,B种布料0.4m,可获利100元,若设生产男时装套数为x套,用这批布料生产这两种时装所获得总利润为y元.⑴求y与x的函数关系式,并求出x的取值范围;⑵该服装厂生产这批服装中,当生产男时装多少套时,所获得利润最大?最大利润是多少元?10.(江苏无锡)某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.⑴写出x与y满足的关系式;⑵为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?11.(深圳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部门发现:l名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.⑴每名熟练工和新工人每月分别可安装多少辆电动汽车?⑵如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种...新工人的招聘方案?⑶在⑵的条件下:工厂给安装电动汽车的每名熟练工每月发2000元的工资.给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?12.(河北)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机软61000元,设购进A型手机x部,B款手机y部.三款手机的进价和预售价如下表:⑴用含x,y的式子表示购进C型手机的部数;⑵求出y与x之间的函数关系式;⑶假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额一购机款一各种费用)②求预估利润的最大值,并写出此时购进三款手机各多少部.。