平面向量应用举例(必修4)学生版

合集下载

人教版高数必修四第6讲:平面向量的概念及线性运算(学生版)

人教版高数必修四第6讲:平面向量的概念及线性运算(学生版)

平面向量的基本概念与线性运算____________________________________________________________________________________________________________________________________________________________________1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.一、平面向量的概念:1、平面向量:________________________________________________________2、向量的模长:________________________________________________________3、零向量:____________________________________________________________4、单位向量:__________________________________________________________5、平行向量:_________________________________________________________6、相等向量:_________________________________________________________7、相反向量:__________________________________________________________二、平面向量的基本运算:一般地,λa+μb叫做a,b的一个线性组合(其中λ,μ均为系数).如果l =λa+μb,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC u u u r 叫做位移AB u u u r与位移BC u u u r 的和,记作____________________2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD u u u r =BC u u ur ,根据三角形法则得AB u u u r +AD u u u r=________________________平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =u u u r OA ,b =u u u rOB ,则()= OA OB OA OB OA BO BO OA BA -=+-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .即(7.2)观察图7-13可以得到:起点相同的两个向量a 、b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.图7-7ACBaba +bab图7-9A一般地,实数λ与向量a的积是一个向量,记作λa,它的模为||||||aaλ=λ(7.3)若||λ≠a0,则当λ>0时,λa的方向与a的方向相同,当λ<0时,λa的方向与a的方向相反.由上面定义可以得到,对于非零向量a、b,当0λ≠时,有λ⇔=a b a b∥(7.4)一般地,有0a= 0, λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a, b及任意实数λμ、,向量数乘运算满足如下的法则:()()111=-=-a a a a , ;()()()()2a a aλμλμμλ== ;()()3a a aλμλμ+=+ ;()()a b a bλλλ+=+4 .题型1平面向量的基本概念例1给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a|=|b|,则a=b;③若AB→=DC→,则A、B、C、D四点构成平行四边形;④在ABCD中,一定有AB→=DC→;⑤若m=n,n=p,则m=p;aAa-bBbO图7-13⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号)例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA u u u r相等的向量; (2)找出向量DC u u u r的负向量;(3)找出与向量AB u u u r平行的向量.练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出 (1)与EF u u u r 相等的向量;(2)与AD u u u r共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC u u u r 相等的向量; (2)OC u u u r 的负向量; (3)与OC u u u r题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.练习:1. 如图,已知a ,b ,求a +b .2.填空(向量如图F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 ADCB图7-5Obbaa(1)(2)第1题图所示):(1)a +b =_____________ , (2)b +c =_____________ , (3)a +b +c =_____________ . 3.计算:(1)AB u u u r+BC u u u r +CD u u u r ; (2)OB u u u r +BC u u u r +CA u u u r .例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .练习:1.填空:(1)AB u u u r AD -u u u r=_______________,(2)BC u u u r BA -u u u r=______________, (3)OD u u u r OA -u u u r=______________.2.如图,在平行四边形ABCD 中,设AB u u u r = a ,AD u u u r= b ,试用a , b 表示向量AC u u u r 、BD u u u r 、DB u u u r.例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB u u u r =a ,AD u u u r=b ,试用a , b 表示向量AO u u u r 、OD u u u r.练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).BbOaAba(1)(2)图7-142.设a , b 不共线,求作有向线段OA u u u r ,使OA u u u r =12(a +b ).例7 平行四边形OADB 的对角线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.练习:练习:在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.题型3 共线向量例8 设两个非零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线. 题型4 向量共线的应用例4 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.练习:如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.一、选择题1.在下列判断中,正确的是( ) ①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等; ④单位向量都是同方向; ⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤D .①③⑤2.向量(AB →+MB →)+(BO →+BC →)+OM →等于( ) A .BC → B .AB → C .AC →D .AM →3.若a 、b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同4.已知下列各式:①AM →+MB →+BA →;②AB →+CA →+BD →+DC →;③OA →+OC →+BO →+CO →.其中结果为零向量的个数为( )A .0B .1C .2D .3二、填空题5.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是________. 6.如图所示,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+BC →=________.三、解答题7.如图所示,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1)分别写出AO →,BO →相等的向量; (2)写出与AO →共线的向量; (3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等?8.梯形ABCD 中,AB ∥CD ,AB =2CD ,M 、N 分别是CD 和AB 的中点,若AB =a ,AD =b ,试用a 、b 表示BC 和MN ,则BC =________,MN =______._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.把平面上一切单位向量平移到共同始点,那么这些向量的终点构成的图形是( ) A .一条线段 B .一段圆弧 C .两个孤立的点D .一个圆2.把所有相等的向量平移到同一起点后,这些向量的终点将落在( ) A .同一个圆上 B .同一个点上 C .同一条直线上 D .以上都有可能4.有下列说法:①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量; ④共线向量一定在同一直线上. 其中,正确说法的个数是( ) A .0 B .1 C .2D .35.下列说法错误的是( )A .作用力与反作用力是一对大小相等、方向相反的向量B .向量可以用有向线段表示,但有向线段并不是向量C .只有零向量的模等于0D .零向量没有方向6.如图所示,圆O 上有三点A 、B 、C ,则向量BO →、OC →、OA →是( ) A .有相同起点的相等向量 B .单位向量 C .模相等的向量 D .相等的向量9.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a ⊥b C .|a |=|b |D .以上都不对 10.△ABC 中,D 、E 、F 分别是边AB 、BC 、AC 的中点,则下面结论正确的是( )A .AE →=AD →+F A →B .DE →+AF →=0C .AB →+BC →+CA →≠0D .AB →+BC →+AC →≠012.在四边形ABCD 中,AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形 C .正方形 D .平行四边形二、填空题12.若D 、E 、F 分别是△ABC 的三边AB 、BC 、AC 的中点,则与向量EF →相等的向量为________. 16.根据右图填空: b +c =________; a +d =________; b +c +d =________; f +e =________; e +g =________.三、解答题17.某人从A 点出发,向东走到B 点,然后,再向正北方向走了60m 到达C 点.已知|AC →|=120m ,求AC →的方向和A 、B 的距离.18.两个力F 1和F 2同时作用在一个物体上,其中F 1=40N ,方向向东,F 2=403N ,方向向北,求它们的合力.能力提升一、选择题1.若a 为任一非零向量,b 为其单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b . 其中正确的是( )A .①④⑤B .③C .①②③⑤D .②③⑤2.如图四边形ABCD 、CEFG 、CGHD 都是全等的菱形,则下列关系不一定成立的是( )A .|AB →|=|EF →| B .AB →与FH →共线C .BD →=EH → D .DC →与EC →共线3.如图所示,在菱形ABCD 中,∠BAD =120°,则下列说法中错误的是()A .图中所标出的向量中与AB →相等的向量只有1个(不含AB →本身)B .图中所标出的向量中与AB →的模相等的向量有4个(不含AB →本身)C .BD →的长度恰为DA →长度的3倍D .CB →与DA →不共线4.四边形ABCD 中,若AB →与CD →是共线向量,则四边形ABCD 是( )A .平行四边形B .梯形C .平行四边形或梯形D .不是平行四边形也不是梯形1.已知向量a 表示“向东航行1km ”向量b 表示“向南航行1km ”则a +b 表示( )A .向东南航行2kmB .向东南航行2kmC .向东北航行2kmD .向东北航行2km2.在平行四边形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,BD →=d ,则下列各式中不成立的是( )A .a +b =cB .a +d =bC .b +d =aD .|a +b |=|c |3.已知正方形ABCD 的边长为1,AB →=a 、BC →=b 、AC →=c ,则|a +b +c |等于( )A .0B .3C . 2D .2 2 4.下列命题中正确的个数为( )①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.A .0B .1C .2D .3二、填空题5.若|AB →|=|AD →|,且BA →=CD →,则四边形ABCD 的形状为________.6.已知A 、B 、C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.已知|OA →|=|a |=3,|OB →|=|b |=3,∠AOB =90°,则|a +b |=________.6.已知在菱形ABCD 中,∠DAB =60°,若|AB →|=2,则|BC →+DC →|=________.三、解答题8.一位模型赛车手摇控一辆赛车,沿直线向正东方向前行1m ,逆时针方向旋转α度,继续沿直线向前行进1m ,再逆时针旋转α度,按此方法继续操作下去.(1)按1100的比例作图说明当α=60°时,操作几次赛车的位移为零.(2)按此法操作使赛车能回到出发点,α应满足什么条件?请写出其中两个.9.如图所示,在△ABC 中,D 、E 、F 分别是AB 、BC 、CA 边上的点,已知AD →=DB →,DF →=BE →,试推断向量DE →与AF →是否为相等向量,说明你的理由.7.如图所示,在△ABC 中,P 、Q 、R 分别为BC 、CA 、AB 边的中点,求证AP →+BQ →+CR →=0.8.轮船从A 港沿东偏北30°方向行驶了40n mile(海里)到达B 处,再由B 处沿正北方向行驶40n mile 到达C 处.求此时轮船关于A 港的相对位置.9.已知下图中电线AO 与天花板的夹角为60°,电线AO 所受拉力F 1=24N ;绳BO 与墙壁垂直,所受拉力F 2=12N.求F 1和F 2的合力.。

人教A版数学必修四2.5 平面向量应用举例.docx

人教A版数学必修四2.5 平面向量应用举例.docx

2.5 平面向量应用举例班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课后练习·练习案♒♒♒♒♒♒♒基础过关1.已知两个力,的夹角为90°,它们的合力大小为10N,合力与的夹角为60°,那么的大小为A. B.5N C.10N D.2.一个人骑自行车的速度为v1,风速为v2,则逆风行驶的速度的大小为A.v1-v2B.v1+v2C.|v1|-|v2|D.3.(2012·安徽省合肥一中质检)过△ABC内部一点M任作一条直线EF,AD⊥EF于D,BE ⊥EF于E,CF⊥EF于F,都有++=0,则点M是△ABC的()A.三条高的交点B.三条中线的交点C.三边中垂线的交点D.三个内角平分线的交点4.用两条成120°角的等长的绳子悬挂一个灯具,如图,已知灯具的重力为10N,则每根绳子的拉力大小是____.5.如图所示,若D是△ABC内的一点,且AB2-AC2=DB2-DC2,求证:AD⊥BC.6.在四边形ABCD中,对角线AC、BD交于点O,且||=||=1,+=+=0,cos∠DAB=.求|+|与|+|的值.7.某人骑车以速度a向正东行驶,感到风从正北方向吹来,而当速度为2a时,感到风从东北方向吹来,试求实际风速的大小和方向.8.(2012·湖南省衡阳一中模考)如图,在△ABC中,·=0, ||=8,||=6,l为线段BC 的垂直平分线,l与BC交于点D,E为l上异于D的任意一点.(1)求·的值;(2)判断·的值是否为一个常数,并说明理由.能力提升1.根据指令(r,θ)(r≥0,−180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(按逆时针方向旋转θ为正,按顺时针方向旋转θ为负),再朝其面对的方向沿直线行走距离r.(1)机器人位于直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点(4,4).(2)机器人在完成(1)中指令后,发现在点(17,0)处有一小球正向坐标原点作匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问:机器人最快可在何处截住小球?并给出机器人截住小球所需的指令取.2.如图,已知扇形OAB的周长2+,面积为,并且.(1)求的大小;(2)如图所示,当点C在以O为圆心的圆弧上变动.若其中、,求的最大值与最小值的和;(3)若点C、D在以O为圆心的圆上,且.问与的夹角取何值时,的值最大?并求出这个最大值.2.5 平面向量应用举例详细答案【基础过关】1.A2.C3.B【解析】本题主要考查向量的几何意义.根据特殊位置法,可以判断,当直线EF经过C点时,++=0即为+=0,于是||=||,EF即为AB边上的中线,同理,当EF经过A点时,EF是BC边上的中线,因此,点M是△ABC的三条中线的交点,故选B.4.10N5.设=a,=b,=e,=c,=d,则a=e+c,b=e+d,所以a2-b2=(e+c)2-(e+d)2=c2+2e·c-2e·d-d2.由已知可得a2-b2=c2-d2,所以c2+2e·c-2e·d-d2=c2-d2,所以e·(c-d)=0.因为=+=d-c,所以·=e·(d-c)=0,所以⊥,即AD⊥BC.6.如图,在四边形ABCD中,∵+=+=0,∴=,=.∴四边形ABCD为平行四边形.又||=||=1,∴四边形ABCD为菱形.∵cos∠DAB=,∠DAB∈(0,π),∴∠DAB=,∴△ABD为正三角形.∴|+|=|+|=||=2||=.|+|=||=||=1.【解析】本题主要利用向量的几何意义,求解平面几何和三角形的问题.解决此类问题,首先要注意向量与几何的内在联系,并利用向量的线性运算、相等向量、共线向量等概念求解.7.设实际风速为v,由题意可知,此人以速度a向正东行驶时,感到的风速为v-a,当速度为2a时感到的风速为v-2a.桑水如图所示,设 =-a, =-2a, =v,∵ + = ,∴ =v-a,这就是速度为a 时感到的由正北方向吹来的风速, ∵ + = ,∴=v-2a,这就是速度为2a 时感到的由东北方向吹来的风速, 由题意知∠PBO=45°, PA ⊥BO,BA=AO, ∴△POB 为等腰直角三角形,∴∠APO=45°,| | =|| = |a|,即|v|= |a|. ∴实际风速的大小是 |a|,为西北风.8.(1)以点D 为坐标原点,BC 所在直线为x 轴,l 所在直线为y 轴建立直角坐标系,则D(0,0),B(-5,0),C(5,0),A( ,),此时 =(- ,-), =(-10,0), 所以 ·=-×(-10)+(-)×0=14. (2)设点E 的坐标为(0,y)(y≠0),此时=(-,y-), 所以 · =-×(-10)+(y-)×0=14为常数,故 ·的值是一个常数. 【解析】本题考查向量在几何中的应用,采用了向量的坐标表示.解题的关键是建立适当的直角坐标系,写出相应点的坐标,代入数量积公式.求平面向量数量积的步骤:首先求a 与b 的夹角θ,θ∈[0°,180°],再分别求|a|,|b|,然后再求数量积,即a·b=|a||b|cos θ.若知道向量的坐标a=(x 1,y 1),b=(x 2,y 2),则a·b=x 1x 2+y 1y 2. 【能力提升】1.解:(1)如图,设点()4,4A ,所以42OA =,因为OA 与x 轴正方向的夹角为45,所以42,45r θ==,故指令为()42,45(2)设()17,0B ,机器人最快在点(),0P x 处截住小球, 由题意2PB AP =,得()()22172404x x -=-+-,整理得2321610x x +-=, 即()()73230x x -+=,所以7x =或233x =-(舍), 即机器人最快可在点()7,0P 处截住小球.设OA 与AP 的夹角为θ,因为()()5,4,4,3,4AP OA AP ===-.桑水2cos cos818710OA AP OA APθ⋅==-=-⋅,所以18081.8798.13θ=-=又5AP =,OA 旋转到AP 是顺时针旋转,所以指令为()5,98.13-. 2.(1)设扇形半径为 ,圆心角由得或又当,时,不成立; 当 ,时,成立, 所以(2)如图所示,建立直角坐标系,则A (1,0),B,C .由得,. 即. 则又,则,故.(3)由题可知,当且即时【解析】本试题主要考查三角函数与平面向量的综合运用.建立适当的坐标系,将几何问题转化为代数问题,运用向量的数量积的坐标来求解运算.。

新人教版必修四2.5平面向量应用举例

新人教版必修四2.5平面向量应用举例

【思考】日常生活中,我们有时要用同样长的两根绳子挂 一个物体(如图).如果绳子的最大拉力为F,物体受到的重
No 力为G。你能否用向量的知识分析绳子受到的拉力F1的大
小与两绳之间的夹角θ的关系?
Image
2.为何值时F, 1 最小,最小值是多少
No 3 . 为何值时 F1 , G?
Image
小结: 一、用向量方法解决平面几何问题的
No “三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及 的几何元素,将平面几何问题转化为向量问题;
Image (2)通过向量运算,研究几何元素之间的关系,如距离、
夹角等问题;
(3)把运算结果“翻译”成几何元素。
二、用向量中的有关知识研究物理中的相关问题, 步骤如下
邻边长度之间有何关系?
A
B
2.类比猜想,平行四边形有相似关系吗?
例1、证明平行四边形四边平方和等于两对角线平方和
已知:平行四边形ABCD。
D
求证: A 2 B 2 C 2 D 2 A A 2 C B 2D
No 分析:因为平行四边形对边平行且相
等,故设 ABa,A其D 它线b段对应向
No 2.5平面向量应用举例 Image 2.5.1平面几何的向量方法
2.5.2 向量在物理中的应用举例
平面几何中的向量方法
No 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几
何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的 线性运算及数量积表示出来,因此,利用向量方法可以解决平面几 何中的一些问题。
A
量用它们表示。
C B
解:设 ABa,A,D则b
B C b ,D a A ,A C a b ;D a B b

人教版高中数学必修四平面向量应用举例课件 (4)

人教版高中数学必修四平面向量应用举例课件 (4)
F1+F2+G=0.
思考4:假设两只手臂的拉力大小相等,夹角为θ,那么|F1|、|G|、θ之间的关系如何?
思考5:上述结论表明,若重力G一定,则拉力的大小是关于夹角θ的函数.在物理学背景下,这个函数的定义域是什么?单调性如何?
θ∈[0°,180°)
思考6:|F1|有最大值或最小值吗?|F1|与|G|可能相等吗?为什么?
1
2
3
4
4.已知直线l1:3x+y-2=0与直线l2:mx-y+1=0的夹角为45°,求实数m的值.解 设直线l1,l2的法向量为n1,n2,则n1=(3,1),n2=(m,-1).
1
2
3
4
整理得:2m2-3m-2=0,
呈重点、现规律
1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.
例1 已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D、E、F分别为边BC、CA、AB的中点.(1)求直线DE、EF、FD的方程;
∴(-2)×(x+1)-(-2)×(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.
①y=kx+b的方向向量v=(1,k),法向量为n=(k,-1).②Ax+By+C=0(A2+B2≠0)的方向向量v=(B,-A),法向量n=(A,B).
2.5.2 向量在物理中的应用举例
2.5 平面向量应用举例
第二章 平面向量
问题提出
1.用向量方法解决平面几何问题的基本思路是什么?

2021届高三数学一轮复习 第10讲 平面向量的数量积及应用举例 - (学生版)

2021届高三数学一轮复习  第10讲  平面向量的数量积及应用举例 - (学生版)

第3讲 平面向量的数量积及应用举例【知识归纳】1.向量的夹角定义图示范围共线与垂直 已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是 0°≤θ≤180°若θ=0°,则a 与b同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直定义设两个非零向量a ,b 的夹角为θ,则数量|a||b |·cos__θ叫做a 与b 的数量积,记作a·b投影 |a |cos__θ叫做向量a 在b 方向上的投影, |b |cos__θ叫做向量b 在a 方向上的投影几何 意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos__θ的乘积(1)a·b =b·a ;(2)(λa )·b =λ(a·b )=a ·(λb ); (3)(a +b )·c =a·c +b·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 几何表示 坐标表示模 |a |=a·a |a|=x 21+y 21夹角 cos θ=a·b|a||b|cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a·b =0x 1x 2+y 1y 2=0判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) [教材衍化]1.(必修4P108A 组T 6改编)已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( )A .12B .6C .33D .32.(必修4P105例4改编)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =________. 3.(必修4P106练习T3改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.[易错纠偏](1)没有找准向量的夹角致误;(2)不理解向量的数量积的几何意义致误; (3)向量的数量积的有关性质应用不熟练致误.1.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a ·b +b ·c +a ·c =________. 2.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.3.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于________. 【典例剖析】一、平面向量数量积的运算【例1】1 .(2018·全国Ⅱ)已知向量a ,b 满足|a |=1,a·b =-1,则a ·(2a -b )等于( ) A .4 B .3 C .2 D .02.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.3.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 34.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43 D .-1【互动探究】 (变问法)在本例(4)的条件下,若D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于________.【针对练习】 1.(2020·宁波质检)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( ) A.89 B.109 C.259 D.2692.(2020·浙江名校协作体试题)已知在△ABC 中,AB =3,BC =7,AC =2,且O 是△ABC 的外心,则AO →·AC →=________,AO →·BC →=________.3.(2020·杭州中学高三月考)若A ,B ,C 三点不共线,|AB →|=2,|CA →|=3|CB →|,则CA →·CB →的取值范围是( )A.⎝⎛⎭⎫13,3B.⎝⎛⎭⎫-13,3C.⎝⎛⎭⎫34,3D.⎝⎛⎭⎫-34,34.(2020·浙江名校联盟联考)已知在△ABC 中,AB =4,AC =2,AC ⊥BC ,D 为AB 的中点,点P 满足AP →=1a AC →+a -1a AD →,则P A →·(PB →+PC →)的最小值为( )A .-2B .-289C .-258D .-725.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.二、平面向量的夹角与模(高频考点) 角度一 求两向量的夹角【例2】 (2020·绍兴一中高三期中)若|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6【例3】若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.【例4】(2020·嘉兴质检)已知|c |=2,向量b 满足2|b -c |=b ·c .当b ,c 的夹角最大时,求|b |的值.【针对练习】 (1)(2020·浙江高考适应性考试)若向量a ,b 满足|a |=4,|b |=1,且(a +8b )⊥a ,则向量a ,b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6(2)(2020·浙江金华名校统考)已知向量a ,b 是夹角为π3的单位向量,当实数λ≤-1时,向量a 与向量a +λb 的夹角的取值范围是( ) A.⎣⎡⎭⎫0,π3 B.⎣⎡⎭⎫π3,2π3 C.⎣⎡⎭⎫2π3,π D.⎣⎡⎭⎫π3,π(3)(2020·温州“十五校联合体”联考)已知向量a ,b 的夹角为θ,|a +b |=6,|a -b |=23,则θ的取值范围是( )A .0≤θ≤π3 B.π3≤θ<π2 C.π6≤θ<π2 D .0<θ<2π3角度二 求向量的模【例5】 (1)已知向量a ,b 满足|a |=1,|b |=2,且a -b =(3,2),则|2a -b |等于( ) A .2 2 B.17 C.15 D .2 5(2)(2020·浙江五校联考)如图,已知在平行四边形ABCD 中,E ,M 分别为DC 的两个三等分点,F ,N 分别为BC 的两个三等分点,且AE →·AF →=25,AM →·AN →=43,则|AC →|2+|BD →|2等于( )A .45B .60C .90D .180(3)(2017·浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.(4)(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A.3-1B.3+1 C .2 D .2- 3【针对练习】(1)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1,则( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定(2)(2020·丽水、衢州、湖州三地市质检)已知向量a ,b 满足|a -b |=|a +3b |=2,则|a |的取值范围是________.(3)(2020·杭州质检)记M 的最大值和最小值分别为M max 和M min .若平面向量a ,b ,c 满足|a |=|b |=a ·b =c ·(a +2b -2c )=2.则( )A .|a -c |max =3+72B .|a +c |max =3+72 C .|a -c |min =3+72 D .|a +c |min =3+72.角度三 两向量垂直问题【例6】 已知|a |=4,|b |=8,a 与b 的夹角是120°.求k 为何值时,(a +2b )⊥(k a -b )?角度四 求参数值或范围【例7】 已知△ABC 是正三角形,若AC →-λAB →与向量AC →的夹角大于90°,则实数λ的取值范围是________.【规律方法】(1)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系;②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22;(2)求向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量模的运算转化为数量积运算. ②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.【针对练习】 1.(2020·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.三、向量数量积的综合应用【例8】 (2020·金华十校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【针对练习】1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎫sin A 2,cos A 2,n =⎝⎛⎭⎫cos A 2,-cos A 2,且2m ·n +|m |=22,则∠A =________.2.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值.四、平面向量中的最值范围问题【例10】 (1)(2020·杭州市高三模拟)在△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54B.154C.174D.174(2)(2020·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]【针对练习】1.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是__________.2.(2020·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.五、平面向量的综合运用 一、平面向量在平面几何中的应用【例11】 (1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心(2)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.二、平面向量与函数、不等式的综合应用【例12】 (1)设θ是两个非零向量a ,b 的夹角,若对任意实数t ,|a +t b |的最小值为1,则下列判断正确的是( )A .若|a |确定,则θ唯一确定B .若|b |确定,则θ唯一确定C .若θ确定,则|b |唯一确定D .若θ确定,则|a |唯一确定(2)(一题多解)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为________.三、平面向量与解三角形的综合应用【例13】 已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .四、平面向量与解析几何的综合应用【例14】 (1)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________.(2)已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB →=3F A →,则此双曲线的离心率为________.【精品练习】1.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC →等于( )A .-2B .2C .0D .2或-22.(2020·温州市十校联合体期初)设正方形ABCD 的边长为1,则|AB →-BC →+AC →|等于( )A .0 B.2 C .2 D .2 23.(2020·温州市十校联合体期初)已知平面向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),且a ·c >0,b ·c >0.( )A .若a·b <0则x >0,y >0B .若a·b <0则x <0,y <0C .若a·b >0则x <0,y <0D .若a·b >0则x >0,y >04.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形5.已知正方形ABCD 的边长为2,点F 是AB 的中点,点E 是对角线AC 上的动点,则DE →·FC →的最大值为( )A .1B .2C .3D .46.(2020·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎡⎦⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎡⎦⎤π3,2π3 B.⎣⎡⎦⎤2π3,5π6 C.⎣⎡⎭⎫2π3,π D.⎣⎡⎭⎫5π6,π7.(2020·温州市十校联合体期初)已知平面向量a 与b 的夹角为120°,且|a |=|b |=4,那么|a -2b |=________.8.(2020·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.9.如图,在边长为2的正方形ABCD 中,点Q 为边CD 上一个动点,CQ →=λQD →,点P 为线段BQ (含端点)上一个动点.若λ=1,则P A →·PD →的取值范围为________.10.(2020·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x ,1).(1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.12.(2020·金华市东阳二中高三月考)设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,已知b 2-2b +c 2=0,求BC →·AO →的取值范围.13.(2020·嘉兴市高考模拟)已知平面向量a ,b 满足|a |=|b |=1,a ·b =12,若向量c 满足|a -b +c |≤1,则|c |的最大值为( )A .1 B.2 C. 3 D .214.(2020·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |= ( )A.255B.223 C .1 D.5215.(2020·瑞安市龙翔高中高三月考)向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①若m ∥n ,则tan x =________;②若m 与n 的夹角为π3,则x =________.16.(2020·宁波市余姚中学高三期中)已知向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,OP →=λOA →+μOB →.若λ+3μ=2,则|OP →|的最小值是________,此时OP →,OA →夹角的大小为________.第 11 页 共 11 页 17.(2020·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,求(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值.18.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC=θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎡⎦⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.。

数学必修四课件 2.5 平面向量应用举例

数学必修四课件 2.5 平面向量应用举例

• 【点评】本题关键是理解共点力平衡的特点, 在共点力的作用下处于平衡状态时,那么其中 的任何一个力必定与其他力的合力大小相等, 方向相反.
用力 F 推动一物体沿直线运动 s m,设力 F 与 物体运动方向的夹角为 θ,则力 F 对物体所做的功为( A.|F|s C.Fssin θ B.Fscos θ D.|F|scos θ )
• 【解题探究】在三个共点力的作用下处于平衡 状态,那么其中的任何一个力必定与其他力的 合力大小相等,方向相反,求出F1,F2的合 力,再与F3合成即可,此时它们间的夹角为 120°. • 【答案】B • 【解析】根据共点力平衡的特点可知,F1,F2 的合力与F3大小相等,方向相反.当把F3的方 向在同平面内旋转60°时,就相当于计算两个 大小相等的力,在夹角为120°时的合力的大 小.根据平行四边形法则可知,此时合力的大 小为|F3|.故选B.
• 【答案】D • 【解析】力对物体所做的功等于力向量与位移向量的 数量积,由向量的数量积的知识可知D正确.
利用向量判断平面图形形状时的误区 → → → →2 【示例】在△ABC 中,(BC+BA)· AC=|AC| ,则△ABC 的 形状一定是( ) B.等腰三角形 D.等腰直角三角形
பைடு நூலகம்
A.等边三角形 C.直角三角形
• 2.用向量方法解决平面几何问题的“三步曲”
向量 向量问题 运算
• 1.想一想 • 船逆水行驶的实际速度,可看作向量怎样的运 算? • 【解析】可看作船的静水速度(向量ν1)与水流速 度(向量ν2)的和运算,即ν1+ν2.
2.判一判(判断下列说法的正误) → → (1)若△ABC 是直角三角形,则有AB· BC=0.( → → (2)若AB∥CD,则直线 AB 与 CD 平行.(

人教版高中数学高一A版必修4学案 平面向量应用举例

人教版高中数学高一A版必修4学案 平面向量应用举例

2.5 平面向量应用举例问题导学一、向量在平面几何中的应用活动与探究1如图所示,若D是△ABC内的一点,且AB2-AC2=DB2-DC2.求证:AD⊥BC.迁移与应用如图,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,M为CE的中点,用向量的方法证明:(1)DE∥BC;(2)D,M,B三点共线.(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等.二、向量在物理中的应用活动与探究2在风速为75(6-2)km/h的西风中,飞机以150 km/h的航速向西北方向飞行,求没有风时飞机的航速和航向.迁移与应用如图,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1.求:(1)|F1|,|F2|随角θ的变化而变化的情况;(2)当|F1|≤2|G|时,角θ的取值范围.向量在物理学中的应用一般涉及力或速度的合成与分解,充分借助向量平行四边形法则把物理问题抽象转化为数学问题.同时该类题目往往涉及三角形问题,能够正确作图是解决问题的关键.当堂检测1.若向量1OF =(2,2),2OF =(-2,3)分别表示两个力F 1,F 2,则|F 1+F 2|为( ) A .(0,5) B .(4,-1) C .2 2 D .52.在四边形ABCD 中,若AB +CD =0,AC ·BD =0,则四边形为( ) A .平行四边形 B .矩形 C .等腰梯形 D .菱形3.坐标平面内一只小蚂蚁以速度ν=(1,2)从点A (4,6)处移动到点B (7,12)处,其所用时间长短为( )A .2B .3C .4D .84.在△ABC 中,若∠C =90°,AC =BC =4,则BA ·BC =__________. 5.已知力F =(2,3)作用于一物体,使物体从A (2,0)移动到B (-2,3),则力F 对物体所做的功为________.答案:课前预习导学 【预习导引】 1.向量 2.加3.向量 向量问题 数量积预习交流 提示:所选择基向量的长度和夹角应该是已知的. 课堂合作探究 【问题导学】活动与探究1 思路分析:解答本题可先表示出图中线段对应的向量,找出所给等式所蕴含的等量关系,再利用它计算所需向量的数量积.证明:设AB =a ,AC =b ,AD =e ,DB =c ,DC =d ,则a =e +c ,b =e +d . ∴a 2-b 2=(e +c )2-(e +d )2=c 2+2e ·c -2e ·d -d 2. 由已知a 2-b 2=c 2-d 2,∴c 2+2e ·c -2e ·d -d 2=c 2-d 2,即e ·(c -d )=0. ∵BC =BD +DC =d -c ,∴AD·BC=e·(d-c)=0.∴AD⊥BC,即AD⊥BC.迁移与应用证明:以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系.令|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形.∴可求得各点坐标分别为:E(0,0),B(1,0),C(0,1),D(-1,1),A(-1,0).(1)∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.(2)连接MB,MD,∵M为EC的中点,∴M1 0,2⎛⎫ ⎪⎝⎭,∴MD=(-1,1)-10,2⎛⎫⎪⎝⎭=11,2⎛⎫- ⎪⎝⎭,MB=(1,0)-10,2⎛⎫⎪⎝⎭=11,2⎛⎫-⎪⎝⎭.∴MD=-MB,∴MD∥MB.又MD与MB有公共点M,∴D,M,B三点共线.活动与探究2思路分析:解本题首先根据题意作图,再把物理问题转化为向量的有关运算求解.解:设ω=风速,v a=有风时飞机的航行速度,νb=无风时飞机的航行速度,νb=νa-ω.如图所示.设|AB |=|νa |,|CB |=|ω|,|AC |=|νb |, 作AD ∥BC ,CD ⊥AD 于D ,BE ⊥AD 于E , 则∠BAD =45°.设|AB |=150,则|CB |=2)-.∴|CD |=|BE |=|EA |=|DA |=从而|AC |=CAD =30°.∴|νb |=km/h ,方向为北偏西60°.迁移与应用 解:(1)由力的平衡及向量加法的平行四边形法则得G =F 1+F 2,|F 1|=cos θG,|F 2|=|G |tan θ,当θ从0°趋向于90°时,|F 1|,|F 2|都逐渐增大.(2)令|F 1|=cos θG ,由|F 1|≤2|G |得 cos θ≥12. 又因为0°≤θ<90°,所以0°≤θ≤60°.【当堂检测】1.D 解析:|F 1+F 2|=|1OF +2OF | =|(2,2)+(-2,3)|=|(0,5)|=5.2.D 解析:∵AB ∥CD ,|AB |=|CD |,且AC ⊥BD , 故四边形为菱形. 3.B 解析:|ν|=12+22=5,又|AB |=(7-4)2+(12-6)2=45,∴时间t =455=3. 4.16 解析:由∠C =90°,AC =BC =4,知△ABC 是等腰直角三角形, ∴BA =42,∠ABC =45°,∴BA ·BC =42×4×cos 45°=16.5.1 解析:W =F·s =F ·AB =(2,3)·(-4,3)=。

【9】平面向量应用举例--平面几何中的向量方法(学生版)

【9】平面向量应用举例--平面几何中的向量方法(学生版)

数学必修4 编号 9 编制人:高一数学备课组 班级___组别___ 姓名_______学号________课题:平面向量应用举例-----平面几何中的向量方法【学习目标】1.熟练掌握向量的线性及数量积运算;2.会用向量方法解决某些简单的平面几何问题.【重、难点】培养数学建模、数形结合的思想.【知识回顾】1. 两个向量的数量积:. cos |||| θb a ba =⋅2. 平面两向量数量积的坐标表示:.2121y y x x b a +=⋅3. 向量平行与垂直的判定:.0//1221=-⇔y x y x b a.02121=+⇔⊥y y x x b a4. 平面内两点间的距离公式:221221)()(||y y x x AB -+-=5. 求模:a a a ⋅=,22y x a +=,221221)()(y y x x a -+-=【典型例题】例2 在平行四边形ABCD 中,证明:)|||(|2||||2222AD AB BD AC +=+例3 如图,在等腰△ABC 中,E D 、分别是两条腰AC AB ,的中点,若BE CD ⊥,你认为A ∠的大小是否为定值?【小结】DABCABC例4 在平行四边形ABCD 中,F E 、分别为DA CD 、的中点,连接BF BE 、交AC 于点R T ,,求证:R T ,分别为AC 三等分点.【课堂小结】1. 用向量方法解决几何问题的步骤: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系. 2. 几何问题向量化的方法:DABRF E CT。

高中人教A版数学必修4:第26课时 平面向量的应用举例 Word版含解析

高中人教A版数学必修4:第26课时 平面向量的应用举例 Word版含解析

1.21(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.2.由于力、速度是向量,它们的分解与合成与向量的减法与加法类似,可以用向量的方法解决.一、选择题1.已知点A (-2,-3),B (2,1),C (0,1),则下列结论正确的是( )A .A ,B ,C 三点共线B.AB →⊥BC →C .A ,B ,C 是等腰三角形的顶点D .A ,B ,C 是钝角三角形的顶点答案:D解析:∵BC →=(-2,0),AC →=(2,4),∴BC →·AC →=-4<0,∴∠C 是钝角.2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)答案:D解析:由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2).3.在四边形ABCD 中,若AB →=-CD →,AB →·BC →=0,则四边形为( )A .平行四边形B .矩形C .等腰梯形D .菱形答案:D解析:由AB →=-CD →知四边形ABCD 是平行四边形,又AB →·BC →=0,∴AB →⊥BC →,∴此四边形为菱形.4.已知一条两岸平行的河流河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s答案:B解析:设河水的流速为v 1,小船在静水中的速度为v 2,船的实际速度为v ,则|v 1|=2,|v |=10,v ⊥v 1,∴v 2=v -v 1,v ·v 1=0,∴|v 2|=v 2-2v ·v 1+v 21=226(m/s).5.人骑自行车的速度为v 1,风速为v 2,则逆风行驶的速度为( )A .v 1-v 2B .v 2-v 1C .v 1+v 2D .|v 1|-|v 2|答案:C解析:对于速度的合成问题,关键是运用向量的合成进行处理,逆风行驶的速度为v 1+v 2,故选C.6.点O 在△ABC 所在平面内,给出下列关系式:①OA →+OB →+OC →=0;②OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0;③(OA →+OB →)·AB →=(OB →+OC →)·BC →=0.则点O 依次为△ABC 的( )A .内心、重心、垂心B .重心、内心、垂心C .重心、内心、外心D .外心、垂心、重心答案:C解析:①由于OA →=-(OB →+OC →)=-2OD →,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),所以O 为△ABC 的重心;②向量AC →|AC →|,AB →|AB →|分别表示在AC 和AB 上取单位向量AC ′→和AB ′→,它们的差是向量B ′C ′→,当OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=0,即OA ⊥B ′C ′时,则点O 在∠BAC 的平分线上,同理由OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;③OA →+OB →是以OA →,OB →为边的平行四边形的一条对角线,而AB →是该四边形的另一条对角线,AB →·(OA →+OB →)=0表示这个平行四边形是菱形,即|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心.二、填空题7.已知两个粒子A 、B 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的投影为________.答案:245解析:由题知v a 与v b 的夹角θ的余弦值为cos θ=12+1`25×5=2425. ∴v a 在v b 上的投影为|v a |cos θ=5×2425=245. 8.已知点A (0,0),B (3,0),C (0,1).设AD ⊥BC 于D ,那么有CD →=λCB →,其中λ=________.答案:14解析:如图|AB →|=3,|AC →|=1,|CB →|=2,由于AD ⊥BC ,且CD →=λCB →,所以C 、D 、B三点共线,所以|CD →||CB →|=14,即λ=14.9.在四边形ABCD 中,已知AB →=(4,-2),AC →=(7,4),AD →=(3,6),则四边形ABCD的面积是________.答案:30解析:BC →=AC →-AB →=(3,6)=AD →,∵AB →·BC →=(4,-2)·(3,6)=0,∴AB →⊥BC →,∴四边形ABCD 为矩形,|AB →|=20,|BC →|=45,∴S =|AB →|·|BC →|=30.三、解答题 10.如图,在平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD ,求证:M ,N ,C 三点共线.证明:依题意,得BM →=12BA →,BN →=13BD →= 13(BA →+BC →). ∵MN →=BN →-BM →,∴MN →=13BC →-16BA →. ∵MC →=BC →-BM →=BC →-12BA →, ∴MC →=3MN →,即MC →∥MN →.又MC →,MN →有公共点M ,∴M ,N ,C 三点共线.11.两个力F 1=i +j ,F 2=4i -5j 作用于同一质点,使该质点从点A (20,15)移动到点B (7,0)(其中i, j 分别是与x 轴、y 轴同方向的单位向量).求:(1)F 1,F 2分别对该质点做的功;(2)F 1,F 2的合力F 对该质点做的功.解:AB →=(7-20)i +(0-15)j =-13i -15j .(1)F 1做的功W 1=F 1·s =F 1·AB →=(i +j )·(-13i -15j )=-28;F 2做的功W 2=F 2·s =F 2·AB →=(4i -5j )·(-13i -15j )=23.(2)F =F 1+F 2=5i -4j ,所以F 做的功W =F ·s =F ·AB →=(5i -4j )·(-13i -15j )=-5.12.如图,作用于同一点O 的三个力F 1→、F 2→、F 3→处于平衡状态,已知|F 1→|=1,|F 2→|=2,F 1→与F 2→的夹角为2π3,则F 3→的大小________.答案: 3解析:∵F 1→、F 2→、F 3→三个力处于平衡状态,∴F 1→+F 2→+F 3→=0即F 3→=-(F 1→+F 2→),∴|F 3→|=|F 1→+F 2→|= (F 1→+F 2→)2= F 21→+2F 1→·F 2→+F 22→=1+2×1×2×cos 2π3+4= 3. 13.已知A (2,1)、B (3,2)、D (-1,4).(1)求证:AB →⊥AD →;(2)若四边形ABCD 为矩形,试确定点C 的坐标,并求该矩形两条对角线所成的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3).又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →.(2)∵四边形ABCD 为矩形,且AB ⊥AD ,∴AD →=BC →.设C (x ,y ),则(-3,3)=(x -3,y -2),⎩⎪⎨⎪⎧ -3=x -33=y -2,∴⎩⎪⎨⎪⎧ x =0,y =5. ∴点C (0,5).又∵AC →=(-2,4),BD →=(-4,2),∴AC →·BD →=(-2)×(-4)+4×2=16.而|AC →|=(-2)2+42=2 5,|BD →|=(-4)2+22=2 5,设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=162 5×2 5=45 ∴该矩形两条对角线所成锐角的余弦值为45.。

高中数学 第二章 平面向量 2.7 向量应用举例例题与探究(含解析)北师大版必修4-北师大版高一必修

高中数学 第二章 平面向量 2.7 向量应用举例例题与探究(含解析)北师大版必修4-北师大版高一必修

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和.思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2.证法一:如图2-7-1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a.图2-7-1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b-a)2=a2-2a·b+b2.∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2-7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2-7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD-AB=OD-OB=(a,b)-(c,0)=(a-c,b).∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.绿色通道:1.向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系.这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译).2.平面几何经常涉及距离、夹角的问题.而平面向量的运算,特别是数量积主要涉及向量的模及向量的夹角.因此,我们可以用向量方法解答几何问题.在具体问题中,先用向量表示相应的点、线段、夹角等几何元素,然后通过向量的运算,特别是数量积来研究点、线段等几何元素之间的关系,最后将结论转化为几何问题.变式训练如图2-7-3所示,AC、BD是梯形ABCD的对角线,BC>AD,E、F分别为BD、AC的中点.试用向量证明:EF∥BC.图2-7-3 思路分析:证明EF ∥BC,转化为证明EF ∥BC,选择向量基底或建立坐标系均可解决. 证法一(基向量法):设AB =a ,AD =b ,则有BD =AD -AB =b -a . ∵AD ∥BC ,∴存在实数λ>1使BC =λAD =λb . ∵E 为BD 的中点,∴BE =21BD =21 (b -a ). ∵F 为AC 的中点, ∴BF =BC +CF =BC +21CA =BC +21(BA -BC )=21(BA +BC )=21(BC -AB )=21 (λb -a ).∴EF =BF -BE =21 (λb -a )-21 (b -a )=(21λ-21)b . ∴EF =[(21λ-21)·λ1]BC . ∴EF ∥BC .EF ∥BC.证法二(坐标法):如图2-7-4所示,以BC 为x 轴,以B 为原点建立平面直角坐标系.则B(0,0),设A (a,b ),D(c,b),C(d,0).图2-7-4∴E(2,2b c ),F(2,2b b a +). ∴EF =(2,2b b a +)-(2,2b c )=(0,2c d a -+),BC =(d,0).∵2c d a -+×0-d×0=0. ∴EF ∥BC .∴EF ∥BC.例2如图2-7-5,一艘船从A 点出发以32km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为2 km/h ,求船的实际航行速度的大小与方向(用与流速间的夹角表示).图2-7-5 思路分析:船的实际航行速度是船的速度与水流速度的合速度,用平行四边形法则合成即可. 解:如图2-7-5所示,设AD =a 表示船垂直于对岸行驶的速度,AB =b 表示水流的速度,以AD 、AB 为邻边作平行四边形ABCD ,则AC 就是船的实际航行速度,即AC =a +b , ∵|a |=32,|b |=2,a ·b =0,∴|AC |2=(a +b )2=a 2+2a ·b +b 2=16,即|AC |=4. ∵AC ·AB =(a +b )·b =a ·b +b 2=4, ∴cos〈AC ,AB 〉21424||||=⨯=AB AC . 又∵0°≤〈AC ,AB 〉≤180°,∴〈AC ,AB 〉=60°,即船的实际航行速度的大小为4 km/h ,方向与水的流速间的夹角为60°.绿色通道: 用向量法解决物理问题的步骤:(类似于用向量方法解决平面几何问题的步骤) ①把物理问题中的量用向量来表示;②将物理问题转化为向量问题,通过向量运算解决数学问题;③把结果还原为物理问题.变式训练如图2-7-6所示,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠AC W=150°,∠BC W=120°,求A 和B 处所受力的大小.(忽略绳子的质量)思路分析:由于力和重量都是向量,求A 和B 处所受力的大小转化为求向量的模|CE |和|CF |.A 和B 处所受力的合力是10 N ,即物体W 的重量,用平行四边形法则解决.图2-7-6解:由题意,得四边形CEWF 是矩形, 则有CF +CE =CW ,CF ⊥CE |,CW |=10,∠FCW=60°.∴CF ·CE =0, ∴|CW |2=(CF +CE )2=|CF |2+2CF ·CE +|CE |2. ∴|CF |2+|CE |2=100.① 又∵CF ·CE =0,〈CF ,CW 〉=60°,∴CF ·CW =CF ·(CF +CE )=2CF +CF ·CE =2CF . ∴cos〈CF ,CW 〉||||CW CF 21||=CW . ∴|CF |=21|CW |=5,| CE |=35, 即A 和B 处所受力分别是35N 和5 N.例3(2006某某高三百校第二次考试卷,文9)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +λ(AB +AC ),λ∈[0,+∞),则P 的轨迹一定通过△A BC 的( ) A.外心 B.垂心C.内心D.重心思路解析:OP =OA +λ(AB +AC )可以化为AP =λ(AB +AC ).所以AP ∥(AB +AC ).又AB +AC 所在直线平分BC .所以AP 所在直线也平分BC .所以P 的轨迹一定通过△ABC答案:D绿色通道:判断图形的特点,主要从已知出发,利用向量运算的几何意义或由已知向量的关系判断出线线的位置关系或等量关系,从而对图形的特殊性作出判断.要作出准确判断,还要结合几何图形即数形结合.另外还要掌握三角形和特殊四边形的性质,例如三角形的四心(内心、外心、重心、垂心)的定义和性质,四边相等的四边形是菱形,对角线相等且相互平分的四边形是矩形等.变式训练1在四边形ABCD中,AB·BC=0,且AB=DC,则四边形ABCD是()A.梯形B.菱形C.矩形D.正方形思路解析:由AB·BC=0,得AB⊥BC,又AB=DC,∴AB与DC平行且相等.从而四边形ABCD是矩形.答案:C变式训练2(2005全国高考卷Ⅰ,文12)点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点思路解析:由OA·OB=OB·OC,得OA·OB-OB·OC=0.∴OB·(OA-OC)=0,即OB·CA=0,∴OB⊥CA.同理可证OA⊥CB,OC⊥AB.∴OB⊥CA,OA⊥CB,OC⊥AB.答案:D问题探究问题1一位年轻的父亲将不会走路的小孩的两条胳膊悬空拎起,结果造成小孩胳臂受伤,试一试你能用向量知识加以解释吗?导思:这是日常生活中司空见惯的事情,解决这个题目的关键是首先建立数学模型,然后根据数学知识来解决,针对小孩的两条胳膊画出受力图形,然后通过胳膊受力分析,建立数学|F 1|=2cos 2||θG ,θ∈[0,π]来确定何种情景时,小孩的胳膊容易受伤.图2-7-7探究:设小孩的体重为G ,两胳膊受力分别为F 1,F 2,且F 1=F 2,两胳膊的夹角为θ,胳膊受力分析如图2-7-7(不计其他因素产生的力),不难建立向量模型:|F 1|=2cos 2||θG ,θ∈[0,π],当θ=0时|F 1|=2||G ;当θ=3π2时,|F 1|=|G |;又2θ∈(0,2π)时,|F 1|单调递增,故当θ∈(0, 3π2)时,F 1∈(2||G ,|G |),当θ∈(3π2,π)时,|F 1|>|G |.此时,悬空拎起小孩容易造成小孩受伤.。

专题2-5 平面向量应用举例-2017-2018学年高一数学必修

专题2-5 平面向量应用举例-2017-2018学年高一数学必修

第二章平面向量2.5 平面向量应用举例一、选择题1.等腰直角三角形中两直角边上的中线所成的钝角的余弦值为A.45-B.35-C.45D.35【答案】A2.已知力F的大小|F|=10,在F的作用下产生的位移S的大小|S|=14,F与S的夹角为60°,则F做的功为A.7 B.10 C.14 D.70【答案】D【解析】由于F做的功为F•S=|F||S|cos60°=10×14×12=70,故选D.3.如图,在圆C中,弦AB的长为4,则AB AC⋅=A.8 B.–8 C.4 D.–4 【答案】A【解析】如图所示,在圆C 中,过点C 作CD ⊥AB 于D ,则D 为AB 的中点.在Rt △ACD 中,AD =12AB =2,可得cos A =2AD AC AC =,∴AB •AC =|AB |×|AC |×cos A =4×|AC |×2AC=8.故选A .4.锐角三角形ABC 中,关于向量夹角的说法正确的是A .AB 与BC 的夹角是锐角 B .AC 与AB 的夹角是锐角 C .AC 与BC 的夹角是钝角D .AC 与CB 的夹角是锐角【答案】B【解析】由两向量夹角定义知,AB 与BC 的夹角是180°–∠B ,AB 与AC 夹角是∠A ,AC 与BC 夹角是∠C ,AC 与CB 的夹角是180°–∠C .故选B .5.在平面直角坐标中,O 为坐标原点,设向量OA =a ,OB =b ,其中a =(3,1),b =(1,3),若OC =λa +μb ,且0≤λ≤μ≤1,C 点所有可能的位置区域用阴影表示正确的是A .B .C .D .【答案】A【解析】∵向量OA =a ,OB =b ,a =(3,1),b =(1,3),OC =λa +μb ,∴()()33OC λλμμ=+,,=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故选A .6.在△ABC 中,AC =BC =3,AB =2,P 为三角形ABC 内切圆圆周上一点,则PA PB ⋅的最大值与最小值之差为A .4B .23C .22D .2【答案】D【解析】在△ABC 中AC =BC =3,AB =2,∴三角形底边上的高CD =2223()2-=22,设三角形ABC 内切圆半径为R ,则12(3+3+2)R =12×2×22,解得R =22,以D 为坐标原点,AB ,DC的方向分别为x ,y 轴,建立坐标系,则A (–1,0),B (1,0),P (22cos θ,22(sin θ+1)),则PA =(–1–22cos θ,–22(sin θ+1)),PB =(1–22cos θ,–22(sin θ+1)),∴12PA PB ⋅=cos 2θ–1+12(sin θ+1)2=sin θ,PA PB ⋅的最大值为1,最小值为–1,则PA PB ⋅的最大值与最小值之差为2,故选D .7.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA •OB ,I 2=OB •OC ,I 3=OC •OD ,则A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3【答案】C二、填空题8.一质点受到平面上的三个力F 1、F 2、F 3(单位:牛顿)的作用而处于平衡状态.已知F 1、F 2成60°角,且F 1、F 2的大小分别为2和4,则F 3的大小为__________.【答案】27【解析】由题意知F3=−(F1+F2),∴|F3|=|F1+F2|,∴|F3|2=|F1|2+|F2|2+2|F1||F2|cos60°=28,∴|F3|=27.9.如图,平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,则对角线AC的长为__________.【答案】610.一个重20 N的物体从倾斜角为30°,长为1 m的光滑斜面顶端下滑到底端,则重力做的功是__________.【答案】10 J【解析】如图所示,该物体受到的下滑力是重力G沿斜面向下的分力.设这个力为F,则F与重力G夹角为90°–30°=60°,∴该物体从1 m的光滑斜面下滑到底端,重力做的功为W=F•S=|G|•|S|•cos60°=20×1×cos60°=10(J).故答案为:10 J.三、解答题11.一汽车向北行驶3 km,然后向北偏东60°方向行驶3 km,求汽车的位移.【解析】根据题意画出图形,汽车行驶的路程A→C→B.在三角形ABC中,AC=BC=3,∠ACB=120°,∴∠BAC=30°,AB=33,故汽车的位移为:北偏东30°方向,大小为33km.12.如图所示,有两条相交成60°的直线xx ′、yy ′,其交点是O ,甲、乙两辆汽车分别在xx ′、yy ′上行驶,起初甲离O 点30 km ,乙离O 点10km ,后来两车均以60km/h 的速度,甲沿xx ′方向,乙沿yy ′方向行驶.(1)起初两车的距离是多少? (2)t 小时后两车的距离是多少? (3)何时两车的距离最短?【解析】(1)设甲、乙两车最初的位置为A 、B ,则2||AB =|()OA |2+|()OB |2–2|()OA ||()OB |cos60°=700.故700AB =km=107 km .(3)因为PQ =102108367t t -+,故当t =16,即在第10分钟末时,两车距离最短,最短距离为20 km .。

高中数学 必修四 课件:2-5 平面向量应用举例

高中数学  必修四 课件:2-5 平面向量应用举例
(4)几何中与角相关的问题,转化为向量的夹角问题. (5)对于有关长方形、正方形、直角三角形等平面几何问 题,通常以相互垂直的两边所在直线分别为x轴和y轴建立平面 直角坐标系,通过向量的坐标运算解决平面几何问题.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
如图所示,平行四边形ABCD中,已知AD=1,AB=2, 对角线BD=2.求对角线AC的长.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[证明] 设A→O=a,O→B=b, 则A→B=a+b,O→C=a,B→C=a-b, |a|=|b|.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
因为A→B·B→C=(a+b)·(a-b)=|a|2-|b|2=0, 所以A→B⊥B→C.所以∠ABC=90°.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
如图所示,四边形ABCD是菱形,AC和BD是它的两条对 角线,试用向量证明:AC⊥BD.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[解析] 解法一:∵A→C=A→B+A→D,B→D=A→D-A→B, ∴A→C·B→D=(A→B+A→D)·(A→D-A→B)=|A→D|2-|A→B|2=0. ∴A→C⊥B→D.∴AC⊥BD.
一航船用5km/h的速度向垂直于对岸方向行驶, 航船实际航行方向与水流方向成30°角,求水流速度与船的实 际速度.
[分析] 先根据题意作出示意图,然后再用向量知识解 决.
第二章 2.5
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修4
[解析]
如图,
→ OA

高中数学必修四《平面向量应用举例》PPT

高中数学必修四《平面向量应用举例》PPT



所以A→F=18,-5
8
3,
集 训 · 考

所以A→F·B→C=18,-583·(1,0)=18.故选 B.
提 升




·




菜单
高考专题辅导与训练·数学(理科)
第一篇 专题一 集合、常用逻辑用语、向量、复数、算法、不等式



读 ·
解答程序框图问题的关注点

题 回
(1)首先要读懂程序框图,要熟练掌握程序框图
·




菜单
高考专题辅导与训练·数学(理科)
第一篇 专题一 集合、常用逻辑用语、向量、复数、算法、不等式




·

题 回
解答平面向量问题的关注点



(1)对于平面向量的线性运算,要先选择一组
集 训
·

基底;同时注意共线向量定理的灵活运用.
力 提


点 探
(2)运算过程中重视数形结合,结合图形分析向
第一篇 专题一 集合、常用逻辑用语、向量、复数、算法、不等式


解 读
解析 (1)因为B→C=A→C-A→B=(2a+b)-2a=b,
·
真 题
所以|b|=2,故 A 错误;


由于A→B·A→C=2a·(2a+b)=4|a|2+2a·b=2×2×12=
限 时

2,所以 2a·b=2-4|a|2=-2,所以 a·b=-1,故 B,C
菜单
高考专题辅导与训练·数学(理科)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量应用举例【学习目标】1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力.【典型例题】类型一:向量在平面几何中的应用例1.用向量法证明:直径所对的圆周角是直角.已知:如下图,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°.举一反三:【变式1】P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( )A .外心B .内心C .重心D .垂心【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅ 的值为________;DE DC⋅ 的最大值为________.例2.如图所示,四边形ADCB 是正方形,P 是对角线DB 上一点,PFCE 是矩形,证明:PA EF ⊥ .举一反三:【变式1】在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅=,求t 的值.类型二:向量在解析几何中的应用例3.已知圆C :(x-3)2+(y-3)2=4及定点A (1,1),M 为圆C 上任意一点,点N 在线段MA 上,且2MA AN =,求动点N 的轨迹方程.举一反三:【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点.(1)求直线DE 、EF 、FD 的方程;(2)求AB 边上的高CH 所在直线的方程.类型三:向量在物理学中“功”的应用例4.一个物体受到同一平面内三个力F 1,F 2,F 3的作用,沿北偏东45°的方向移动了8 m ,其中|F 1|=2 N ,方向为北偏东30°;|F 2|=4 N ,方向为北偏东60°;|F 3|=6 N ,方向为北偏西30°,求合力F 所做的功.举一反三:【变式1】已知一物体在共点力12(2,2),(3,1),F F ==的作用下产生位移13(,)22s = ,则共点力对物体所做的功为( )A 、4B 、3C 、7D 、2类型四:向量在力学中的应用例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G .两绳受到的拉力分别为F 1、F 2,夹角为θ.(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;(2)求F 1的最小值;(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围.举一反三:【变式1】两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N ,则当它们的夹角为0120时,合力的大小为( )A 、40NB 、C 、D 类型五:向量在速度中的应用例6.在风速为km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向.【变式1】一艘船从A 点出发以/h 的速度向垂直于对岸的方向行驶,同时河水流速为2/km h ,求船实际航行的速度的大小与方向.【典型例题】类型一:向量在平面几何中的应用例1.如下图,正三角形ABC 中,D 、E 分别是AB 、BC 上的一个三等分点,且AE 、CD 交于点P 。

求证:BP ⊥CD 。

举一反三:【变式1】平面内△ABC 及一点O 满足AO AB BO BA →→→→⋅=⋅,BO BC CO CB →→→→⋅=⋅,则点O 是△ABC 的( )A .重心B .垂心C .内心D .外心【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅ 的值为________;DE DC⋅的最大值为________.例2.四边形ABCD 是正方形,BE ∥AC ,AC=CE ,EC 的延长线交BA 的延长线于点F 。

求证:AF=AE 。

类型二:向量在解析几何中的应用例3.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且11022PC PQ PC PQ ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭,求动点P 的轨迹方程。

举一反三:【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点。

(1)求直线DE 、EF 、FD 的方程;(2)求AB 边上的高CH 所在直线的方程。

类型三:向量在物理学中“功”的应用例4.如图所示,已知力F 与水平方向的夹角为30°(斜向上),大小为50 N ,一个质量为8 kg 的木块受力F 的作用在动摩擦因数μ=0.02的水平平面上运动了20 m 。

问力F 和摩擦力f 所做的功分别为多少?(g=10 m / s 2)举一反三:【变式1】三个力F 1=i+j ,F 2=4i ―5j ,F 3作用于同一质点,使该质点从点A (20,15)平移到点B (7,0),其是i 、j 分别是x 轴、y 轴正方向上的单位向量,求该过程中,(1)F 1,F 2分别对质点做的功; (2)F 1,F 2的合力对质点做的功。

类型四:向量在力学中的应用例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G 。

两绳受到的拉力分别为F 1、F 2,夹角为θ。

(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系; (2)求F 1的最小值;(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围。

举一反三:【变式1】两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N ,则当它们的夹角为0120时,合力的大小为( )A 、40NB 、C 、 D类型五:向量在速度中的应用例6.某人骑摩托车以20 km / h 的速度向东行驶,感到风从正南方向吹来,而当速度为40 km / h 时,感到风从东南方向吹来,求实际风向及风速的大小。

举一反三:【变式1】在风速为km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向。

【巩固练习】1.设a 、b 、c 是单位向量,且a ·b =0,则(a ―c )·(b ―c)的最小值为( )A .―2B 2C .―1D .12.在△ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足2AP PM = ,则()PA PB PC ⋅+等于( )A .49-B .43-C .43D .493.已知两力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 1的大小为( )A .B .5 NC .10 ND .4.在水流速度为自西向东,10km/h 的河中,如果要使船以的速度从河南岸垂直到达北岸,则船出发时行驶速度的方向和大小为( )A .北偏西30,20km/h B .北偏西60,20km/h C .北偏东30,20km/h D .北偏东60,20km/h5.若平行四边形ABCD 满足||||AB AD AB AD +=-,则平行四边形ABCD 一定是( )A .正方形B .矩形C . 菱形D .等腰梯形6.点P 在平面上作匀速直线运动,速度向量v=(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v|个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 ( )A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10)7.平面上有四个互异点A 、B 、C 、D ,已知()()20DB DC DA AB AC +-⋅-=,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.用力F 推动一物体,使其沿水平方向运动s ,F 与垂直方向的夹角为θ,则F 对物体所做的功为( )A .F ·s ·cos θB .F ·s ·sin θC .|F|·|s|·cos θD .|F|·|s|·sin θ9.直角坐标平面xoy 中,若定点)2,1(A 与动点),(y x P 满足4OP OA ⋅=,则点P 的轨迹方程是__________.10.如图,在正六边形ABCDEF 中,有下列四个论断:①2AC AF BC += ;②22AD AB AF =+ ;③AC AD AD AB ⋅=⋅ ;④()()AD AF EF AD AF EF ⋅=⋅其中正确的序号是________.(写出所有正确的序号)11.一艘船以5 km / h 的速度向垂直于对岸的方向行驶,船的实际航行方向与水流方向成30°角,则水流速度为________km / h .12.夹角为120的两个力1f 和2f 作用于同一点,且12||||(0)f f m m ==>,则1f 和2f 的合力f 的大小为 ,f 与2f 的夹角为 .13.已知两恒力F 1=(3,4),F 2=(6,―5)作用于同一质点,使之由点A (20,15)移动到点B (7,0).试求:(1)力F 1,F 2分别对质点所做的功; (2)F 1,F 2的合力对质点所做的功.14.在Rt ABC ∆中,90C ∠=,且CA CB =,D 是CB 的中点,E 是AB 上一点,且AE=2EB. 求证:AD⊥CE15.所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA=EF .【巩固练习】1.设a 、b 、c 是单位向量,且a ·b =0,则(a ―c )·(b ―c)的最小值为( )A .―2B 2C .―1D .12.在△ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足2AP PM = ,则()PA PB PC ⋅+等于( )A .49-B .43-C .43D .493.已知两力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 1的大小为( )A .B .5 NC .10 ND .4.在水流速度为自西向东,10km/h 的河中,如果要使船以的速度从河南岸垂直到达北岸,则船出发时行驶速度的方向和大小为( )A .北偏西30,20km/h B .北偏西60,20km/h C .北偏东30,20km/h D .北偏东60,20km/h5.若平行四边形ABCD 满足||||AB AD AB AD +=-,则平行四边形ABCD 一定是( )A .正方形B .矩形C . 菱形D .等腰梯形6.点P 在平面上作匀速直线运动,速度向量v=(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v|个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 ( )A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10)7.平面上有四个互异点A 、B 、C 、D ,已知()()20DB DC DA AB AC +-⋅-=,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.用力F 推动一物体,使其沿水平方向运动s ,F 与垂直方向的夹角为θ,则F 对物体所做的功为( )A .F ·s ·cos θB .F ·s ·sin θC .|F|·|s|·cos θD .|F|·|s|·sin θ9.直角坐标平面xoy 中,若定点)2,1(A 与动点),(y x P 满足4OP OA ⋅=,则点P 的轨迹方程是__________.10.如图,在正六边形ABCDEF 中,有下列四个论断:①2AC AF BC += ;②22AD AB AF =+ ;③AC AD AD AB ⋅=⋅ ;④()()AD AF EF AD AF EF ⋅=⋅其中正确的序号是________.(写出所有正确的序号)11.一艘船以5 km / h 的速度向垂直于对岸的方向行驶,船的实际航行方向与水流方向成30°角,则水流速度为________km / h .12.夹角为120的两个力1f 和2f 作用于同一点,且12||||(0)f f m m ==>,则1f 和2f 的合力f 的大小为 ,f 与2f 的夹角为 .13.已知两恒力F 1=(3,4),F 2=(6,―5)作用于同一质点,使之由点A (20,15)移动到点B (7,0).试求:(1)力F 1,F 2分别对质点所做的功; (2)F 1,F 2的合力对质点所做的功.14.在Rt ABC ∆中,90C ∠=,且CA CB =,D 是CB 的中点,E 是AB 上一点,且AE=2EB. 求证:AD⊥CE15.所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA=EF .。

相关文档
最新文档