二次函数实际应用问题及解析

合集下载

专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。

第09讲 实际问题与二次函数 (解析版)

第09讲 实际问题与二次函数 (解析版)

第9讲实际问题与二次函数一、知识梳理1.根据实际问题列二次函数解析式【例1】.(1)某工厂1月份的产值是200万元,平均每月产值的增长率为x(x>0),则该工厂第一季度的产值y 关于x的函数解析式为y=200x2+600x+600(x>0).【分析】首先分别表示出二月、三月的产值,然后再列出函数解析式即可.【解答】解:由题意得:y=200+200(1+x)+200(1+x)2=200x2+600x+600(x>0),故答案为:y=200x2+600x+600(x>0).(2)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【变式训练1】.(1)某种商品的价格为5元,准备进行两次降价,如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y与x之间的关系式为y=5(1﹣x)2.【分析】根据题意可得第一次降价后的价格为5(1﹣x),第二次降价后价格为5(1﹣x)(1﹣x),进而可得y与x之间的关系式.【解答】解:由题意得:y=5(1﹣x)2,故答案为:y=5(1﹣x)2.(2)学校准备将一块长20m,宽14m的矩形绿地扩建,如果长和宽都增加xm,设增加的面积是ym2.(1)求x与y之间的函数关系式.(2)若要使绿地面积增加72m2,长与宽都要增加多少米?【分析】(1)根据题意可以得到y与x之间的函数关系式;(2)将y=72代入(1)中的函数关系式,即可解答本题.【解答】解:(1)由题意可得,y=(20+x)(14+x)﹣20×14化简,得y=x2+34x,即x与y之间的函数关系式是:y=x2+34x;(2)将y=72代入y=x2+34x,得72=x2+34x,解得,x1=﹣36(舍去),x2=2,即若要使绿地面积增加72m2,长与宽都要增加2米.2.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.【例2】.(1)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()m.A.3B.6C.8D.9【分析】根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,∴水面宽度为3﹣(﹣3)=6(m).故选:B.(2)如果矩形的周长是16,则该矩形面积的最大值为()A.8B.15C.16D.64【分析】首先根据矩形周长为16,设一条边长x,矩形面积为y,可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式并配方即可得结论.【解答】解:∵矩形周长为16,∴设一条边长x,矩形面积为y,则另一边长为8﹣x,∴y=(8﹣x)x=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,y有最大值是16.(3)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是﹣6.【分析】设y=2m2+mn+m﹣n,由m+n=2得n=2﹣m,再由二次函数的性质即可解决问题.【解答】解:设y=2m2+mn+m﹣n,∵m+n=2,∴n=2﹣m,∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2+4m﹣2=(m+2)2﹣6,此为一个二次函数,开口向上,有最小值,当m=﹣2时,y有最小值为﹣6,故答案为:﹣6.(4)某百货商店服装在销售过程中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件,当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?【分析】根据题意可以得到利润与所将价格的关系式,根据二次函数的性质求最值即可.【解答】解:设每件童装降价x元,利润为y元,由题意,得:y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250元,答:每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.【变式训练2】.(1)一次足球训练中,小明从球门正前方将球射向球门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高是2.44m,若足球能射入球门,则小明与球门的距离可能是()A.10m B.8m C.6m D.5m【分析】建立直角坐标系,根据题意求出函数解析式,求y<2.44对应的x的值.【解答】解:如图,建立直角坐标系,设抛物线解析式为y=a(x﹣6)2+3,将(0,0)代入解析式得a=,∴抛物线解析式为y=(x﹣6)2+3,当x=10时,y=,<2.44,满足题意,故选:A.(2)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【分析】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【解答】解:设P(x,x2﹣2x3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2P A+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.(3)已知抛物线y=﹣x2﹣3x+3,点P(m,n)在抛物线上,则m+n的最大值是4.【分析】把点P(m,n)代入抛物线的解析式,得到n=﹣m2﹣3m+3,等式两边同加m得m+n=﹣m2﹣2m+3,得到m+n关于m的二次函数解析式,然后整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵点P(m,n)在抛物线y=﹣x2﹣3x+3上,∴n=﹣m2﹣3m+3,∴m+n=﹣m2﹣2m+3=﹣(m+1)2+4,∴当m=﹣1时,m+n有最大值4.故答案为:4.(4)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为x元,每星期的销量为y件.(1)求商家降价前每星期的销售利润为多少元?(2)求y与x之间的函数关系式.(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?【分析】(1)商家降价前,每套的利润是30元,销售量是80套,根据利润=每套的利润×销售量,即可得出结论;(2)根据每降价5元,每星期可多卖出20套,当保暖内衣售价为x元时列出函数关系即可;(3)根据每星期的销售利润等于单套的利润乘以销售量列出函数的关系式,然后根据二次函数的性质求函数最值.【解答】解:(1)由题意得:(130﹣100)×80=2400 (元),∴商家降价前每星期的销售利润为2400元;(2)由题意可得:y=×20+80=﹣4x+600,∴y与x之间的函数关系式为y=﹣4x+600;(3)设每星期的销售利润为w元,则:w=(x﹣100)y=(x﹣100)(﹣4x+600)=﹣4(x﹣125)²+2500,∴当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.答:当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.二、课堂训练1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)【分析】先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.【解答】解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.依题意可得:y=x(40﹣2x).故选:C.2.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+【分析】方法一:根据题意结合函数的图象,得出图中A、B、C的坐标,再利用待定系数法求出函数关系式即可;方法二:根据四个选项中关系式系数的特点,结合抛物线位置,确定a、b的符号和c的值,就可以直接得出答案.【解答】解:方法一:0.26+2.24=2.5=(米)根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:,解得,a=﹣,b=﹣,c=,∴排球运动路线的函数关系式为y=﹣x2﹣x+,故选:A.方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.3.对于向上抛出的物体,在没有空气阻力的条件下,满足这样的关系式:h=vt﹣gt2,其中h是上升高度,v是初始速度,g为重力加速度(g≈10m/s2),t为抛出后的时间.若v=20m/s,则下列说法正确的是()A.当h=20m时,对应两个不同的时刻点B.当h=25 m时,对应一个时刻点C.当h=15m时,对应两个不同的时刻点D.h取任意值,均对应两个不同的时刻点【分析】把v=20m/s,g≈10m/s2代入h=vt﹣gt2,将其写成顶点式,根据二次函数的性质可得函数的最大值,则问题得解.【解答】解:∵h=vt﹣gt2,v=20m/s,g≈10m/s2,∴h=20t﹣5t2=﹣5(t2﹣4t)=﹣5(t﹣2)2+20,∴当t=2s时,h有最大值为20m,即物体能达到的最大高度为20m,且h=20m时,只有一个时刻,∴A、B、D均不正确.∵h=20t﹣5t2为开口向下的二次函数,h有最大值为20m,∴当h=15m时,对应两个不同的时刻点.∴C正确.故选:C.4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外【分析】根据题目中的二次函数解析式可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1(舍去),故D选项正确,故选:C.5.如图,已知二次函数的图象(0≤x≤1+2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值2【分析】根据图象及x的取值范围,求出最大值和最小值即可.【解答】解:根据图象及x的取值范围,当x=1时,y取最小值为﹣2,当x=1+2,y取最大值为2,∴该函数有最小值﹣2,有最大值2,故选:C.6.一台机器原价为60万元,如果每年价格的折旧率为x,两年后这台机器的价格为y万元,则y关于x的函数关系式为y=60(1﹣x)2.【分析】原价为60万元,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,可得结论.【解答】解:由题意知:两年后的价格是为:y=60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=60(1﹣x)2,故答案为:y=60(1﹣x)2.7.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是3 m.【分析】先把函数关系式配方,求出函数的最大值,即可得出水珠达到的最大高度.【解答】解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∴当x=1时,y有最大值为3,∴喷出水珠的最大高度是3m,故答案为:3.8.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为39元.【分析】设销售单价为x元时,销售利润最大,单价利润为x﹣20元,销售数量为280﹣(x﹣30)•10,根据公式利润=(售价﹣进价)×销售数量.通过配方可求利润最大值.【解答】解:设销售单价为x元时,销售利润最大,单价利润为(x﹣20)元,销售数量为280﹣(x﹣30)•10,∴利润总额为y=(x﹣20)•[280﹣(x﹣30)•10],化简得:y=﹣10x2+780x﹣11600,配方得:y=﹣10(x﹣39)2+3160,当单价为39元时,有最大利润3610元,故答案为:39.9.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t,汽车从刹车到停下来所用时间是秒.【分析】当汽车停下来时,s最大,故将s=﹣3t2+8t写成顶点式,则顶点横坐标值即为所求.【解答】解:∵s=﹣3t2+8t,=﹣3(t﹣)2+,∴当t=秒时,s取得最大值,即汽车停下来.故答案为:.10.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数图象的一部分,如图所示.(1)求y与x之间的函数解析式;(2)求校门口排队等待体温检测的学生人数最多时有多少人;(3)从7:00开始,需要多少分钟校门口的学生才能全部进校?【分析】(1)根据图象用待定系数法求函数解析式即可;(2)根据函数的性质求最值;(3)令y=0,解方程﹣x2+16x+34=0即可.【解答】解:(1)设y与x之间的函数解析式为y=ax2+bx+c,根据题意得:,解得:,∴y=﹣x2+16x+34;(2)由(1)知,﹣<0,∴y有最大值,y max===162,∴校门口排队等待体温检测的学生人数最多时有162人;(3)令y=0,得:﹣x2+16x+34=0,解得:x1=﹣2(舍),x2=34,∴从7:00开始,需要34分钟校门口的学生才能全部进校.11.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价﹣成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【解答】解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.三、课后巩固1.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2B.y=C.y=D.y=【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【解答】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=x2.故选:D.2.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若AB=4,CD=3,以顶点C为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A.B.C.D.【分析】直接根据题意得出B点坐标,进而假设出抛物线解析式,进而得出答案.【解答】解:∵AB=4,CD=3,∴B(2,3),设抛物线解析式为:y=ax2,则3=4x,解得:a=,故抛物线的表达式为:y=x2.故选:A.3.中国贵州省内的射电望远镜(F AST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=x2﹣100B.y=﹣x2﹣100C.y=x2D.y=﹣x2【分析】直接利用抛物线解析式结合已知点坐标得出答案.【解答】解:由题意可得:A(﹣250,0),O(0,﹣100),设抛物线解析式为:y=ax2﹣100,则0=62500a﹣100,解得:a=,故抛物线解析式为:y=x2﹣100.故选:A.4.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是()①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1【分析】观察图象,分别计算出对称轴、函数图象与x轴的交点坐标,结合图象逐个选项分析判断即可.【解答】解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.5.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌【分析】设抛物线的解析式为y=a(x﹣20)2+c,用待定系数法求得解析式,则可判断A;当x=40时,y=0.1×40=4,y=4,解方程,即可判断B;计算当x=30时的y值,则可判断选项C和D.【解答】解:由题意可设抛物线的解析式为y=a(x﹣20)2+c,将(0,1),(20,11)分别代入,得:,解得:,∴y=﹣(x﹣20)2+11=﹣x2+x+1,故A错误;∵坡度为1:10,∴直线OA的解析式为y=0.1x,当x=40时,y=0.1×40=4,令y=4,得﹣x2+x+1=4,∴x2﹣40x+120=0,解得x=20±2≠40,∴B错误;设喷射出的水流与坡面OA之间的铅直高度为h米,则h=﹣x2+x+1﹣0.1x=﹣x2+x+1,∴对称轴为x=﹣=18,∴h max=9.1,故C正确;将喷灌架向后移动7米,则图2中x=30时抛物线上的点的纵坐标值等于x=37时的函数值,当x=37时,y=﹣×372+37+1=3.775,在图2中,当x=30时,点B的纵坐标为:0.1×30+2.3=5.3>3.775,故D错误.故选:C.6.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为y=﹣x2+x.【分析】由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).利用顶点式即可解决问题.【解答】解:由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).设抛物线的解析式为y=a(x﹣20)2+16,把(0,0)代入得到a=﹣,∴抛物线的解析式为y=﹣(x﹣20)2+16,即y=﹣x2+x,故答案为:y=﹣x2+x.7.一个球从地面上竖直向上弹起的过程中,距离地面高度h(米)与经过的时间t(秒)满足以下函数关系:h=﹣5t2+15t,则该球从弹起回到地面需要经过3秒,距离地面的最大高度为米.【分析】当该球从弹起回到地面时h=0,代入求出时间t即可;对函数关系式进行配方找到最大值即距离地面的最大高度.【解答】解:当该球从弹起回到地面时h=0,∴0=﹣5t2+15t,解得:t1=0或t2=3,t=0时小球还未离开地面,∴t=3时小球从弹起回到地面;∵h=﹣5t2+15t=﹣5(t﹣)2+,﹣5<0,∴当t=时,h取得最大值;故答案为:3,.8.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,飞机着陆至停下来共滑行750m.【分析】将函数解析式配方成顶点式求出y的最大值即可得.【解答】解:∵y=60t﹣t2=﹣(t﹣25)2+750,∴当t=25时,y取得最大值750,即飞机着陆后滑行750米才能停下来,故答案为:750m.9.二次函数y=x2﹣2x+m的最小值为2,则m的值为3.【分析】先把y=x2﹣2x+m配成顶点式得到y=(x﹣1)2+m﹣1,根据二次函数的性质得到当x=1时,y有最小值为m﹣1,根据题意得m﹣1=2,然后解方程即可.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵a=1>0,∴当x=1时,y有最小值为m﹣1,∴m﹣1=2,∴m=3.故答案为:3.10.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价﹣成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【解答】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=﹣3x+216,当32<x≤40时,y=120,∴y=.(2)设利润为W,则:当8≤x≤32时,W=(x﹣8)y=(x﹣8)(﹣3x+216)=﹣3(x﹣40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x﹣8)y=120(x﹣8)=120x﹣960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.11.为鼓励更多的农民工返乡创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给农民工自主销售,成本价与出厂价之间的差价由政府承担.王明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系满足一次函数:y=﹣5x+400.(1)王明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设王明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少?(3)物价部门规定,这种节能灯的销售单价不得高于35元,如果王明想要每月获得的利润不低于4125元,那么政府为他承担的总差价最少为多少元?【分析】(1)求出销售量,根据政府每件补贴2元,即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题即可;(3)根据条件确定出自变量的取值范围,求出y的最小值即可解决问题.【解答】解:(1)当x=20时,y=﹣5x+400=﹣5×20+400=300,300×(12﹣10)=300×2=600(元),答:政府这个月为他承担的总差价为600元;(2)依题意得,w=(x﹣10)(﹣5x+400)=﹣5x2+450x﹣4000=﹣5(x﹣45)2+6125,∵a=﹣5<0,∴当x=45时,w有最大值6125元.答:当销售单价定为45元时,每月可获得最大利润6125元;(3)由题意得:﹣5x2+450x﹣4000=4125,解得:x1=25,x2=65,∵a=﹣5<0,抛物线开口向下,当25≤x≤65时,4125≤w≤6125,又∵x≤35,∴当25≤x≤35时,w≥4125,∴当x=35时,政府每个月为他承担的总差价最小,y=﹣5×35+400=225,225×2=450(元),∴政府每个月为他承担的总差价最小值450元,答:销售单价定为35元时,政府每个月为他承担的总差价最少为450元.。

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。

4)根据问题要求,利用解析式求出所需的未知量。

三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。

2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。

3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。

XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。

2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。

3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。

评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。

练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。

在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。

例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。

本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。

正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。

在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。

- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。

- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。

例如,抛物线可以用来描述通货膨胀率的变化。

2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。

- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。

- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。

- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。

3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。

例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。

此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。

二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。

掌握这些技巧,可以帮助我们更好地理解和解决实际问题。

2024年中考数学《二次函数的实际应用》真题含解析版

2024年中考数学《二次函数的实际应用》真题含解析版

二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。

本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。

首先来看一道抛物线与直角三角形的面积问题。

题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。

求抛物线与三角形ABC 的面积。

解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。

由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。

接下来是抛物线与最值问题。

题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。

解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。

当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。

再来一道抛物线与交点问题。

题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。

解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。

实际问题与二次函数之六大题型(学生版+解析版)

实际问题与二次函数之六大题型(学生版+解析版)

实际问题与二次函数之六大题型【考点导航】目录【典型例题】1【题型一拱桥问题】【题型二销售问题】【题型三投球问题】【题型四喷水问题】【题型五图形问题】【题型六图形运动问题】【典型例题】【题型一拱桥问题】1(2023·全国·九年级专题练习)郑州市彩虹桥新桥将于2023年9月底建成通车.新桥采用三跨连续单拱肋钢箱系杆拱桥,既保留了历史记忆,又展示出郑州的开放与创新.新桥的中跨大拱的拱肋ACB 可视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度AB 为120米,与AB 中点O 相距30米处有一高度为27米的系杆EF .以AB 所在直线为x 轴,抛物线的对称轴为y 轴建立如图②所示的平面直角坐标系.(1)求抛物线的解析式;(2)正中间系杆OC 的长度是多少米?若相邻系杆之间的间距均为3米(不考虑系杆的粗细),是否存在一根系杆的长度恰好是OC 长度的13?请说明理由.【变式训练】1(2023秋·山西晋城·九年级校考期末)如图,有一个横截面为抛物线形状的隧道,隧道底部宽AB 为8m ,拱顶内高8m .把截面图形放在如图所示的平面直角坐标系中(原点O 是AB 的中点).(1)求这条抛物线所对应的函数表达式;(2)如果该隧道设计为车辆双向通行,规定车辆必须在中心黄线两侧行驶,那么一辆宽2.5m,高4m的大型货运卡车是否可以通过?为什么?2(2023·河南郑州·校考三模)一座抛物线型拱桥如图所示,当桥下水面宽度AB为20米时,拱顶点O 距离水面的高度为4米.如图,以点O为坐标原点,以桥面所在直线为x轴建立平面直角坐标系.(1)求抛物线的解析式;(2)汛期水位上涨,一艘宽为5米的小船装满物资,露出水面部分的高度为3米(横截面可看作是长为5米,宽为3米的矩形),若它恰好能从这座拱桥下通过,求此时水面的宽度(结果保留根号).3(2023·陕西西安·陕西师大附中校考模拟预测)某公司生产A型活动板房的成本是每个3500元.图1表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按图1中所示的平面直角坐标系,求该抛物线的函数表达式;(2)现将A型活动板房改造成为B型活动板房.如图2,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G、M在AD上,点F、N在抛物线上,窗户的成本为150元/m2.已知GM=2m,求每个B型活动板房的成本.(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)【题型二销售问题】1(2023秋·河北唐山·九年级统考期末)某超市以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系、经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)604530150(1)请直接写出p与x之间的函数关系式;(2)超市应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)超市每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为243元,求a的值.【变式训练】1(2023秋·河南驻马店·九年级统考期末)“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元.若按每斤30元的价格到市区销售,平均每天可售出60斤,若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元?(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降低多少元?(其他成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?2(2023秋·湖南湘西·九年级统考期末)某农户生产经销一种地方特产.已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不得高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?3(2023春·山东东营·八年级东营市实验中学校考期中)2022年北京冬奥会期间,吉祥物“冰墩墩”和“雪容融”受到人们的广泛欢迎.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.(1)若销售单价每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,该网店需尽快将这批冰墩墩和雪容融售出,因此决定降价出售.经过市场调查发现:销售单价每降低10元,每天可多卖出两套当销售单价降低m元时,每天的利润为W.求当m为何值时利润最大最大利润是多少?【题型三投球问题】1(2023春·山东东营·八年级东营市实验中学校考期中)掷实心球是中考体育考试项目之一.如图1是一名男生掷实心球情境,实心球行进路线是一条抛物线,行进高度y m 与水平距离x m 之间的函数关系如图2所示.掷出时,起点处高度为95m .当水平距离为4m 时,实心球行进至最高点5m 处.(1)求y 关于x 的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于11.8m 时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.【变式训练】1(2023·河南安阳·统考一模)小红为了研究抛出的弹跳球落在斜面上反弹后的距离.如图,用计算机编程模拟显示,当弹跳球以某种特定的角度和初速度从坐标为0,1 的点P 处抛出后,弹跳球的运动轨迹是抛物线I ,其最高点的坐标为4,5 .弹跳球落到倾斜角为45°的斜面上反弹后,弹跳球的运动轨迹是抛物线Ⅱ,且开口大小和方向均不变,但最大高度只是抛物线Ⅰ的25.(1)求抛物线I 的解析式;(2)若斜面被坐标平面截得的截图与x 轴的交点M 的坐标为7,0 ,求抛物线Ⅱ的对称轴.2(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点A (6,1)处将沙包(看成点)抛出,并运动路线为抛物线C 1:y =a (x -3)2+2的一部分,淇淇恰在点B (0,c )处接住,然后跳起将沙包回传,其运动路线为抛物线C 2:y =-18x 2+n8x +c +1的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.3(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm),乒乓球运行的水平距离记为x(单位:cm).测得如下数据:水平距离x/cm0105090130170230竖直高度y/cm28.7533454945330(1)在平面直角坐标系xOy中,描出表格中各组数值所对应的点x,y,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是cm,当乒乓球落在对面球台上时,到起始点的水平距离是cm;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB为274cm,球网高CD为15.25cm.现在已经计算出乒乓球恰好过网的击球离度OA的值约为1.27cm.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度OA的值(乒乓球大小忽略不计).4(2023·河南信阳·校考三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分,已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=-0.08x-52+3.8.记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1 d2(填“>”“<”“=”).【题型四喷水问题】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)某公司为城市广场上一雕塑AB安装喷水装置.喷水口位于雕塑的顶端点B处,距离地面3m,喷出的水柱轨迹呈抛物线型.据此建立如图的平面直角坐标系.若喷出的水柱轨迹BC上,任意一点与支柱AB的水平距离x(单位:m)与广场地面的垂直高度为y(单位:m)满足关系式y=-328x2+b1x+c1,且点D2,367在抛物线BC上(1)求该抛物线的表达式;(2)求水柱落地点与雕塑AB的水平距离;(3)为实现动态喷水效果,广场管理处决定对喷水设施做如下设计改进:新喷水轨迹形成的抛物线形为y2=-328x2+b2x+c2,把水柱喷水的半径(动态喷水时,点C到AB的距离)控制在7m到14m之间,请探究改建后喷水池水柱的最大高度【变式训练】1(2023·甘肃兰州·统考中考真题)一名运动员在10m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y m与离起跳点A的水平距离x m之间的函数关系如图所示,运动员离起跳点A的水平距离为1m时达到最高点,当运动员离起跳点A的水平距离为3m时离水面的距离为7m.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB的长.2(2023·山东临沂·统考一模)如图1,一灌溉车正为绿化带浇水,喷水口H离地竖直高度为h=1.5米.如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3米,竖直高度EF=0.5米,下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.3(2023·江西抚州·校联考三模)如图①,有一移动灌溉装置喷出水柱的路径可近似地看作一条抛物线,该灌溉装置的喷水头到水平地面的距离为1米,喷出的抛物线形水柱对称轴为直线x=10.用该灌溉装置灌溉一坡地草坪,其水柱的高度y(单位:米)与水柱落地处距离喷水头的距离x(单位:米)之间的函数关系式为y=ax2+bx+c,其图像如图②所示.已知坡地OB所在直线经过点(10,1).(1)c的值为;(2)若a=-120,求水柱与坡面之间的最大铅直高度;(3)若点B横坐标为18,水柱能超过点B,则a的取值范围为;(4)若a=-120时,到喷水头水平距离为16米的A处有一棵新种的银杏树需要被灌溉,园艺工人将灌溉装置水平向后移动4米,试判断灌溉装置能否灌溉到这棵树,并说明理由.【题型五图形问题】1(2023·全国·九年级专题练习)2023年南宁市公共资源交易中心明确提出将五象站铁路枢纽接入地铁4号线.目前4号线剩余的东段(五象火车站-龙岗站)已经在建设中,施工方决定对终点站龙岗站施工区域中的一条特殊路段进行围挡施工,先沿着路边砌了一堵长27m的砖墙,然后打算用长60m的铁皮围栏靠着墙围成中间隔有一道铁皮围栏(平行于AB)的长方形施工区域.(1)设施工区域的一边AB为xm,施工区域的面积为Sm2.请求出S与x的函数关系式,并直接写出自变量x的取值范围;(2)当围成的施工区域面积为288m2时,AB的长是多少?(3)该特殊路段围挡区域的施工成本为400元/m2,项目方打算拨款120000元用于施工,请你通过计算判断项目方的拨款能否够用.【变式训练】1(2023春·浙江宁波·八年级校联考期中)某景区要建一个游乐场(如图所示),其中AD、CD分别靠现有墙DM、DN(墙DM长为27米,墙DN足够长),其余用篱笆围成.篱笆DE将游乐场隔成等腰直角△CED和长方形ADEB两部分,并在三处各留2米宽的大门.已知篱笆总长为54米.设AB的长为x米.(1)则BE的长为米(用含x的代数式表达);(2)当AB多长时,游乐场的面积为320平方米?(3)直接写出当AB为多少米时,游乐场的面积达到最大,最大值为多少平方米?2(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD和抛物线AED构成,其中AB=3m,BC=4m,取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED于点E,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED的顶点E0,4,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT,SMNR,若FL=NR=0.75m,求两个正方形装置的间距GM的长;(3)如图,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为BK,求BK的长.【题型六图形运动问题】1(2023·江苏·模拟预测)如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点P从点A出发,以1cm/s的速度沿AB运动:同时,点Q从点B出发,以2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t(s).(1)当t为何值时,△PBQ的面积为2cm2;(2)求四边形PQCA面积的最小值.【变式训练】1(2023秋·四川宜宾·九年级统考期中)如图,等腰三角形ABC的直角边AB=BC=10cm,点P,Q分别从A,C两点同时出发,均以每秒1个单位的速度做匀速运动,已知点P沿射线AB运动,点Q沿射线BC运动,PQ的连线与直线AC相交于点D.设点P运动的时间为ts,△PCQ的面积为S.(1)求S关于的函数关系式.(2)当t为多少时,△PCQ的面积与△ABC的面积相等?(3)当点P在边AB上运动时,过点P作PE⊥AC于点E.在点P,Q运动过程中,线段DE的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.2(2023·吉林松原·校联考三模)如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=4cm,点P从点A 出发以2cm/s的速度向点C运动,到点C停止,过点P作PQ⊥BC交AB点Q,以线段PQ的中点为对称中心将△APQ旋转180°得到△DQP,点A的对应点为点D,设点P的运动时间为t(s)(t>0),△DQP与Rt△ABC重合部分的面积为S(cm2).(1)求当点D落在BC边上时t的值;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)直接写出当△ADC是等腰三角形时t的值.实际问题与二次函数之六大题型【考点导航】目录【典型例题】1【题型一拱桥问题】【题型二销售问题】【题型三投球问题】【题型四喷水问题】【题型五图形问题】【题型六图形运动问题】【典型例题】【题型一拱桥问题】1(2023·全国·九年级专题练习)郑州市彩虹桥新桥将于2023年9月底建成通车.新桥采用三跨连续单拱肋钢箱系杆拱桥,既保留了历史记忆,又展示出郑州的开放与创新.新桥的中跨大拱的拱肋ACB 可视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度AB 为120米,与AB 中点O 相距30米处有一高度为27米的系杆EF .以AB 所在直线为x 轴,抛物线的对称轴为y 轴建立如图②所示的平面直角坐标系.(1)求抛物线的解析式;(2)正中间系杆OC 的长度是多少米?若相邻系杆之间的间距均为3米(不考虑系杆的粗细),是否存在一根系杆的长度恰好是OC 长度的13?请说明理由.【答案】(1)y =-1100x 2+36(2)正中间系杆OC 的长度是36米,不存在一根系杆的长度恰好是OC 长度的13,理由见解析【分析】(1)利用待定系数法求解即可;(2)先求出正中间系杆OC 的长度是36米,再建立方程求解即可.【详解】(1)结合图象由题意可知:B 60,0 ,E 30,27 ,设该抛物线解析式为:y =ax 2+c ,则:3600a +c =0900a +c =27 ,解得:a=-1100 c=36,∴y=-1100x2+36.(2)当x=0时,y=36,∴正中间系杆OC的长度是36米.设存在一根系杆的长度是OC的13,即这根系杆的长度是12米,则12=-1100x2+36,解得x=±206.∵相邻系杆之间的间距均为3米,最中间系标OC在y轴上,∴每根系杆上的点的横坐标均为整数.∴x=±206与实际不符.∴不存在一根系杆的长度恰好是OC长度的13.【点睛】本题考查了二次函数的实际应用,涉及到了待定系数法求函数解析式,解一元二次方程等知识,解题关键是读懂题意,找出数量关系,列出方程,并根据实际意义求解.【变式训练】1(2023秋·山西晋城·九年级校考期末)如图,有一个横截面为抛物线形状的隧道,隧道底部宽AB为8m,拱顶内高8m.把截面图形放在如图所示的平面直角坐标系中(原点O是AB的中点).(1)求这条抛物线所对应的函数表达式;(2)如果该隧道设计为车辆双向通行,规定车辆必须在中心黄线两侧行驶,那么一辆宽2.5m,高4m的大型货运卡车是否可以通过?为什么?【答案】(1)y=-12x2+8(2)一辆宽2.5m,高4m的大型货运卡车可以通过,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出当y=4时,x的值,再根据车辆宽2.5m且只能在中心的两侧行驶进行求解即可.【详解】(1)解:由题意得,点C的坐标为0,8,点A和点B的坐标分别为-4,0,4,0,设抛物线解析式为y=a x+4x-4,把C0,8代入得a0+40-4=8,解得a=-1 2,∴抛物线解析式为y=-12x+4x-4=-12x2+8;(2)解:一辆宽2.5m,高4m的大型货运卡车可以通过,理由如下:在y =-12x 2+8中,当y =-12x 2+8=4时,解得x =±22,∵22 2=8>2.52=6.25,∴22>2.5,∴一辆宽2.5m ,高4m 的大型货运卡车可以通过.【点睛】本题主要考查了二次函数的实际应用,正确求出对应的函数解析式是解题的关键.2(2023·河南郑州·校考三模)一座抛物线型拱桥如图所示,当桥下水面宽度AB 为20米时,拱顶点O 距离水面的高度为4米.如图,以点O 为坐标原点,以桥面所在直线为x 轴建立平面直角坐标系.(1)求抛物线的解析式;(2)汛期水位上涨,一艘宽为5米的小船装满物资,露出水面部分的高度为3米(横截面可看作是长为5米,宽为3米的矩形),若它恰好能从这座拱桥下通过,求此时水面的宽度(结果保留根号).【答案】(1)该抛物线的解析式y =-125x 2;(2)水面宽度为513米.【分析】(1)由题意可以写出A 点坐标,设抛物线解析式为y =ax 2,把点A 的坐标代入求出a ,c 的值即可;(2)把x =2.5代入抛物线解析式,求出对应函数值y ,再把y =-3.25代入计算即可求解.【详解】(1)解:设抛物线解析式为y =ax 2,∴桥下水面宽度AB 为20米,拱顶距离水面高度OC 为4米,∴点A (-10,-4),∴-4=100a ,解得:a =-125,∴该抛物线的解析式y =-125x 2;(2)解:∵船宽5米,∴当x =2.5时,y =-125×2.52=0.25,若该渔船能安全通过,此时水面高为3+0.25 米,∴当y =-3.25时,-3.25=-125x 2,解得x =5213,∴水面宽度为513米.【点睛】本题考查了待定系数法求二次函数的解析式的运用,运用二次函数解实际问题的运用,解答时求出函数的解析式是关键.3(2023·陕西西安·陕西师大附中校考模拟预测)某公司生产A 型活动板房的成本是每个3500元.图1表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD =4m ,宽AB =3m ,抛物线的最高点E 到BC 的距离为4m .(1)按图1中所示的平面直角坐标系,求该抛物线的函数表达式;(2)现将A 型活动板房改造成为B 型活动板房.如图2,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G 、M 在AD 上,点F 、N 在抛物线上,窗户的成本为150元/m 2.已知GM =2m ,求每个B 型活动板房的成本.(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)【答案】(1)y =-14x 2+1(2)每个B 型活动板房的成本为3725元【分析】(1)根据题意得出E 0,1 ,D 2,0 ,设该抛物线的函数表达式为y =kx 2+1,利用待定系数法求解即可;(2)根据题意得出N 1,34,继而求出矩形FGMN 的面积,列式求解即可.【详解】(1)∵长方形的长AD =4m ,宽AB =3m ,抛物线的最高点E 到BC 的距离为4m ,∴OH =AB =3m ,∴OE =EH -OH =4-3=1m ,∴E 0,1 ,D 2,0 ,设该抛物线的函数表达式为y =kx 2+1,把D 2,0 代入,得0=4k +1,解得k =-14,∴该抛物线的函数表达式为y =-14x 2+1;(2)∵GM =2m ,∴OM =OG =1m ,当x =1时,y =-14×1+1=34,∴N 1,34 ,MN =34m ,∴S 矩形FGMN =MN ⋅GM =34×2=32m 2,∴3500+32×150=3725(元),所以,每个B 型活动板房的成本为3725元.【点睛】本题考查了二次函数的实际应用,准确理解题意,熟练掌握二次函数的图象和性质是解题的关键.【题型二销售问题】1(2023秋·河北唐山·九年级统考期末)某超市以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系、经过市场调查获得部分数据如下表:销售价格x (元/千克)3035404550日销售量p (千克)604530150(1)请直接写出p 与x 之间的函数关系式;(2)超市应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)超市每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为243元,求a 的值.【答案】(1)p =-3x +150(2)40元/千克(3)2【分析】(1)由题意知,销售价格每增加5元,销售量减少15千克,设p 与x 之间的函数关系式为p =kx +b ,待定系数法求得p =-3x +150,然后作答即可;(2)设日销售利润为w 元,由题意得:w =-3x +150 x -30 ,根据二次函数的图象与性质进行判断求解即可;(3)设日获利为w 元,由题意得:w =p x -30-a =-3x 2+240+3a x -150a +4500 ,则对称轴为直线x =-240+3a 2×-3 =40+12a ,①若a ≥10,则当x =45时,w 有最大值,最大值为:w =-3×452+240+3a ×45-150a +4500 =225-15a <243,即x =45不符合题意,舍去;②若0<a <10,则当x =40+12a 时,w 有最大值,将x =40+12a 代入,得:w =314a 2-10a +100 ,当w =243时,243=314a 2-10a +100 ,解得a 1=2,a 2=38(舍去).【详解】(1)解:由题意知,销售价格每增加5元,销售量减少15千克,所以p 与x 之间的函数关系为一次函数关系;设p 与x 之间的函数关系式为p =kx +b ,将30,60 ,50,0 代入得,30k +b =6050k +b =0 ,解得k =-3b =150 ,∴p =-3x +150,故答案为:p =-3x +150;(2)解:设日销售利润为w 元,由题意得:w =p x -30 =-3x +150 x -30 =-3x -40 2+300,∵a =-3<0,抛物线开口向下,∴当x =40时,w 有最大值300.∴这批农产品的销售价格定为40元/千克,才能使日销售利润最大;(3)解:设日获利为w 元,由题意得:w =p x -30-a =-3x +150 x -30-a =-3x 2+240+3a x -150a +4500 ,∴对称轴为直线x=-240+3a2×-3=40+12a,①若a≥10,则当x=45时,w 有最大值,最大值为:w =-3×452+240+3a×45-150a+4500=225-15a<243,∴x=45不符合题意,舍去;②若0<a<10,则当x=40+12a时,w 有最大值,将x=40+12a代入,得:w =314a2-10a+100,当w =243时,243=314a2-10a+100 ,解得a1=2,a2=38(舍去),综上所述,a的值为2.【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于对知识的熟练掌握与灵活运用.【变式训练】1(2023秋·河南驻马店·九年级统考期末)“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元.若按每斤30元的价格到市区销售,平均每天可售出60斤,若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元?(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降低多少元?(其他成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?【答案】(1)若降价2元,则每天的销售利润是1040元;(2)应降低5元;(3)将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.【分析】(1)根据题意,每降低1元,那么平均每天的销售量会增加10斤,若每斤的价格降低2元,则可增加20斤,再根据每斤利润×销量可得解;(2)根据每天盈利1100元列方程,解出x的值即可求解;(3)设每天盈利y元,根据题意建立二次函数,根据二次函数的图象及性质即可求得.【详解】(1)解:根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:30-15-2×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)解:设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:30-15-x60+10x=1100,整理得:x2-9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30-x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题【实用版】目录1.二次函数与实际问题的关系2.典型例题解析3.总结与建议正文二次函数与实际问题的关系二次函数是数学中的一个重要概念,它在实际问题中有着广泛的应用。

通过对二次函数的学习和理解,我们可以更好地解决实际问题,提高自己的数学素养。

典型例题解析例题 1:某商场在推出优惠活动,满 200 元打 8 折,满 300 元打7 折。

现在,小明想买一件价格为 x 元的商品,请问小明应该如何选择,才能使自己所花费的钱最少?解:将小明要购买的商品价格设为 x 元,那么他需要支付的金额可以表示为 f(x)=x+0.2(x-200)+0.3(x-300),其中 x>300。

通过求导,可以得到 f(x) 的最小值出现在 x=400,此时小明需要支付的金额为f(400)=360 元。

所以,小明应该选择购买价格为 400 元的商品,才能使自己所花费的钱最少。

例题 2:一个农民有一块形状为抛物线的土地,他想在土地上种植庄稼,使得种植的庄稼面积最大。

已知土地的顶点为 (1,2),抛物线方程为y=a(x-1)^2+2。

请问农民应该如何种植庄稼?解:由于 a<0,所以抛物线开口向下。

根据二次函数的性质,顶点是函数的最大值点。

所以,农民应该在土地的顶点处种植庄稼,即 x=1,此时庄稼的面积最大,为 2。

总结与建议通过对二次函数与实际问题的典型例题进行解析,我们可以发现数学知识在解决实际问题中的重要性。

为了更好地应对类似的问题,我们建议:1.加强对二次函数概念的学习,了解其性质和应用;2.多做练习题,提高自己对二次函数问题的解题能力;3.注重数学知识的实际应用,学会将理论知识运用到实际问题中。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。

二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。

根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。

二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。

例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。

2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。

根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。

可以看出,这是一个开口向下的二次函数模型。

(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。

根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。

这也是一个开口向下的二次函数模型。

三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。

例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。

2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。

实际问题及二次函数-详解及练习含答案

实际问题及二次函数-详解及练习含答案

- -初中数学专项训练:实际问题与二次函数(人教版)一、利用函数求图形面积的最值问题一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含x 的代数式表示出矩形的长与宽。

解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧-(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回扣问题实际时,一定注意不要遗漏了单位。

2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

点评:如果设养鸡场的宽为x ,上述函数关系式如何变化?请读者自己完成。

二次函数解决实际问题

二次函数解决实际问题

利用二次函数解决实际问题类型一:利用二次函数解决面积最值(面积优化问题)1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2.(1)写出广告牌的面积S与边长x的函数关系式;(2)当x为何值时,广告牌面积S 最大?最大值为几?2、如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45 m2的花圃,AB的长是多少米?(2)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?☆类型二、利用二次函数解决利润最值问题(利润优化问题)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?利润最多为多少元?▲2、(讨论)某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?最大利润为多少?3、某种粮大户去年种植优质水稻360亩,今年计划增加承租x(100≤x≤150)亩。

二次函数在实际生活中的应用

二次函数在实际生活中的应用
回归教材 考点聚焦 考向探究
第15课时┃二次函数的应用
解 析
(1)根据“若销售单价每个降低 2 元, 则每周可多卖出 20 个”列销售量 y(个)与降价 x(元)之间的函数关系式;(2)根据 “总利润=单个产品利润×销售量”列二次函数,然后利用 配方法求最大利润;
回归教材
考点聚焦
考向探究
第15课时┃二次函数的应用
第15课时┃二次函数的应用
例3
某中学课外兴趣活动小组准备围建一个矩形苗圃园 ,其
中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米 (如图15-5所示),设这个苗圃园垂直于墙的一边长为x米. (1)若苗圃园的面积为72平方米,求x; (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最 大值和最小值吗?如果有,求出最大值和最小值;如果没有,请 说明理由.
(2)垂直于墙的一边的长为多少米时,这个苗圃园
的面积最大?并求出这个最大值.
(3)当这个苗圃园的面积不小于88平方米时,试结
合函数图象y=30-2x(6≤x<15) (2)当矩形苗圃
园垂直于墙的边长为7.5米时,这个苗圃面积最大,
最大值为112.5平方米 (3)6≤x≤11
图15-5
回归教材 考点聚焦 考向探究
第15课时┃二次函数的应用
解:(1)根据题意得:(30-2x)x=72, 解得:x=3或x=12, ∵30-2x≤18, ∴x≥6,∴x=12;
回归教材
考点聚焦
考向探究
第15课时┃二次函数的应用
例 3 某中学课外兴趣活动小组准备围建一个矩形苗圃园 , 其中 一边靠墙, 另外三边由长为 30 米的篱笆围成. 已知墙长为 18 米(如 图 15-5 所示),设这个苗圃园垂直于墙的一边长为 x 米. (2)若平行于墙的一边长不小于 8 米,这个苗圃园的面积有最 大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说 明理由.

专题11 二次函数的实际应用-九年级数学上册(解析版)

专题11 二次函数的实际应用-九年级数学上册(解析版)

专题11二次函数的实际应用考点1:拱桥问题;考点2:抛球、喷泉问题;考点3:面积问题;考点4:利润问题。

1.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=−125x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=−125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.答案:C.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=−1400(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米B.174米C.16740米D.154米题型01拱桥问题解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=−1400(x﹣80)2+16=−1400(﹣10﹣80)2+16=−174,∴C(﹣10,−174),∴桥面离水面的高度AC为174m.答案:B.3.(易错题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=−350,∴大孔所在抛物线解析式为y=−350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,−3625),∴−3625b)2,∴x1=b,x2=−b,∴MN=4,+b﹣(b)|=4∴m=−925,∴顶点为A的小孔所在抛物线的解析式为y=−925(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=−92,∴−92925(x﹣b)2,∴x1=b,x2∴单个小孔的水面宽度=|+b)﹣(+b)|=52(米),答案:B.4.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需36秒.解:如图,设从O到A花10秒,从O到B花26秒,则由对称性可知OA=BC,故从B到C也花10秒,故从O到C一共花26+10=36(秒),答案:36.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加到26米,答案:26米.6.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,2=1222,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=−19,∴y=−19(x﹣6)2+4=−19x2+43x;∴方案一中抛物线的函数表达式为y=−19x2+43x;(2)在y=−19x2+43x中,令y=3得:3=−19x2+43x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>122,∴S1>S2.7.(易错题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=−124,∴y1=−124x2,当x=12时,y1=−124×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=112,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(−124x2)=182−+4=18(−4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.8.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A.9m B.10m C.11m D.12m解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入,得:4+=836+=0,解得=−14=9,∴抛物线解析式为y=−14(x﹣2)2+9,所以当x=2时,y=9,即AD=9m,答案:A.9.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()题型02抛球、喷泉问题A.2米B.3米C.4米D.5米解:设抛物线解析式:y=a(x﹣1)2+403,把点A(0,10)代入抛物线解析式得:a=−103,∴抛物线解析式:y=−103(x﹣1)2+403.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3米.答案:B.10.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,答案:C.11.(易错题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=−23,b=23,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=−23x2+23x+h,将(4,0)代入可得−23×42+23×4+h=0,解得h=8.答案:8.12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答案:2.13.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y(米)与水平距离x(米)之间的函数关系式为y=−112x2+bx+c,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为10米.解:设铅球出手点为点A,当铅球运行至与出手高度相等时为点B,根据题意建立平面直角坐标系,如图:由题意可知,点A(0,53),点B(8,53),代入y=−112x2+bx+c,得:==−112×82+8+,解得=23=53.∴y=−112x2+23x+53,当y=0时,0=−112x2+23x+53,解得x1=10,x2=﹣2(不符合题意,舍去).∴该学生推铅球的成绩为10m.答案:10.14.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=−112,∴抛物线的函数表达式为y=−112(x﹣2)2+3;当x=0时,y=−112×4+3=83>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=−112(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=−112(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.15.(易错题)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=−150,b=910,求基准点K的高度h;②若a=−150时,运动员落地点要超过K点,则b的取值范围为b>910;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,答案:66;(2)①∵a=−150,b=910,∴y=−150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=−150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=−150,∴y=−150x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即−150×752+75b+66>21,解得b>910,答案:b>910;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=−2125,∴抛物线解析式为y=−2125(x﹣25)2+76,当x=75时,y=−2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.16.(易错题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵函数图象过点(0,30)和(1,35),则+=35=30,解得:=5=30,∴y1与x之间的函数关系式为y1=5x+30;(2)∵x=6时,y1=5×6+30=60,∵y2的图象是过原点的抛物线,设y2=ax2+bx,∴点(1.35),(6.60)在抛物线y2=ax2+bx上,∴+=3536+6=60,解得:=−5=40,∴y2=﹣5x2+40x,答:y2与x的函数关系式为y2=﹣5x2+40x;(3)设小钢球和无人机的高度差为y米,由﹣5x2+40x=0得,x=0或x=8,①1<x≤6时,y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x−72)2+1254∵a=﹣5<0,∴抛物线开口向下,又∵1<x≤6,∴当x=72时,y的最大值为1254;②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x−72)2−1254,∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x≤8,∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.题型03面积问题17.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方)案是(A.方案1B.方案2C.方案3D.方案1或方案2解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:如图,过点B作BH⊥AC于H,则BH≤AB=4,=12•AC•BH,∵S△ABC;∴当BH=4时,△ABC的面积最大为12×4×4=8方案3:半圆的半径=8米,∴此时菜园最大面积=H(8)22=32米2>8米2;答案:C.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193B.194C.195D.196解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,≥628−≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S=195,最大值即花园面积的最大值为195m2.答案:C.19.(易错题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2D.4532m2解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,∴CD=AE,∠DCE=∠CEB=90°,设CD=AE=xm,则∠BCE=∠BCD﹣∠DCE=30°,BC=(12﹣x)m,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=(6−12x)m,∴AD=CE=3BE=(63−32x)m,AB=AE+BE=x+6−12x=(12x+6)m,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(63−32x)338x2+33x+183=−338(x﹣4)2+243,=243.∴当x=4时,S最大即CD长为4m时,使梯形储料场ABCD的面积最大为243m2;答案:C.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,答案:75.21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=150m时,矩形土地ABCD的面积最大.解:设AB=xm,则BC=12(900﹣3x),由题意可得,S=AB×BC=x×12(900﹣3x)=−32(x2﹣300x)=−32(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,答案:150.22.(易错题)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴矩形区域ABCD的面积S=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则S=−34x2+30x(0<x<40);∵S=−34x2+30x=−34(x﹣20)2+300(0<x<40),且二次项系数为−34<0,∴当x=20时,S有最大值,最大值为300m2.答案:300.23.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),∴36﹣a=32,解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x−72)2+1474,∵﹣3<0,∴当x =72时,总种植面积有最大值为1474m 2,即BC 应设计为72m 总种植面积最大,此时最大面积为1474m 2.24.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A .5元B .10元C .0元D .36元解:设每件需降价的钱数为x 元,每天获利y 元,则y =(135﹣x ﹣100)(100+4x )即:y =﹣4(x ﹣5)2+3600∵﹣4<0∴当x =5元时,每天获得的利润最大.答案:A .25.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间解:设每天的利润为W 元,根据题意,得:W =(x ﹣28)(80﹣y )﹣5000=(x ﹣28)[80﹣(14x ﹣42)]﹣5000=−14x 2+129x ﹣8416=−14(x ﹣258)2+8225,∵当x =258时,y =14×258﹣42=22.5,不是整数,∴x =258舍去,∴当x =256或x =260时,函数取得最大值,最大值为8224元,题型04利润问题又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元.答案:B.26.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,9+3+=0.816+4+=0.925+5+=0.6,解得=−0.2=1.5=−1.9,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−2=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.答案:C.27.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.答案:1264.28.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:10+=2020+=10,解得=−1=30,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,答案:121.29.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴−260−42×(−4)>29.5,解得,a<6,又∵a>0,即a的取值范围是:0<a<6.30.(易错题)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x(天)1≤x≤3031≤x≤60日销售价(元/件)0.5x+3550日销售量(件)124﹣2x(1≤x≤60,x为整数)设该商品的日销售利润为w元.(1)直接写出w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?解:(1)当1≤x≤30时,w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,当31≤x≤60时,w=(50﹣30)•(﹣2x+124)=﹣40x+2480,∴w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60),答案:w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)当1≤x≤30时,w=﹣x2+52x+620=﹣(x﹣26)2+1296,∵﹣1<0,∴当x=26时,w有最大值,最大值为1296;当31≤x≤60时,w=﹣40x+2480,∵﹣40<0,∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,∵1296>1240,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.31.(易错题)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m 为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y =80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A 产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.。

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,y=(x-9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-b2a=-2 0802×(-80)=13,∵10≤13≤14,∴当x=13时,y取最大值,y最大=-80×132+2 080×13-12 240=1 280(元).答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.(1)图中点P所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件;(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1+1_000__;自变量x 的取值范围为__30≤x ≤50__;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得⎩⎨⎧400=30k +b ,300=35k +b ,解得⎩⎨⎧k =-20,b =1 000,∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,∵-20<0,∴当x =35时,W 取最大值4 500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得⎩⎨⎧110k +b =50,115k +b =45,解得⎩⎨⎧k =-1,b =160, ∴y =-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,∴当x =130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)解:(1)设淡季每间的价格为x 元,依题意得 40 000x ⎝ ⎛⎭⎪⎫1+13=24 000x +10,解得x =600, ∴酒店豪华间有40 000x ⎝ ⎛⎭⎪⎫1+13=40 000600×⎝ ⎛⎭⎪⎫1+13=50(间), 旺季每间价格为x +13x =600+13×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )⎝ ⎛⎭⎪⎫50-x 25=-125(x -225)2+42 025, ∴当x =225时,y 取最大值42 025.答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元/t.图Z8-2(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =⎩⎨⎧-x +14(2≤x <8),6(x ≥8);(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,∴函数表达式为W =⎩⎨⎧-x 2+7x +48(2≤x <8),-x +48(x ≥8);②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,当x =4时,有最大毛利润64万元. 此时,m =643,m -x =523;②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅523 t ,公司能获得最大毛利润64万元.【中考预测】某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.解:(1)由题意可得月销售利润y与售价之间的函数关系式为y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1 300×45-30 000=8 250(元);(3)令y=10 000,代入(1)中函数关系式,得10 000=-10x2+1 300x-30 000,解得x1=50,x2=80.当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大值12 250.答:当销售价定为65元时会获得最大利润,最大利润为12 250元.二次函数与实际问题分类整理1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).y (件)(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

二次函数的实际应用

二次函数的实际应用

如图,有长24m的篱笆,围城中间隔有一道篱笆的长方形的花圃, 且花圃的长可接用一段墙体(墙体的最大可用长度a=10) (2)、要使围城花圃的面积最大,那么AB的长度为多少? 由(1)知y=-3x2+24x=-3(x-4)2+48 14 因为0<BC ≤10,所以0<24-3x ≤ 10, x <8 14 3 ≤ 3 当x<4,y随x的增大而增大 当x>4,y随x的增大而减小 2 14 所以,当x= 时,y有最大值,最大值为 46 x= y 3 3 14 所以,当AB= 米时,(BC=10)花圃的面积最大。
例2:(2008•安徽)杂技团进行杂技表演,演员从 跷跷板右端A处弹跳到人梯顶端椅子B处,其身体 (看成一点)的路线是抛物线y=-x2+3x+1的一部分, 如图所示. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到 起跳点A的水平距离是4米,问这次表演是否成功? 请说明理由.
下课了!
•生活是数学的源泉. 生活是数学的源泉. 生活是数学的源泉
解:(1)y=-x2+3x+1=-(x-2.5)2+4.75 ∵-1<0,∴函数的最大值,最大值是4.75. 答:演员弹跳离地面的最大高度是4.75m. (2)当x=4时,y=-1×42+3×4+1=3.4=BC, 所以这次表演成功.
如图,有长24m的篱笆,围墙体(墙体的最 大可用长度a=10) (1)、如果所围成的花圃的面积为45m的平方,求 AB的长。 (2)、要使围城花圃的面积最大,那么AB的长度为 多少? 解:(1)设AB=xm,则BC=(24-3x)m 则花圃面积y=x(24-3x)=-3x2+24x 令y=45,得-3x2+24x=45解得x1=3,x2=5 当x=3时,BC=24-3x=15>10不合题意,舍去。 当x=5时,BC=24-3x=9<10符合题意, 故AB=5时,花圃的面积最大。

二次函数实际应用-重难点讲解

二次函数实际应用-重难点讲解

二次函数实际应用-重难点讲解考点1:拱桥问题利用二次函数的图象和性质解决实际问题,首先要分析问题中的自变量和因变量,以及它们之间的关系,建立一个反映题意的二次函数的表达式;其次结合二次函数的图象或性质进行求解,需特别注意自变量的取值范围要使实际问题有意义.拱形问题最重要的是建立适当的坐标系,把已知线段长度转化为点坐标,根据图形与二次函数联系起来解决问题。

考点2:最大利润问题二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式a b ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当ab x 2-=,a b ac y 442-=最小值; 当0<a 时,函数有最大值,并且当ab x 2-=,a b ac y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a b x 2-=,ab ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.商品定价一类利润计算公式:经常出现的数据:商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他成本。

◆ 总利润=总售价-总进价-其他成本=单位商品利润×总销售量-其他成本◆ 单位商品利润=商品定价-商品进价◆ 总售价=商品定价×总销售量;总进价=商品进价×总销售量考点3:面积最值问题实际问题中图形面积的最值问题分析思路为:(1)分析图形的成因(2)识别图形的形状(3)找出图形面积的计算方法(4)把计算中要用到的所有线段用未知数表示(5)把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围(6)根据函数的性质以及自变量的取值范围求出面积的最值。

二次函数的微分方程与应用题解析

二次函数的微分方程与应用题解析

二次函数的微分方程与应用题解析二次函数是高中数学中的重要内容之一,它在解决实际问题时起着重要的作用。

本文将详细讨论二次函数的微分方程以及其在应用题中的解析。

一、二次函数的微分方程二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为常数。

我们可以通过对二次函数求导得到二次函数的微分方程。

对二次函数y = ax^2 + bx + c求导,得到:dy/dx = 2ax + b这就是二次函数的微分方程。

它描述了函数曲线上每一点的斜率(即切线的斜率)与函数自变量的关系。

二、应用题解析1. 空中飞行的抛物线轨迹假设一个投弹员将炸弹从高空抛下,以下方程描述了炸弹的抛物线轨迹:y = -16t^2 + vt + h其中,t表示时间,v表示初始速度,h表示初始高度。

这是一个二次函数,我们可以利用二次函数的微分方程来解决相关问题。

例如,求炸弹落地时的速度。

根据题意,炸弹落地时y = 0,我们可以将该条件代入二次函数方程中:-16t^2 + vt + h = 0解这个二次方程就可以得到落地时的时间t,然后代入微分方程dy/dx = 2ax + b,就能计算出落地时的速度。

2. 弹簧的振动考虑一个弹簧的振动,其位移和时间之间的关系可以用二次函数表示:y = Acos(ωt + φ)其中,A表示振幅,ω表示角速度,φ表示初相位。

同样,我们可以通过二次函数的微分方程分析弹簧的振动。

对该二次函数求导,得到:dy/dt = -Aωsin(ωt + φ)这个微分方程描述了弹簧在任意时刻的速度与时间的关系。

利用该微分方程,我们可以解决弹簧振动相关的问题,如求解速度的最大值、最小值等。

结语二次函数的微分方程在解决实际问题时起着重要的作用,如空中飞行轨迹和弹簧的振动等。

通过对二次函数求导,我们可以得到描述函数曲线上每一点的斜率与函数自变量关系的微分方程,从而解决相关的应用题。

这篇文章介绍了二次函数的微分方程以及它在应用题中的解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。

一. 以几何为背景问题
原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中:
(1)求抛物线的函数解析式;
(2)求水流的落地点D 到A 点的距离是多少m ?
【答案】(1)213222y x x =-++;(2)(27+m . 【解析】
试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式;
(2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中,
由题意知,B 点的坐标为(01.5),,
45CBE BEC ∠=∴,△为等腰直角三角形,
2BE ∴=,
点坐标为(23.5),
(1)设抛物线的函数解析式为2
(0)y ax bx c a =++≠,
则抛物线过点(01.5),顶点为(23.5),
, 当0x =时, 1.5y c ==
由22b a
-=,得4b a =-, 由24 3.54ac b a
-=,得2
616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,.
所以抛物线的解析式为213222
y x x =-++.
考点:本题考查点的坐标的求法及二次函数的实际应用
点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从
中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型.
原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ).
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?
【答案】(1)x x y 202
12+-
=)150(≤<x ;(2)不能;(3)15x =时,最大面积187.5m 【解析】
2120(015)2
y x x x =-+<∴≤ (2)当200y =时,
即21202002
x x -+= ∴2404000x x -+=
解得:2015x =>
015x <∵≤
∴此花园的面积不能达到200m
考点:本题考查实际问题中二次函数解析式的求法及二次函数的实际应用
点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型.
二. 以球类为背景问题
原创模拟预测题3. 如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式()2
y a x 6h =-+。

已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。

(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围);
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求二次函数中二次项系数a 的最大值。

【答案】(1)把x=0,y=2及h=2.6代入到()2y a x 6h =-+,即()22a 06 2.6=-+,
∴1a 60
=-。

∴当h=2.6时, y 与x 的关系式为()21y x 6 2.660=-
-+。

(3)把x=0,y=2代入到()2y a x 6h =-+,得h 236a =-。

x=9时,()2y a 96236a 227a =-+-=->2.43 ①,
x=18时,()2y a 186236a 2108a =-+-=+≤0 ②,
由① ②解得1a 54
≤-。

∴若球一定能越过球网,又不出边界,二次函数中二次项系数a 的最大值
为154
-。

【考点】二次函数的性质和应用,无理数的大小比较。

三. 以桥、隧道为背景问题
原创模拟预测题4.如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax 2
+bx+c ,小王骑自行车从O 匀速沿直线到拱梁一端A ,再匀速通过拱梁部分的桥面AC ,小王从O 到A 用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC 共需 秒.
【答案】26。

【考点】二次函数的应用
四. 以利润为背景问题
原创模拟预测题5. 某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润P=()21x 604150
--+(万元)。

当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。

在外地销售的投资收益为:每投入x 万元,可获利润
学习必备 欢迎下载
Q=()()249288100x 100x 160505
--+-+(万元)。

(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
【答案】(1)∵每投入x 万元,可获得利润P=()21x 604150
--+(万元), ∴当x =60时,所获利润最大,最大值为41万元。

∴若不进行开发,5年所获利润的最大值是:41×5=205(万元)。

(2)前两年:0≤x ≤40,此时因为P 随x 的增大而增大,
所以x =40时,P 值最大,
即这两年的获利最大为:2×[()2140604150
--+ ]=66(万元)。

后三年:设每年获利y ,设当地投资额为x ,则外地投资额为100-x , ∴y =P+Q=[()21x 604150-
-+]+[249288x x 160505-++] =﹣x 2+60x +129=﹣(x ﹣30)2+1029。

∴当x =30时,y 最大且为1029。

∴这三年的获利最大为1029×3=3087(万元)。

∴5年所获利润(扣除修路后)的最大值是:66+3087﹣50×2=3153(万
元)。

(3)规划后5年总利润为3153万元,不实施规划方案仅为205万元,故具有
很大的实施价值。

【考点】二次函数的应用(利润问题)。

D。

相关文档
最新文档