2012届高三数学二轮复习专题02答案与解析
江苏省2012届高三数学二轮专题训练 解答题(65)
江苏省2012届高三数学二轮专题训练:解答题(65)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(Ⅰ)若A B=[0,3],求实数m的值;(Ⅱ)若A C R B,求实数m的取值范围.2.(本题满分14分)数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(Ⅰ)求c的值;(Ⅱ)求{a n}的通项公式.3.(文科)(本题满分14分)设函数f(x)=a ·b ,其中a =(m,cos2x),b =(1+sin2x,1),x ∈R ,且函数y=f(x)的图象经过点(4π,2). (Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值及此时x 值的集合.(理科)(本题满分14分)已知函数f(x)=e x-kx ,x ∈R. (Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x ∈R ,f(|x|)>0恒成立,试确定实数k 的取值范围.4.(本题满分16分)A 、B 是函数f(x)=12+2log x1-x的图象上的任意两点,且OM =12(OA +OB ),已知点M 的横坐标为12. (Ⅰ)求证:M 点的纵坐标为定值;(Ⅱ)若S n =f(1n )+f(2n )+…+f(n -1n),n ∈N +且n ≥2,求S n ; (Ⅲ)已知数列{a n }的通项公式为⎧⎪⎪⎨⎪⎪⎩n +n n+12(n =1)3a =1 (n ≥2,n ∈N )(S +1)(S +1). T n 为其前n项的和,若T n <λ(S n+1+1),对一切正整数都成立,求实数λ的取值范围.5.(本题满分16分)(Ⅰ)(Ⅱ)试比较nn+1与(n+1)n(n ∈N +)的大小,根据(Ⅰ)的结果猜测一个一般性结论,并加以证明.6. (本题满分16分)设函数y=f(x)对任意实数x ,都有f(x)=2f(x+1),当x ∈[0,1]时,f(x)=274x 2(1-x). (Ⅰ)已知n ∈N +,当x ∈[n,n+1]时,求y=f(x)的解析式; (Ⅱ)求证:对于任意的n ∈N +,当x ∈[n,n+1]时,都有|f(x)|≤n12; (Ⅲ)对于函数y=f(x)(x ∈[0,+∞),若在它的图象上存在点P ,使经过点P 的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.1.解:由已知得:A={x|-1≤x ≤3},B={x|m-2≤x ≤m+2}(Ⅰ)∵AB=[0,3],∴⎧⎨⎩m -2=0m +2≥3,∴⎧⎨⎩m =2m ≥1,∴m=2. …………7分(Ⅱ)C R B={x|x<m-2或x>m+2},∵A ⊆C R B ,∴m-2>3,或m+2<-1,∴m 的取值范围为(-∞,-3)(5,+∞).…………………………14分2.解:(Ⅰ)a 1=2,a 2=2+c ,a 3=2+3c ,因为a 1,a 2,a 3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2. 当c=0时,a 1=a 2=a 3,不合题意,舍去,故c=2. ………………………………………………………………………………6分(Ⅱ)当n ≥2时,由于a 2-a 1=c ,a 3-a 2=2c ,…,a n -a n-1=(n-1)c ,所以a n -a 1=[1+2+…+(n-1)]c=n(n -1)c2. 又a 1=2,c=2, 所以a n =2+n(n-1)=n 2-n+2(n=2,3,…),又当n=1时,上式也成立, 故a n =n 2-n+2(n=1,2,3,…). ……………………………………14分3. (文科)解:(Ⅰ)f(x)=a ·b=m(1+sin2x)+cos2x.由已知得f(4π)=m(1+sin 2π)+cos 2π=2,解得m=1.……6分 (Ⅱ)由(Ⅰ)得sin(2x+4π).所以当sin(2x+4π)=-1时,f(x)的最小值为. ……………11分由sin(2x+4π)=-1,得x 值的集合为{x|x=k 38ππ-,k ∈Z}.……14分(理科)解:(Ⅰ)由k=e 得f(x)=e x -ex ,所以f '(x)=e x-e.由f '(x)>0得x>1,故f(x)的单调递增区间是(1,+∞);……………………4分由f '(x)<0得x<1,故f(x)的单调递减区间是(-∞,1). ……………………6分(Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数. 于是f(|x|)>0对任意x ∈R 成立等价于f(x)>0对任意x ≥0成立. 由f '(x)=e x-k=0得x=lnk.①当k ∈(0,1]时,f '(x)=e x-k>1-k ≥0(x>0). 此时f(x)在[0,+∞)上单调递增.故f(x)≥f(0)=1>0,符合题意.所以0<k ≤1. …………10分②当k ∈(1,+∞)时,lnk>0. 当x 变化时f '(x),f(x)的变化情况如下:由此可得,在[0,+∞)上,f(x)≥f(lnk)=k-klnk. 依题意,k-klnk>0. 又k>1,所以1<k<e.综合①②实数k 的取值范围为(0,e). …………………………14分4.(Ⅰ)证明:设A(x 1,y 1),B(x 2,y 2),M(12,y m ),由OA +OB OM =2得12x +x 1=22即x 1+x 2=1. 1212xx1-x 1-x 12m 22y +y 1y ==[1+log +log ]22 1221x xx x 221=[1+log +log ]21221x xx x 21=[1+log ]2 1=2即M 点的纵坐标为12. …………………………………………………4分(Ⅱ)当n ≥2时,n -1n ∈(0,1),又1n -12n -21=+=+n n n n=…=x 1+x 2, ∴1n -12n -2f()+f()=f()+f()n n n n =…=f(x 1)+f(x 2)=y 1+y 2=1.n 12S =f()+f()+n n ...n -1+f()n ,又n n -1n -2S =f()+f()+n n (1)+f()n,∴2S n =n-1,则n n -1S =2(n ≥2,n ∈N +). ……………………………10分(Ⅲ)由已知T 1=a 1=23,n ≥2时,n 11a =4(-)n +1n +2,∴T n =a 1+a 2+…+a n =21111+4[(-)+(-)+33445…11+(-)]n +1n +2=2nn +2.当n ∈N +时,T n <λ(S n+1+1),即λ>24n (n +2),n ∈N +恒成立,则λ>⎡⎤⎢⎥⎣⎦2max4n (n +2). 而224n 4n 441==≤=4(n +2)n +4n +44+42n ++4n(n=2时“=”成立), ∴12λ>,∴实数λ的取值范围为(12,+∞). ……………………16分5.解:(Ⅰ)由于68=,69=>又1032=,1025=>>>. …………………………………………6分(Ⅱ)当n=1,2时,有n n+1<(n+1)n.………………………………………8分 当n ≥3时,有n n+!>(n+1)n. 证明如下:令n+1n +n n a =(n ≥3,n ∈N )(n +1),433381a ==>1464. 又⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦n+1n+1n+2n 2n+1n+1n+1n a (n +1)(n +1)(n +1)(n +2)n +1===>1a (n +2)n (n +2)n (n +2)n .∴a n+1>a n 即数列{a n }是一个单调递增数列. 则a n >a n-1>…>a 3>1∴n+1nn >1(n +1)即n n+1>(n+1)n. ……………………………………16分 另证:构造函数f(x)=lnx x (x ≥3),f '(x)=)'lnx (x =21-lnx<0x, ∴f(x)=lnxx在[3,+∞)为递减函数,则f(n)>f(n+1),即lnn ln(n +1)>n n +1,即n n+1>(n+1)n(n ≥3时结论成立).6.解:(Ⅰ)由f(x)=2f(x+1)→f(x)=12(x-1),x ∈[n,n+1],则(x-n)∈[0,1] →f(x-n)=274(x-n)2(1+n-x). f(x)=12f(x-1)=212f(x-2)=…=n 12f(x-n)=n+2272(x-n)2(1+n-x). (n=0也适用). ………………4分 (Ⅱ)f '(x)=n+2813n +2-(x -n)(x -),由f '(x)=0得x=n 或x=n+2f(x)的极大值为f(x)的最大值,max nf =f(n +)=32, 又f(x)≥f(n)=f(n+1)=0,∴|f(x)|=f(x)≤n 12(x ∈[n,n+1]).…8分(Ⅲ)y=f(x),x ∈[0,+∞)即为y=f(x),x ∈[n,n+1],f '(x)=-1.本题转化为方程f '(x)=-1在[n,n+1]上有解问题即方程n+23n +22(x -n)(x -)-=0381在[n,n+1]内是否有解. ……11分 令g(x)=6n+22n+223n +226n +23n +2n 2(x -n)(x -)-=x -x +-3813381, 对轴称x=n+13∈[n,n+1],又△=…=n+442+>0981,g(n)=n+22-<081,g(n+1)=n+227-281,①当0≤n ≤2时,g(n+1)≥0,∴方程g(x)=0在区间[0,1],[1,2],[2,3]上分别有一解,即存在三个点P ;②n ≥3时,g(n+1)<0,方程g(x)=0在[n,n+1]上无解,即不存在这样点P. 综上所述:满足条件的点P 有三个. …………………………16分。
2012深圳高三二模理科数学试题及答案
绝密★启用前 试卷类型:A2012年深圳市高三年级第二次调研考试数学(理科) 2012.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:柱体体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高锥体的体积为13V Sh=,其中S 为锥体的底面积,h 为椎体的高如果事件A B 、互斥,那么P A B P A P B +=+()()();如果事件在事件A 发生的条件下事件B 发生的概率记为()|P B A ,那么|P AB P A P B A =()()();一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.集合*{|}n i n N ∈(其中i 是虚数单位)中元素的个数是 A .1 B .2 C .4 D .无穷多个 2.设随机变量()21,3X N ,若()()P Xc P X c ≤=>,则c 等于A .0B .1C .2D .33.已知命题p :“存在正实数a ,b ,使得()lg lg lg a b a b +=+”;命题q :“空间两条直线异面的充分必要条件是它们不同在任何一个平面内”.则它们的真假是 A .p ,q 都是真命题 B .p 是真命题,q 是假命题 C .p ,q 都是假命题 D .p 是假命题,q 是真命题4.在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这 六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有 A .6种 B .36种 C .72种 D .120种5.设,,,a b c d R ∈,若a ,1,b 成等比数列,且c ,1,d 成等差数列,则下列不等式 恒成立的是A .2a b cd +≤B .2a b cd +≥C .||2a b cd +≤D .||2a b cd +≥6.设函数若()f x 的值域为R ,则常数a 的取值范围是7.如图1,直线l 和圆c ,当l 从0 开始在平面上绕点O 按逆时针方向匀速转动(转动角度不超过900)时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图象大致是8.如果函数||1y x =-的图象与方程221x y λ+=的曲线恰好有两个不同的公共点,则实数λ的取值范围是A .(,1][0,1)-∞-B .[1,1)-C .{}1,0-D .()[1,0]1,-+∞二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.在实数范围内,方程|||1|1x x ++=的解集是 .10.某机器零件的俯视图是直径为24mm 的圆(包括圆心),主 视图和侧视图完全相同,如图2所示.则该机器零件的体积 是______3mm (结果保留π).11.已知平面向量a ,b 满足条件()()0,1,1,2a b a b +=-=- ,则a b ⋅=_____.12.执行图3中程序框图表示的算法,若输入5533,2012m n ==,则输出d =___. (注:框图中的赋值符号“=”也可以写成“←”或“:=”)13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验. 根据收集到的数据(如下表),由最小二乘法求得回归方程.现发现表中有一个数据模糊看不清,请你推断出该数据的值为 .(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程选做题)在极坐标系中,已知直线把曲线所围成的区域分成面积相等的两部分,则常数a 的值是 .15.(几何证明选讲选做题)如图4,AB 是圆O 的直径, 弦AD 和BC 相交于点P ,连接CD .若120APB ∠=︒, 则C D A B等于 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数(1)求()f x 的最大值;(2)设△ABC 中,角A 、B 的对边分别为a 、b ,若2B A =,且26b af A π⎛⎫=- ⎪⎝⎭,求角C 的大小. 17.(本小题满分12分)深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球), 3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回.(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.18.(本小题满分14分)如图 5,已知正方形ABCD 在水平面上的正投影(投影线垂直于投影面)是四边形''''A B C D ,其中A 与'A 重合,且'''BB DD CC <<.(1)证明'//AD 平面''BB C C ,并指出四边形'''AB C D 的形状; (2)如果四边形中'''AB C D ’中,,正方形的边长为,求平面ABCD 与平面AB'C'D ’所成的锐二面角的余弦值.19.(本小题满分14分) 已知数列满足:,且(1)求通项公式n a (2)设的前n 项和为n S ,问:是否存在正整数m 、n ,使得若存在,请求出所有的符合条件的正整数对(),m n ,若不存在,请说明理由.20.(本小题满分14分)如图6,已知动圆M 过定点()1,0F 且与x 轴相切,点F 关于圆心M 的对称点为'F , 动点'F 的轨迹为C . (1)求曲线C 的方程; (2)设是曲线C 上的一个定点,过点A 任意作两条倾斜角互补的直线,分别与曲线C 相交于另外两点P 、Q . ①证明:直线PQ 的斜率为定值;②记曲线C 位于P 、Q 两点之间的那一段为l .若点B 在l 上,且点B 到直线PQ 的 距离最大,求点B 的坐标.21.(本小题满分14分)已知函数()ln f x x x x =-,()()()'g x f x xf a =- ,其中()'f a 表示函数()f x 在x a=处的导数,a 为正常数. (1)求()g x 的单调区间;(2)对任意的正实数12,x x ,且12x x <,证明:()()()()()()21221211''x x f x f x f x x x f x -<-<-(3)对任意的2012年深圳市高三年级第二次调研考试 数学(理科)参考答案及评分标准 2012.4一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 答案CBACDADB二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题为必做题.9.]0,1[- 10.π2880 11.1- 12.503 13.68 (注:第9题答案也可以写成}01|{≤≤-x x ,如果写成01≤≤-x ,不扣分.) (二)选做题:第14、15题为选做题,考生只能从中选做一题. 14.(坐标系与参数方程选做题)1- 15.(几何证明选讲选做题)21三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.解:(1))6cos(sin )(π-+=x x x f x x x sin 21cos 23sin ++= ……2分⎪⎪⎭⎫ ⎝⎛+=x x cos 21sin 233)6sin(3π+=x .(注:也可以化为)3cos(3π-x ) 4分所以)(x f 的最大值为3. …………6分(注:没有化简或化简过程不全正确,但结论正确,给4分) (2)因为)6(2π-=A f a b ,由(1)和正弦定理,得A B 2sin32sin =.……7分又A B 2=,所以A A 2sin 322sin =,即A A A 2sin3cos sin =, ……9分而A 是三角形的内角,所以0sin ≠A ,故A A sin 3cos =,33tan =A , ……11分所以6π=A ,32π==A B ,2ππ=--=B A C . …………12分17.解:(1)ξ的所有可能取值为0,1,2. ………1分设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ,…3分 53)1()(2613131====C C C P A P ξ,…5分51)2()(26232====CC P A P ξ.…7分 所以ξ的分布列为(注:不列表,不扣分)ξ0 12P515351ξ的数学期望为1512531510=⨯+⨯+⨯=ξE . ……8分(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++.而事件B A 0、B A 1、B A 2互斥,所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++.由条件概率公式,得 253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ), …9分 2581585353|()()(261412111=⨯=⨯==CC C A B P A P B A P ), ……10分 151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ). ……11分所以,第二次训练时恰好取到一个新球的概率为 7538151258253)(210=++=++B A B A B A P . …………12分18.证明:(1)依题意,⊥'BB 平面'''D C AB ,⊥'CC 平面'''D C AB ,⊥'DD 平面'''D C AB ,所以'//'//'DD CC BB . ………2分(法1)在'CC 上取点E ,使得'DD CE =, 连结BE ,E D ',如图5-1.因为'//DD CE ,且'DD CE =,所以E CDD '是平行四边形,DC E D //',且DC E D ='.又ABCD 是正方形,AB DC //,且AB DC =,所以AB E D //',且AB E D =',故'ABED 是平行四边形,……4分从而BE AD //',又⊂BE 平面C C BB '',⊄'AD 平面C C BB '', 所以//'AD 平面C C BB ''. ………6分四边形'''D C AB 是平行四边形(注:只需指出四边形'''D C AB 的形状,不必证明).7分15-图CD)'(A A B'C 'D 'B E(法2)因为'//'CC DD ,⊂'CC 平面C C BB '',⊄'DD 平面C C BB '', 所以//'DD 平面C C BB ''.因为ABCD 是正方形,所以BC AD //,又⊂BC 平面C C BB '',⊄AD 平面C C BB '', 所以//AD 平面C C BB ''. ………………4分而⊂'DD 平面'ADD ,⊂AD 平面'ADD ,D AD DD = ',所以平面//'ADD 平面C C BB '',又⊂'AD 平面'ADD ,所以//'AD 平面C C BB ''.…6分 四边形'''D C AB 是平行四边形(注:只需指出四边形'''D C AB 的形状,不必证明).7分 解:(2)依题意,在Rt △'ABB 中,1)5()6(''2222=-=-=AB ABBB ,在Rt △'ADD 中,2)2()6(''2222=-=-=AD ADDD ,所以3021''''=-+=-+=AA DD BB CC .(注:或312''''=+=+=+=BB DD EC CE CC ) ………8分 连结AC ,'AC ,如图5-2, 在Rt △'ACC 中,33)32(''2222=-=-=CC ACAC .所以222''''AB C B AC =+,故'''C B AC ⊥.……10分 (法1)延长CB ,''B C 相交于点F , 则31''''==CC BB FC FB ,而2''=C B ,所以223'=FC .连结AF ,则AF 是平面ABCD 与平面'''D C AB 的交线.在平面'''D C AB 内作AF G C ⊥',垂足为G , 连结CG .因为⊥'CC 平面'''D C AB ,⊂AF 平面'''D C AB ,所以AF CC ⊥'. 从而⊥AF 平面G CC ',AF CG ⊥.所以'CGC ∠是平面ABCD 与平面'''D C AB 所成的一个锐二面角. ………12分在Rt △F AC '中,553223)3(2233'''22=⎪⎭⎫⎝⎛+⨯=⨯=AFFC A C G C ,在Rt △G CC '中,53035533''2222=⎪⎪⎭⎫⎝⎛+=+=G C CC CG . 所以66''cos cos ==∠=CGG C CGC θ,25-图CD)'(A A B'C 'D 'B FG即平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值为66.…………14分(法2)以'C 为原点,A C '为x 轴,''B C 为y 轴,C C '为z 轴, 建立空间直角坐标系(如图5-3),则平面'''D C AB 的一个法向量)1,0,0(=n .设平面ABCD 的一个法向量为),,(z y x =m , 因为)0,0,3(A ,)1,2,0(B ,)3,0,0(C ,所以)1,2,3(-=AB ,)2,2,0(-=BC ,而AB ⊥m ,BC ⊥m , 所以0=∙AB m 且0=∙BC m , 即⎪⎩⎪⎨⎧=+-=++-022023z y z y x ,取1=z ,则2=y ,3=x ,所以平面ABCD 的一个法向量为)1,2,3(=m .(注:法向量不唯一,可以是与)1,2,3(=m 共线的任一非零向量)………12分661001)2()3(|110203||||||,cos |cos 222222=++⨯++⨯+⨯+⨯==><=∙n m n m n m ||θ.所以平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值为66. …14分(法3)由题意,正方形ABCD 在水平面上的正.投影是四边形''''D C B A , 所以平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值ABCDD C AB S S '''=. …12分而6)6(2==ABCD S ,632''''''=⨯=⨯=AC C B S D C AB ,所以66cos =θ,所以平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值为66.……14分19.解:(1)当n 是奇数时,1cos -=πn ;当n 是偶数时,1cos =πn . 所以,当n 是奇数时,22+=+n n a a ;当n 是偶数时,n n a a 32=+.……2分 又11=a ,22=a ,所以1a ,3a ,5a ,…,12-n a ,…是首项为1,公差为2的等差数列;2a ,4a ,6a ,…,n a 2,…是首项为2,公比为3的等比数列.……4分所以,⎪⎩⎪⎨⎧⨯=-为偶数为奇数n n n a nn ,32,12. ………………………6分 (2)由(1),得)()(24212312n n n a a a a a a S +++++++=-35-图CD)'(A A B'C 'D 'B yxz)3262()]12(31[1-⨯++++-+++=n n132-+=n n ,13321321122212-+=⨯--+=-=---n n a S S n n nn n n .…………8分所以,若存在正整数m 、n ,使得122-=n n mS S ,则133211313211212122-+⨯+=-+-+==----n n n S S m n n n nn n 3332111=⨯+≤--n n .……9分显然,当1=m 时,122122)13(113--=-+⨯≠-+=n n nn S n n S ;当2=m 时,由1222-=n n S S ,整理得1321-=-n n .显然,当1=n 时,11013211-=≠=-;当2=n 时,1233212-==-,所以)2,2(是符合条件的一个解. ……11分 当3≥n 时, +⨯+⨯+=+=----2211111221)21(3n n n n C C2111421--++≥n n C C 3422+-=n n1)2(22-+-=n n 12->n . ………12分当3=m 时,由1223-=n n S S ,整理得1=n , 所以)1,3(是符合条件的另一个解.综上所述,所有的符合条件的正整数对),(n m ,有且仅有)1,3(和)2,2(两对.…14分(注:如果仅写出符合条件的正整数对)1,3(和)2,2(,而没有叙述理由,每得到一组正确的解,给2分,共4分)20.解:(1)(法1)设),('y x F ,因为点)1,0(F 在圆M 上, 且点F 关于圆心M 的对称点为'F ,所以)21,2(+y x M , …………1分且圆M 的直径为22)1(|'|-+=y x FF .…………2分由题意,动圆M 与y 轴相切,所以2)1(2|1|22-+=+y x y ,两边平方整理得:y x 42=,所以曲线C 的方程为y x 42=. …………………5分(法2)因为动圆M 过定点)1,0(F 且与x 轴相切,所以动圆M 在x 轴上方, 连结'FF ,因为点F 关于圆心M 的对称点为'F ,所以'FF 为圆M 的直径. 过点M 作x MN ⊥轴,垂足为N ,过点'F 作x E F ⊥'轴,垂足为E (如图6-1).16-图M∙'∙F xyOF∙N E在直角梯形'EOFF 中,1|'||||'|||2||2|'|+=+===E F FO E F MN MF F F , 即动点'F 到定点)1,0(F 的距离比到x 轴的距离大1. ……3分又动点'F 位于x 轴的上方(包括x 轴上),所以动点'F 到定点)1,0(F 的距离与到定直线1-=y 的距离相等.故动点'F 的轨迹是以点)1,0(F 为焦点,以直线1-=y 为准线的抛物线. 所以曲线C 的方程为y x 42=.………………5分(2)①(法1)由题意,直线AP 的斜率存在且不为零,如图6-2. 设直线AP 的斜率为k (0≠k ),则直线AQ 的斜率为k -. ……………6分 因为),(00y x A 是曲线C :y x 42=上的点, 所以4200x y =,直线AP 的方程为)(4020x x k x y -=-.由⎪⎩⎪⎨⎧-=-=)(440202x x k x y y x , 解之得⎪⎩⎪⎨⎧==4200x y x x 或⎪⎩⎪⎨⎧+-=+-=4)4(4200k x y k x x , 所以点P 的坐标为)4)4(,4(200k x k x +-+-, 以k -替换k ,得点Q 的坐标为)4)4(,4(200k x k x +--. ………8分所以直线PQ 的斜率23216)4()4(4)4(4)4(00002020x k kx k x k x k x k x k PQ -=-=+----+--+=为定值.…10分(法2)因为),(00y x A 是曲线C :y x 42=上的点,所以4200x y =,)4,(200x x A .又点P 、Q 在曲线C :y x 42=上,所以可设)4,(211x x P ,)4,(222x x Q , …6分而直线AP ,AQ 的倾斜角互补,所以它们的斜率互为相反数,即02222012214444x x x x x x x x ---=--,整理得0212x x x -=+.…8分 所以直线PQ 的斜率2424440021122122x x x x x x x x k PQ -=-=+=--=为定值.……10分 26-图M∙'∙F xyOF∙PQA②(法1)由①可知,P )4)4(,4(200k x k x +-+-,Q )4)4(,4(200k x k x +--,20x k PQ -=,所以直线PQ 的方程为)4(24)4(0020k x x x k x y -+-=+--,整理得016422200=-++k x y x x . ……11分设点)4,(2xx B 在曲线段L 上,因为P 、Q 两点的横坐标分别为k x 40+-和k x 40--,所以B 点的横坐标x 在k x 40+-和k x 40--之间,即||4||400k x x k x +-≤≤--, 所以||4||40k x x k ≤+≤-,从而22016)(k x x ≤+.点B 到直线PQ 的距离42|162|164|16442|2022002222020+-++=+-+⨯+=x k x x x x x k x xx x d4216)(42142|16)(|202202020220++++-=+-+=x kx x x x k x x .…12分当0x x -=时,4216202max +=x kd .注意到||4||4000k x x k x +-≤-≤--,所以点)4,(200x x -在曲线段L 上.所以,点B 的坐标是)4,(20x x -. …………………14分(法2)由①可知,2x k PQ -=,结合图6-3可知,若点B 在曲线段L 上,且点B 到直线PQ 的距离最大, 则曲线C 在点B 处的切线PQ l //. ………………11分设l :b x x y +-=20,由方程组⎪⎩⎪⎨⎧=+-=yx b x x y 4220, 消去y ,得04202=-+b x x x .令△0)4(14)2(20=-⨯⨯-=b x ,整理,得420x b -=.……12分代入方程组,解得0x x -=,420x y =.所以,点B 的坐标是)4,(200x x -. ………………………………14分(法3)因为抛物线C :y x 42=关于y 轴对称,由图6-4可知,当直线AP 的倾斜角大于︒0且趋近于︒0时,直线AQ 的倾斜角小于36-图M∙'∙F xyOF∙PQABl︒180且趋近于︒180,即当直线AP 的斜率大于0且趋近于0时,直线AQ 的斜率小于0且趋近于0.从而P 、Q 两点趋近于点)4,(200x x A 关于y 轴的对称点)4,('200x x A -. ……11分由抛物线C 的方程y x 42=和①的结论, 得42xy =,PQ x x x x k x x y =-=='-=-=22|00.所以抛物线C 以点)4,('200xx A -为切点的切线PQ l //.…12分所以曲线段L 上到直线PQ 的距离最大的点就是点'A ,即点B 、点'A 重合. 所以,点B 的坐标是)4,(200x x -. …14分21.解:(1)x x f ln )('-=,a x x x x x g ln ln )(+-=, xa a x a f x f x g lnln ln )()()(=+-='-'='. ……2分所以,),0(a x ∈时,0)('>x g ,)(x g 单调递增; ),(∞+∈a x 时,0)('<x g ,)(x g 单调递减.所以,)(x g 的单调递增区间为],0(a ,单调递减区间为),[∞+a . ………4分 (2)(法1)对任意的正实数21,x x ,且21x x <, 取1x a =,则),(12∞+∈x x ,由(1)得)()(21x g x g >, 即)()()()()()(21221111x g x f x x f x f x x f x g ='->'-=,所以,)()()()(11212x f x x x f x f '-<-……①; ………6分取2x a =,则),0(21x x ∈,由(1)得)()(21x g x g <, 即)()()()()()(22222111x g x f x x f x f x x f x g ='-<'-=, 所以,)()()()(21212x f x x x f x f '->-……②.综合①②,得)()()()()()(11212212x f x x x f x f x f x x '-<-<'-. ………………………8分(法2)因为x x f ln )('-=,所以,当)1,0(∈x 时,0)(>'x f ;当),1(∞+∈x 时,0)(<'x f .故)(x f 在]1,0(上单调递增,在),1[∞+上单调递减. 所以,对任意的正实数21,x x ,且21x x <,有)1(21f x x f <⎪⎪⎭⎫⎝⎛,)1(12f x x f <⎪⎪⎭⎫⎝⎛.……6分 A46-图M∙'∙F xyOF∙1P 1Q B 2P 3P 2Q 3Q l由)1(21f x x f <⎪⎪⎭⎫ ⎝⎛,得1ln 121212<-x xx x x x ,即0)ln (ln 12212<---x x x x x , 所以0)ln (ln )()()()(1221211212<---='---x x x x x x f x x x f x f . 故)()()()(11212x f x x x f x f '-<-.……①;由)1(12f x x f <⎪⎪⎭⎫⎝⎛,同理可证)()()()(21212x f x x x f x f '->-.……②.综合①②,得)()()()()()(11212212x f x x x f x f x f x x '-<-<'-. ………8分 (3)对2,,2,1-=n k ,令xk x x k ln )ln()(+=ϕ(1>x ),则22))(ln ()ln()(ln )(ln )ln(ln )('x k x x k x k x x x x xk x kx xx k +++-=+-+=ϕ,显然k x x +<<1,)ln(ln 0k x x +<<,所以)ln()(ln k x k x x x ++<, 所以0)('<x k ϕ,)(x k ϕ在),1(∞+上单调递减.由2≥-k n ,得)2()(k k k n ϕϕ≤-,即2ln )2ln()ln(ln k k n n +≤-.所以)ln()2ln(ln 2ln k n k n -+≤,2,,2,1-=n k . …………10分所以⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++2ln 1ln 1)1ln(13ln 1ln 12ln 1ln 13ln 12ln 12n n n n 2ln ln ln 2ln )1ln(3ln 3ln )1ln(ln 2ln 2ln ln n n n n nn +++-+-++=nn nn nn ln 2ln ln 2ln ln 2ln 3ln )1ln(ln 2ln 2ln ln ++++-++≤⎪⎭⎫⎝⎛+++=n n ln 2ln ln 3ln 2ln 2 . ……………12分又由(2)知n n f n f n f ln )(')()1(-=<-+,所以)1()(ln +-<n f n f n . )1()()3()2()2()1(ln 2ln 1ln +-++-+-<+++n f n f f f f f n)1(1)1()1(+-=+-=n f n f f .所以,nn f nnnln 2ln )1(1ln 2ln ln 3ln 2ln ln 13ln 12ln 1+-<+++≤+++.………14分。
江苏省2012届高三数学二轮专题训练 解答题(2)
江苏省2012届高三数学二轮专题训练:解答题(2)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1. 已知命题p :指数函数f (x )=(2a -6)x在R 上单调递减,命题q :关于x 的方程x 2-3ax +2a 2+1=0的两个相异实根均大于3.若p 、q 中有且仅有一个为真命题,求实数a 的取值范围.解:若p 真,则y=(2a-6)x在R 上单调递减,∴0<2a-6<1, ∴3<a<27…………2分若q 真,令f(x)=x 2-3ax+2a 2+1,则应满足222Δ(3a)4(2a 1)>03a 32f(3)99a 2a 10⎧=--+⎪-⎪->⎨⎪⎪=-++>⎩,…5分 ∴a>2a<2a 25a 2a 2⎧⎪-⎪>⎨⎪⎪<>⎩或或,故a>25,…………………………………………7分又由题意应有p 真q 假或p 假q 真.(i )若p 真q 假,则⎪⎪⎩⎪⎪⎨⎧≤<<25a 27a 3,a 无解.……………………………10分(ii )若p 假q 真,则⎪⎪⎩⎪⎪⎨⎧>≥≤25a 27a 3a 或,∴25<a ≤3或a ≥27.……………13分故a 的取值范围是{a|25<a ≤3或a ≥27}.………………………………14分2.在ABC ∆中,角A B C ,,的对边分别为,,a b c ,已知,,a b c 成等比数列,且3cos 4B =. (1)若32BA BC ⋅=,求a c +的值; (2)求cos cos sin sin A C A C +的值. 解:(1)由32BA BC ⋅=,得3cos 2ac B =.…………2分因为3cos 4B =,所以22b ac ==.…………4分由余弦定理2222cos b a c ac B =+-,得2222cos 5a c b ac B +=+=,则222()29a c a c ac +=++=,故3a c +=.…………7分(2)由3cos 4B =,得7sin 4B =.…………9分由2b ac =及正弦定理得2sin sin sin B A C =,…………11分于是22cos cos sin cos cos sin sin()sin 147sin sin sin sin sin sin sin 7A C C A C A A CB AC A C B B B +++=====…………14分 3.如图,在正三棱柱ABC -A 1B 1C 1中,点D 在边BC 上,AD ⊥C 1D . (1)求证:AD ⊥平面BC C 1 B 1;(2)设E 是B 1C 1上的一点,当11B EEC 的值为多少时,A 1E ∥平面ADC 1?请给出证明.解: (1)在正三棱柱中,C C 1⊥平面ABC ,AD ⊂平面ABC ,∴ AD ⊥C C 1.………………………………………2分又AD ⊥C 1D ,C C 1交C 1D 于C 1,且C C 1和C 1D 都在面BC C 1 B 1内, ∴ AD ⊥面BC C 1 B 1. ……………………………………………………5分(2)由(1),得AD ⊥BC .在正三角形ABC 中,D 是BC 的中点.…………………7分当111B EEC =,即E 为B 1C 1的中点时,A 1E ∥平面ADC 1.………………………8分 事实上,正三棱柱ABC -A 1B 1C 1中,四边形BC C 1 B 1是矩形,且D 、E 分别是BC 、B 1C 1的中点,所以B 1B ∥DE ,B 1B= DE . ………………………………………10分 又B 1B ∥AA 1,且B 1B =AA 1,∴DE ∥AA 1,且DE =AA 1. ………………………………………………13分 所以四边形ADE A 1为平行四边形,所以E A 1∥AD .而E A 1⊄面AD C 1内,故A 1E ∥平面AD C 1. ……………………………15分4. 如图所示,在矩形ABCD 中,已知AB =a ,BC =b (b <a ),AB ,AD ,CD ,CB 上分别截取AE ,AH ,CG ,CF 都等于x ,记四边形EFGH 的面积为f (x ).(1)求f (x )的解析式和定义域 ;(2)当x 为何值时,四边形EFGH 的面积最大? 并求出最大面积.解:(1) 设四边形EFGH 的面积为S ,则S △AEH =S △CFG =21x 2, ……………2分 S △BEF =S △DGH =21(a -x )(b -x ),……………4分∴S=ab -2[x 212+21(a -x )(b -x )]= -2x 2+(a +b )x = -2(x -)4b a +2+,8)(2b a +……6分由图形知函数的定义域为{x|0<x ≤b }.……………8分B 1A 1A BC C 1D(2) 因为0<b <a,所以0<b <2ba +, 若4b a +≤b,即a≤3b 时,则当x=4b a +时,S 有最大值8)(2b a +;………11分若4ba +>b,即a >3b 时,S(x)在(0,b ]上是增函数,此时当x=b 时,S 有最大值为-2(b-4b a +)2+8)(2b a +=ab-b 2,………14分综上可知,当a≤3b 时,x=4ba +时,四边形面积S max =8)(2b a +,当a >3b 时,x=b 时,四边形面积S max =ab-b 2. ………15分5.已知函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在[10,+∞)上是单调增函数,求k 的取值范围.解:(1)由kx -1x -1>0及k >0得x -1k x -1>0,即(x -1k)(x -1)>0.①当0<k <1时,x <1或x >1k;……………2分②当k =1时,x ∈R 且x ≠1;……………4分③当k >1时,x <1k或x >1. ……………6分综上可得当0<k <1时,函数的定义域为(-∞,1)∪(1k,+∞);当k ≥1时,函数的定义域为(-∞,1k)∪(1,+∞).……………8分(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110.……………10分又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0, ……………14分 又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).…………………………………16分6.已知二次函数c bx ax x f ++=2)(. (1)若,0)1(,=>>f c b a 且是否存在)3(,)(,+-=∈m f a m f R m 成立时使得为正数 ,若存在,证明你的结论,若不存在,说明理由;(2)若对)]()([21)(),()(,,,21212121x f x f x f x f x f x x R x x +=≠<∈方程且有2个不等实根,证明必有一个根属于12(,);x x (3)若0)0(=f ,是否存在b 的值使})(|{x x f x ==})]([|{x x f f x =成立,若存在,求出b 的取值范围,若不存在,说明理由. 解:(1)因为,00,,0)1(<>>>=++=C a c b a c b a f 且所以且…………2分 ∵,,0)(1,0)1(ac x f f 由韦达定理知另一根为的一个根是=∴= ,,,10,00c a b c b a a c c a --=>><<∴<>∴又且∴可得212-<<-a c ,……… 4分假设存在,由题意,则.1323310)1)((=+->+>+∴<<∴<-=--acm m a c a m a c m a因为,0)1()3(,),1()(=>+∴+∞f m f x f 单调递增在 即 存在这样的.0)3(>+m f m 使……… 6分(2)令.)()],()([21)()(21是二次函数则x g x f x f x f x g +-=)]()([41]2)()()(][2)()()([)()(22121221121≤--=+-+-=⋅x f x f x f x f x f x f x f x f x g x g又0)(,0)(,0)()(),()(2121==∴<⋅≠x g x g x g x g x f x f 且方程有两个不等实根 的根必有一个属于).,(21x x …… 10分(3)由0)0(=f 得c =0,∴bx ax x f +=2)(由x x f =)(,得方程0)1(2=-+x b ax ,解得1x =0,2x =ab-1, 又由})]([x x f f =得x x bf x f a =+)()]([2∴x x x x f b x x x f a =+-++-])([])([2∴0])([])([2])([22=-+-++-+-x bx x x f b ax x x f ax x x f a ∴0]12)(][)([=+++--b ax ax x af x x f 即0]1)1(][)([22=++++-b x b a x a x x f∴0)(=-x x f 或 01)1(22=++++b x b a x a (*)……12分由题意(*)式的解为0或ab-1或无解, 当(*)式的解为0时,可解得1-=b ,经检验符合题意;当(*)式的解为ab-1时,可解得3=b ,经检验符合题意;当(*)式无解时,0)1(4)1(222<+-+=∆b a b a ,即0)3)(1(2<-+b b a∴31<<-b综上可知,当31≤≤-b 时满足题意.…… 16分。
江苏南京市2012届高三第二次模拟考试试题及详解答案
南京市2012年届高三第二次模拟考试数学试卷解析 2012.3一、填空题:本大题共14小题,每小题5分,共70分1.已知集合{}R x x x x A ∈≤-=,02|2,}{a x x B ≥=|,若B B A = ,则实数a 的取值范围是 。
解析:B B A = 可知道B A ⊆,又]2,0[=A 所以实数a 的取值范围是]0,(-∞ 11.已知i b ii a -=+3,其中R b a ∈,,i 为虚数单位,则=+b a 。
解析:将等式两边都乘i ,得到bi i a +=+13,两边比较得结果为412.某单位从4名应聘者A 、B 、C 、D 中招聘2人,如果这4名应聘者被录用的机会均等,则A ,B 两人中至少有1人被录用的概率是 。
解析:从题目来看,所有的可能性共有6种,但A ,B 都没被录取的情况只有一种,即满足条件的有5种,所以结果为654、某日用品按行业质量标准分成王五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取200件,对其等级系数进行统计分析,得到频率f 的分布如下1=X 的件数为 。
解析:由所有频率之和为1,可知道a =0.1,由频率公式可知道所求件数为20。
5、已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤-≥+212y y x y x ,则目标函数y x z +-=2的取值范围是解析:画出可行域,可以知道目标函数的取值范围是[-4,2]6、已知双曲线1222=-y ax的一条渐近线方程为02=-y x ,则该双曲线的离心率=e解析:焦点在x 轴上的双曲线的渐近线方程是0=±ay bx ,与题是所给比较得5.1,2===c b a ,所以结果为527、已知圆C 的经过直线022=+-y x 与坐标轴的两个交点,又经过抛物线x y 82=的焦点,则圆C 的方程为 。
解析:先求直线得022=+-y x 与坐标轴的交点为)2,0(),0,1(B A -,抛物线x y 82=的焦点为)0,2(D ,可把圆C 的方程设为一般形式,把点坐标代入求得x 2+y 2-x -y -2=0法2。
2012年高考数学二轮复习检测题及答案(二)
2012届高三数学二轮专题训练:解答题(90)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本小题满分14分)在△ABC 中,,,a b c 分别是角A ,B ,C的对边,cos A =,tan 3B =.(Ⅰ)求角C 的值;(Ⅱ)若4a =,求△ABC 面积.解析:该题(Ⅰ)通过条件cos A =,tan 3B =求角C 的值考查同角三角函数关系式和正切的和角公式还考查三角形中的有关性质,(Ⅱ)考查正弦定理、同角三角函数关系式以及正弦定理面积公式,属于简单题。
解:(Ⅰ)由cos A =得sin A =,tan 2A ∴=,…………………………3分tan tan tan tan()11tan tan A BC A B A B +=-+=-=-,……………………………………… 5分又0C π<<,∴4C π=。
……………………………………… 7分(Ⅱ)由sin sin a c A C =可得,sin sin Cc a A =⨯=9分由tan 3B =得,sin B =………………………………………12分所以,△ABC 面积是1sin 62ac B = ………………………………………14分2.(本小题满分14分)如图,在正三棱柱ABC -A1B1C1中,点D 在边BC 上, AD ⊥C1D . (Ⅰ)求证:AD ⊥平面BC C1 B1;(Ⅱ)设E 是B1C1上的一点,当11B E EC 的值为多少时,A1E ∥平面ADC1?请给出证明.解析:该题(Ⅰ)通过条件在正三棱柱ABC -A1B1C1中,点D 在边BC 上BAABC C D, AD ⊥C1D .求证:AD ⊥平面BC C1 B1考查线面垂直、线线垂直的判定与性质, 还考查三棱柱的性质;(Ⅱ)给出一个探索性问题,考查正三棱柱性质、线面平行的判定以及平面几何中平行四边形的判定和性质,考查空间想象能力和逻辑推理能力,是中档题。
高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案
第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。
【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质
)
A.sin x + 3
B.sin 3 -2x
C.cos 2x + 6
D.cos
5
-2x
6
答案 BC
解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2
5π
5π
π
2π
= 2,则 T=π,所以 ω= =
3π
2π
=2,当
π
2π
= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +
高三数学二轮复习同步练习2知识归纳
专题21.(2011·北京海淀)已知函数f (x )=(ax -1)e x,a ∈R . (1)当a =1时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)上是单调增函数,求实数a 的取值范围. [解析] (1)因为f ′(x )=(ax +a -1)e x , 所以当a =1时,f ′(x )=xe x, 令f ′(x )=0,则x =0,所以f (x ),f ′(x )的变化情况如下表:所以x =0时,f (x )取得极小值f (0)=-1.(2)因为f ′(x )=(ax +a -1)e x ,函数f (x )在区间(0,1)上是单调增函数,所以f ′(x )≥0,对x ∈(0,1)恒成立.又e x >0,所以只要ax +a -1≥0对x ∈(0,1)恒成立即可,解法一:设g (x )=ax +a -1,则要使ax +a -1≥0对x ∈(0,1)恒成立,只要⎩⎪⎨⎪⎧g (0)≥0g (1)≥0,即⎩⎪⎨⎪⎧a -1≥02a -1≥0成立,解得a ≥1. 解法二:因为x >0,所以只要a ≥1x +1对x ∈(0,1)恒成立,因为函数g (x )=1x +1在(0,1)上单调递减,所以只要a ≥g (0)=10+1=1.2.已知某企业原有员工2000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴0.5万元.据评估,若待岗员工人数为x 人,则留岗员工每人每年可为企业多创利润(1-81100x万元.为使企业年利润最大,应安排多少员工待岗? [解析] 设重组后,该企业年利润为y 万元,依题意得y =(2000-x )(3.5+1-81100x )-0.5x=-5(x +324x)+9000.81, ∴y =-5(x +324x)+9000.81,(0<x ≤100且x ∈N ), y =-5(x +324x)+9000.81 ≤-5×2324+9000.81=8820.81, ∴当且仅当x =324x,即x =18时取等号,此时y 取得最大值. 即为使企业年利润最大,应安排18人待岗.3.(2011·皖南八校)已知函数f (x )=ax 2+bx +c ,其中a ∈N *,b ∈N ,c ∈Z . (1)若b >2a ,且f (sin x )(x ∈R )的最大值为2,最小值为-4,试求函数f (x )的最小值; (2)若对任意实数x ,不等式4x ≤f (x )≤2(x 2+1)恒成立,且存在x 0使得f (x 0)<2(x 20+1)成立,求c 的值.[解析] (1)函数f (x )=ax 2+bx +c 的图像开口向上,对称轴方程为x =-b 2a .∵b >2a ,且a ∈N *,b ∈N ,∴-b2a<-1. ∵sin x ∈[-1,1],∴函数f (x )=ax 2+bx +c 在[-1,1]上为增函数. 于是f (sin x )的最大值为f (1)=a +b +c =2, 最小值为f (-1)=a -b +c =-4, 由此可得b =3.∵b >2a ,且a ∈N *, ∴a =1,从而c =-2.∴f (x )=x 2+3x -2=(x +32)2-174.即f (x )的最小值为-174.(2)令x =1,代入4x ≤f (x )≤2(x 2+1)得 f (1)=4,即a +b +c =4.从而b -4=-a -c . 又由f (x )≥4x ,得ax 2+(b -4)x +c ≥0. ∵a >0,故Δ=(b -4)2-4ac ≤0.即(-a -c )2-4ac ≤0,(a -c )2≤0.从而a =c . ∵b ≥0,∴a +c ≤4,2c ≤4. 又a =c ∈N *,∴c =1或c =2.当c =2时,b =0,f (x )=2x 2+2.此时x 0不满足f (x 0)<2(x 20+1).故c =2不符合题意,舍去.所以c =1,经检验c =1满足题意.4.(2011·安徽理,16)设f (x )=ex1+ax 2,其中a 为正实数.(1)当a =43f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. [解析] 对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.(1)当a =43f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,由此Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.5.(2011·大纲全国卷文,21)已知函数f (x )=x 3+3ax 2+(3-6a )x -12a -4(a ∈R ). (1)证明:曲线y =f (x )在x =0处的切线过点(2,2);(2)若f (x )在x =x 0处取得最小值,x 0∈(1,3),求a 的取值范围. [解析] (1)f ′(x )=3x 2+6ax +3-6a由f (0)=12a -4,f ′(0)=3-6a 得曲线y =f (x )在x =0处的切线方程为y =(3-6a )x +12a -4,由此知曲线y =f (x )在x =0处的切线经过点(2,2).(2)由f ′(x )=0,得x 2+2ax +1-2a =0(ⅰ)当-2-1≤a ≤2-1时,f (x )没有极小值. (ⅱ)当a >2-1或a <-2-1时,由f ′(x )=0得 x 1=a -a 2+2a -1,x 2=-a +a 2+2a -1 故x 0=x 2,由题设知,1<-a +a 2+2a -1<3 当a >2-1时,不等式1<-a +a 2+2a -1<3无解当a <-2-1时,解不等式1<-a +a 2+2a -1<3得-52<a <-2-1综合(ⅰ)(ⅱ)得a 的取值范围是(-52,-2-1).6.(2011·宁夏银川模拟)已知f (x )是定义在区间[-1,1]上的奇函数,且f (1)=1,若m ,n∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n>0.(1)解不等式f (x +12)<f (1-x );(2)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. [解析] (1)任取x 1,x 2∈[-1,1],且x 2>x 1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1) =f (x 2)+f (-x 1)x 2+(-x 1)·(x 2-x 1)>0,所以f (x 2)>f (x 1).所以f (x )是增函数. 由f (x +12)<f (1-x )得⎩⎪⎨⎪⎧-1≤x +12≤1-1≤1-x ≤1x +12<1-x,解得0≤x <14.故不等式f (x +12)<f (1-x )的解集为[0,14).(2)由于f (x )为增函数,所以f (x )的最大值为f (1)=1,所以f (x )≤t 2-2at +1对a ∈[-1,1],x ∈[-1,1]总成立⇔t 2-2at +1≥1对任意a ∈[-1,1]总成立⇔t 2-2at ≥0对任意a ∈[-1,1]总成立.把y =t 2-2at 看作a 的函数,由a ∈[-1,1]知其图像是一线段. 所以t 2-2at ≥0对任意a ∈[-1,1]总成立⇔⎩⎪⎨⎪⎧ t 2-2×(-1)t ≥0t 2-2×1×t ≥0⇔⎩⎪⎨⎪⎧t 2+2t ≥0t 2-2t ≥0 ⇔⎩⎪⎨⎪⎧t ≤-2或t ≥0t ≤0或t ≥2 ⇔t ≤-2或t =0或t ≥2.7.(2011·徐州二模)已知函数f (x )=(x 2-3x +94)e x ,其中e 是自然对数的底数.(1)求函数f (x )的图像在x =0处的切线方程; (2)求函数f (x )在区间[-1,2]上的最大值与最小值. [解析] (1)因为f (x )=(x 2-3x +94)e x ,所以f (0)=94,又f ′(x )=(2x -3)e x +(x 2-3x +94)e x =(x 2-x -34)e x ,所以f ′(0)=-34,所以函数f (x )的图像在x =0处的切线方程为: y -94=-34,即3x +4y -9=0. (2)由(1)得f (x )=(x -32)2e x ,f ′(x )=(x +12)(x -32)e x.当x 变化时,函数f (x ),f ′(x )在区间[-1,2]上的变化情况如下表:函数f (x )在区间[-1,2]上的最大值f (x )max =max{f (-12),f (2)},最小值f (x )min =min{f (-1),f (32)}.∵f (2)-f (-12)=14e 2-4e -12=e 5-164e<35-2564e<0,f (32)-f (-1)=0-254-1<0, ∴f (x )max =f (-12)=4e -12,f (x )min =f (32)=0.。
2012届高三数学第二轮复习《分类讨论思想》专题二
2012届高三数学第二轮复习【分类讨论】专题二题型一 根据数学概念分类讨论【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长..题型二 根据公式、定理、性质的条件分类讨论【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = .题型三 根据变量或参数的取值情况分类讨论【例题3】解关于x 的不等式01)1(2<++-x a ax .题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是RT △,求k 的值.1.由1,2,3,4,5,6组成没有重复数字且1,2都不与3相邻的六位数的个数是 ( )A .384B .288C .240D .1442.已知双曲线的渐近线方程为y =±34x ,则双曲线的离心率为 ( ) A.53 B.52 C.52或153 D.53或543.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数k 组成的集合中所有元素的和与积分别为 ( )A .-112,0 B.112,-112 C.112,0 D.14,-1124.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( )A. x y +-=70B. 250x y -=C. x y x y +-=-=70250或D. x y y x ++=-=70250或5.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( )A .(-∞,2]B .[-2,2]C .(-2,2]D .(-∞,-2) 6.抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原点,若△OPF为等腰三角形,则这样的P 点的个数为 ( )A .2B .3C .4D .67.若132log <a ,则a 的取值范围为______________. 8.已知集合A ={x |ax 2+2x +1=0,a ∈R },当A 中至多有一个元素时,求a 的取值范围.9.求到两定点()()(),0,,00A a B a a ->的斜率之积为定值()0k k ≠的点M 的轨迹。
江苏省2012届高三数学二轮专题训练:解答题(64)
江苏省2012届高三数学二轮专题训练:解答题(64)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本题满分14分)如图,三棱锥A —BCD ,BC =3,BD =4,CD =5,AD ⊥BC ,E 、F 分别是棱AB 、CD 的中点,连结CE ,G为CE 上一点.(1)求证:平面CBD ⊥平面ABD ; (2)若 GF ∥平面ABD ,求错误!的值.2.(本题满分14分)某学校需要一批一个锐角为θ的直角三角形硬纸板作为教学用具(错误!≤θ≤错误!),现准备定制长与宽分别为a 、b (a >b )的硬纸板截成三个符合要求的△AED 、△BAE 、△EBC .(如图所示)(1)当θ=6π时,求定制的硬纸板的长与宽的比值;(2)现有三种规格的硬纸板可供选择,A 规格长80cm ,宽30cm,B 规格长60cm ,宽40cm ,C 规格长72cm ,宽32cm ,可以选择哪种规格的硬纸板使用.3.(本题满分14分)如图,半径为1圆心角为23π圆弧错误!上有一点C .(1)当C 为圆弧 错误!中点时,D 为线段OA 上任一点,求||OD OC +的最小值。
AB CDFEGABCDθE(2)当C 在圆弧 错误! 上运动时,D 、E 分别为线段OA 、OB 的中点,求CE ·DE 的取值范围.4.(本题满分16分)如图,已知椭圆)0(12222>>=+b a by a x ,左、右焦点分别为21,F F ,右顶点为A ,上顶点为B , P 为椭圆上在第一象限内一点. (1)若221PAF F PF S S ∆∆=(2)若1221PBF PAF F PF SS S ∆∆∆==,求直线1PF 的斜率k ;(3)若2PAF S ∆、21F PF S ∆、1PBF S ∆成等差数列,椭圆的离心率⎪⎭⎫⎢⎣⎡∈1,41e ,求直线1PF 的斜率k 的取值范围。
5.(本题满分16分)已知函数ax x a a xx f 2ln )2143(21)(22-++= (1)当21-=a 时,求)(x f 的极值点; (2)若)(x f 在'()fx 的单调区间上也是单调的,求实数a 的范围。
江苏省2012届高三数学二轮专题训练 解答题(53)
江苏省2012届高三数学二轮专题训练:解答题(53)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1、(14分)在△ABC 中,角A,B,C 所对变分别为a,b,c ,且满足1cos , 2.3A AB AC == (1)求△ABC 的面积;(2)若b+c=5,求a 的值。
2、如图在四棱锥P-ABCD 中,底面ABCD 是菱形,AC 交BD 于点O ,PA ⊥面ABCD ,E 是棱PB 的中点。
求证: (1)EO ∥平面PCD ;(2)平面PBO ⊥平面PAC 。
3、某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。
已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。
(1)若该写字楼共x 层,总开发费用为y 万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?A D CB PEO4、如图已知椭圆22221x ya b+=(a>b>0)的离心率为2,且过点A(0,1)。
(1)求椭圆的方程;(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点。
求证:直线MN恒过定点P3 (0,)5-。
5、已知数列{a n}首项a1=2,且对任意n∈N*,都有a n+1=ba n+c,其中b,c是常数。
(1)若数列{a n}是等差数列,且c=2,求数列{a n}的通项公式;(2)若数列{a n}是等比数列,且|b|<1,当从数列{a n}中任意取出相邻的三项,按某种顺序排列成等差数列,求使{a n}的前n项和S n<341256成立的n取值集合。
6、已知函数f(x)=lnx,g(x)=12x2-bx(b为常数)。
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范围。
2012届江苏高考数学二轮复习:教案+学案+课后训练(含完整答案)整套word稿-课时答案
专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. x<0,有x2≤02. (2,3)解析:M=(-∞,3),N=(2,+∞),∴ M∩N=(2,3).3. (-∞,-1)∪(3,+∞)解析:不等式对应的二次函数开口向上,则Δ=(a-1)2-4>0.4. [-1,1]解析:集合A=[-1,1],B=(-∞,1],∴ A∩B=A.5.215解析:⎩⎪⎨⎪⎧0≤a,a+45≤10≤a≤15,⎩⎪⎨⎪⎧b-13≥0,b≤113≤b≤1,利用数轴,分类讨论可得集合A∩B的“长度”的最小值为13-15=215.6. ⎣⎡⎦⎤-12,13解析:p:x2+x-6<0为真,则不等式的解集为A=(-3,2),由q:mx +1>0得m=0时,解集为B=R,m>0时,解集为B=⎝⎛⎭⎫-1m,+∞,m<0时,解集为B=⎝⎛⎭⎫-∞,-1m,m=0时,A B成立;m>0时,-1m≤-3,0<m≤13;m<0时,-1m≥2,-12≤m<0,综上m∈⎣⎡⎦⎤-12,13.7. 12解析:这是一个典型的用韦恩图来求解的问题,如图.设两者都喜欢的人数为x,则只喜爱篮球的有15-x,只喜爱乒乓球的有10-x,由此可得(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12.8. (-∞,-4)∪(42,+∞)解析:两集合分别表示半圆和直线,画图利用几何性质可得答案.9. 解:(1) 2-x+3x+1≥02x+2-(x+3)x+1≥0x-1x+1≥0(x-1)(x+1)≥0且x≠-1x≥1或x<-1.∴集合A={x|x≥1或x<-1}.(2) (x-a-1)(2a-x)>0(a<1)(x-a-1)(x-2a)<0.∵a<1,∴2a<a+1.∴2a<x<a +1.∴不等式的解为2a<x<a+1.∴集合B={x|2a<x<a+1}.∵B A,∴2a≥1或a +1≤-1,∴ a≥12或a≤-2.又a<1,则实数a的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.10. 解:若命题p为真,则⎩⎪⎨⎪⎧m2-4>0,-m<0m>2.若命题q为真,Δ=16(m-2)2-16<0,1<m<3.p或q为真,p且q为假,所以若命题p为真,命题q为假,则m≥3;若命题p 为假,命题q为真,则1<m≤2,综上,则实数m的取值范围是{m|1<m≤2或m≥3}.第2讲函数、图象及性质1. f(x)=(x-2)2解析:函数满足f(x)=f(x+2),函数周期为2.则x∈[2,3],x-2∈[0,1],f(x)=f(x -2)=(x -2)2.2. (0,1] 解析:y =x x -m =1+m x -m,由反比例函数性质可得到0<m ≤1;也可以用导数求得.3. 12 解析:f(-x)=12-x -1+a =2x 1-2x+a ,f(-x)=-f(x) 2x 1-2x +a =-⎝⎛⎭⎫12x -1+a 2a =11-2x -2x 1-2x=1,故a =12;也可用特殊值代入,但要检验.4. 1<a <2 解析:函数为奇函数,在(-1,1)上单调递减,f(1-a)+f(1-a 2)>0,得f(1-a)>f(a 2-1).∴ ⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<11-a <a 2-1,1<a < 2.5. [3,+∞) 解析:⎩⎪⎨⎪⎧|x -2|-1≥0,x -1>0,x -1≠1⎩⎪⎨⎪⎧x -2≥1或x -2≤-1,x >1,x ≠2x ≥3.6. 2 解析:函数满足f(x +2)=1f (x ),故f(x +4)=1f (x +2)=f(x),函数周期为4,f(2 012)=f(0),又f(2)=1f (0),∴ f(0)=2.7. 3 解析:画图可知a +(-1)2=1,a =3,也可利用f(0)=f(2)求得,但要检验.8. 1 解析:由y =|x 2-2x -t|得y =|(x -1)2-1-t|,函数最大值只能在y(0),y(1),y(3)中取得,讨论可得只有t =1时成立.9. 解:(1) ∵ f(a +2)=18,f(x)=3x ,∴ 3a +2=183a =2, ∴ g(x)=(3a )x -4x =2x -4x ,x ∈[-1,1].(2) g(x)=-(2x )2+2x =-⎝⎛⎭⎫2x -122+14,当x ∈[-1,1]时,2x ∈⎣⎡⎦⎤12,2,令t =2x ,∴ y =-t 2+t =-⎝⎛⎭⎫t -122+14,由二次函数单调性知当t ∈⎣⎡⎦⎤12,2时y 是减函数,又t =2x 在[-1,1]上是增函数,∴ 函数g(x)在[-1,1]上是减函数.(也可用导数的方法证明)(3) 由(2)知t =2x,2x ∈⎣⎡⎦⎤12,2,则方程g(x)=m 有解m =2x -4x在[-1,1]内有解m =t -t 2=-⎝⎛⎭⎫t -122+14,t ∈⎣⎡⎦⎤12,2, ∴ m 的取值范围是⎣⎡⎦⎤-2,14. 10. (1) 证明:取x =y =0,f(0)=f(0)+f(0),∴ f(0)=0,取y =-x ,则f(0)=f(x)+f(-x),∴ f(-x)=-f(x),故f(x)是奇函数.(2)解: 任取x 2>x 1,则x 2-x 1>0,∴ f(x 2-x 1)<0,又f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1)<0,∴ f(x 2)<f(x 1),f(x)在[-3,3]上单调递减,f(-3)=-f(3)=-3f(1)=6,∴ f(x)在[-3,3]上的最大值f(-3)=6,最小值f(3)=-6.第3讲 基本初等函数1. 2 解析:lg 22+lg2lg5+lg50=lg2(lg2+lg5)+lg5+lg10=lg2lg(2·5)+lg5+1=2.2. a ∈(1,2) 解析:y =log a (2-ax)是[0,1]上关于x 的减函数,∴ ⎩⎪⎨⎪⎧a >1,2-a >01<a <2.3. [-3,1] 解析:2x 2+2x -4≤122x 2+2x -4≤2-1x 2+2x -4≤-1x 2+2x -3≤0-3≤x ≤-1.4. (2,2)5. a ≥2 解析: 二次函数f(x)=-x 2+2ax -1+a 2开口向下,对称轴x =-2a-2=a ,则a ≥2.6. ⎣⎡⎦⎤1,3127 解析:f(x)为偶函数,则b =0,又a -1+2a =0,∴ a =13,f(x)=13x 2+1在⎣⎡⎦⎤-23,23上的值域为⎣⎡⎦⎤1,3127.7. f(-25)<f(80)<f(11) 解析:∵ f(x -4)=-f(x),∴ f(x -4)=f(x +4),∴ 函数周期T =8.∵ f(x)为奇函数,在区间[0,2]上是增函数,∴ f(x)在[-2,2]上是增函数.则f(-25)=f(-1),f(11)=f(3)=-f(-1)=f(1),f(80)=f(0).∵ f(-1)<f(0)<f(1),∴ f(-25)<f(80)<f(11).8. 4 解析:函数图象恒过定点(1,1),从而m +n =1,又mn >0,∴ 1m +1n =m +n m +m +nn=2+n m +m n ≥4,当且仅当m =n 时取等号,1m +1n的最小值为4.9. 解:f(x)=12p x 2-x +3=12p (x -p)2+3-p 2.① p ≤-1时,f(x)在[-1,2]上递减,M =f(-1)=12p +4,m =f(2)=2p +1,由2M +m =3,得p =-12(舍).② -1<p <0,M =f(p)=3-p 2,m =f(2)=2p +1,由2M +m =3,得p =2-6,p =2+6(舍).③ 0<p <12,M =f(2),m =f(p),由2M +m =3,得p =2±23(舍).④ 12≤p ≤2,M =f(-1),m =f(p)由2M +m =3,得p =8±66(舍). ⑤ p >2,M =f(-1),m =f(2)由2M +m =3,得p =-12(舍).综上,当p =2-6时,2M +m =3成立.10. 解:(1) 设P(x 0,y 0)是y =f(x)图象上的点,Q(x ,y)是y =g(x)图象上的点,则⎩⎪⎨⎪⎧ x =x 0-2a ,y =-y 0.∴ ⎩⎪⎨⎪⎧x 0=x +2a ,y 0=-y.又y 0=log a (x 0-3a),∴ -y =log a (x +2a -3a ),∴ y =log a1x -a (x >a),即y =g(x)=log a 1x -a(x >a). (2) ∵ ⎩⎪⎨⎪⎧x -3a >0,x -a >0,∴ x >3a ,∵ f(x)与g(x)在x ∈[a +2,a +3]上有意义,∴ 3a <a +2,0<a <1,∵ |f(x)-g(x)|≤1恒成立,∴ |log a (x -3a)(x -a)|≤1恒成立.∴⎩⎪⎨⎪⎧-1≤log a [(x -2a )2-a 2]≤1,0<a <1a ≤(x -2a)2-a 2≤1a.对x ∈[a +2,a +3]时恒成立,令h(x)=(x -2a)2-a 2,其对称轴x =2a,2a <2,而2<a +2,∴ 当x ∈[a +2,a +3]时,h(x)min =h(a +2),h(x)max =h(a +3).∴ ⎩⎪⎨⎪⎧a ≤h (x )min ,1a ≥h (x )max⎩⎪⎨⎪⎧a ≤4-4a ,1a ≥9-6a0<a ≤9-5712.第4讲 函数的实际应用1. log 32 解析:本题主要考查分段函数和简单的已知函数值求x 的值.由⎩⎪⎨⎪⎧x ≤1,3x=2x =log 32或⎩⎪⎨⎪⎧x >1,-x =2无解,故应填log 32.2. 20% 解析:设该产品初始成本为a ,每年平均降低百分比为p ,则a(1-p)2=0.64a ,∴ p =0.2.3. m ∈(1,2) 解析:令f(x)=x 2-2mx +m 2-1,则⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)<0,f (3)>0.解得1<m <2.4. a >1 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f(x)=a x -x -a(a>0且a ≠1)有两个零点, 就是函数y =a x (a >0且a ≠1)与函数y =x +a 有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合要求,当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.5. 14 解析:设每个销售定价为x 元,此时销售量为100-10(x -10),则利润y =(x -8)[100-10(x -10)]=10(x -8)(20-x)≤10⎝⎛⎭⎫x -8+20-x 22=360,当且仅当x =14时取等号.6. ⎝⎛⎭⎫-1,-13 解析:由题意得f(1)·f(-1)<0,即(3a +1)(a +1)<0,-1<a <-13. 7. 6 解析:⎩⎨⎧-a +22=1,a +b2=1b =6.8. ①③④ 解析:函数f(x)=-|x|x 2+bx 2+c 为偶函数,当x ≥0时,f(x)=-x 3+bx 2+c ,b <0,∴ f ′(x)=-3x ⎝⎛⎭⎫x -2b3≤0对x ∈[0,+∞)恒成立,∴ x =0时,f(x)在R 上有最大值,f(0)=c ;由于f(x)为偶函数,②不正确;取b =3,c =-2③正确;若b <0,取a =0,若b ≥0,取a =2b3,故一定存在实数a ,使f(x)在[a ,+∞)上单调减.9. (1)证明:由条件知f(2)=4a +2b +c ≥2恒成立.又∵ x =2时,f(2)=4a +2b +c ≤18(2+2)2=2恒成立,∴ f(2)=2.(2)解: ∵ ⎩⎪⎨⎪⎧4a +2b +c =2,4a -2b +c =0,∴ 4a +c =2b =1,∴ b =12,c =1-4a.又f(x)≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立. ∴ a >0,Δ=⎝⎛⎭⎫12-12-4a(1-4a)≤0,∴(8a -1)2≤0. 解得:a =18,b =12,c =12,∴ f(x)=18x 2+12x +12.(3)解:(解法1) 由分析条件知道,只要f(x)图象(在y 轴右侧部分,包含与y 轴交点)总在直线y =m 2x +14上方即可,也就是直线的斜率m2小于直线与抛物线相切时的斜率,∴⎩⎨⎧y =18x 2+12x +12,y =m 2x +14,解得 m ∈⎝⎛⎭⎫-∞,1+22. (解法2)g(x)=18x 2+⎝⎛⎭⎫12-m 2x +12>14在x ∈[0,+∞)必须恒成立, 即x 2+4(1-m)x +2>0在x ∈[0,+∞)恒成立. ① Δ<0,即[4(1-m)]2-8<0,解得:1-22<m <1+22; ② ⎩⎪⎨⎪⎧Δ≥0,-2(1-m )≤0,f (0)=2>0,解得:m ≤1-22. 综上,m ∈⎝⎛⎭⎫-∞,1+22. 10. (1)证明: 当x ≥7时,f(x +1)-f(x)=0.4(x -3)(x -4),而当x ≥7时,函数y =(x -3)(x -4)单调递增,且(x -3)(x -4)>0, 故f(x +1)-f(x)单调递减,∴ 当x ≥7时,掌握程度的增长量f(x +1)-f(x)总是下降.(2)解: 由题意可知0.1+15ln a a -6=0.85,整理得aa -6=e 0.05,解得a =e 0.05e 0.05-1·6=20.50×6=123.0,123.0∈(121,127],由此可知,该学科是乙学科.第5讲 不等式及其应用1. (-∞,-2)∪(3,+∞)2. (-1,2) 解析:由已知得a <0,b =-a ,ax -b x -2>0即为ax +a x -2>0,得x +1x -2<0,得-1<x <2.3. -6 解析:作出可行域,求出凸点坐标分别为(3,-3),(4,-5),(5,-1),(6,-3),则最优解为(4,-5);或让直线t =x +2y 平行移动,当直线过点(4,-5)时,目标函数取最小值.4.116 解析:∵ x ,y ∈R +,∴ 1=x +4y ≥2x·4y ,∴ xy ≤116,当且仅当x =4y ,即x =12,y =18时取等号. 5. 9 解析:∵ x >0,y >0,1x +4y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +4y =5+y x +4xy ≥5+2y x ·4x y=9,当且仅当y x =4xy,即x =3,y =6时取等号.6. m ≤-5 解析:x 2+mx +4<0,x ∈(1,2)可得m <-⎝⎛⎭⎫x +4x ,而函数y =-⎝⎛⎭⎫x +4x 在(1,2)上单调增,∴ m ≤-5.7. ⎣⎡⎦⎤95,6 解析:变量x ,y 满足约束条件构成的区域是以(1,3),(1,6),⎝⎛⎭⎫52,92三点为顶点的三角形区域(含边界),y x 表示区域内的点与原点连线的斜率,∴ y x ∈⎣⎡⎦⎤95,6 8. x ≥1 解析:n n +1=1-1n +1<1,当n 无限变大时,nn +1的值趋近于1,不等式要恒成立,显然x >12,2x -1|x|>n n +1等价于2x -1x ≥1且x >12,故x ≥1.9. 解:(1) y =2 150+10×55+⎝⎛⎭⎫a 6x 2+13x (55-1)x =2 700x +9ax +18.(0<x ≤20,12≤a ≤1).(2) 当34≤a ≤1时,y ≥22 700x·9ax +18=1803a +18. 当且仅当2 700x =9ax ,即x =300a时取等号. 即当x =300a时,y min =1803a +18; 当12≤a <34时,y ′=-2 700x 2+9a <0,故y =f(x)在(0,20]上是减函数, 故当x =20时,y min =2 70020+180a +18=153+180a. 答:若12≤a <34,则当车队速度为20 m/s 时,通过隧道所用时间最少;若34≤a ≤1时,则当车队速度为300am/s 时,通过隧道所用时间最少.10. 解:(1) ⎩⎪⎨⎪⎧f (0)=0,f (-2)=0⎩⎪⎨⎪⎧b =6,c =0,∴ f(x)=3x 2+6x ; (2) g(x)=3⎣⎡⎦⎤x +⎝⎛⎭⎫1+m 62-2-3×⎝⎛⎭⎫1+m 62,-⎝⎛⎭⎫1+m 6≤2,m ≥-18; (3) f(x)+n ≤3即n ≤-3x 2-6x +3,而x ∈[-2,2]时,函数y =-3x 2-6x +3的最小值为-21,∴ n ≤-21,实数n 的最大值为-21.第6讲 导数及其应用1. f(x)=x 2+2x +12. 98 解析:f ′(2)=4.5-4=-98,切线方程为y =-98x +92,∴ f(2)=94. 3. y =x -1 解析:y ′=3x 2-2,k =y ′x =1=1,则切线方程y -0=1·(x -1), ∴ x -y -1=0.4. ⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 解析:y ′=3x 2-3≥-3,∴ tanα≥-3,0≤α<π且α≠π2,结合正切函数图象可得答案.5. a ≥-4 解析:x ∈(0,+∞),f ′(x)=1x +4x +a ≥0恒成立,由基本不等式1x +4x+a ≥4+a ,当且仅当x =12时取等号,∴ a +4≥0,∴ a ≥-4.6. 32 解析:f(x)=x 3-12x +8,f ′(x)=3(x -2)(x +2),则f(x)的单调增区间是[-3,-2]∪[2,3],减区间是[-2,2],f(-3)=17,f(2)=-8,f(3)=-1,f(-2)=24,∴ M =24,m =-8.7. (-2,2) 解析:设f(x)=x 3-3x +a ,f ′(x)=3(x +1)(x -1),f(x)在x =-1取极大值,在x =1时取极小值,⎩⎪⎨⎪⎧f (-1)>0,f (1)<0⎩⎪⎨⎪⎧a +2>0,a -2<0-2<a <2.8. 4 解析:若x =0,则不论a 取何值,f(x)≥0显然成立;当x >0即x ∈(0,1]时,f(x)=ax 3-3x +1≥0可化为,a ≥3x 2-1x3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎭⎫12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f(x)=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4>0,显然g(x)在区间[-1,0)上单调递增,因此g(x)min =g(-1)=4,从而a ≤4,综上,a =4.9. 解:(1) 因为函数f(x),g(x)的图象都过点(t,0),所以f(t)=0,即t 3+at =0.因为t ≠0,所以a =-t 2.g(t)=0,即bt 2+c =0,所以c =ab.又因为f(x),g(x)在点(t,0)处有相同的切线,所以f ′(t)=g ′(t)而f ′(x)=3x 2+a ,g ′(x)=2bx ,所以3t 2+a =2bt.将a =-t 2代入上式得b =t.因此c =ab =-t 3.故a =-t 2,b =t ,c =-t 3.(2) y =f(x)-g(x)=x 3-t 2x -tx 2+t 3,y ′=3x 2-2tx -t 2=(3x +t)(x -t),因为函数y =f(x)-g(x)在(-1,3)上单调递减,所以⎩⎪⎨⎪⎧ y ′x =-1≤0,y ′x =3≤0.即⎩⎪⎨⎪⎧(-3+t )(-1-t )≤0,(9+t )(3-t )≤0,解得t ≤-9或t ≥3.所以t 的取值范围为(-∞,-9]∪[3,+∞).10. 解:(1) ∵ f(x)=x 3+ax ,g(x)=x 2+bx ,∴ f ′(x)=3x 2+a ,g ′(x)=2x +b.x ∈[-1,+∞),f ′(x)g ′(x)≥0,即x ∈[-1,+∞),(3x 2+a)(2x +b)≥0,∵ a >0,∴3x 2+a >0,∴ x ∈[-1,+∞),2x +b ≥0,即∴ x ∈[-1,+∞),b ≥-2x ,∴ b ≥2,则所求实数b 的取值范围是[2,+∞).(2) b 的最小值为2,h(x)=x 3-x 2+ax -2x ,h ′(x)=3x 2-2x +a -2=3⎝⎛⎭⎫x -132+a -73.当a ≥73时,h ′(x)=3x 2-2x +a -2≥0对x ∈[-1,+∞)恒成立,h(x)在[-1,+∞)上单调增,当0<a <73时,由h ′(x)=3x 2-2x +a -2=0得,x =1±7-3a 3>-1,∴h(x)在⎣⎢⎡⎦⎥⎤-1,1-7-3a 3上单调增,在⎣⎢⎡⎦⎥⎤1-7-3a 3,1+7-3a 3上单调减,在⎣⎢⎡⎭⎪⎫1+7-3a 3,+∞上单调增.滚动练习(一)1.24 解析:f(x)=x α,f(4)=12,α=-12,f(x)=x -12,f(8)=24. 2. x ∈R ,都有x 2+2x +5≠03. (-∞,0] 解析:x <-1时,不等式可化为x +(x +1)(-x -1+1)≤1,-x 2≤1,∴ x <-1;x ≥-1时,不等式可化为x +x +1≤1,x ≤0,∴ -1≤x ≤0,综上x ≤0.4. 12 解析:考虑x >0时,f(x)=x x +1=1x +1x ≤12,当且仅当x =1时取等号. 5. [-4,0)∪(0,1) 解析:⎩⎪⎨⎪⎧x 2-3x +2≥0,-x 2-3x +4≥0,x ≠0.上面式中等号不能同时成立.6. 2 解析:在同一个直角坐标系中作出函数y =⎝⎛⎭⎫12x,y =3-x 2的图象,两个函数图象有两个交点.7. (-∞,-1)∪(3,+∞) 解析:x 2+ax >4x +a -3可化为(x -1)a +x 2-4x +3>0对a ∈[0,4]恒成立,设f(a)=(x -1)a +x 2-4x +3,∴ ⎩⎪⎨⎪⎧f (0)>0,f (4)>0.解得x <-1或x >3.8. -1或-2564 解析: 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由直线y =0与抛物线y =ax 2+154x -9相切可得a =-2564,当x 0=32时,由直线y =274x -274与曲线y =ax 2+154x -9相切可得a =-1.9. 2 008 解析:令3x =t ,则x =log 3t ,则f(2)+f(4)+f(8)+…+f(28)=4log 23(log 321+2+…+8)+233×8=2 008.10. a ≥2 解析:由log a x +log a y =3,得y =a 3x ,函数y =a 3x 在x ∈[a,2a]上单调递减,得其值域为⎣⎡⎦⎤a 32a ,a 3a ,由题知⎣⎡⎦⎤a 32a ,a3a [a ,a 2],∴ a ≥2. 11. 解:p 为真,则|x -4|≤6的解集为A =[-2,10],q 为真,x 2-2x +1-m 2≤0(m >0)的解集为B =[1-m,1+m],∵ p 是q 的必要而不充分条件,∴ p 是q 的充分而不必要条件,∴ A =[-2,10]B =[1-m,1+m],∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2.两式中等号不能同时成立,又m >0,∴ m ≥9. 12. 解:(1) 令g(x)=f(x)-x =x 2+(a -1)x +a ,则由题意可得⎩⎪⎨⎪⎧Δ>0,<1-a 2<1,g (1)>0,g (0)>0⎩⎪⎨⎪⎧a >0,-1<a <1,a <3-22或a >3+220<a <3-2 2.故所求实数a 的取值范围是(0,3-22).(2) f(0)·f(1)-f(0)=2a 2,令h(a)=2a 2.∵ 当a >0时h(a)单调递增,∴ 当0<a <3-22时,0<h(a)<h(3-22)=2(3-22)2=2(17-122)=217+122<116,即f(0)·f(1)-f(0)<116.13. 解:(1) ① 当0<t ≤10时,V(t)=(-t 2+14t -40)e 14t +50<50,化简得t 2-14t +40>0,解得t <4或t >10,又0<t ≤10,故0<t <4.② 当10<t ≤12时,V(t)=4(t -10)(3t -41)+50<50,化简得(t -10)(3t -41)<0,解得10<t <413,又10<t ≤12,故10<t ≤12.综合得0<t <4或10<t ≤12;故知枯水期为1月,2月,3月,11月,12月共5个月.(2)由(1)知:V(t)的最大值只能在(4,10)内达到.由V ′(t)=e 14t ⎝⎛⎭⎫-14t 2+32t +4=-14e 14t(t +2)(t -8),令V ′(t)=0,解得t =8(t =-2舍去). 当t 变化时,V ′(t) 与V (t)的变化情况如下表:t (4,8) 8 (8,10) V ′(t) + 0 - V(t)极大值由上表,V(t)在t =8时取得最大值V(8)=8e +50=108.32(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米.14. 解:(1) 当x ∈[-2,-1)时,f(x)=x +1x 在[-2,-1)上是增函数(用导数判断),此时f(x)∈⎣⎡⎭⎫-52,-2,当x ∈⎣⎡⎭⎫-1,12时,f(x)=-2,当x ∈⎣⎡⎦⎤12,2时,f(x)=x -1x 在⎣⎡⎦⎤12,2上是增函数,此时f(x)∈⎣⎡⎦⎤-32,32,∴ f(x)的值域为⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32. (2) ① 若a =0,g(x)=-2,对于任意x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,不存在x 0∈[-2,2]使得g(x 0)=f(x 1)都成立.② 若当a >0时,g(x)=ax -2在[-2,2]是增函数,g(x)∈[-2a -2,2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,若存在x 0∈[-2,2],使得g(x 0)=f(x 1)成立,则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[-2a -2,2a -2],∴有⎩⎨⎧-2a -2≤-52,2a -2≥32,解得 a ≥74.③ 若a <0,g(x)=ax -2在[-2,2]上是减函数,g(x)∈[2a -2, -2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32, 若存在x 0∈[-2,2]使得g(x 0)=f(x 1)成立, 则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[2a -2,-2a -2]⎩⎨⎧2a -2≤-52,-2a -2≥32,解得 a ≤-74.综上,实数a 的取值范围是⎝⎛⎦⎤-∞,-74∪⎣⎡⎭⎫74,+∞.专题二 三角函数与平面向量 第7讲 三角函数的图象与性质1. y =sin ⎝⎛⎭⎫2x +π3,x ∈R 2. 103. 1 解析:f(x)=f ⎝⎛⎭⎫π4cosx +sinx ,f ′(x)=-f ′⎝⎛⎭⎫π4sinx +cosx ,f ′⎝⎛⎭⎫π4=-22f ′⎝⎛⎭⎫π4+22,f ′⎝⎛⎭⎫π4=2-1,f(x)=(2-1)cosx +sinx ,f ⎝⎛⎭⎫π4=(2-1)×22+22=1. 4. 6 解析:平移后f(x)=cos ⎝⎛⎭⎫ωx -ωπ3,与原来函数图象重合,则ωπ3=2kπ,k ∈Z ,∵ ω>0,∴ ωmin =6.5. ⎣⎡⎦⎤-54,1 解析:a =cos 2x -cosx -1=⎝⎛⎭⎫cosx -122-54,转化为函数的值域问题. 6. 2+22 解析:f(x)=2sin πx4,周期为8,f(1)+f(2)+f(3)+…+f(2 012)=f(1)+f(2)+f(3)+f(4)=2+2 2.7. 2 解析:T =2ππ2=4,对任意x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,f(x)min =f(x 1),f(x)max=f(x 2),于是|x 1-x 2|min =T2=2.8. 23 解析:考查三角函数的图象、数形结合思想.线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx =5tanx ,解得sinx =23.线段P 1P 2的长为23.9. 解:f(x)=-2asin ⎝⎛⎭⎫2x +π6+2a +b ,sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 当a >0时,-2a +2a +b =-5,-2a ×⎝⎛⎭⎫-12+2a +b =1,∴ a =2,b =-5; 当a <0时,-2a +2a +b =1,-2a ×⎝⎛⎭⎫-12+2a +b =-5,∴ a =-2,b =1; a =0,不存在.综上,a =2,b =-5或a =-2,b =1.10. 解:(1) 由最低点为M ⎝⎛⎭⎫2π3,-2得A =2,由T =π得ω=2πT =2ππ=2, 由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫4π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 所以4π3+φ=2kπ-π2,故φ=2kπ-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,所以φ=π6,所以f(x)=2sin ⎝⎛⎭⎫2x +π6. (2) 因为x ∈⎣⎡⎦⎤0,π12,2x +π6∈⎣⎡⎦⎤π6,π3,所以当2x +π6=π6时,即x =0时,f(x)取得最小值1;当2x +π6=π3,即x =π12时,f(x)取得最大值 3.第8讲 三角变换与解三角形1. 3 解析:∵ sin 2α+cos2α=14,∴ sin 2α+1-2sin 2α=14,∴ sin 2α=34,∵ α∈⎝⎛⎭⎫0,π2,∴ s inα=32,∴ α=π3,tanα= 3. 2. 523 解析:由正弦定理a sinA =b sinB ,得 a =bsinAsinB =5·1322=523.3. 5 解析:12arcsinB =2,c =42,由余弦定理可求得b.4. 1 解析:由sin 2α+sinαcosα-2cos 2α=0,得tan 2α+tanα-2=0,tanα=1或tanα=-2(舍),sin2α=2sinαcosα=2tanα1+tan 2α=21+1=1. 5. 4 解析:由余弦定理得b a +ab =6cosC ,a 2+b 2ab =6×a 2+b 2-c 22ab ,a 2+b 2=32c 2,tanC tanA +tanC tanB =sinC cosC ⎝⎛⎭⎫cosA sinA +cosB sinB =1cosC ⎝⎛⎭⎫sin 2C sinAsinB =2ab a 2+b 2-c 2⎝⎛⎭⎫c 2ab =2c 2a 2+b 2-c 2,将a2+b 2=32c 2代入上式即可.注:(1) 在用正、余弦定理处理三角形中的问题时,要么把所有关系转化为边的关系,要么把所有的关系都转化为角的关系;(2) 本题也可以转化为角的关系来处理.6.724 解析:tanα=-34,tanβ=-12,tan2β=-43. 7. -17 解析:由余弦定理得c =a 2+b 2-2abcosC =3,故最大角为角B.8.817 解析:12bcsinA =-(b 2+c 2-a 2)+2bc ,12bcsinA =-2bccosA +2bc , 2-12sinA =2cosA ,⎝⎛⎭⎫2-12sinA 2=(2cosA)2=4(1-sin 2A),sinA =817. 9. 解:(1) ∵ c 2=a 2+b 2-2abcosC =1+4-4×14=4,∴ c =2,∴ △ABC 的周长为a +b +c =1+2+2=5. (2) ∵ cosC =14,∴ sinC =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴ sinA =asinC c =1542=158.∵ a <c ,∴ A <C ,故A 为锐角,∴ cosA =1-sin 2A =1-⎝⎛⎭⎫1582=78,∴ cos(A -C)=cosAcosC +sinAsinC =78×14+158×154=1116.10. 解:(1) sin 2B +C 2+cos2A =1-cos (B +C )2+cos2A =1+cosA 2+2cos 2A -1=5950.(2) ∵ cosA =45,∴ sinA =35,∴ S △ABC =12bcsinA =310bc ,∵ a =2,由余弦定理得:a 2=b 2+c 2-2bccosA =4,∴ 85bc +4=b 2+c 2≥2bc ,bc ≤10,∴ S △ABC =12×bcsinA =310bc ≤3,当且仅当b =c 时,取得最大值,所以当b =c 时,△ABC 的面积S 的最大值为3.第9讲 平面向量及其应用1. ⎝⎛⎭⎫45,-35或⎝⎛⎭⎫-45,352.10 解析:|α|=1,|β|=2,α⊥(α-2β),得α·(α-2β)=0,α·β=12,|2α+β|=4α2+4α·β+β2=10.3. π3 解析:∵ (a +2b )·(a -b )=-6,∴ |a|2-2|b|2+a·b =-6,∴ a·b =1,cos 〈a ,b 〉=a·b |a|·|b|=12. 4. 4 解析:设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴ AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos60°+32)=4.5. (-3,1)或(-1,1) 解析:设a =(x ,y),∴ a +b =(x +2,y -1),∴ ⎩⎪⎨⎪⎧ y -1=0,(x +2)2+(y -1)2=1,∴ ⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧x =-3,y =1. 6. -14 解析:AD →·BE →=12(AB →+AC →)·⎝⎛⎭⎫23AC →-AB → =12⎝⎛⎭⎫-1+23-13×12=-14. 7. 1-2 解析:设a +b =2d ,则d 为单位向量. (a -c )·(b -c )=1-(a +b )·c =1-2d·c =1-2cos 〈d ,c 〉.8. 2 解析:取O 为坐标原点,OA 所在直线为x 轴,建立直角坐标系,则A(1,0),B ⎝⎛⎭⎫-12,32,设∠COA =θ,则θ∈⎣⎡⎦⎤0,2π3,C(cosθ,sinθ),∴ (cosθ,sinθ)=x(1,0)+y ⎝⎛⎭⎫-12,32,x +y =3sinθ+cosθ=2sin ⎝⎛⎭⎫θ+π6,θ=π3时取最大值2. 9. 解:(1) 由m·n =0得-cosA +3sinA =0,tanA =33,A ∈(0,π), ∴ A =π6.(2)1+sin2B cos 2B -sin 2B =-3,∴ sinB +cosBcosB -sinB=-3,∴ tanB =2,∴ tanC =tan ⎝⎛⎭⎫π-π6-B =-tan π6+tanB 1-tan π6tanB=8+5 3. 10. 解:(1) 在Rt △ADC 中,AD =8,CD =6, 则AC =10,cos ∠CAD =45,sin ∠CAD =35.又∵ AB →·AC →=50,AB =13,∴ cos ∠BAC =AB →·AC →|AB →||AC →|=513.∵ 0<∠BAC <π,∴ sin ∠BAC =1213.∴ sin ∠BAD =sin(∠BAC +∠CAD)=6365.(2) S △BAD =12AB·AD·sin ∠BAD =2525,S △BAC =12AB·AC·sin ∠BAC =60,S △ACD =24,则S △BCD =S △ABC +S △ACD -S △BAD =1685,∴ S △ABD S △BCD =32.滚动练习(二)1. {-1,0,1} 解析:M ={-2,-1,0,1},N ={-1,0,1,2,3},则M ∩N ={-1,0,1}.2. 0 解析:f(1)=-f(-1)=-(-3+2+1)=0.3. 2 解析:cos10°+3sin10°1-cos80°=2sin40°2sin 240°= 2.4. (-3,2) 解析:6-x -x 2>0,∴ x 2+x -6<0,∴ -3<x <2.5. 2 解析:f ′(x)=3x 2-6x =3x(x -2),则函数的增区间是(-∞,0)∪(2,+∞),减区间是(0,2),所以函数在x =2处取极小值.6. 1 解析:a -2b =(3,3)与c 共线,则3·3=3k ,∴ k =1.7. 6 解析:A*B ={0,2,4}.8. 充要 解析:f(x)=x 2+mx +1的图象关于直线x =1对称-m2=1m =-2.9. (-∞,2ln2-2] 解析:f ′(x)=e x -2,x ∈(-∞,ln2),f ′(x)<0,x ∈(ln2,+∞),f ′(x)>0,x =ln2时,f(x)取极小值即为最小值2-2ln2+a ≤0,a ≤2ln2-2;本题也可转化为a =-e x +2x ,求函数g(x)=-e x +2x 值域即可.10. ②④ 解析:函数为偶函数,在⎣⎡⎦⎤0,π2上单调增,画图即可. 11. 点拨:本题考查函数的概念和性质,对分段函数在讨论其性质时要整体考虑.对二次函数要能用数形结合的思想来研究它的单调性与最值等问题.解:(1) 函数f(x)为奇函数,f(-x)+f(x)=0对x ∈R 恒成立,m =2;(2) 由f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x >00,x =0,x 2+2x ,x <0,知f(x)在[-1,1]上单调递增,∴ ⎩⎪⎨⎪⎧a -2>-1,a -2≤1,得1<a ≤3,即实数a 的取值范围是(1,3]. 12. 点拨:本小题主要考察综合运用三角函数公式、三角函数的性质进行运算、变形、转换和求解的能力.解:(1)∵ f(x)=sin(π-ωx)cosωx +cos 2ωx ,∴ f(x)=sinωxcosωx +1+cos2ωx 2=12sin2ωx +12cos2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12,由ω>0得2π2ω=π,∴ ω=1. (2) 由(1)知f(x)=22sin ⎝⎛⎭⎫2x +π4+12, ∴ g(x)=f(2x)=22sin ⎝⎛⎭⎫4x +π4+12,当0≤x ≤π16时,π4≤4x +π4≤π2,∴ 22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g(x)≤1+22,故x =0时,g(x)在此区间内取最小值为1.13. 点拨:本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.解:由cosA =1213,得sinA =1-⎝⎛⎭⎫12132=513.又12bcsinA =30,∴ bc =156. (1) AB →·AC →=bccosA =156×1213=144.(2) a 2=b 2+c 2-2bccosA =(c -b)2+2bc(1-cosA)=1+2×156×⎝⎛⎭⎫1-1213=25,∴ a =5. 14. 点拨:应用题是高考必考题型,解决应用题的关键要学会审题,根据条件,选择合适的变量,建立数学模型,选择适当的方法解题,结论要符合题意.解:∵ △ABC 是直角三角形,AB =2,BC =1,∴ ∠A =30°.设∠FEC =α,则α∈⎝⎛⎭⎫0,π2,∠EFC =90°-α,∠AFD =180°-60°-(90°-α)=30°+α,∴ ∠ADF =180°-30°-(30°+α)=120°-α,再设CF =x ,则AF =3-x ,在△ADF 中有DFsin30°=3-x sin (120°-α),由于x =EF·sinα=DF·sinα, ∴DF sin30°=3-DF·sinαsin (120°-α),化简得DF =32sinα+3cosα≥37=217, ∴ △DEF 边长的最小值为217.专题三 数 列第10讲 等差数列与等比数列1. 13 解析:a 3=7,a 5=a 2+6,∴ 3d =6,∴ a 6=a 3+3d =13.2. 13 解析:6S 5-5S 3=5,∴ 6(5a 1+10d)-5(3a 1+3d)=5,得a 1+3d =13. 3. 20 解析:a n =41-2n ,a 20>0,a 21<0.4.152 解析:a 2=1,a n +2+a n +1=6a n ,∴ q 2+q =6(q >0),∴ q =2,则S 4=152. 5. 15 解析:S 4a 4=a 1(1-q 4)1-q a 1q 3=1-q 4(1-q )q 3=15.6. 4 解析:设公差为d ,则⎩⎨⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15.即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,由线性规划可知a 1=1,d =1时,a 4取最大值4.7.212解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=33+2(1+2+…+(n -1))=n 2-n +33,a n n =n +33n -1,数列⎩⎨⎧⎭⎬⎫a n n 在1≤n ≤6,n ∈N *时单调减,在n ≥7,n ∈N *时单调增,∴ n =6时,a nn取最小值.8. 4 解析:⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,10≤k ≤1+10,k ∈N *,∴ k =4.9. 解:(1) 设公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55,2a 1+7d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2.或⎩⎪⎨⎪⎧a 1=15,d =-2.(舍去) ∴ a n =2n -1(n ∈N *).(2) n =1时,a 1=b 12,a 1=1,∴ b 1=2,n ≥2时,a n -1=b 12+b 222+…+b n -12n -1,2=a n -a n -1=b n 2n (n ≥2),b n =2n +1(n ≥2),∴ b n =⎩⎪⎨⎪⎧2(n =1),2n +1(n ≥2,n ∈N *),S n =2n +2-6(n ∈N *). 10. (解法1)(1)证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q ,∴ a n +2=a n q 2(n ∈N *). (2)证明:∵ a n =a n -2q 2(n ≥3,n ∈N *),∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q 2n -2,∴ c n =a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2. ∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =⎝⎛⎭⎫1a 1+1a 3+…+1a 2n -1+⎝⎛⎭⎫1a 2+1a 4+…+1a 2n =1a 1⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2. 当q =1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32n.当q ≠1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n 1-q -2=32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1). 故1a 1+1a 2+…+1a 2n=⎩⎨⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1),q ≠1.(解法2)(1) 证明:同解法1(1).(2) 证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2na 2n -1+2a 2n=q 2(n ∈N *),又c 1=a 1+2a 2=5,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q 2n -2=3q 2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵ a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n.∴1a 1+1a 2+…+1a 2k =32(1+q 2+…+q -2n +2).下同解法1.第11讲 数列求和及其综合应用1. 2n +1-n -2 解析:a n =2n -1,1+(1+2)+(1+2+4)+…+(1+2+…+2n -1)=(2+22+23+…+2n )-n =2(2n -1)-n =2n +1-n -22. 2+lnn 解析:累加可得.3. T 8T 4 T 12T 84. -p -q 解析:由求和公式知q =pa 1+p (p -1)2d ,p =qa 1+q (q -1)2d ,因为p ≠q ,两式相减得到-1=a 1+p +q -12d ,两边同时乘以p +q ,则-(p +q)=(p +q)a 1+(p +q )(p +q -1)2d ,即S p +q =-(p +q).5. 2n +1 解析:由条件得b n +1=a n +1+2a n +1-1=2a n +1+22a n +1-1=2a n +2a n -1=2b n 且b 1=4,所以数列{b n }是首项为4,公比为2的等比数列,则b n =4·2n -1=2n +1.6. 11 解析:(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则(a 21+a 22+…+a 250)+2(a 1+a 2+…+a 50)+50=107,∴ a 21+a 22+…+a 250=39,故a 1,a 2,…,a 50中数字0的个数为50-39=11.7. [24,36] 解析:a n =6n -(9+a),由题知5.5≤9+a6≤7.5,∴ 24≤a ≤36.8. 470 解析:由于⎩⎨⎧⎭⎬⎫cos 2nπ3-sin 2nπ3以3 为周期,故S 30=⎝⎛⎭⎫-12+222+32+⎝⎛⎭⎫-42+522+62+…+⎝⎛⎭⎫-282+2922+302 =∑k =110⎣⎡⎦⎤-(3k -2)2+(3k -1)22+(3k )2=∑k =110 ⎣⎡⎦⎤9k -52=9×10×112-25=470,分组求和是解决本题的关键.9. 解:(1) 由S n =(1+λ)-λa n S n -1=(1+λ)-λa n -1(n ≥2).相减得:a n =-λa n +λa n -1,∴ a n a n -1=λ1+λ(n ≥2),∴ 数列{a n }是等比数列.(2) f(λ)=λ1+λ,∴ b n =b n -11+b n -11b n =1b n -1+1,∴ ⎩⎨⎧⎭⎬⎫1b n 是首项为1b 1=2,公差为1的等差数列,∴ 1b n =2+(n -1)=n +1.∴ b n =1n +1.(n ∈N *) (3) λ=1时,a n =⎝⎛⎭⎫12n -1,∴ c n =a n⎝⎛⎭⎫1b n-1=⎝⎛⎭⎫12n -1n , ∴ T n =1+2⎝⎛⎭⎫12+3⎝⎛⎭⎫122+…+n ⎝⎛⎭⎫12n -1, ①12T n =⎝⎛⎭⎫12+2⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+n ⎝⎛⎭⎫12n , ② ①-②得:12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n ∴ 12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n = 2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -n ⎝⎛⎭⎫12n , 所以:T n =4-⎝⎛⎭⎫12n -2-2n ⎝⎛⎭⎫12n =4-n +22n -1. 10. 解:(1) n =1时,由S 2=tS 1+a ,解得a 2=at ,当n ≥2时,S n =tS n -1+a ,所以S n +1-S n =t(S n -S n -1),即a n +1=a n t , 当n =1时,由S 2=tS 1+a 得a 2=ta 1,又因为a 1=a ≠0,综上,有a n +1a n=t(n ∈N *),所以{a n }是首项为a ,公比为t 的等比数列,所以a n =at n -1.(2) 当t =1时,S n =na ,b n =na +1,b n +1-b n =[(n +1)a +1]-[na +1]=a , 此时{b n }为等差数列;当a >0时,{b n }为单调递增数列,且对任意n ∈N *,a n >0恒成立,不合题意;当a <0时,{b n }为单调递减数列,由题意知b 4>0,b 6<0,且有⎩⎪⎨⎪⎧b 4≥|b 5|,-b 6≥|b 5|,即⎩⎪⎨⎪⎧|5a +1|≤4a +1,|5a +1|≤-6a -1,解得-29≤a ≤-211.综上,a 的取值范围是⎣⎡⎦⎤-29,-211. (3) 因为t ≠1,b n =1+a 1-t -at n 1-t ,所以c n =2+⎝⎛⎭⎫1+a 1-t n -a 1-t (t +t 2+…+t n)=2+⎝⎛⎭⎫1+a 1-t n -a (t -t n +1)(1-t )2=2-at (1-t )2+1-t +a 1-t ·n +at n +1(1-t )2,由题设知{c n }是等比数列,所以有⎩⎪⎨⎪⎧2-at (1-t )2=0,1-t +a 1-t =0,解得⎩⎪⎨⎪⎧a =1,t =2,即满足条件的数对是(1,2).(或通过{c n }的前3项成等比数列先求出数对(a ,t),再进行证明)滚动练习(三)1. {4,5} 解析:A ∪B ={1,2,3}.2. π4 解析:由正弦定理a sinA =c sinC ,∴ sinA =cosA ,∴ tanA =1,∵ 0<A <π, ∴ A =π4.3. 12 解析:由a 1+3a 8+a 15=60得5a 1+35d =60,a 8=12,2a 9-a 10=a 8=12.4. 12 解析:周期是4π,∴ ω=2π4π=12. 5. [0,4) 解析:mx 2+mx +1≠0对x ∈R 恒成立.当m =0时,成立;当m ≠0时,Δ=m 2-4m <0,∴ 0<m <4.综上,0≤m <4.6. 6 解析:本题考查线性规划内容.7. ⎝⎛⎭⎫7π6,11π6 解析:y ′=1+2sinx <0,∴ sinx <-12,∴ 7π6<x <11π6. 8. π3 解析:∵ m ⊥n ,∴ (a +c)(a -c)+b(b -a)=0,∴ a 2+b 2-c 22ab =12, ∴ cosC =12,∴ C =π3.9. (-∞,-1)∪(2,+∞) 解析:画出符合题意的草图,则x -2<-3或x -2>0.10. 4 解析:本题其实是关于最小正周期问题.a 2=a 1-t ,a 3=t +2-a 1+t =2t +2-a 1,a 4=a 3-t =t +2-a 1,a 5=t +2-a 4=a 1,故实数k 的最小值是4.11. 解:(1) f(x)=12sin2x +3cos 2x =12sin2x +32(1+cos2x)=sin ⎝⎛⎭⎫2x +π3+32,∴ f(x)的最小正周期为T =2π2=π. (2) 依题意得g(x)=f ⎝⎛⎭⎫x -π4+32=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3+32+32=sin ⎝⎛⎭⎫2x -π6+3,当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,∴ -12≤sin ⎝⎛⎭⎫2x -π6≤32,∴ 23-12≤g(x)≤332,∴ g(x)在⎣⎡⎦⎤0,π4的最大值为332. 12. 解:(1) 当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n-6,因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,n ∈N *,70×⎝⎛⎭⎫34n -6,n ≥7,n ∈N *. (2) 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n(n -1),A n =120-5(n -1)=125-5n >80;当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n-6,A n =780-210×⎝⎛⎭⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫348-68=824764>80,A 9=780-210×⎝⎛⎭⎫349-69=767996<80,所以须在第9年初对M进行更新.13. 解:(1) f ′(x)=3x 2+2ax +b.由题意得⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.设切线l 的方程为y =3x +m(m>0),由原点到切线l 的距离为1010, 有|m|32+1=1010,解得m =1.∵ 切线l 不过第四象限,∴ m =1,m =-1(舍),∴ 切线l 的方程为y =3x +1,由于切点的横坐标为x =1,∴ 切点坐标为(1,4),∵ f(1)=1+a +b +c =4,∴ c =5.(2) 由(1)知f(x)=x 3+2x 2-4x +5,所以f ′(x)=3x 2+4x -4=(x +2)(3x -2),令f ′(x)=0,得x 1=-2,x 2=23.x -4 (-4,-2)-2 ⎝⎛⎭⎫-2,2323 ⎝⎛⎭⎫23,1 1 f ′(x) +0 -0 +f(x)极大值 极小值函数值-11139527414. 解:(1) ∵ -1,S n ,a n +1成等差数列,∴ 2S n =a n +1-1, ① 当n ≥2时,2S n -1=a n -1, ②①-②得:2(S n -S n -1)=a n +1-a n ,∴ 3a n =a n +1,∵ a 1=1≠0,∴ a n ≠0, ∴ a n +1a n=3.当n =1时,由①得∴ 2S 1=2a 1=a 2-1,又a 1=1,∴ a 2=3, ∴a 2a 1=3,∴ {a n }是以3为公比的等比数列,∴ a n =3n -1. (2) ∵ f(x)=log 3x ,∴ f(a n )=log 33n -1=n -1,b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝⎛⎭⎫1n +1-1n +3,∴ T n =1212-14+13-15+14-16+15-17+…+1n -1n +2+1n +1-1n +3=1212+13-1n +2-1n +3=512-2n +52(n +2)(n +3),比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可.又2(n +2)(n +3)-312=2(n 2+5n +6-156)=2(n 2+5n -150)=2(n +15)(n -10),∵ n ∈N *,∴ 当1≤n ≤9时n ∈N *,2(n +2)(n +3)<312,即T n <512-2n +5312;∴ 当n=10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n >10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312;当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n>10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312.。
福建省2012届高考数学文二轮专题总复习课件: 函数的图像与性质(2)
第t天 Q(万股)
4 36
10 30
16 24
22 18
20
(1) 根据提供的图象,写出该股票交易价格P(元)所满足
的函数关系式;
( 2 ) 根据表中数据确定日交易量Q(万股)与时间t (天)的一
次函数关系式;
( 3)问30天内,该股票日交易金额哪天最大?最大日交易
金额是多少?
21
1 ( 0 < t ≤ 20,t ∈ N*) 5 t + 2 【解析】1) P = . ( − 1 t + 8 ( 20 < t ≤ 30,t ∈ N*) 10 ( 2 ) 设Q = at + b(a,b为常数),将 ( 4,36 ) 与 (10,30 )的坐 标代入, 4a + b = 36 a = −1 得 ,解得 . 10a + b = 30 b = 40 所以日交易量Q(万股)与时间t (天)的一次函数关系式为 Q = 40 − t (0 < t ≤ 30,t ∈ N* ).
23
②当20 < t ≤ 30,t ∈ N*时, 1 1 2 P Q = (− t + 8) ( 40 − t ) = ( t − 60 ) − 40, 10 10 所以,当t = 21时, Q) max = 112.1 < 125; (P 当t = 15时, Q) max = 125(万元). (P 故该股票日交易额15号最大,最大交易金额是125万元.
(百度教案)2012届高三数学二轮复习第2讲基本初等函数及答案
1.已知函数 是偶函数,且在 是减函数,则整数 的值是. 或
解析: 应为负偶数,即 ( ),
当 时, 或 ;当 时, 或 .
2.若函数 有最小值,则实数 的取值范围是.(1, )
解析:依题意,函数y=x2-ax+存在大于0的最小值,则a>1且a2-2<0,解得a∈(1,).
3.已知函数 ,正实数 , 满足 ,且 ,若 在区间[ , ]上的最大值为2,则 .
解析:由已知得
所以 在区间 上的最大值为 故
4.(2010全国Ⅰ理)设 , , ,则 , , 的大小关系为.
c<a<b
命题立意:本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用以及数形结合的数学思想.
∴ 在 上是增函数,∴ 在 上是增函数…3分
∴ 在 上的最小值为 ……………2分
(3)对任意 恒有 ,即 对 恒成立,∴ ,
而 在 上是减函数,∴ ,
∴ ………………5分
★6.对于定义在区间D上的函数 ,若存在闭区间 和常数 ,使得对任意 ,都有 ,且对任意 ∈D,当 时, 恒成立,则称函数 为区间D上的“平底型”函数.
5.(江苏2011届高三理)已知函数 ,其中 是大于0的常数.
(1)求函数 的定义域;
(2)当 时,求函数 在[2, 上的最小值;
(3)若对任意 恒有 ,试确定 的取值范围.
解:(1)由 得, ,解得 时,定义域为 …2分
时,定义域为 且 …………………1分
时,定义域为 或 }……2分
丰台区2012年高三年级二模理科数学带详细答案
丰台区2012年高三年级第二学期统一练习(二) 数学(理科) 2012.5第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数1i2i-+的虚部是 (A) i -(B) 3i 5-(C) –1(D) 35-2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正 视图的面积为(A)2 (B)3 (C) 2 (D) 43.由曲线1y x =与y =x ,x =4以及x 轴所围成的封闭图形的面积是 (A) 3132 (B) 2316(C) 1ln 42+ (D) ln 41+4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填 (A) 7n ≤ (B) 7n > (C) 6n ≤ (D) 6n >5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机 取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是(A) 18125 (B)36125 (C) 44125(D) 811256.在△ABC 中,∠BAC =90º,D 是BC 中点,AB =4,AC =3,则AD BC ⋅=(A) 7- (B) 72-(C) 72(D) 7开始结束0S =,1n =,3a =S S a =+ 2a a =+1n n =+输出S 是 否俯视图7.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是(A)(B)(C)(D)8.已知平面上四个点1(0,0)A ,2(23,2)A ,3(234,2)A +,4(4,0)A .设D 是四边形1234A A A A 及其内部的点构成的点的集合,点0P 是四边形对角线的交点,若集合0{|||||,1,2,3,4}i S P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 2 (B) 4(C) 8(D) 16第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.10.已知椭圆22221(7)7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______.11.如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP 交圆于D ,若AB =2,AC =1,则PC =______,PD =______. PDC BA12.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.543.541从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为______.13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种. 14. 在平面直角坐标系中,若点A ,B 同时满足:①点A ,B 都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩ 的“姐妹点对”的个数为_______;当函数()x g x a x a =--有“姐妹点对”时,a 的取值范围是______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()cos (3cos sin )3f x x x x =--. (Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每.超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元).设奖券上的数字为ξ,ξ的分布列如下表所示,且ξ的数学期望E ξ=22.ξ 100 80 60 0 P0.05ab0.7(Ⅰ)求a ,b 的值;(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值;(Ⅱ)若二面角D -AP -C 的余弦值为63,求PF 的长度. PFEDCAB18.(本小题共13分)已知数列{a n }满足14a =,131n n n a a p +=+⋅+(n *∈N ,p 为常数),1a ,26a +,3a 成等差数列. (Ⅰ)求p 的值及数列{a n }的通项公式;(Ⅱ)设数列{b n }满足2n n n b a n=-,证明:49n b ≤.19.(本小题共14分)在平面直角坐标系xOy 中,抛物线C 的焦点在y 轴上,且抛物线上的点P (x 0,4)到焦点F 的距离为5.斜率为2的直线l 与抛物线C 交于A ,B 两点.(Ⅰ)求抛物线C 的标准方程,及抛物线在P 点处的切线方程; (Ⅱ)若AB 的垂直平分线分别交y 轴和抛物线于M ,N 两点(M ,N 位于直线l 两侧),当四边形AMBN 为菱形时,求直线l 的方程.20.(本小题共13分)设函数()ln ()ln()f x x x a x a x =+--(0)a >. (Ⅰ)当1a =时,求函数()f x 的最小值;(Ⅱ)证明:对∀x 1,x 2∈R +,都有[]11221212ln ln ()ln()ln2x x x x x x x x +≥++-; (Ⅲ)若211nii x==∑,证明:21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N .丰台区2012年高三年级第二学期数学统一练习(二)数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案DACDBBCB二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.7411.3,37712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对3分;第14题第一个空答对3分,第二个空答对2分. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.解:因为()cos (3cos sin )3f x x x x =--=23cos sin cos 3x x x --=1cos 213()sin 2322x x +-- =313cos 2sin 2222x x --=3cos(2)62x π+-. (Ⅰ)3()cos(2)3362f πππ=⨯+- =33322--=-. ……………………7分 (Ⅱ)因为 [0,]2x π∈,所以2666x ππ7π≤+≤. 当 26x π+=π,即512x π=时,函数()y f x =有最小值是312--. 当512x π=时,函数()y f x =有最小值是312--. ……………………13分 16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,所以 806017a b +=.因为 0.050.71a b +++=,所以0.25a b +=.OBA CD EFP z yxPFEDCAB由 806017,0.25,a b a b +=⎧⎨+=⎩ 可得0.1,0.15.a b =⎧⎨=⎩……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况. 设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=.答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分 17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C .所以 1(,0,1)2BE =- ,1(1,1,)2CP =-- ,所以45cos ,15||||BE CP BE CP BE CP ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为4515. ……………………9分 (Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -, 在平面APC 中,(0,22,)AP t t =- ,(1,2,0)AC =,所以 平面APC 的法向量为222(2,1,)t n t-=- , 所以 12122212||26cos ,3||||22(2)1()n n n n n n t t⋅<>===⋅--++,解得23t =,或2t =(舍). 此时5||3PF =. ……………………14分 18.解:(Ⅰ)因为14a =,131n n n a a p +=+⋅+,所以1213135a a p p =+⋅+=+;23231126a a p p =+⋅+=+. 因为1a ,26a +,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++, 所以 2p =. 依题意,1231n n n a a +=+⋅+, 所以当n ≥2时,121231a a -=⋅+,232231a a -=⋅+,……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n n a a n ---=+++++- ,所以 113(13)2(1)13n n a a n ---=+--,所以 3n n a n =+. 当n =1时,11314a =+=成立, 所以 3n n a n =+. ……………………8分(Ⅱ)证明:因为 3nn a n =+, 所以 22(3)3n n n n n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N . 若 22+210n n -+<,则132n +>,即 2n ≥时 1n n b b +<. 又因为 113b =,249b =, 所以49n b ≤. ……………………13分 19.解:(Ⅰ)依题意设抛物线C :22(0)x py p =>,因为点P 到焦点F 的距离为5,所以点P 到准线py =-的距离为5.因为P (x 0,4),所以由抛物线准线方程可得12p=,2p =. 所以抛物线的标准方程为24x y =. ……………………4分即 214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P (-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=; 点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P 点处抛物线切线方程为240x y ++=,或240x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840x x m --=,64160m ∆=+>.所以 128x x +=,124x x m =-, 所以1242x x +=,1282y y m +=+, 即AB 的中点为(4,8)Q m +. 所以 AB 的垂直平分线方程为1(8)(4)2y m x -+=--.因为 四边形AMBN 为菱形, 所以 (0,10)M m +,M ,N 关于(4,8)Q m +对称, 所以 N 点坐标为(8,6)N m +,且N 在抛物线上,所以 644(6)m =⨯+,即10m =,所以直线l 的方程为 210y x =+.……………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln1xf x x x x'=--=-. 令()0f x '=,得12x =.当102x <<时,()0f x '<,()f x 在1(0,)2是减函数,当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以 ()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分(Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--, 所以 ()ln ln()ln xf x x a x a x'=--=-.所以当2ax =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x x a +=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅(Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立. ⅱ)假设当n k =( k ∈N *)时命题成立,即若1221k x x x +++= ,则112222ln ln ln ln2k k k x x x x x x +++≥- . 当1n k =+时,1x ,2x ,…,121k x +-,12k x +满足 11122121k k x x x x ++-++++= .设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++ ,由(Ⅱ)得11111212212212()()ln[()ln 2]()ln[()ln 2]k k k k F x x x x x x x x x ++++--≥++-++++-=111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++ =11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++- .由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立. 所以当 1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立, 所以 若211nii x==∑,则21ln ln 2nniii x x =≥-∑ *(,)i n ∈N . ……………………13分(证法二)若1221n x x x +++= ,那么由(Ⅱ)可得 112222ln ln ln n n x x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++- 1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++- 121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++--- ln 2n =-.……………………13分(若用其他方法解题,请酌情给分)。
顺义区2012届高三第二次模拟考试(理科数学)带详细答案
顺义区2012届高三第二次模拟考试 高三数学(理科)试卷 2012.4本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一.选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项) 1. 已知集合{}0,1,3M =,{}|3,N x x a a M ==∈,则集合M N =I A.{}0 B.{}0,1 C. {}0,3 D. {}1,3 2.已知i 为虚数单位,则复数(1)i i -所对应点的坐标为A. (1,1)-B. (1,1)C. (1,1)-D. (1,1)-- 3.已知p 、q 是简单命题,则“p q ∧是真命题”是“p ⌝是假命题”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 4.如图给出的是计算111124620+++⋅⋅⋅+的值的一个程序框图,判断框内应填入的条件是A.20i <B.20i >C.10i <D.10i >5.已知直线l :10x y --= 和圆C :cos 1sin x y θθ=⎧⎨=+⎩(θ为参数,R θ∈),则直线l 与圆C 的位置关系为A. 直线与圆相交B. 直线与圆相切C. 直线与圆相离D.直线与圆相交但不过圆心A. 直线与圆相切B. 直线与圆相离6.甲乙两人从4门课程中各选修2门,则甲乙两人所选的课程中恰有1门相同的选法有A.12 种B.16 种C.24 种D.48 种 7.一个空间几何体的三视图如图所示,则该几何体的体积为A.60B.80C.100D.120 8.已知椭圆:G 22221(0)x y a b ab+=>>的离心率为2,⊙M 过椭圆G 的一个顶点和一个焦点,圆心M 在此椭圆上,则满足条件的点M 的个数是A. 4B. 8C. 12D. 16左视图正(主)视图8232344二.填空题(本大题共6个小题,每小题5分,共30分,把答案填在答题卡上) 9.若1()nx x+展开式中第二项与第四项的系数相等,则n =________;展开式中间一项的系数为_________.10.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈都有21n n S a =-,则1a 的值为________,数列{}n a 的通项公式n a =_____________.11.如图所示:圆O 的直径6A B =,C 为圆周上一点,030BAC ∠=,过C 作圆O 的切线l ,过A 作直线l 的垂线,垂足为D ,则C D 的长为_________. 12.已知O 是坐标原点,点(2,1)A -,若点(,)M x y 为平面区域101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,上的一个动点,则OA OM ⋅的最大值为 .13.已知A 、B 、P 是双曲线22221x y ab-=上不同的三点,且A 、B 两点关于原点O 对称,若直线,PA PB的斜率乘积12P A P B k k ⋅=,则该双曲线的离心率e =___________.14.已知全集为,U P U Ø,定义集合P 的特征函数为1,,()0,.P U x P f x x P ∈⎧⎪=⎨∈⎪⎩ð,对于A U Ø,B UØ,给出下列四个结论:① 对x U ∀∈,有()()1UA Af x f x +=ð;② 对x U ∀∈,若A B Ø,则()()A B f x f x ≤; ③ 对x U ∀∈,有()()()A B A B f x f x f x =⋅I ; ④ 对x U ∀∈,有()()()A B A B f x f x f x =+ .其中,正确结论的序号是_______________.三.解答题(本大题共6小题,共80分,解答应写出文字说明、证 明过程或演算步骤). 15.(本小题共13分)已知向量(2cos ,1)2x m =u r ,(cos ,1)2xn =-r ,()x R ∈,设函数()f x m n =⋅u r r .(Ⅰ)求函数()f x 的值域;(Ⅱ)已知A B C V 的三个内角分别为A 、B 、C ,若1(),3f A=3BC AC ==,求边长A B 的值.A如图:四棱锥P A B C D -中,底面A B C D 是平行四边形,090ACB ∠=,P A ⊥平面A B C D ,1P A B C ==,AB =,F 是B C 的中点.(Ⅰ) 求证:D A ⊥平面PAC ;(Ⅱ)试在线段P D 上确定一点G ,使C G ∥平面P A F ; (Ⅲ)求平面P A F 与平面PC D 所成锐二面角的余弦值.17.(本小题共13分)计算机考试分理论考试与实际操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”并颁发“合格证书”.甲、乙、丙三人在理论考试中“合格”的概率依次为:45、34、23,在实际操作考试中“合格”的概率依次为:12、23、56,所有考试是否合格相互之间没有影响.(Ⅰ)假设甲、乙、丙3人同时进行理论与实际操作两项考试,谁获得“合格证书”的可能性大;(Ⅱ)求这3人进行理论与实际操作两项考试后,恰有2人获得“合格证书”的概率; (Ⅲ)用X 表示甲、乙、丙3人在理论考试中合格的人数,求X 的分布列和数学期望E X . 18.(本小题共14分)已知函数()ln ,f x x x =-2()ag x x x=+,(其中0a >).(Ⅰ)求曲线()y f x =在(1,(1))f 处的切线方程;(Ⅱ)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (Ⅲ)若对任意的[]12,1,x x e ∈,(e 为自然对数的底数, 2.718e ≈)都有12()()f x g x ≤,求实数a 的取值范围.ADCFPB已知动圆过点(2,0)M ,且被y 轴截得的线段长为4,记动圆圆心的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点M 的直线交曲线C 于A ,B 两点,若在x 轴上存在定点(,0)P a ,使PM 平分APB ∠,求P 点的坐标.20. (本小题共13分)对于定义域为A 的函数)(x f ,如果任意的A x x ∈21,,当21x x <时,都有()()21x f x f <,则称函数()x f 是A 上的严格增函数;函数()k f 是定义在*N 上,函数值也在*N 中的严格增函数,并且满足条件()()k k f f 3=.(Ⅰ)证明:)(3)3(k f k f =; (Ⅱ)求*))(3(1N k f k ∈-的值;(Ⅲ)是否存在p 个连续的自然数,使得它们的函数值依次也是连续的自然数;若存在,找出所有的p 值,若不存在,请说明理由.顺义区2012届高三第二次统练高三数学(理科)试卷参考答案及评分标准 2012.49.4,6;10.1,12n -;212.3;13.214 .①、②、③;三.解答题(本大题共6小题,共80分) 15.(本小题共13分) 解:(Ⅰ)2()2cos 1cos 2xf x m n x=⋅=-=u r r,__________4分 x R ∈Q ∴()cos f x x =的值域为[]1,1-.__________6分(Ⅱ) 1()cos 3f A A ==,由余弦定理2222cos BC AC AB AC AB A =+-⋅⋅__________8分∴21129233c c =+-⨯⨯⨯,即2230c c --=__________10分 ∴3A B c ==.__________13分16. (本小题共13分)解:分别以,,AC AD AP 为x 、y 、z 轴建立空间直角坐标系,则1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --.__________(建系正确,坐标写对给3分)(Ⅰ) 证明方法一::Q 四边形是平行四边形,∴090ACB DAC ∠=∠=,Q P A ⊥平面A B C D ∴P A D A ⊥,又AC D A ⊥,AC PA A =I ,∴D A ⊥平面PAC . __________4分方法二:易证DA uu u r是平面平面PAC 的一个法向量,∴D A ⊥平面PAC .______4分(Ⅱ)方法一:设P D 的中点为G ,在平面PAD 内作G H PA ⊥于H , 则G H 平行且等于12A D,连接F H ,则四边形F C G H 为平行四边形,_____6分∴G C∥F H ,Q F H ⊂平面P A E ,C G ⊄平面P A E ,ADCFPB∴C G∥平面P A E ,∴G 为P D 中点时,C G ∥平面P A E .__________8分方法二:设G 为P D 上一点,使C G ∥平面P A E ,令(0,,),(0PG PD λλλλ==-≤≤uuu r uuu r,(1,,1)GC PC PG λλ=-=--+uuu r uuu r uuu r可求得平面P A E 法向量(1,2,0)m =u r,要C G ∥平面P A E ,∴0m G C ⋅=u r uuu r ,解得12λ=.∴G为P D 中点时,C G ∥平面P A E .(Ⅲ)可求得平面PC D 法向量(1,1,1)n =r,__________10分||cos ,5||||m n m n m n ⋅<>==u r ru r r u r r∴5分17.(本小题共13分) 解:(Ⅰ)记“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C 则41236()52590P A =⨯==,32145()43290P B =⨯==,25550()36990P C =⨯==()()()P C P B P A >>,所以丙获得合格证书的可能性大. __________4分(Ⅱ)设3人考试后恰有2人获得“合格证书”为事件D∴()(,,)(,,)(,,)P D P A B C P A B C P A B C =++=2142153151152952952930⨯⨯+⨯⨯+⨯⨯=.__________8分(Ⅲ)0,1,2,3.X =,1111(0)54360P X ==⨯⨯=,4111311129(1)54354354360P X ==⨯⨯+⨯⨯+⨯⨯=, 43141213226(2)54354354360P X ==⨯⨯+⨯⨯+⨯⨯=,43224(3)54360P X ==⨯⨯=.__________10分X的分布列为:13360E X =;__________13分18.(本小题共14分)解:(Ⅰ)222()()()ln 2ln a ah x f x g x x x x x x xx=+=-++=+-定义域()0,+∞__________1分∴222'2212()2a x x ah x xxx--=--=,__________3分法一:令'(1)0h =,解得21a =, 又0a >,∴1a =,__________4分经验证1a =符合条件. __________5分 法二:令22'22()0x x ah x x--==,∴2220x x a --=,2181a ∆=+>∴1,214x ±=,Q 0x >,∴14x +=为极值点,∴114x +==,解得21a =,又0a >,∴1a =,(Ⅱ)对任意的[]12,1,x x e ∈都有12()()f x g x ≤成立,等价于对任意的[]1,x e ∈都有m ax m in ()()f x g x ≤成立,__________7分 当[]1,x e ∈,'11()10x f x x x-=-=≥,∴()f x 在[]1,e 上单调递增,m ax ()()1f x f e e ==-.__________8分Q 2'22()()()1a x a x a g x xx-+=-=,[]1,x e ∈,0a >∴(1)若01a <≤,222'222()()()10a x a x a x a g x xxx--+=-==≥,2()ag x x x=+在[]1,e 单调递增,∴2m in ()(1)1g x g a==+, ∴211a e +≥-1a ≤≤.__________10分(2)若1a e << 当1x a ≤<,则'2()()()0x a x a g x x -+=< 当a x e ≤≤,则'2()()()0x a x a g x x-+=≥∴()g x 在[)1,a 递减,在[],a e 递增,m in m ax ()()2()1g x g a a f x e ==≥=-, ∴12e a -≥,又1a e <<,∴()1,a e ∈__________12分(3)当a e ≥时'2()()()0x a x a g x x-+=≤, ∴()g x 在[]1,e 递减,2min max ()()()1ag x g e e f x e e==+≥=-,∴2a e ≥-恒成立. __________13分综上所述)a ∈+∞.__________14分 19.(本小题共14分)(Ⅰ)解:设动圆圆心的坐标为),(y x .依题意,有 2222)2(2y x x +-=+,化简得 x y 42=. 所以动圆圆心的轨迹方程为x y 42=.__________5分(Ⅱ)解法1:设11(,)A x y ,22(,)B x y ,直线A B 的方程为2x my =+. 将直线A B 的方程与曲线C 的方程联立,消去x 得:2480y m y --=. 所以124y y m +=,128y y =-.__________7分若PM 平分APB ∠,则直线P A ,P B 的倾斜角互补,所以0=+PB PA k k .(,0)P a ,则有12120y y x ax a+=--.__________10分将 112x m y =+,222x my =+代入上式,整理得 1212122(2)()0(2)(2)m y y a y y m y a m y a +-+=+-+-,所以 12122(2)()0m y y a y y +-+=. 将 124y y m +=,128y y =-代入上式, 得 (2)0a m +⋅=对任意实数m 都成立,所以2-=a .故定点P 的坐标为(2,0)-.__________14分 解法2:设11(,)A x y ,22(,)B x y ,当过点(2,0)M 的直线斜率不存在,则A B l :2x =,,,A B 两点关于x 轴对称,x 轴上任意一点(,0)P a (2)a ≠均满足PM 平分APB ∠,不合题意. __________6分当过点(2,0)M 的斜率k 存在时(0)k ≠,设A B l :(2)y k x =-,联立2(2)4y k x y x=-⎧⎨=⎩,消去y 得22224(1)40k x k x k -++=232160k ∆=+>,212244,k x x k++=124x x =,__________7分PM平分APB ∠,则直线P A ,P B 的倾斜角互补,∴0=+PB PA k k .(,0)P a ,(2)a ≠,则有 12120y y x ax a+=--.__________10分将11(2)y k x =-22(2)y k x =-代入上式, 整理得122112(2)()(2)()0()()k x x a k x x a x a x a --+--=--,∴1221(2)()(2)()0k x x a k x x a --+--=整理得12122()(2)40x x x x a a -+++=,将212244,k x x k++=124x x =代入化简得2a =-,故定点P 的坐标为(2,0)-.__________14分20. (本小题共13分)解:(Ⅰ)证明:对()()k k f f N k 3*,=∈()()[]()k f k f f f 3=∴①_________2分 由已知()()k k f f 3=∴()()[]()k f k f f f 3=②, 由①、②()()k f k f 33=∴__________3分(Ⅱ)若(),11=f 由已知()()k k f f 3=得()31=f ,矛盾; 设(1)1f a =>,∴((1))()3f f f a ==,③ 由()k f 严格递增,即()().311=<⇒<a f f a ,∴*(1)1(1)3(1)f f f N⎧≠⎪<⎨⎪∈⎩,∴(1)2f =,__________6分由③有((1))()3f f f a ==故((1))(2)3f f f ==∴(1)2f =,(2)3f =.()()()()(),923236,6133==⋅===f f f f f()()()()()()()().8118354,549327,276318,18339========f f f f f f f f ⋅⋅⋅⋅⋅⋅依此类推归纳猜出:*)(32)3(11N k f k k ∈⨯=--.__________8分 下面用数学归纳法证明: (1)当1=k 时,显然成立;(2)假设当)1(≥=l l k 时成立,即1132)3(--⨯=l l f ,那么当1+=l k 时,111(3)(33)3(3)32323l l l l l f f f ---=⨯==⨯⨯=⋅.猜想成立,由(1)、(2)所证可知,对*k N ∈1132)3(--⨯=k k f 成立. __________10分(Ⅲ)存在,131+=-k p 当p 个连续自然数从11323--⨯→k k 时,函数值正好也是p 个连续自然数从k k k k f f 3)32(32)3(111=⨯→⨯=---.__________13分。
高三数学二轮复习:专题二 数列
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学专题卷2012届高三数学二轮复习专题卷数学专题二答案与解析1.【命题立意】本题给出具体函数解析式,考查考生如何求函数的定义域.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)对数函数的定义域是什么?(2)多个函数式如何求定义域?【答案】B 【解析】函数的定义域就是让解析式有意义,因此应满足2020x x ->⎧⎨+>⎩,解得2x >. 2.【命题立意】本题考查在具体情境下选择函数的图象.【思路点拨】通过了解具体情境下函数的相关性质来选择相应的函数图象.【答案】B 【解析】国旗的运动规律是:匀速升至旗杆顶部→停顿3秒→国旗匀速下落至旗杆中部.对应的图象为B .3.【命题立意】本题考查幂函数的定义及其单调性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)幂函数的定义.(2)幂函数的单调性.【答案】C【解析】设()αx x f =,则()2,2,913-=-=∴-=x x f αα,故()x f 的单调递增区间是()0,-∞. 4.【命题立意】本题考查分段函数的求值. 【思路点拨】解答本题首先要判断81log 2的值,然后代入相应的解析式求解. 【答案】B 【解析】()()823381log 32===-=⎪⎭⎫ ⎝⎛f f f ,故选B . 5.【命题立意】本题考查函数的奇偶性、单调性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)若()x f 是R 上的为奇函数则()00=f .(2)单调递增函数的含义是什么?【答案】A 【解析】()00=f ,)(x f 在R 上递增,()2012f ∴>()00=f ,故选A .6.【命题立意】本题考查对数运算、指数运算、指数函数单调性.【思路点拨】先利用对数运算、指数运算、指数函数单调性判断c b a ,,取值范围,再比较其大小.【答案】D 【解析】 0<3.021⎪⎭⎫ ⎝⎛<021⎪⎭⎫ ⎝⎛=1,即0<a <1,同理b >1,而1-=c ,因此b >a >c . 7.【命题立意】本题考查利用数学结合的思想求函数零点的个数.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)如何画分段函数的图像?(2)如何求函数(形如()()()x g x f x F -=)的零点的个数?(提示:转化为()x f y =与()x g y =两函数图像交点的个数.)【答案】B 【解析】()()x x f x g 3-=零点的个数⇔()()03=-=x x f x g 解的个数()x f y =的图像与x y 3=的图像交点的个数.所以由数形结合易得()x f y =的图像与x y 3=的图像有2个交点,故选B .8.(理)【命题立意】本题考查判断陌生函数图象并求参数的可能取值.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)如何判断函数的奇偶性?(2)如何判断复合函数的单调性?【答案】D 【解析】函数为偶函数,排除①②,又函数值恒为正值,则排除④,故图像只能是③,再根据图像,先增后减的特征可知32-a >1,即a >2,符合条件的只有D 选项,故选D .(文)【命题立意】本题考查分段函数图像的变换.【思路点拨】先画出分段函数()x f 的图像,再根据()x f 的图像与()x f -图像间的关系得到()x f -的图像. 【答案】D 【解析】先画出函数()()()1221log 1x x f x x x ⎧≤⎪=⎨>⎪⎩的图像,然后将图像关于y 轴做一次对称可得()y f x =-的图象,可得为D .9.【命题立意】本题考查依据给出抽象函数的性质,解不等式.【思路点拨】结合给出的抽象函数的性质,画出()x f 的草图,利用函数的单调性解不等式.【答案】B 【解析】由()()|)(|x f x f x f =-=,得|)log (|8x f >⎪⎭⎫ ⎝⎛31f =0,于是 x 8log >31, 0∴<x <21或x >2,故选B . 10.【命题立意】本题考查偶函数图像的对称性、单调性、周期性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)偶函数的图像是关于y 轴对称的.(2)函数的周期是如何规定的?(3)如何利用函数的单调性比较函数值的大小?【答案】B 【解析】)()4()8()()4(x f x f x f x f x f =--=-∴-=- ,∴8是函数)(x f 的一个周期, 又)3()5(),1()1()15(f f f f f =-=-=∴又)(x f 在区间[0,4]上是增函数,)5()15()0()3()1()0(-∴∴f f f f f f <<<<,故选B .11.(理)【命题立意】本题考查函数中的最值问题.【思路点拨】解决函数应用问题关键是建立函数模型,然后根据模型进行求解.【答案】C 【解析】设纸盒的底边边长为a ,正四棱柱体对角线为l ,由已知可得阴影部分等腰直接三角形的直角边长为()060h h <<,则h h a -=-=60222602.要使正四棱柱的外接球的体积最小,只需正四棱柱的体对角线最短,()()()24004036022222222+-=+-=+=h h h h a l .所以当40=h 时,体积最小.(文)【命题立意】本题考查函数中的最值问题.【思路点拨】解决函数应用问题关键是建立函数模型,然后根据模型进行求解.【答案】C 【解析】设对角线为l ,则()()()113609282722222+-=+-+-==x x x x x x f l ,根据二次函数单调性可知当310=x 时有最小值,且310<27,是符合实际情况的. 12.【命题立意】本题考查分段函数的单调性及不等式的计算.【思路点拨】判断分段函数()x f 在R 上是单调递增的,并由此建立不等式求解.【答案】D 【解析】()x f 在R 上单调递增,()()x f x f 342≥-∴x x 342≥-∴14≤≤-x ,故选D .13.【命题立意】本题考查函数零点存在性定理.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)函数零点存在性定理的内容是什么?(2)如何用函数零点存在性定理判断函数零点所在的区间?【答案】B 【解析】分别将x 的值代入可得()1f >0,()2f >0,()3f >0,,()4f <0,()5f <0,因此零点在区间(3,4)内,所以3=k .14.【命题立意】本题考查新定义的理解及函数的单调性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)正确理解函数上确界的定义.(2)思考函数上确界与函数的最大值之间的关系.【答案】C 【解析】()x f 在()0,-∞是单调递增的,()x f 在[)∞+,0是单调递减的,所以()x f 在R 上的最大值是()10=f , 1,1=∴≥∴G n 故选C .15.【命题立意】本题考查陌生函数的单调性及最值.【思路点拨】首先化简函数,判断其单调性,再确定最值求解.【答案】D 【解析】()120122201212012201020121+-=++=+x x x x f 12012+=x y 在[]a a ,-上是单调递增的, ()1201222012+-=∴x x f 在[]a a ,-上是单调递增的,()a f M =∴,()a f N -=,()()40221201221201224024=+-+-=-+=+∴-a a a f a f N M 16.【命题立意】本题考查用换元法求函数的解析式. 【思路点拨】先求出⎪⎭⎫ ⎝⎛+31x g ,再换元:令31+=x t ,可求得()x f 的解析.【答案】())1(,211log 213-++>x x 【解析】依题意,()⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+=+==312)4(log 3x g y x x f y ,则)4(log 21313+=⎪⎭⎫ ⎝⎛+x x g 令31+=x t 则13-=t x (t >1-),()()()211l o g 2133l o g 2133++=+=∴t t t g 所以=)(x g ())1(,211log 213-++>x x 17.【命题立意】本题考查用分类讨论的思想解方程.【思路点拨】对a 分情况,分别代入相应的解析式进行求解. 【答案】1-或27【解析】⎩⎨⎧=3log 03x a 或⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛≤3310x a 解得=x 1-或27. 18.【命题立意】本题考查函数图像的平移变换.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)如何实现函数图像的平移?(2)若函数图像关于原点对称,则函数具备什么性质?【答案】1±【解析】由题意知,函数y 平移后的表达式()x x a a x f 331-⋅+=,()x f y =,它关于原点对称,所以为奇函数,故()()0=-=x f x f .而()())3)(3()33)(1(3313312x x x x x xx xa a a a a a a x f x f ------+-=-⋅++-⋅+=-+,所以012=-a ,1±=∴a 注意本题出现以下常见错解:直接利用()00=f 得011=-+a a ,解得1-=a .这是典型的不等价转化的结果,因为“()00=f ”是“函数)(x f y =为奇函数”的必要不充分条件. 19.【命题立意】本题考查抽象函数的定义域.【思路点拨】解决抽函数的定义域关键要搞清楚谁是自变量.【答案】[]5,2【解析】33≤≤-x ,302≤≤x ,4112≤+≤∴x ,∴对函数()1-=x f y 有411≤-≤x ,52≤≤∴x ,∴()1-=x f y 的定义域是[]5,2.20.【命题立意】本题考查二次函数的性质.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)二次函数的对称轴是怎样的?(2)如何确定二次函数的单调区间?【答案】2=b 【解析】()x f 的对称轴是1=x ,则()x f 在[]b ,1上单调递增,所以()b b f =即b b b =+-222,解得b =2或1,又因b >1,故2=b .21.【命题立意】本题考查函数的奇偶性和单调性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)如何判断函数的奇偶性?(2)如何判断复合函数的单调性?【答案】大于【解析】())1(log 233x x x x f +++=,可知函数是奇函数和增函数,于是当b a +>0,即a >b -⇔()a f >()b f -=()b f -⇔()a f +()b f >0∴()()b a b f a f ++>0同理可得b a +<0时()()b a b f a f ++>0. 22.【命题立意】本题考查二次函数的图像.【思路点拨】重视排除法的应用.先有b > 0排除①②,再结合抛物线的开口方向对a 进行讨论求解. 【答案】2-【解析】因为b >0,所以对称轴不与y 轴重合,排除图像①②;对图像③,开口向下,则a <0,对称轴,ab x 2-=>0符合条件,图像④显然不符合.根据图像可知,函数过原点,故()00=f ,即022=-a ,又a <0,故a =2-.23.【命题立意】本题考查对数函数的图像和性质.【思路点拨】借助图像认识对数函数的性质,在讨论性质的时候不要忘记定义域的制约作用.【答案】()+∞,0【解析】 令x x u 232+=,当),21(+∞∈x 时,()+∞∈,1u ,而此时()x f >0,所以a >1,所以函数()u x f a log =为增函数,又169432-⎪⎭⎫ ⎝⎛+=x u ,因此u 的单调递增区间为⎪⎭⎫ ⎝⎛+∞-,43.又x x 232+>0,所以x >0或x <23-,所以函数()x f 的单调增区间为()+∞,0. 24.【命题立意】本题考查根据函数图像求函数值.【思路点拨】本题关键是根据函数()x f y =的图像得到直角梯形的各边长,进而求三角形的面积.【答案】4【解析】 根据()x f y =的图像可得4=BC ,5=CD ,2,5==AB AD ,44221=⨯⨯=∴∆ABD S .25.【命题立意】本题考查用数形结合法求参数的取值范围.【思路点拨】将函数()k x f y -=无零点问题,转化成函数()x f y =的图像与k y =的图像无交点问题求解.【答案】k <23lg 【解析】在同一坐标系内作出函数()x f y =与k y =的图象,如右图,∴若两函数图象无交点,则k <23lg . 26.【命题立意】综合考查函数的单调性、奇偶性、周期性.【思路点拨】挖掘函数具备的性质进行解题.【答案】②④【解析】由()()x f x f -=+22,得()x f 关于2=x 对称,()x f 在区间)[∞+,2上为减函数,得()x f 在区间(]2,-∞上为增函数,∴()2-f <()0f =()4f ,由()()11-=+x g x g ,得()()x g x g =+2,即()x g 是以2为周期的周期函数,于是()()()402g g g ==-,得()()()0402≥==-g g g ,()()()()()()440022g f g f g f ⋅=⋅≤-⋅-∴,即()()()402h h h =≤-.27.【命题立意】本题考查函数的值域.【思路点拨】解决本题的关键在于弄清()x f ,()x g 在[]2,1-上值域间的关系. 【答案】⎥⎦⎤ ⎝⎛21,0【解析】设()x f 与()x g 在[]2,1-上的值域分别为A 、B ,由题知B A ⊇,易得[]3,1-=A ,而a >0,于是[]22,2++-=a a B ,∴⎩⎨⎧≤+-≥+-32212a a ,解得21≤a ,∴0<21≤a . 28.【命题立意】本题依据新定义的函数,判断命题.【思路点拨】对于新定义问题关键是要抓住什么样的函数是一阶格点函数,理解了才能顺利解题.【答案】②④【解析】①有无数个格点如()12,--k k (k 为正整数);②只有一个格点()1,0-;③有无数个格点如()k k -,3(k 为整数);④只有一个格点()7,5-.29.【命题立意】本题依据新定义的函数,考查不等式的解法.【思路点拨】根据“亲密函数”的定义得到不等式,解不等式.【答案】4【解析】依题意得()1551243)(22≤+-=+-+-=-x x x x x x g x f 15512≤+-≤-∴x x⎪⎩⎪⎨⎧-≥+-≤+-∴15515522x x x x ,⎩⎨⎧≥≤≤≤∴3241x x x 或∴21≤≤x 或43≤≤x 所以b 的最大值为4. 30.【命题立意】本题依据新定义的函数,考查函数的性质.【思路点拨】理解什么是“和谐函数”,关键是能否找到正实数a . 【答案】②③【解析】①④由数形结合的思想显然不是“和谐函数”;②()⎪⎭⎫ ⎝⎛-=42cos πx x f 可取4π=a 验证可知()⎪⎭⎫ ⎝⎛-=42cos πx x f 是“和谐函数”;③()x x x x f 2sin 21cos sin ==可取4π=a 验证可知()x x x f cos sin =是“和谐函数”.。