第五章 第一节定积分的概念
高等数学 第5章 第一节 定积分的概念
定积分存在的两个充分条件:
定理1 设 f ( x) 在区间 [a, b]上连续, 则 f ( x)在区间 [a, b] 上可积. 定理2 设 f ( x)在区间 [a, b] 上有界, 且只有有限个间断点,则
f ( x)在区间 [a, b]上可积.
6
定积分的几何意义
y y f (x)
A
o xa xb x
lim
n
6n 2
3
10
1 i n
i
},
0,
n
A lim 0 i1
f ( i )xi
An
x xn1 nxn b
3
2. 变速直线运动的路程
设物体作直线运动,
已知速度 v v(t )是时间间隔 [T1 ,T2 ]上 的
连续函数, 且 v(t ) 0, 计算在这段时间内物体所经过的路程。
匀速直线运动:
路程=速度×时间.
(1) 分割
T1 t0 t1 ti1 ti tn T2 ,
v( i )
ti ti ti1
(i 1,2,, n)
(2) 近似代替
si v( i )t i
T1
i
T2
t t0 t1 t2 ti1 ti tn1 tn
(3) 求和 (4) 取极限
s
n i 1
s
i
n v(
i 1
i )t i
每 个小区间的长度 xi xi xi1 (i 1,2,n).
2
(2)近似代替
y Ai f (i )xi
(i 1,2,, n)
(3)求和
y f (x)
A1 A2
Ai
A
n i 1
Ai
n
高等数学第五章定积分及其应用
⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。
高等数学 第五章 定积分的概念及其性质
() a,( ) b, a (t) b,t [, ]
则有定积分换元公式:
b a f (x)dx
例1:计算定积分
(1)
4
cos(2
x
)dx
0
4
1
(2)
1 x2 dx
0
定积分的计算
解:(1)
4
cos(2
x
)dx
0
4
1
4
cos(2
x
)d
(2
x
)
20
4
4
令 t 2x ,则当 x 时,t
解:(2)、 y 1 x2
y2 x2 1( y 0)
如图
y
1S
o
1x
(2)
定积分的概念及性质 4、定积分的计算法则
法则1 常数因子可以提到积分号外.即
法则2 两个函数代数和的定积分等于它们定积分的代数和,即
法则3 (积分区间的可加性) 对任意的点c,若函数在区间
上均可积,则有
定积分的概念及性质
4
4
4
则当 x 0时,t ,有:
原式 1 2
4
4
cos
tdt
4
1 sin t 4 2 4
2 2
(2) 1 1 x2 dx 0
令 x sin t ,则当 x 1 时,t
2
则当 x 0时,t 0 ,有:
原式 2 1 sin2 td sin t 0
2
cos2
tdt
例2
求
1
0 (
x3
x
1)dx
.
解
1
(
x
3
x
1)dx
1 定积分的概念
高等数学(上)
定理3 设函数 f ( x ) 在区间 [a , b] 上有界,
且只有有限个间断点,则 f ( x ) 在
区间[a , b]上可积.
定理4 设函数
则
f ( x ) 在区间 [a , b] 上有界且单调,
2
n
2
1 n 2 3 i n i 1
1 n( n 1)(2n 1) 3 n 6
1 1 1 1 2 6 n n
1 因为 max{x1 , x2 , xn } n
高等数学(上)
所以 0 n ,
故有
[a , b ]
上可积。
f ( x)
在区间
例1 设 R, 则
b
a
dx (b a ).
高等数学(上)
例2 利用定义计算定积分
0 x
1
2
dx .
解 由于 f (x) = x2 在 [ 0 , 1 ] 上连续 , 因此可积 .
所以取如下划分:
将
[0,1] 分成 n 等分,分点为
0
1
xdx
n n n (2) lim 2 2 2 2 2 n n 1 n 2 n n n 1 dx 1 1 lim 2 n 0 1 x2 n i i 1 1 n
高等数学(上)
用和式极限表示定积分: ba ba 2(b a ) n(b a ) lim ) f (a ) f (a ) f (a n n n n n
i b a lim f a (b a ) n n n i 1 b 1 n i f a (b a ) f ( x )dx n i 1 n a
第5章定积分95525
第五章定积分一、基本内容(一)基本概念1.定积分的定义:设函数f (x)在[a, b]上有定义,任取分点a =Xo c Xj c X2 <••• < x n_^ < x^ b .把区间[a,b]分成n个小区间[x ij X i]称为子区间,其长度记为△X i =X i —X i」(i =1,2,…,n)在每个小区间[X i^X i]上任取一点q(X i」<X i),得相应的函数值f(E i),作乘f GM X i (i =1,2,…,n)把所有这些乘积加起来,得和式nZ f(©i)心X i,i =1如果不论区间[a,b]分成n个小区间[X i」,X i]的分法如何及点©怎样取法,当分点无限增多(记作n T K)而每个小区间长度无限缩小(h=max{A x i}T 0),此和n式的极限存在,即设I “im S f^JA X i,贝U称函数f(x)在[a,b]可积,并将此极b限值I称为函数f (X)在[a,b]上的定积分。
记作/ f (x)dx,即L aa f(x)dx=i f G)i X i.(二)定积分的计算1.变上限积分X定义如果函数f(x)在[a,b]上连续,则①(x) = J f(t)dt, xFa,b]是积分上限XaX的函数,称f f(t)dt为变上限的定积分.“a2.牛顿-莱布尼兹公式设函数f(x)在[a,b]上连续,F(x)是f(x)的一个原函数,则b baf(x)dx = F(b)-F(a)=F(x) .3. 定积分换元积分公式设函数f(x)在[a,b ]上连续,函数x =^t)在区间[a ,P ]上单值且连续可导,其 值在[a,b ]上变化,且护(a ) =a,申(P ) =b ,则有b Paf(x)dx =『 伴(t))®'(t)dt在使用定积分换元公式时,要注意还原同时换积分限 4. 定积分的分部积分公式设函数u =u(x),v =v(x)在[a,b ]上有连续导数uTx)V(x),则bbau(X)dv(X)=u(X)v(X)|a (三) 广义积分 无穷区间上的广义积分-be b 驭a f(x)dx. blim f f (x)dx .c a ^If g dx +J %! f (x)dx .2 .无界函数的广义积分(1) 设 f (x)在(a, b ]上连续,lim/(X)=处,贝 UX —j a十b baf(x)dx =绞^+[七f(x)dx .⑵设f(x)在[a,b)上连续,lim f(x)=处,贝UX —j b —bb一名[f(x)dx = linn a f (x)dx . (3)设 f (x)在[a,c)和(c,b ]上连续,lim f (x)=处,则 X TbCb[f(x)dx = [ f(x)dx+.C f(x)dxc Yb=lim.f f (x)dx + lim.f , f (x)dx .二、练习题5. 1计算下列定积分:丑 1 ⑴為一dx. 三1 + COSX⑴[f(x)dx=bb (2) J f(x)dx =a 二-be⑶ Lcf(x)dx =b- av(x)du(x).1dx上 2”e%x.所以原式=-In | e 」+ Je^x -1『2 +山—e 2x (4) 『|sinx - cosx| dx .JI解:原式 =『(cosx - sin X)dx + g(sin x - cosx) dx4=sinx]# +cosx|4-cosx|2—sinx|24=返+2^_1+返 _1+返=2(血-1).2a⑸ Lx[f(x) + f(—x)]dx.aa解:原式=L xf (x)dx + xf (-x)dx ,解:原式= "2COS 2|f\sec 2xd- 今 2 2解:原式=f 6 dx= .016J x + 9 詈 |(2|063x 2 16j xdx+[于 dx|?=12.16解 :原式上21 -e 2xJn 2J 1 - e 2x_ln 2 dx= 0= dx- 訴-e 2xJn 2e2x兀_x edx£上2 de 2xL 2xP 1 -e上2 de^J e ^x _1丄 1 /n2d(1-e 2x )2^由于dx=In | X + J x 2 -1 | + C .『2 —In(2+7l)+¥XCM_xL| —co I 00+ co u」X—L)Xpx+L +CML | CM+ co _cL | COIIL I oq oT —X-I CM+ -1 CM+CO _c-I 00II■ I00IIXCMXCM VX L I CJ_P¥3n-x —L3X—L。
第五章,定积分
②设f (x)在区间[a b]上有界 且只有有限个间断点 则f (x) 在[a b]上可积
③设f (x)在区间[a b]上只有有限个第一类间断点 则f (x) 在 [a b]上可积
④若f (x)在区间[a b]上单调,则f (x) 在[a b]上可积
4.定积分的性质
两点规定
(1)当ab时
b
a f (x)dx 0.
n i 1
f
i n
.
等式右端的极限可通过等式左端的积分来计算.
2.定积分的几何意义
(1)设
b
a
f
(x) dx存在,若在a,b上f
x
0,
则 b a
f
(x) d x
的值等
于曲线 y f x与直线 x a, x b以及 x 轴所围成的曲边
梯形的面积.
(2) 若在
a, b 上f
x
0,则 b a
(2)当a>b时
b
a
f (x)dx f (x)dx.
a
b
性质1 函数的和(差)的定积分等于定积分的和(差) ,即
b
a[
f
(x)
g(x)]dx
b
a
f
(x)dx
b
a g(x)dx
性质2 被积函数的常数因子可以提到积分号外面, 即
abk
f
(x)dx
k
b
a
f
(x)dx
性质3 如果将积分区间分成两部分,则在整个区间上的定
积分等于这两部分区间上定积分之和,即
b
a
f
(x)dx
c
a
f
(x)dx
b
c
f
高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0
±
→0
性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即
)(
总有下式成立:
)( = )( + )( .
例如,若 < < ,则
=
+
,
故 )( = )( − )(
= )( + )( .
证
因为 ≤ () ≤ ,由性质4得
≤ ≤ )( ,
又 = − ,
故( − ) ≤ ( ≤ )( − ).
性质6(积分中值定理)
∈
[, ],使)(
设函数()在[, ]上连续,则至少存在一点
第五章 积分 5-1 定积分的概念与基本性质
b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],
且
b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.
高等数学第五章第一节定积分的概念及性质课件.ppt
二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx
即
b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上
则
推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx
即
b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba
因
y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
定积分的概念及性质PPT
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
首页
上页
下页
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
首页
上页
下页
注意:
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
首页
上页
下页
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
高数考研基础班第五章 定积分
b−a 解 [ 理 为f ( x)在 a, b]上 平 值. 的 均
= f (ξ )
因 故它是有限个数的平均值概念的推广. 故它是有限个数的平均值概念的推广
1 n = lim ∑ f (ξi ) n→∞ n i =1
9
5.积分上限函数 积分上限函数
Φ( x) = ∫ f (t)dt
a
x a
x
认识它吗? 认识它吗?
x
f ( x )dx = ∫ f ( x )dx a a
x
+ lim
x →b
x →+∞
∫
x
x a
f ( t )dt
∫
b
a
f ( x )dx = lim− ∫ f ( t )dt
a
(b瑕点)
11
二、与概念有关的问题
定积分定义 ☆定积分定义
O
∫
b a
0 x
则下列结论正确的是( 则下列结论正确的是(C ) 5 3 B. F (3) = F (2) A. F (3) = − F ( − 2) 4 4 5 3 D. F (−3) = − F (−2) C. F ( − 3) = F (2) 4 4
3 F (3) = F ( − 3) = π 8
F (2) = F ( −2) =
λ → 0 i =1
n
∫
b
a
f ( x)dx.
T2
1
4
变速直线运动的路程
s = lim
∑ v (τ i ) ∆ t i = ∫T λ→0
i =1
n
v(t )dt.
2.存在定理 存在定理
定理的证明省略,只要求记住结论 定理的证明省略 只要求记住结论. 只要求记住结论
定积分
x
a
f
(t )dt 在[a,b] 上具有导数,且它的导
数是(
x)
d dx
x
a
f (t )dt
f (x)
y
证
( x
x)
xx
a
f
(t )dt
(a x b)
( x x) ( x)
x x
x
f (t)dt f (t)dt
a
a
( x)
(t )dt
如果上限x 在区间[a, b]上任意变动,则对于
每一个取定的x 值,定积分有一个对应值,所以
它在[a, b]上定义了一个函数,
记
( x)
x
a
f
(t )dt .
积分上限函数
x
( x) a f (t)dt.
定理1 如果 f ( x)在[a,b]上连续,则积分上限的函
数( x)
b
a
f
( x)dx
M(b
a)
m
1b
b a a
f ( x)dx
M
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
使
f
()
b
1
a
b
a
f
(
x)dx,
即
b
a
f
(
x
)dx
f ( )(b a).
积分中值公式的几何解释:
(a b)
y
在区间[a, b]上至少存在一
则在积分区间[a, b]上至少存在一个点 ,使
定积分的概念与性质15页word
第五章 定积分第一节 定积分的概念与性质教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容:一、定积分的定义 1.曲边梯形的面积设)(x f y =在[]b a ,上非负,连续,由直线x a =,x b =,0y =及曲线)(x f y = 所围成的图形,称为曲边梯形.求面积:在区间[]b a ,中任意插入若干个分点b x x x x x a n n =<<<<=-1210 ,把[]b a ,分成n 个小区间[10,x x ],[21,x x ], … [n n x x ,1-],它们的长度依次为:1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x经过每一个分点作平行于y 轴的直线段,把曲边梯形分成n 个窄曲边梯形,在每个小区间[i i x x ,1-]上任取一点i ξ,以[i i x x ,1-]为底,)(i f ξ为高的窄边矩形近似替代第i 个窄边梯形(1,2,,)i n =,把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值,即n n i x f x f x f A ∆++∆+∆≈)()()(221ξξξ =∑=∆ni i i x f 1)(ξ.设{}0,,,m ax 21→∆∆∆=λλn x x x 时,可得曲边梯形的面积∑=→∆=ni i i A x f A 1)(lim ξ.2.变速直线运动的路程设某物体作直线运动,已知速度)(t v v =是时间间隔[21,T T ]上t 的连续函数,且0v ≥,计算在这段时间内物体所经过的路程S在[21,T T ]内任意插入若干个分点212101T t t t t t T n n =<<<<=- ,把[21,T T ]分成n 个小段[10,t t ],[21,t t ],…, [n n t t ,1-],各小段时间长依次为:,,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t相应各段的路程为:n S S S ∆∆∆,,,21 ,在[i i t t ,1-]上任取一个时刻)(1i i i i t T t T ≤≤-,以i T 时的速度)(i T v 来代替[i i t t ,1-]上各个时刻的速度,则得:i i i t T v S ∆≈∆)( ),,2,1(n i =,进一步得到:n n t T v t T v t T v S ∆++∆+∆≈)()()(2211 =∑=∆ni t T v 111)(设{}0,,,,m ax 21→∆∆∆=λλ当n t t t 时,得:∑=→∆=ni i t T v S 1)(lim λ.3.定积分的定义由上述两例可见,虽然所计算的量不同,但它们都决定于一个函数及其自变量的变化区间,其次它们的计算方法与步骤都相同,即归纳为一种和式极限,即面积∑=→∆=ni iixf A 10)(limξλ,路程∑=→∆=ni iitT v S 1)(limλ.将这种方法加以精确叙述得到定积分的定义定义 设函数],[)(b a x f 在上有界,在[,]a b 中任意插入若干个分点b x x x x x a n n =<<<<<=-1210 ,把区间[,]a b 分成n 个小区间],,[,],,[],,[12110n n x x x x x x -各个小区间的长度依次为1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x .在每个小区间[i i x x ,1-]上任取一点i i i i x x ≤≤-εε1(),作函数值)(i f ε与小区间长度i x ∆的乘积),,,2,1()(n i x f i i =∆ε并作出和∑=∆=ni i i x f S 1)(ε.记},,,m ax {21n x x x ∆∆∆= λ,如果不论对[,]a b 怎样分法,也不论在小区间[i i x x ,1-]上点i ε怎样取法,只要当0λ→时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[,]a b 上的定积分(简称积分),记作⎰badx x f )(.即⎰badx x f )(=I =∑=→∆n i i i x f 1)(lim ελ,其中)(x f 叫做被积函数,dx x f )(叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[,]a b 叫做积分区间.注意 积分与积分变量无关,即:⎰⎰⎰==bab abadu u f dt t f dx x f )()()(.函数可积的两个充分条件:定理1 设],[)(b a x f 在上连续,则)(x f 在[,]a b 上可积.定理2 设],[)(b a x f 在上有界,且只有有限个间断点,则],[)(b a x f 在上可积. 例 利用定积分定义计算⎰12dx x .解 2()[0,1]f x x =是上的连续函数,故可积,因此为方便计算,我们可以对[0,1]n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故 ∑∑∑===∆=∆=∆n i i in i i ini i i x x x x f 12121)(ξξ=∑∑===ni ni in n ni 1232111)(=)12)(1(6113++n n n n =)12)(11(61n n ++, 时0→λ(即时∞→n ),由定积分的定义得:⎰12dx x =31. 二、定积分的性质:为方便定积分计算及应用,作如下补充规定:(1) 当a b =时,0)(=⎰badx x f ,(2) 当a b >时,-=⎰badx x f )(⎰abdx x f )(.性质1 函数和(差)的定积分等于它们的定积分的和(差),即=±⎰dx x g x f b a)]()([±⎰badx x f )(⎰badx x g )(.证明=±⎰dx x g x f ba)]()([ini iix g f ∆±∑=→1)]()([lim ξξλ=±∆∑=→ini ixf 10)(limξλi ni i x g ∆∑=→1)(lim ξλ=±⎰badx x f )(⎰badx x g )(.性质2 被积函数的常数因子可以提到积分号外面,即=⎰badx x kf )(k⎰badx x f )( (k 是常数).性质3 如果将积分区间分成两部分,则在整个区间上的定积分等于这两个区间上定积分之和,即设a c b <<,则=⎰badx x f )(⎰+cadx x f )(⎰bcdx x f )(注意 我们规定无论,,a b c 的相对位置如何,总有上述等式成立. 性质4 如果在区间[,]a b 上,则,1)(≡x f =⎰badx x f )(a b dx ba-=⎰.性质5 如果在区间[,]a b 上,则,0)(≥x f0)(≥⎰badx x f )(b a <证明:因,0)(≥x f 故),,3,2,1(0)(n i f i =≥ξ,又因),,2,1(0n i x i =≥∆,故0)(1≥∆∑=i ni i x f ξ,设12max{,,,},0n x x x λλ=∆∆∆→时,便得欲证的不等式.推论1 如果在[,]a b 上,则),()(x g x f ≤≤⎰badx x f )(⎰badx x g )( )(b a <.推论2≤⎰badx x f )(⎰badx x f )(.性质6 设M 与m 分别是函数],[)(b a x f 在上的最大值及最小值,则≤-)(a b m ≤⎰badx x f )()(a b M - )(b a <性质7 (定积分中值定理)如果函数)(x f 在闭区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ,使下式成立:))(()(a b f dx x f ba-=⎰ξ (b a ≤≤ξ).证明:利用性质6,⎰≤-≤b aM dx x f a b m )(1;再由闭区间上连续函数的介值定理,知在[,]a b 上至少存在一点ξ,使⎰-=ba dx x f ba f )(1)(ξ,故得此性质. 显然无论ab >,还是a b <,上述等式恒成立. 做本节后面练习,熟悉上面各性质.积分中值定理的几何释意如下:在区间[,]a b 上至少存在一个ξ,使得以区间[,]a b 为底边, 以曲线)(x f y =为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积,见下图.(在下面做p286图5--4)小结:简捷综述上面各性质.第二节 微积分基本公式教学目的:掌握微积分基本公式及其应用. 教学重点:公式的应用. 教学难点:公式的应用. 教学内容:一、变速直线运动中位置函数与速度函数之间的联系设一物体在一直线上运动,在这直线上取定原点,正方向,单位长度,使其成为一数轴,时刻t 时物体所处的位置()S t ,速度)0)()((≥t v t v 不防设.物体在时间间隔],[21T T 内经过的路程可以用速度函数)(t v 在],[21T T 上的定积分来表达,即21()T T v t dx ⎰另一方面,这段路程可以通过位置函数)(t s 在区间],[21T T 的增量来表示,即)()(12T S T S -故⎰21)(T T dx t v =)()(12T S T S -.注意到()()S t v t '=,即()S t 是)(t v 的原函数.二、积分上限的函数及其导数设)(x f 在],[b a 上连续,并且设x 为],[b a 上任一点,设⎰=Φxadt t f x )()(.则函数)(x Φ具有如下性质:定理1 如果函数)(x f 在区间],[b a 上连续,则积分上限函数⎰=Φxadt t f x )()(在],[b a 上具有导数,并且它的导数是()()()xad x f t dt f x dx 'Φ==⎰ (b x a ≤≤).证明:(1)),(b a x ∈时,()()()x x x x ∆Φ=Φ+∆-Φ=()x xaf t dt +∆-⎰⎰xadt t f )(()()x xxf t dt f x ξ+∆==∆⎰,ξ在x x ∆与之间)()(ξf xx =∆∆Φ 0→∆x 时,有=Φ')(x )(x f .(2)时考虑或b a x =其单侧导数,可得=Φ')(a )(a f ,=Φ')(b )(b f由定理1可得下面结论定理2 如果函数)(x f 在区间],[b a 上连续,则函数=Φ)(x ⎰xadt t f )(是)(x f 的一个原函数.Newton 的积分上限函数的几何意义如下:(P209图5—5放在下面). 三、Newton —Leibniz 公式定理3 如果函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则=⎰badx x f )(-)(b F )(a F证明 因)(x F 与)(x Φ均是)(x f 原函数,故-)(x F )(x Φ=c (b x a ≤≤),又因=⎰badx x f )(-Φ)(b )(a Φ, 故=⎰badx x f )(-)(b F )(a F .为方便起见,把-)(b F )(a F 记作[)(x F ]ba .上述公式就是Newton —Leibniz 公式,也称作微积分基本公式.例1 31303133313102=-=⎥⎦⎤⎢⎣⎡=⎰x dx x . 例2 计算 ⎰-+31211dx x. 解⎰-+31211dx x =[]π12731=-arctgx . 例3 计算⎰--12x dx.解 []2ln 2ln 1ln ln 11212-=-==⎰----x dx x.例4 计算x y sin =在[π,0]上与x 轴所围成平面图形的面积. 解 []2c o s s i n 00=-==⎰ππx x d x A .上例的几何释义如下:(书图P292, 5--4).例5 汽车以每小时36km 的速度行驶,到某处需要减速停车,设汽车以等加速度2/5s m a -=刹车,问从开始刹车到停车,汽车走了多少路程?解 0=t 时,s m v /100=,t at v t v 510)(0-=+=,2,510)(0=-==t t t v 故,故 =S )(10)510(22m dt t vtdt =-=⎰⎰.即刹车后,汽车需要走10m 才能停住.例6 设)(x f 在(0,)+∞内连续且()0f x >,证明函数⎰⎰=x xdtt f dt t tf x F 00)()()(在(0,)+∞内为单调增加函数.证明⎰xdt t tf dxd 0)(()xf x =,故)(x F '=()0020()()()()0()x xx xf x f t dt f x tf t dt f t dt->⎰⎰⎰. 故)(x F 在(0,)+∞内为单调增加函数.例7 求21cos 02lim xdt e t xx -→⎰.解dxd-=-⎰dt e t x21cos dxd dte t x 21cos 1-⎰=x xe 2cos sin -,利用Hospital 法则得21cos 02limx dt e t xx -→⎰=ex x e x x 212sin lim 2cos 0=-→.小结:Newton —Leibniz 公式.第三节 定积分的换元法与分部积分法教学目的:掌握换元积分法和分部积分法. 教学重点:熟练运用换元积分法和分步积分法. 教学难点:灵活运用换元法和分部积分法. 教学内容:一、换元积分定理 假设函数)(x f 在],[b a 上连续,函数)(t e x =满足条件: (1),)(a d =ϕ;)(b =βϕ(2))(t ϕ在[βα,](或[αβ,])上具有连续导数,且其值不越出],[b a , 则有=⎰badx x f )([]dt t t f ⎰'βαϕϕ)()(.例1 计算dx x a a⎰-022 (0a >).解 设t a x sin =则dt a dx cos =且0=x 时0=t ;2,π==t a x ,故dx x a a⎰-022=dt t atdt a⎰⎰+=202222)2cos 1(2cos ππ=42sin 2122202a t t aππ=⎥⎦⎤⎢⎣⎡+. 换元公式也可以反过来使用,即[]='⎰b adx x x f )()(ϕϕ⎰βαdt t f )(.例2 计算dx x x ⎰25sin cos π.解 设x t cos =,则-dt t x d x ⎰⎰-=015205cos cos π=dt t ⎰105=616106=⎥⎦⎤⎢⎣⎡t .例3 计算dx x x ⎰-π053sin sin .解dx x x ⎰-π53sin sin =()dx x x ⎰π223cos sin =()dx x x ⎰π23cos sin =()-⎰dx x x 2023cos sin πxdx x cos )(sin 223⎰ππ=()-⎰x d x sin sin 023πx d x sin )(sin 223⎰ππ=54. 例4 计算dx x x ⎰++4122.解 设12+=x t ,则=x 212-t ,10==t x 时;34==t x 时 故dx x x ⎰++4122=tdt t t ⎰+-312221=()d t t ⎰+312321=3223321313=⎥⎦⎤⎢⎣⎡+t t .例5 证明 1)若)(x f 在],[b a 上连续且为偶函数,则⎰-aadx x f )(=⎰adx x f 0)(22)若)(x f 在],[b a 上连续且为奇函数,则⎰-aadx x f )(=0.证明⎰-aadx x f )(=⎰-0)(a dx x f +⎰adx x f 0)(=⎰--0)(adx x f +⎰adx x f 0)(=⎰-adx x f 0)(+⎰a dx x f 0)(=⎰-+adx x f x f 0)]()([.1))(x f 为偶函数时,)(x f +)(x f -=)(2x f ,故⎰-aadx x f )(=⎰adx x f 0)(2.2))(x f 为奇函数时,)(x f +)(x f -=0,故⎰-aadx x f )(=0.例6 若)(x f 在[0,1]上连续,证明(1)⎰=2)(sin πdx x f ⎰20)(cos πdx x f ;(2)⎰=π)(sin dx x xf ⎰ππ)(sin 2dx x f ,由此计算⎰+π2cos 1sin dx xx x.证明(1)设dt dx t x -=-=则,2π且当0=x 时,2π=t ;当02==t x 时π,故⎰20)(sin πdx x f =t d t f ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--022sin ππ=()⎰02cos πdt t f =()⎰02cos πdx t f . (2)设t x -=π,则⎰π)(s i n dx x xf =⎰---0)()[sin()(πππt d t f t=⎰-)(sin ππdt t f ⎰0)(sin πdt t tf所以(sin )f t dx ππ=⎰⎰ππ)(sin 2dt t f .利用此公式可得:20sin 1cos x x x dx π=+⎰⎰+ππ02cos 1sin 2dx x x 201cos 21cosx d x ππ=-+⎰ []0(cos )2arctg x ππ=-=42π.例7 设函数=)(x f ⎪⎩⎪⎨⎧<<-+≥-01,cos 110,2x xx xe x ,计算⎰-41)2(dx x f . 解 设则,2t x =-41(2)f x dx -=⎰21()f t dt -=⎰+⎰-01)(dt t f 2()f t dt ⎰111cos dt t-=++⎰⎰-22dt te t 4111222tge -=-+. 二、分部积分法设)(),(x v x u 在],[b a 上具有连续导数)(),(x v x u '',则有()v u v u uv '+'='故⎰='badx uv )(⎰+'bavdx u ⎰'badx v u ,⎰⎰-=bab ab a vdu uv udv ][.这就是定积分的分部积分公式.例1⎰21arcsin xdx .解 设u=arcsin x ,,x v =则120a r c s i n x d x =⎰[]-21a r c s i n sx ⎰-210211dx xx12=arcsin 21+21⎰-21211dx xx112π=-. 例2 计算dx ex⎰1.解 设t x =,则1d x =⎰210dt e t ⎰=dt te t ⎰102102t tde =⎰1022tte ⎡⎤=-⎣⎦dt e t ⎰122(1)e e =--2=. 例3 证明定积分公式xdx I n n ⎰=20sin π1331,,24221342,1.253n n n n n n n n n n π--⎧⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⎪-⎩为正偶数为大于的正奇数证明 设xdx dv x u n sin ,sin1==-,由分部积分公式可得:--=⎰-xdx n I n n 202sin)1(πxdx n n ⎰-20sin )1(π2(1)(1)n n n I n I -=---故 21--=n n I nn I . 由此递推公式可得所证明等式.小结:分部积分公式.第四节 广义积分教学目的:理解无穷限广义积分和无界函数广义积分和定义及计算. 教学重点:利用广义积分的定义计算. 教学难点:概念产生的背景. 教学内容:一、无穷限广义积分定义1 设函数)(x f 在区间[,)a +∞上连续,取a b >.如果极限-∞→b lim⎰badx x f )(存在,则称此极限为函数)(x f 在无穷区间[,)a +∞上的广义积分,记作⎰+∞adx x f )(,即⎰+∞adx x f )(=-∞→b lim⎰badx x f )(.这时也称广义积分⎰+∞adx x f )(收敛;如果上述极限不存在,函数)(x f 在无穷区间[,)a +∞上的广义积分⎰+∞adx x f )(就没有意义,习惯上称为广义积分⎰+∞adx x f )(发散,这时记号⎰+∞adx x f )(不再表示数值了.类似地,设函数)(x f 在区间(,]b -∞上连续,取a b >,如果极限-∞→a lim⎰badx x f )(存在,则称此极限为函数)(x f 在无穷区间(]b ,∞-上的广义积分,记作⎰∞-bdx x f )(,即⎰∞-bdx x f )(=-∞→a lim⎰badx x f )(.这时也称广义积分⎰∞-bdx x f )(收敛;如果上述极限不存在,就称广义积分⎰∞-b dx x f )(发散.设函数)(x f 在区间(+∞∞-,)上连续,如果广义积分⎰∞-0)(dx x f 和⎰+∞)(dx x f都收敛,则称上述两广义积分之和为函数)(x f 在无穷区间(+∞∞-,)上的广义积分,记作⎰+∞∞-dx x f )(,即()f x dx +∞-∞=⎰⎰∞-0)(dx x f +⎰+∞)(dx x f lima →-∞=⎰-0)(adx x f +-∞→b lim⎰bdx x f 0)(.这时也称广义积分⎰+∞∞-dx x f )(收敛;否则就称广义积分⎰+∞∞-dx x f )(发散.例1 计算广义积分dx x ⎰∞+∞-+211. 解 211dx x +∞-∞=+⎰dx x ⎰∞-+0211+dx x ⎰∞++0211lim a →-∞=dx x a ⎰+0211+-∞→b limdx x b ⎰+0211lim a →-∞=[]+0a arctgx -∞→b lim []barctgx 0022πππ⎛⎫=-+= ⎪⎝⎭.上述广义积分的几何释义如下:(书图P316 5--12).例2 计算广义积分⎰+∞-0dt te pt (p 是常数,且0p >)解⎰+∞-0dt te pt l i m b →+∞=⎰-bpt dt te 0=+∞→b lim ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎥⎦⎤⎢⎣⎡-⎰--b pt bptdt e p e p t 0012001pt pt t e e p p +∞+∞--⎡⎤⎡⎤=--⎢⎥⎣⎦⎣⎦1p =-221)10(10lim p p te ptt =----+∞→ 例3 证明广义积分⎰∞+>a p a dx x )0(1当1>p 时收敛;当1≤p 时发散. 证明 当1=p 时,⎰∞+=a p dx x 1⎰∞+a dx x1=[]+∞=+∞0ln x ; 当1≠p ,⎰∞+=ap dx x 1⎪⎩⎪⎨⎧>-<∞+=⎥⎦⎤⎢⎣⎡--∞+-1,11,111p p a p p x pa p ,故命题得证. 无界函数的广义积分定义2 设函数)(x f 在],[b a 上连续,而在点a 的右邻域内无界,取0>ε,如果+∞→εlim⎰+ba dx x f ε)(存在,则称此极限为函数)(x f 在],[b a 上的广义积分,仍然记作⎰badx x f )(,即⎰badx x f )(=+∞→εlim⎰+ba dx x f ε)(.这时也称广义积分⎰badx x f )(收敛.如果上述极限不存在,就称广义积分⎰b adx x f )(发散.类似地,设函数)(x f 在],[b a 上连续,而在点b 的左邻域内无界,取ε>0,如果极限+∞→εlim⎰-εb adx x f )(存在,则定义=⎰badx x f )(+∞→εlim⎰-εb adx x f )(.否则,就称广义积分⎰badx x f )(发散.设函数)(x f 在],[b a 上除点)(b c a c <<外连续,而在点c 的邻域内无界,如果两个广义积分⎰cadx x f )(与⎰bcdx x f )(都收敛,则定义()baf x dx =⎰⎰cadx x f )(+()bcf x dx =⎰+∞→εlim⎰-εc adx x f )(++∞→'εlim⎰'+bc dx x f ε)(否则,就称广义积分发散.例4 计算广义积分⎰-axa dx 022(0>a )解⎰-axa dx 0220l i m ε→+=⎰--εa x a dx 0220l i m ε→+=ε-⎥⎦⎤⎢⎣⎡a a x 0a r c s i n0lim ε→+=⎥⎦⎤⎢⎣⎡--0arcsina a εarcsin12π==. 例5 讨论广义积分⎰-1121dx x 的收敛性. 解 1211dx x-=⎰+⎰-0121dx x ⎰1021dx x ,而0lim+→ε-=⎰--ε121dx x 0lim +→εε--⎥⎦⎤⎢⎣⎡11x =0lim +→ε⎪⎭⎫ ⎝⎛-11ε=∞+ 故所求广义积分⎰-1121dx x 发散.例6 证明广义积分⎰-baqa x dx)(当1<q 时收敛;当1≥q 时发散.证明 当,1时=q []+∞=-=-⎰ba baa x ax dx )ln(,发散; 当,1时≠q ⎰-baq a x dx )(=11(),1()11,1qbqa b a q x a q qq --⎧-<⎡⎤-⎪=-⎨⎢⎥-⎣⎦⎪+∞>⎩, 故命题得证.小结:无穷限广义积分与无界函数广义积分的定义.。
高等数学-第五章-定积分
则有
ab
c
c
b
c
a f (x)dx a f (x)dx b f (x)dx
b
c
c
a f (x)dx a f (x)dx b f (x)dx
c
b
a f (x)dx c f (x)dx
6. 若在 [a , b] 上
则
a<b
n
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
d (x)
dx a
f (t) d t
f
[ ( x)] ( x)
d
dx
( x) (x)
f
(t) d t
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [(x)](x) f [ (x)] (x)
例1. 求
0
0
解: 原式 洛 lim ecos2 x ( sin x) 1
x
ba n
,
xi a i x (i 0,1, ,n)
记 f (xi ) yi (i 0,1, ,n)
1. 左矩形公式
O a xi1xi
bx
ab f (x)dx y0x y1x yn1x
2. 右矩形公式
ba n
(
y0
y1
yn1)
ab f (x)dx y1x y2x ynx
)
故
π 2 0
2
dx
π
2 f (x) dx
0
π
2 1dx
0
即
1
π
2 0
高等数学 课件 PPT 第五章 定积分
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
高等数学-第5章 5.1 定积分的概念与性质
第5章 定积分及其应用定积分起源于求图形的面积和体积等实际问题,这类问题往往归结为计算“和式的极限”.定积分与不定积分是两个不同的概念,微积分基本定理揭示了这两个概念之间的关系,解决了定积分的计算问题.本章将从两个实例出发引出定积分的概念,然后讨论定积分的性质和计算方法,介绍定积分在几何上和物理学上的一些应用.§5.1 定积分的概念与性质一、引例 1. 曲边梯形的面积在中学,我们学过求三角形、矩形等以直线为边的图形的面积。
但在实际应用中,有时需要求以曲线为边的图形的面积(图5.1),这种图形可以分割为若干个一条边为曲线,而其余边为直线的图形(图5.2)。
现考虑求由连续曲线()(()0)y f x f x =≥以及直线0===y b x a x 、、所围成图形(图 5.3)的面积,这种图形称为曲边梯形,曲线()y f x =叫做曲边梯形的曲边。
怎样计算曲边梯形的面积呢?不妨回顾一下我们是怎样求函数在某点的瞬时变化率(切线的斜率、瞬时速度)的,都是先求某一区间内的平均变化率(割线的斜率、平均速度),得到某点变化率的近似值,再取极限由近似变化率过渡到精确变化率(切线的斜率、瞬时速度)。
简言之,就图5.3图5.1图5.2是先求近似值,再取极限由近似值过渡到精确值。
我们也采取这种方法来求曲边梯形的面积,先将曲边梯形分割成若干个小的曲边梯形,每个小曲边梯形都用一个小矩形近似代替,则所有小矩形面积之和就是曲边梯形面积的近似值,当把曲边梯形无限细分时,所有小矩形面积之和的极限就是曲边梯形的面积.为了便于表述,按下面四个步骤求曲边梯形的面积A : (1)分割 用1n +个分点01211i i n n a x x x x x x x b --=<<<<<<<<= ,把区间],[b a 分成n 个小区间011211[,],[,],,[,],,[,]i i n n x x x x x x x x -- ,它们的长度依次为11022111,,,,,i i i n n n x x x x x x x x x x x x --∆=-∆=-∆=-∆=- ,经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个小曲边梯形,第i 个小曲边梯形的面积记为(1,2,,)i A i n ∆= ,则所求曲边梯形的面积可表示为121nn i i A A A A A ==∆+∆+⋅⋅⋅+∆=∆∑。
定积分定积分的概念与性质
F ' ( x) 0 .
2
高等数学Ⅰ作业
班级:
学号:
姓名:
第三节 定积分的换元法和分部积分法 一、计算下列定积分 1.
2 0
2 x 2 dx ;
2.
1
1
x dx ; 5 4x
3.
xe
0
1
x
dx ;
4.
e
1
x ln xdx ;
5. 2 sin cos 3 d .
3
高等数学Ⅰ作业
班级:
学号:
姓名:
第四节 反常积分 判定下列各反常积分的收敛性,如果收敛,计算反常积分的值 1.
1
1 dx ; x4
2.
ax 0
e
dx (a 0) ;
3.
1 dx ; x 2 x 2
2
4.
1 0
x 1 x2ຫໍສະໝຸດ dx ;5.1 dx . 0 (1 x ) 2
0
二、设 f ( x ) 在 [ a , b ] 上连续,证明
b a
f ( x)dx f (a b x)dx .
a
b
三、 f ( x ) 在 [ a , b ] 上连续, f ( x ) 0 ,证明: F ( x)
x a
f (t )dt
x b
1 dt 0 在 [ a, b] 内只有一个实根. f (t )
2.
a dx ; ( x a)(x 2a)
3.
4 0
tan 2d ;
4.
(整理)定积分的概念与性质.
第五章 定积分第一节 定积分的概念与性质教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容:一、定积分的定义 1.曲边梯形的面积设)(x f y =在[]b a ,上非负,连续,由直线x a =,x b =,0y =及曲线)(x f y = 所围成的图形,称为曲边梯形.求面积:在区间[]b a ,中任意插入若干个分点b x x x x x a n n =<<<<=-1210 ,把[]b a ,分成n 个小区间[10,x x ],[21,x x ], … [n n x x ,1-],它们的长度依次为:1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x经过每一个分点作平行于y 轴的直线段,把曲边梯形分成n 个窄曲边梯形,在每个小区间[i i x x ,1-]上任取一点i ξ,以[i i x x ,1-]为底,)(i f ξ为高的窄边矩形近似替代第i 个窄边梯形(1,2,,)i n =,把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值,即n n i x f x f x f A ∆++∆+∆≈)()()(221ξξξ =∑=∆ni i i x f 1)(ξ.设{}0,,,m ax 21→∆∆∆=λλn x x x 时,可得曲边梯形的面积∑=→∆=ni i i A x f A 1)(lim ξ.2.变速直线运动的路程设某物体作直线运动,已知速度)(t v v =是时间间隔[21,T T ]上t 的连续函数,且0v ≥,计算在这段时间内物体所经过的路程S在[21,T T ]内任意插入若干个分点212101T t t t t t T n n =<<<<=- ,把[21,T T ]分成n 个小段[10,t t ],[21,t t ],…, [n n t t ,1-],各小段时间长依次为:,,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t相应各段的路程为:n S S S ∆∆∆,,,21 ,在[i i t t ,1-]上任取一个时刻)(1i i i i t T t T ≤≤-,以i T 时的速度)(i T v 来代替[i i t t ,1-]上各个时刻的速度,则得:i i i t T v S ∆≈∆)( ),,2,1(n i =,进一步得到:n n t T v t T v t T v S ∆++∆+∆≈)()()(2211 =∑=∆ni t T v 111)(设{}0,,,,m ax 21→∆∆∆=λλ当n t t t 时,得:∑=→∆=ni i t T v S 1)(lim λ.3.定积分的定义由上述两例可见,虽然所计算的量不同,但它们都决定于一个函数及其自变量的变化区间,其次它们的计算方法与步骤都相同,即归纳为一种和式极限,即面积∑=→∆=ni iixf A 10)(limξλ,路程∑=→∆=ni iitT v S 1)(limλ.将这种方法加以精确叙述得到定积分的定义定义 设函数],[)(b a x f 在上有界,在[,]a b 中任意插入若干个分点b x x x x x a n n =<<<<<=-1210 ,把区间[,]a b 分成n 个小区间],,[,],,[],,[12110n n x x x x x x -各个小区间的长度依次为1122011,,,--=∆-=∆-=∆n n n x x x x x x x x x .在每个小区间[i i x x ,1-]上任取一点i i i i x x ≤≤-εε1(),作函数值)(i f ε与小区间长度i x ∆的乘积),,,2,1()(n i x f i i =∆ε并作出和∑=∆=ni i i x f S 1)(ε.记},,,m ax {21n x x x ∆∆∆= λ,如果不论对[,]a b 怎样分法,也不论在小区间[i i x x ,1-]上点i ε怎样取法,只要当0λ→时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[,]a b 上的定积分(简称积分),记作⎰badx x f )(.即⎰badx x f )(=I =∑=→∆n i i i x f 1)(lim ελ,其中)(x f 叫做被积函数,dx x f )(叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[,]a b 叫做积分区间.注意 积分与积分变量无关,即:⎰⎰⎰==bab abadu u f dt t f dx x f )()()(.函数可积的两个充分条件:定理1 设],[)(b a x f 在上连续,则)(x f 在[,]a b 上可积.定理2 设],[)(b a x f 在上有界,且只有有限个间断点,则],[)(b a x f 在上可积. 例 利用定积分定义计算⎰12dx x .解 2()[0,1]f x x =是上的连续函数,故可积,因此为方便计算,我们可以对[0,1]n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故 ∑∑∑===∆=∆=∆n i i in i i ini i i x x x x f 12121)(ξξ=∑∑===ni ni in n ni 1232111)(=)12)(1(6113++n n n n =)12)(11(61n n ++, 时0→λ(即时∞→n ),由定积分的定义得:⎰12dx x =31. 二、定积分的性质:为方便定积分计算及应用,作如下补充规定:(1) 当a b =时,0)(=⎰badx x f ,(2) 当a b >时,-=⎰badx x f )(⎰abdx x f )(.性质1 函数和(差)的定积分等于它们的定积分的和(差),即=±⎰dx x g x f b a)]()([±⎰badx x f )(⎰badx x g )(.证明=±⎰dx x g x f ba)]()([ini iix g f ∆±∑=→1)]()([lim ξξλ=±∆∑=→ini ixf 10)(limξλi ni i x g ∆∑=→1)(lim ξλ=±⎰badx x f )(⎰badx x g )(.性质2 被积函数的常数因子可以提到积分号外面,即=⎰badx x kf )(k⎰badx x f )( (k 是常数).性质3 如果将积分区间分成两部分,则在整个区间上的定积分等于这两个区间上定积分之和,即设a c b <<,则=⎰badx x f )(⎰+cadx x f )(⎰bcdx x f )(注意 我们规定无论,,a b c 的相对位置如何,总有上述等式成立. 性质4 如果在区间[,]a b 上,则,1)(≡x f =⎰badx x f )(a b dx ba-=⎰.性质5 如果在区间[,]a b 上,则,0)(≥x f0)(≥⎰badx x f )(b a <证明:因,0)(≥x f 故),,3,2,1(0)(n i f i =≥ξ,又因),,2,1(0n i x i =≥∆,故0)(1≥∆∑=i ni i x f ξ,设12max{,,,},0n x x x λλ=∆∆∆→时,便得欲证的不等式.推论1 如果在[,]a b 上,则),()(x g x f ≤≤⎰badx x f )(⎰badx x g )( )(b a <.推论2≤⎰badx x f )(⎰badx x f )(.性质6 设M 与m 分别是函数],[)(b a x f 在上的最大值及最小值,则≤-)(a b m ≤⎰badx x f )()(a b M - )(b a <性质7 (定积分中值定理)如果函数)(x f 在闭区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ,使下式成立:))(()(a b f dx x f ba-=⎰ξ (b a ≤≤ξ).证明:利用性质6,⎰≤-≤b aM dx x f a b m )(1;再由闭区间上连续函数的介值定理,知在[,]a b 上至少存在一点ξ,使⎰-=ba dx x f ba f )(1)(ξ,故得此性质. 显然无论ab >,还是a b <,上述等式恒成立. 做本节后面练习,熟悉上面各性质.积分中值定理的几何释意如下:在区间[,]a b 上至少存在一个ξ,使得以区间[,]a b 为底边, 以曲线)(x f y =为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积,见下图.(在下面做p286图5--4)小结:简捷综述上面各性质.第二节 微积分基本公式教学目的:掌握微积分基本公式及其应用. 教学重点:公式的应用. 教学难点:公式的应用. 教学内容:一、变速直线运动中位置函数与速度函数之间的联系设一物体在一直线上运动,在这直线上取定原点,正方向,单位长度,使其成为一数轴,时刻t 时物体所处的位置()S t ,速度)0)()((≥t v t v 不防设.物体在时间间隔],[21T T 内经过的路程可以用速度函数)(t v 在],[21T T 上的定积分来表达,即21()T T v t dx ⎰另一方面,这段路程可以通过位置函数)(t s 在区间],[21T T 的增量来表示,即)()(12T S T S -故⎰21)(T T dx t v =)()(12T S T S -.注意到()()S t v t '=,即()S t 是)(t v 的原函数.二、积分上限的函数及其导数设)(x f 在],[b a 上连续,并且设x 为],[b a 上任一点,设⎰=Φxadt t f x )()(.则函数)(x Φ具有如下性质:定理1 如果函数)(x f 在区间],[b a 上连续,则积分上限函数⎰=Φxadt t f x )()(在],[b a 上具有导数,并且它的导数是()()()xad x f t dt f x dx 'Φ==⎰ (b x a ≤≤).证明:(1)),(b a x ∈时,()()()x x x x ∆Φ=Φ+∆-Φ=()x xaf t dt +∆-⎰⎰xadt t f )(()()x xxf t dt f x ξ+∆==∆⎰,ξ在x x ∆与之间)()(ξf xx =∆∆Φ 0→∆x 时,有=Φ')(x )(x f .(2)时考虑或b a x =其单侧导数,可得=Φ')(a )(a f ,=Φ')(b )(b f由定理1可得下面结论定理2 如果函数)(x f 在区间],[b a 上连续,则函数=Φ)(x ⎰xadt t f )(是)(x f 的一个原函数.Newton 的积分上限函数的几何意义如下:(P209图5—5放在下面). 三、Newton —Leibniz 公式定理3 如果函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则=⎰badx x f )(-)(b F )(a F证明 因)(x F 与)(x Φ均是)(x f 原函数,故-)(x F )(x Φ=c (b x a ≤≤),又因=⎰badx x f )(-Φ)(b )(a Φ, 故 =⎰badx x f )(-)(b F )(a F .为方便起见,把-)(b F )(a F 记作[)(x F ]ba .上述公式就是Newton —Leibniz 公式,也称作微积分基本公式.例1 31303133310312=-=⎥⎦⎤⎢⎣⎡=⎰x dx x . 例2 计算 ⎰-+31211dx x . 解⎰-+31211dx x =[]π12731=-arctgx . 例3 计算⎰--12x dx.解 []2ln 2ln 1ln ln 11212-=-==⎰----x dx x.例4 计算x y sin =在[π,0]上与x 轴所围成平面图形的面积. 解 []2c o s s i n 00=-==⎰ππx x d x A .上例的几何释义如下:(书图P292, 5--4).例5 汽车以每小时36km 的速度行驶,到某处需要减速停车,设汽车以等加速度2/5s m a -=刹车,问从开始刹车到停车,汽车走了多少路程?解 0=t 时,s m v /100=,t at v t v 510)(0-=+=,2,510)(0=-==t t t v 故,故 =S )(10)510(22m dt t vtdt =-=⎰⎰.即刹车后,汽车需要走10m 才能停住.例6 设)(x f 在(0,)+∞内连续且()0f x >,证明函数⎰⎰=x xdtt f dt t tf x F 00)()()(在(0,)+∞内为单调增加函数.证明⎰xdt t tf dxd 0)(()xf x =,故)(x F '=()0020()()()()0()x xx xf x f t dt f x tf t dt f t dt->⎰⎰⎰. 故)(x F 在(0,)+∞内为单调增加函数.例7 求21cos 02lim xdt e t xx -→⎰.解dxd-=-⎰dt e t x21cos dxd dte t x 21cos 1-⎰=x xe 2cos sin -,利用Hospital 法则得21cos 02limx dt e t xx -→⎰=ex x exx 212sin lim2cos 0=-→.小结:Newton —Leibniz 公式.第三节 定积分的换元法与分部积分法教学目的:掌握换元积分法和分部积分法. 教学重点:熟练运用换元积分法和分步积分法. 教学难点:灵活运用换元法和分部积分法. 教学内容:一、换元积分定理 假设函数)(x f 在],[b a 上连续,函数)(t e x =满足条件: (1),)(a d =ϕ;)(b =βϕ(2))(t ϕ在[βα,](或[αβ,])上具有连续导数,且其值不越出],[b a , 则有=⎰badx x f )([]dt t t f ⎰'βαϕϕ)()(.例1 计算dx x a a⎰-022 (0a >).解 设t a x sin =则dt a dx cos =且0=x 时0=t ;2,π==t a x ,故dx x a a⎰-022=dt t a tdt a ⎰⎰+=2022022)2cos 1(2cos ππ=42sin 2122202a t t a ππ=⎥⎦⎤⎢⎣⎡+. 换元公式也可以反过来使用,即[]='⎰b adx x x f )()(ϕϕ⎰βαdt t f )(.例2 计算dx x x ⎰25sin cos π.解 设x t cos =,则-dt t x d x ⎰⎰-=015205cos cos π=dt t ⎰105=616106=⎥⎦⎤⎢⎣⎡t .例3 计算dx x x ⎰-π053sin sin .解dx x x ⎰-π53sin sin =()dx x x ⎰π223cos sin =()dx x x ⎰π23cos sin =()-⎰dx x x 2023cos sin πxdx x cos )(sin 223⎰ππ=()-⎰x d x sin sin 023πx d x sin )(sin 223⎰ππ=54. 例4 计算dx x x ⎰++4122.解 设12+=x t ,则=x 212-t ,10==t x 时;34==t x 时 故dx x x ⎰++4122=tdt t t ⎰+-312221=()d t t ⎰+312321=3223321313=⎥⎦⎤⎢⎣⎡+t t . 例5 证明 1)若)(x f 在],[b a 上连续且为偶函数,则⎰-aadx x f )(=⎰adx x f 0)(22)若)(x f 在],[b a 上连续且为奇函数,则⎰-aadx x f )(=0.证明⎰-aadx x f )(=⎰-0)(a dx x f +⎰a dx x f 0)(=⎰--0)(a dx x f +⎰adx x f 0)(=⎰-adx x f 0)(+⎰a dx x f 0)(=⎰-+adx x f x f 0)]()([.1))(x f 为偶函数时,)(x f +)(x f -=)(2x f ,故⎰-aadx x f )(=⎰adx x f 0)(2.2))(x f 为奇函数时,)(x f +)(x f -=0,故⎰-aadx x f )(=0.例6 若)(x f 在[0,1]上连续,证明(1)⎰=2)(sin πdx x f ⎰20)(cos πdx x f ;(2)⎰=π)(sin dx x xf ⎰ππ)(sin 2dx x f ,由此计算⎰+π2cos 1sin dx xx x.证明(1)设dt dx t x -=-=则,2π且当0=x 时,2π=t ;当02==t x 时π,故⎰20)(sin πdx x f =t d t f ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--022sin ππ=()⎰02cos πdt t f =()⎰02cos πdx t f .(2)设t x -=π,则⎰π)(s i n dx x xf =⎰---0)()[sin()(πππt d t f t=⎰-)(sin ππdt t f ⎰0)(sin πdt t tf所以(sin )f t dx ππ=⎰⎰ππ)(sin 2dt t f . 利用此公式可得:20sin 1cos x x x dx π=+⎰⎰+ππ02cos 1sin 2dx x x 201cos 21cosx d x ππ=-+⎰ []0(cos )2arctg x ππ=-=42π.例7 设函数=)(x f ⎪⎩⎪⎨⎧<<-+≥-01,cos 110,2x xx xe x ,计算⎰-41)2(dx x f . 解 设则,2t x =-41(2)f x dx -=⎰21()f t dt -=⎰+⎰-01)(dt t f 2()f t dt ⎰111cos dt t-=++⎰⎰-22dt te t 4111222tge -=-+. 二、分部积分法设)(),(x v x u 在],[b a 上具有连续导数)(),(x v x u '',则有()v u v u uv '+'='故⎰='badx uv )(⎰+'bavdx u ⎰'badx v u ,⎰⎰-=bab ab a vdu uv udv ][.这就是定积分的分部积分公式.例1⎰21arcsin xdx .解 设u=arcsin x ,,x v =则120a r c s i n x d x =⎰[]-21a r c s i n sx ⎰-210211dx x x12=arcsin 21+21⎰-21211dx xx112π=-. 例2 计算dx e x ⎰1.解 设t x =,则1d x =⎰210dt e t ⎰=dt te t⎰102102t tde =⎰1022t te ⎡⎤=-⎣⎦dt e t ⎰122(1)e e =--2=. 例3 证明定积分公式xdx I n n ⎰=20sin π1331,,24221342,1.253n n n n n n n n n n π--⎧⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⎪-⎩为正偶数为大于的正奇数证明 设xdx dv x u n sin ,sin1==-,由分部积分公式可得:--=⎰-xdx n I n n 202sin)1(πxdx n n ⎰-20sin )1(π2(1)(1)n n n I n I -=---故 21--=n n I nn I . 由此递推公式可得所证明等式.小结:分部积分公式.第四节 广义积分教学目的:理解无穷限广义积分和无界函数广义积分和定义及计算. 教学重点:利用广义积分的定义计算. 教学难点:概念产生的背景. 教学内容:一、无穷限广义积分定义1 设函数)(x f 在区间[,)a +∞上连续,取a b >.如果极限-∞→b lim⎰badx x f )(存在,则称此极限为函数)(x f 在无穷区间[,)a +∞上的广义积分,记作⎰+∞adx x f )(,即⎰+∞adx x f )(=-∞→b lim⎰badx x f )(.这时也称广义积分⎰+∞adx x f )(收敛;如果上述极限不存在,函数)(x f 在无穷区间[,)a +∞上的广义积分⎰+∞adx x f )(就没有意义,习惯上称为广义积分⎰+∞adx x f )(发散,这时记号⎰+∞adx x f )(不再表示数值了.类似地,设函数)(x f 在区间(,]b -∞上连续,取a b >,如果极限-∞→a lim⎰badx x f )(存在,则称此极限为函数)(x f 在无穷区间(]b ,∞-上的广义积分,记作⎰∞-bdx x f )(,即⎰∞-bdx x f )(=-∞→a lim⎰badx x f )(.这时也称广义积分⎰∞-bdx x f )(收敛;如果上述极限不存在,就称广义积分⎰∞-b dx x f )(发散.设函数)(x f 在区间(+∞∞-,)上连续,如果广义积分⎰∞-0)(dx x f 和⎰+∞)(dx x f都收敛,则称上述两广义积分之和为函数)(x f 在无穷区间(+∞∞-,)上的广义积分,记作⎰+∞∞-dx x f )(,即()f x dx +∞-∞=⎰⎰∞-0)(dx x f +⎰+∞)(dx x f lima →-∞=⎰-0)(adx x f +-∞→b lim⎰bdx x f 0)(.这时也称广义积分⎰+∞∞-dx x f )(收敛;否则就称广义积分⎰+∞∞-dx x f )(发散.例1 计算广义积分dx x ⎰∞+∞-+211. 解 211dx x +∞-∞=+⎰dx x ⎰∞-+0211+dx x ⎰∞++0211lim a →-∞=dx x a ⎰+0211+-∞→b limdx x b ⎰+0211lim a →-∞=[]+0a arctgx -∞→b lim []barctgx 0022πππ⎛⎫=-+= ⎪⎝⎭.上述广义积分的几何释义如下:(书图P316 5--12). 例2 计算广义积分⎰+∞-0dt te pt (p 是常数,且0p >)解⎰+∞-0dt te pt l i m b →+∞=⎰-bpt dt te 0=+∞→b lim ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎥⎦⎤⎢⎣⎡-⎰--b pt bptdt e p e p t 0012001pt pt t e e p p +∞+∞--⎡⎤⎡⎤=--⎢⎥⎣⎦⎣⎦1p =-221)10(10lim p p te ptt =----+∞→例3 证明广义积分⎰∞+>a p a dx x )0(1当1>p 时收敛;当1≤p 时发散. 证明 当1=p 时,⎰∞+=a pdx x 1⎰∞+a dx x 1=[]+∞=+∞0ln x ; 当1≠p ,⎰∞+=ap dx x1⎪⎩⎪⎨⎧>-<∞+=⎥⎦⎤⎢⎣⎡--∞+-1,11,111p p a p p x p ap,故命题得证.无界函数的广义积分定义2 设函数)(x f 在],[b a 上连续,而在点a 的右邻域内无界,取0>ε,如果+∞→εlim⎰+ba dx x f ε)(存在,则称此极限为函数)(x f 在],[b a 上的广义积分,仍然记作⎰badx x f )(,即⎰badx x f )(=+∞→εlim⎰+ba dx x f ε)(.这时也称广义积分⎰badx x f )(收敛.如果上述极限不存在,就称广义积分⎰badx x f )(发散.类似地,设函数)(x f 在],[b a 上连续,而在点b 的左邻域内无界,取ε>0,如果极限+∞→εlim⎰-εb adx x f )(存在,则定义=⎰badx x f )(+∞→εlim⎰-εb adx x f )(.否则,就称广义积分⎰badx x f )(发散.设函数)(x f 在],[b a 上除点)(b c a c <<外连续,而在点c 的邻域内无界,如果两个广义积分⎰cadx x f )(与⎰bcdx x f )(都收敛,则定义()baf x dx =⎰⎰cadx x f )(+()bcf x dx =⎰+∞→εlim⎰-εc adx x f )(++∞→'εlim⎰'+bc dx x f ε)(否则,就称广义积分发散.例4例5 计算广义积分⎰-axa dx 022(0>a )解⎰-axa dx 0220l i m ε→+=⎰--εa x a dx 0220l i m ε→+=ε-⎥⎦⎤⎢⎣⎡a a x 0a r c s i n0lim ε→+=⎥⎦⎤⎢⎣⎡--0arcsina a εarcsin12π==. 例6例7 讨论广义积分⎰-1121dx x 的收敛性.解 1211dx x-=⎰+⎰-0121dx x ⎰121dx x ,而0lim+→ε-=⎰--ε121dx x 0lim +→εε--⎥⎦⎤⎢⎣⎡11x =0lim +→ε⎪⎭⎫ ⎝⎛-11ε=∞+ 故所求广义积分⎰-1121dx x 发散.例8 证明广义积分⎰-baqa x dx)(当1<q 时收敛;当1≥q 时发散.证明 当,1时=q []+∞=-=-⎰ba baa x ax dx )ln(,发散;当,1时≠q ⎰-baq a x dx )(=11(),1()11,1qbqa b a q x a q qq --⎧-<⎡⎤-⎪=-⎨⎢⎥-⎣⎦⎪+∞>⎩, 故命题得证.小结:无穷限广义积分与无界函数广义积分的定义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016/9/13 微积分II 第五章定积分 7
n
二、定积分的定义
定义 设函数 f ( x ) 在[a , b]上有界, 在[a , b ]中任意插入
若干个分点
a x 0 x1 x 2 x n 1 x n b
n 个小区间,各小区间的长度依次为 把区间[a , b] 分成
定理1 当函数 f ( x ) 在区间[a , b] 上连续时,
称 f ( x ) 在区间[a , b] 上可积.
[a , b] 上有界, 定理2 设函数 f ( x ) 在区间
且只有有限个第一类的 间断点,
则 f ( x ) 在 区间[a , b ]上可积.
2016/9/13
微积分II 第五章定积分
几何意义:
它是介于 x 轴、函数 f ( x ) 的图形及两条 直线 x a, x b 之间的各部分面积的代 数和. 在 x 轴上方的面积取正号; 在 x 轴下方的面 积取负号.
微积分II 第五章定积分 13
2016/9/13
例1 利用定义计算定积分 x 2dx.
0
1
i 解 将[0,1]n 等分,分点为 x i ,(i 1,2, , n ) n 1 小区间[ x i 1 , x i ]的长度x i ,(i 1,2, , n ) n 取 i x i ,(i 1,2,, n )
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
2016/9/13 微积分II 第五章定积分 3
曲边梯形如图所示,
在区间 [a , b]内插入若干 个分点,a x0 x1 x2 xn1 xn b, 把区间 [a , b] 分成 n y 个小区间[ xi 1 , xi ], 长度为 xi xi xi 1 ;
2016/9/13
微积分II 第五章定积分
6
(1)分割
T1 t0 t1 t 2 t n1 t n T2 t i t i t i 1
部分路程值
si v( i )t i
某时刻的速度
(2)求和
s v ( i )t i
i 1
n
(3)取极限 max{t1 , t 2 ,, t n } 路程的精确值 s lim v ( i )t i
当分割无限加细, 记小区间的最大长度 或者( x ) x max{x1 , x2 , xn } 趋近于零 ( x 0或者 0) 时,
曲边梯形面积为 A lim f ( i )xi
0 i 1
n i 1
n
2016/9/13
微积分II 第五章定积分
5
实例2 (求变速直线运动的路程)
第五章 定积分
第一节 定积分的概念
一、问题的提出
实例1 (求曲边梯形的面积)
曲边梯形由连续曲线 y f ( x ) ( f ( x ) 0) 、
x 轴与两条直线 x a 、
y
y f ( x)
A?
o
a b
x b 所围成.
x
2016/9/13
微积分II 第五章定积分
2
用矩形面积近似取代曲边梯形面积
n
2
1 1 1 1 2 , 6 n n
x 0 n
2
0 x dx lim 0 i 1
2
1
n
i x i
1 1 1 1 lim 1 2 . n 6 n n 3
2016/9/13 微积分II 第五章定积分 15
设某物体作直线运动,已知速度 v v ( t )是 时 间 间 隔 [T1 , T2 ] 上 t 的 一 个 连 续 函 数 , 且 v ( t ) 0 ,求物体在这段时间内所经过的路程.
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
i 1
2016/9/13
n
f ( i )xi i xi xi2 xi ,
2 i 1
i 1
n
n
微积分II 第五章定积分
14
1 n 2 1 n( n 1)(2n 1) i 1 3 i 3 n n i 1 n 6 i 1 n
在每个小区间[ xi 1 , xi ] 上任取一点 i,
o a
x i 1 i xi
xn1 b
x
以 [ xi 1 , xi ]为底, f (i ) 为高的小矩形面积为
Ai f ( i )xi
2016/9/13 微积分II 第五章定积分 4
曲边梯形面积的近似值为
A f ( i )xi
被 积 函 数
被 积 表 达 式
b
n
积分和
积分下限
积 分 变 量
[a , b] 积分区间
2016/9/13
微积分II 第五章定积分
9
注意:
(1)积分值是极限值,其本质是一个常数,仅 与被积函数及积分区间有关,而与积分变量的 b b 字母无关. f ( x )dx f ( t )dt b f ( u)du
x i x i x i 1 ,( i 1,2,) ,在各小区间上任取
一点 i ( i xi ),作乘积 f ( i )x i ( i 1,2,)
并作和 S f ( i )x i ,
记 x max{x1, x2 ,, xn} , 如果不论对[a , b ]
( 2) 在定义中假设
① 若 ② 若
b
a
a
a
为了方便起见, 我们作如下规定: 则
a
[ f ( x)dx]'
,则
0
[a , b] 上的定积分存在时, (3)当函数 f ( x ) 在区间
称 f ( x ) 在区间[a , b] 上可积.
2016/9/13 微积分II 第五章定积分 10
三、存在定理
2016/9/13 微积分II 第五章定积分 8
n
i 1
怎样的分法, 也不论在小区间[ x i 1 , x i ] 上
点 i 怎样的取法,只要当 x 0 时,和 S 总趋于
I , 我们称这个极限 I 为函数 f ( x ) 确定的极限 在区间[a , b] 上的定积分, 记为
积分上限
f ( i )x i a f ( x )dx I lim 0 i 1
11
四、定积分的几何意义
f ( x ) 0, f ( x ) 0,
a f ( x )dx A
b
b
曲边梯形的面积
的负值
a f ( x )dx A 曲边梯形的面积
A3
A1
A2
A4
2016/9/13
a f ( x )dx A1 A2
b
A3 A4
12
微积分II 第五章定积分