Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core–Sheath Structure for Novel Electrodes
基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测
DOI:10.7524/j.issn.0254-6108.2022090802陈倍宁, 王恩语, 杨正爽, 等. 基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测[J ]. 环境化学, 2024, 43(3): 875-884.CHEN Beining, WANG Enyu, YANG Zhengshuang, et al. Rapid and selective “turn-on ” fluorescent detection of fluoride ion in aqueous solution using nitrogen-doped carbon quantum dots [J ]. Environmental Chemistry, 2024, 43 (3): 875-884.基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测 *陈倍宁 王恩语 杨正爽 付翯云 **(南京大学环境学院,污染控制与资源化研究国家重点实验室,南京,210093)摘 要 本论文以柠檬酸为碳源、尿素为氮源,通过水热法制备了氮掺杂碳量子点(NCDs ),将其作为荧光探针用于检测水体中的氟离子(F –). 利用透射电镜(TEM )、X 射线光电子能谱(XPS )、红外光谱(FT-IR )、紫外-可见光谱(UV-vis )、荧光光谱等表征手段分析了NCDs 的结构和光谱学性质. 考察了探针检测氟离子的灵敏度、稳定性和选择性,及其在天然水体样品中的适用性. 结果表明,NCDs 可在紫外光激发下产生蓝色荧光,且具有较高的荧光量子产率(41%). NCDs 富含羧基、羟基等含氧官能团,可与铝离子(Al 3+)发生反应,这一过程会导致其荧光淬灭;而F –与Al 3+的配位反应可置换出与NCDs 结合的Al 3+,使NCDs 的荧光恢复,产生荧光“开启”效应.NCDs 荧光恢复的程度与F –浓度线性正关系(R 2 = 0.995),表明该方法可用于定量检测F –. 进一步研究显示,NCDs 在检测F –时具有较快的响应时间(约1.0 min )、较宽的线性范围(20—300 μmol·L −1)、较低的检出限(0.65 μmol·L −1)和良好的选择性(水体常见阴阳离子对检测过程的影响低于5%). 此外,NCDs 还具有良好的稳定性,在中性到弱碱性环境(pH 6.0—9.0)中均能有效检出F –. 在实际水体分析过程中,NCDs 显示了良好的F –加标回收率(88.2%—105.0%)和检测精密度(相对标准偏差低于3.0%),表明其具有较好的应用潜能.关键词 氮掺杂碳量子点,氟离子,荧光检测,荧光开启.Rapid and selective “turn-on” fluorescent detection of fluoride ion inaqueous solution using nitrogen-doped carbon quantum dotsCHEN Beining WANG Enyu YANG Zhengshuang FU Heyun **(School of Environment, State Key Laboratory of Pollution and Resource Reuse, Nanjing University, Nanjing, 210093, China )Abstract Nitrogen-doped carbon quantum dots (NCDs) were synthesized by a facile hydrothermal method using citric acid as the carbon source and urea as the nitrogen source, and were applied as a novel “turn-on” fluorescent probe for the detection of fluoride ions (F –) in water. The structural and spectroscopic properties of the NCDs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and fluorescence spectroscopy. The sensitivity, stability and selectivity of the NCDs probe to detect F – as well as its applicability in natural water samples were investigated. NCDs showed blue fluorescence emission under ultraviolet light irradiation, and had a high fluorescence quantum yield of 41%. The NCDs can react with aluminium ions (Al 3+) via the surface oxygen-2022 年 9 月 8 日 收稿(Received :September 8,2022).* 江苏省自然科学基金(BK20190059)和国家自然科学基金(21976086)资助.Supported by the Natural Science Foundation of Jiangsu Province (BK20190059) and National Natural Science Foundation of China (21976086).* * 通信联系人 Corresponding author ,E-mail :***************.cn876环 境 化 学43 卷containing groups, which would quench the fluorescence emission of NCDs. Due to the strong coordination affinity, F– can compete with NCDs for Al3+ and thus recover the fluorescence of NCDs.There existed a good linear relationship between the recovery ratio of NCDs fluorescence and F–concentration (R2 = 0.995), suggesting the possibility of NCDs in F– quantification. The NCDs-based fluorescence method for F– detection exhibited a short response time (approximately1.0 min), wide linear range (20—300 μmol·L−1), low detection limit (0.65 μmol·L−1), good selectivity(influences of common ions below 5%), and satisfactory stability in environmentally relevant pH range (pH 6.0—9.0). Finally, the proposed method was successfully applied in the analysis of F– in real water samples with high recoveries (88.2%—105.0%) and precision (relative standard deviations lower than 3.0%).Keywords nitrogen-doped carbon dots,fluoride ion,fluorescent detection,turn-on.氟是常见的水体污染物,过量摄入会导致氟中毒,不但会损害人体骨骼和牙齿健康,还可能使人体肾脏受损和甲状腺激素紊乱[1 − 2]. 氟污染已对全球多个国家造成了严重威胁,全球有超过2亿人处于氟中毒的危险中,我国是氟中毒较为严重的国家之一[3 − 4]. 由于严重的毒副作用,世界卫生组织(WHO)规定饮用水中的氟离子(F–)浓度不得超过1.5 mg·L−1(ISBN 978-92-4-154995-0),我国《生活饮用水卫生标准》规定水中氟化物不应超过1.0 mg·L−1(GB 5749-2006). 因此,对水体中的F–进行监测和管理是保障水环境安全的重要内容,研究准确、快速、高灵敏度的水体F–检测方法十分必要.目前F–的检测方法主要包括离子选择电极法、离子色谱法、分子吸收光谱法、比色法和荧光检测法等[5 − 8]. 其中,荧光检测法因其灵敏度高、检测实时、操作简便等优点,近年来引起了研究者的广泛关注[8 − 11]. 荧光检测技术的关键是其探针,探针的性能很大程度上决定了方法的检测灵敏度、速度和选择性. 目前可用于F–检测的荧光探针以硅基/硼基/脲基有机合成小分子或聚合物、无机半导体量子点为主[8, 12 − 15]. 这些探针不但种类较为有限,还存在着合成过程复杂、F–响应时间长、检测限高,以及在水溶液中适用性较差等问题[12 − 14].碳量子点是一种新兴的零维荧光碳纳米材料,具有荧光性质可控、稳定性高、水溶性好、合成方法简单、毒性低等优点[16 − 20],在荧光检测领域显示了巨大的应用潜力. 在环境分析方面,碳量子点已被成功用于检测水体、血液等环境样品中的污染物[21 − 25]. 但目前关于碳量子点的荧光检测研究主要集中于重金属等阳离子型污染物[21 − 23],对F–等阴离子型污染物的研究相对较少.本文以柠檬酸为碳源、尿素为氮源,采用简单的水热法制备了掺氮荧光碳量子点(NCDs),并利用多种表征技术对其结构组成和光学性质进行了表征. NCDs与铝离子(Al3+)作用后会发生荧光淬灭,而F–与Al3+的配位反应可置换出与NCDs结合的Al3+,使NCDs荧光恢复. 利用荧光“开启”效应,建立了F–的快速检测方法,研究了方法的灵敏度、选择性和稳定性,以及其在实际水体样品中的应用性能.1 实验部分(Experimental section)1.1 化学试剂分析纯一水合柠檬酸(C6H8O7·H2O)、尿素(CH4N2O)、无水乙醇(C2H5OH)、氢氧化钠(NaOH)、盐酸(HCl)和硫酸(H2SO4)购自国药集团化学试剂有限公司. 分析纯六水合氯化铝(AlCl3·6H2O)、氟化钠(NaF)、氯化钠(NaCl)、溴化钠(NaBr)、硝酸钠(NaNO3)、溴酸钠(NaBrO3)、碳酸钠(Na2CO3)、氯化钾(KCl)、氯化镁(MgCl2)、氯化钙(CaCl2)购自上海Sigma-Aldrich公司. 生物试剂级硫酸奎宁购自上海阿拉丁生化科技股份有限公司.1.2 NCDs的制备利用水热法制备NCDs,具体制备过程如下:将0.21 g一水合柠檬酸和0.18 g尿素溶于5 mL去离子水中,超声至形成澄清溶液. 将上述溶液转移至含有聚四氟乙烯内衬的高压反应釜中,置于鼓风烘箱中加热,于160 ℃反应4 h. 离心收集反应产物,经乙醇洗涤、冷冻干燥后,得到固体NCDs样品.3 期陈倍宁等:基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测877NCDs储备液配置于纯水中,并于4 ℃避光保存.1.3 NCDs的表征采用JEM-2100型透射电子显微镜(TEM,日本JEOL公司)观察NCDs形貌. 利用Vario MICRO cube型元素分析仪(德国Elementar公司)测定NCDs中碳、氮、氧、氢等元素含量. 使用NEXUS870型傅里叶变换红外光谱仪(FT-IR,美国Nicolet公司)解析NCDs的官能团性质. 利用PHI5000 VersaProbe型X射线光电子能谱仪(XPS,日本ULVAC-PHI公司)分析NCDs的表面元素组成和元素形态. 使用Zetasizer Nano ZS型纳米粒度电位仪(英国Malvern公司)测定NCDs的Zeta电位. 采用UV-2700型紫外-可见分光光谱仪(日本Shimadzu公司)和Aqualog型荧光光谱仪(日本Horiba公司)分别采集NCDs的紫外-可见吸收光谱(UV-vis)和荧光光谱. 以硫酸奎宁的H2SO4溶液为标准样品,采用参比法测定NCDs的荧光量子产率. 使用FLS-980型稳态瞬态荧光光谱仪分析(英国Edinburgh公司)测定NCDs的荧光寿命.1.4 NCDs对F–的荧光检测性能研究在10 mL离心管中加入适量NCDs溶液和AlCl3溶液,使溶液中NCDs浓度为1 mg·L−1、Al3+浓度为0—140 μmol·L−1,并用NaOH将溶液pH值调节为7.0. 溶液配置完成1 min后,采集上述溶液在激发波长(E x)为340 nm处的二维荧光光谱. 利用相同的方法配置NCDs、AlCl3和NaF的混合溶液(pH 7.0),使NCDs浓度为1 mg L−1、Al3+浓度为100 μmol·L−1、F–浓度范围为0—500 μmol·L−1,并在E x为340 nm处采集溶液的荧光光谱. 为研究NCDs荧光检测F–的稳定性和选择性,考察了光照、溶液pH值,以及常见水体阴阳离子对检测过程的影响. 在光稳定性实验中,持续采集NCDs、NCDs/Al3+、NCDs/Al3+/F–混合溶液在E x为340 nm、发射波长(E m)为440 nm处的荧光强度,采集时长为1 h,采集频率为每分钟1次. 在pH影响实验中,采用NaOH和HCl调节溶液pH值,pH值设定范围为4.0—9.0.在阴阳离子影响实验中,氯离子(Cl–)、溴离子(Br–)、硝酸根(NO3–)、硫酸根(SO42–)、溴酸根(BrO3–)、碳酸根(CO32–)、钾离子(K+)、镁离子(Mg2+)、钙离子(Ca2+)等离子的浓度为50 μmol·L−1和300 μmol·L−1.所有实验均设置3组平行样.2 结果与讨论(Results and discussion)2.1 NCDs表征结果2.1.1 NCDs的形貌和粒径图1a为NCDs的TEM图像,可以看出本研究所合成的NCDs具有类球形结构,且颗粒分散性良好、尺寸较为均一(粒径范围为1.5—5.0 nm). 对NCDs的粒径进行统计分析,得到平均粒径为3.4 nm.2.1.2 NCDs的元素组成和官能团性质元素分析结果显示,NCDs中氮质量分数高达40.80% wt.,证实了氮元素的成功掺杂. NCDs中其它主要元素分别为碳(35.18%)、氧(17.65%)和氢(6.37%). 图1b为NCDs的FT-IR图谱. NCDs在1580 cm−1处的C=C伸缩振动峰和1440、1400、1340 cm−1处的C—H弯曲振动峰来源于其碳骨架结构[26];1260 cm−1处的吸收峰对应于C—N的伸缩振动,验证了NCDs中氮元素及含氮官能团的存在[27];1690 cm−1和1180 cm−1处的峰分别来源于C=O和C—O的伸缩振动[26, 28],表明NCDs还具有羧基、羟基等含氧官能团.NCDs的XPS分析结果如图1c和d所示. 在NCDs的XPS全谱扫描图中出现了3个尖锐的特征结合能峰(图1c),分别对应于C1s(285 eV)、N1s(400 eV)和O1s(532 eV),表明NCDs表面富含碳、氮、氧元素. C1s峰可进一步分为4个子峰(图1d),对应于不同化学状态的碳原子,具体为:非氧化碳原子(C=C/C—C,结合能为284.5 eV)、与氮相连的碳原子(C—N,结合能为285.7 eV)、羟基/烷氧基中的碳原子(C—O,结合能为286.8 eV)和羰基/羧基中的碳原子(C=O,结合能为288.5 eV)[26, 28]. 结果与FT-IR表征结果一致,进一步证明了NCDs中存在含氮官能团以及羟基、羧基等含氧官能团.图 1 NCDs 的(a )TEM 图和粒径分布直方图(插图)、(b )FT-IR 光谱图、(c )XPS 全扫描谱图和(d )C1s 高分辨率谱图Fig.1 (a ) TEM image and histogram of particle size distribution, (b ) FT-IR spectrum, and (c ) full scan and (d ) C1s XPSspectra of NCDs2.1.3 NCDs 的光谱学性质图2a 为NCDs 的UV-vis 光谱图. 在低于230 nm 和300—380 nm 的波段范围内,NCDs 均具有明显光吸收;其中小于230 nm 的吸收峰归因于C=C 基团的π-π*跃迁,通常不产生强荧光信号[29];而峰值位于340 nm 处的吸收峰则可能伴随着荧光发射的产生. NCDs 的三维荧光光谱分析结果印证了这一点. 如图2b 所示,当E x 为300—380 nm 时,NCDs 产生了很强的荧光发射,E m 范围为400—500 nm.NCDs 的荧光峰值位于E x = 340 nm/E m = 440 nm 处,可能是产生于NCDs 表面态电子-空穴对的辐射复合[17]. 值得注意的是,当E x 在300 nm 至380 nm 之间变化时,NCDs 的E m 峰始终位于440 nm 左右,没有明显位移,说明NCDs 具有不依赖于E x 的荧光发射特性,这可能源于其较为均一的粒径和表面状态分布[17]. 碳量子点的荧光量子产率是衡量其发光性能的重要指标. 以硫酸奎宁为参比,根据NCDs 荧光强度与吸光度的关系,测定了NCDs 的荧光量子产率(图2c ),发现NCDs 的量子产率高达41%,表明其具有优异的荧光发射本领.图 2 NCDs 溶液的(a )UV-vis 光谱图和(b )三维荧光光谱图;(c )NCDs 荧光强度积分与吸光度的线性关系Fig.2 (a ) UV-vis absorption and (b ) 3D fluorescence spectra of NCDs aqueous solution; (c ) linear relationship betweenfluorescence intensity integral and absorbance of NCDs878环 境 化 学43 卷3 期陈倍宁等:基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测8792.2 NCDs的F–检测性能2.2.1 检测灵敏度碳量子点通常带负电,故绝大多数基于碳量子点的荧光传感器被用于检测阳离子型污染物 [21 − 23] .研究显示,通过与碳量子点官能团的作用,金属等阳离子可引发量子点的荧光淬灭. 若能利用阴离子与金属的强配位作用,使金属离子从碳量子点脱附,则可恢复碳量子点的荧光,进而实现阴离子的荧光“开启”检测. Al3+作为一种环境友好的金属离子,与F–之间存在极强的配位能力. 基于此,以Al3+为介导离子,设计了NCDs检测F–的实验.首先研究了Al3+对NCDs荧光的影响. 如图3a所示,当Al3+的浓度从0逐渐增加至140 μmol·L−1时,NCDs的荧光强度逐渐降低,证实了Al3+对NCDs的荧光淬灭效应.图3b显示了加入F–后,NCDs/Al3+溶液(Al3+浓度为100 μmol·L−1)的荧光变化情况. 可以看出,随着F–浓度的升高,NCDs/Al3+溶液的荧光强度逐渐变强,表明F–确实能够恢复NCDs被Al3+淬灭的荧光.图 3 (a)Al3+和(b)F–对NCDs溶液荧光光谱的影响(E x= 340 nm);(c)不同浓度F–存在下NCDs在E x = 340 nm/E m = 440 nm处的荧光恢复率;(d)NCDs在E x = 340 nm/E m = 440 nm处的荧光恢复率与F–的相关关系Fig.3 Fluorescence spectra of NCDs solution at E x 340 nm upon the addition of (a) Al3+ and (b) F–; (c) fluorescence recovery efficiency of NCDs at E x = 340 nm/E m = 440 nm as a function of F– concentration; (d) relationship between fluorescence recovery efficiency of NCDs at E x = 340 nm/E m = 440 nm and F– concentration 根据NCDs荧光峰值处(E x = 340 nm,E m = 440 nm)的变化情况,可通过下式计算F–存在下NCDs的荧光恢复率:其中,F0为NCDs溶液的原始荧光强度,F Al和F分别为加入Al3+和F–后的NCDs荧光强度. 由图3c可以发现,NCDs荧光恢复率先随着F–浓度的升高而稳步上升,并在F–浓度超过300 μmol·L−1后逐渐平稳,说明已达NCDs荧光恢复的上限. 在20—300 μmol·L−1浓度范围内,NCDs的荧光恢复率与F–浓度具有很好的线性关系(R2 = 0.995,图3d),表明该NCDs/Al3+体系可用于定量检测水中的F–. 该方法对F–的检出限(LOD)为0.65 μmol·L−1(即0.012 mg L−1),远低于WHO和我国规定的饮用水F–浓度限值,也低于多数已报道F–荧光检测法的LOD值(见表1)[8, 10 − 12, 28 − 31],表明NCDs/Al3+方法具有良好的F–灵敏度.表 1 文献报道F–荧光检测法的分析性能Table 1 Analytical performances of reported fluorescence methods for F– detection探针Probe 检出限/(μmol·L−1)LOD线性范围/(μmol·L−1)Linear Range响应时间/minResponse time文献References基于内部电荷转移的荧光探针80500—2800025[8]基于Si—O键断裂的荧光探针180—100045[12]含有多面体低聚硅氧烷的纳米粒子1010—100 1.67[13]基于硼酸的荧光碳点1100—26700 5.0[14]蒽基荧光受体 2.02—120NA a[30]基于1,1’-联萘基支架的荧光探针 1.86 5.0—45.0200[31]基于壳聚糖凝胶的荧光碳点 6.6 6.6—50.6 2.0[32]基于羧酸桥联二铁络合物的荧光探针 6.70—30NA a[33] NCDs0.6520—300 1.0本论文 注:a “NA” 文中未提及. a “NA ” Not available.2.2.2 检测速度图4a显示了加入Al3+和F–后NCDs的荧光强度随时间的变化. 可以看出,Al3+淬灭NCDs荧光的速度极快,几乎在加入NCDs溶液的瞬时即达到淬灭平衡. F–恢复NCDs荧光的速度略慢于Al3+的淬灭速度,但也可在约1.0 min之内达到恢复平衡. 与文献报道的荧光方法相比(表1),NCDs/Al3+对F–的响应时间更短,具有更快的F–检测速度.图 4 NCDs的(a)荧光响应速度和(b)荧光稳定性随时间的变化;溶液pH值对NCDs的(c)荧光强度和(d)荧光恢复率的影响(Al3+浓度为100 μmol·L−1,F–浓度为300 μmol·L−1)Fig.4 Fluorescence intensity of NCDs solution in the presence of Al3+ (100 μmol·L−1) and/or F– (300 μmol·L−1) as a function of (a) incubation time and (b) irradiation time; effect of solution pH on NCDs (c) fluorescence intensity and (d) fluorescencerecovery efficiency by F–2.2.3 检测稳定性由于荧光探针是依靠荧光强度的改变来达到检测目的,因此探针在激发光下的荧光稳定性是其至880环 境 化 学43 卷3 期陈倍宁等:基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测881关重要的性能指标. 如图4b所示,在激发光下连续照射1 h后,NCDs、NCDs/Al3+和NCDs/Al3+/F–溶液的荧光发射强度均未发生明显波动,表明该NCDs检测体系具有较强的荧光稳定性.图4c和d为溶液pH值对NCDs检测F–性能的影响. 在溶液pH4.0时,NCDs表现出较弱的荧光发射,这可能是由于NCDs表面的含氧官能团在酸性条件下解离程度较低,NCDs疏水性较高,易因聚集产生荧光淬灭[34]. 当溶液pH由4.0升至9.0时,随着NCDs表面官能团解离程度的提高,NCDs的荧光强度逐渐上升,并在中性至弱碱性pH范围内(6.0—9.0)保持稳定(图4c). 在此pH范围内,Al3+和F–对NCDs荧光的淬灭和恢复程度也基本相同(图4d),表明NCDs有良好的pH适应性,在中性至弱碱性环境中均能保持稳定的荧光性能.2.2.4 检测选择性进一步考察NCDs/Al3+体系对F–的选择性,研究了水体常见阴离子(Cl–、Br–、NO3–、SO42–、BrO3–、CO32–)和阳离子(K+、Mg2+、Ca2+)对F–检测的影响. 如图5a和c所示,在浓度相同的情况下,F–恢复NCDs荧光的效率明显高于其它离子. 例如,低浓度(50 μmol·L−1)和高浓度(300 μmol·L−1)F–分别将NCDs的荧光恢复了10%和60%,而除CO32–外的其它离子的恢复率不足2%和5%.CO32–在两个浓度下的恢复效率分别为5%和25%,稍高于其它干扰离子,这可能是因为CO32–能够与Al3+在溶液中发生双水解反应. 尽管如此,CO32–的荧光恢复效率仍明显低于F–. 研究了F–与相同浓度干扰离子共存时,NCDs的荧光恢复效率(图5b和d). 在低浓度共存条件下,F–对NCDs的荧光恢复仅受CO32–微量影响(恢复率由10%增至14%);而当共存浓度较高时,所有测试离子均不影响NCDs检测F–. 结果表明, NCDs/Al3+体系对F–具有优秀的选择性. 该体系的F–选择性主要源于F–远高于其它离子的Al3+配位能力,F–的存在更容易使Al3+从NCDs上脱附.图 5 (a)低浓度(50 μmol·L−1)和(c)高浓度(300 μmol·L−1)离子存在下NCDs的荧光恢复率;(b)低浓度(50 μmol·L−1)和(d)高浓度(300 μmol·L−1)干扰离子和F–共存时的NCDs荧光恢复率Fig.5 Fluorescence recovery efficiency of NCDs in the presence of different ions at (a) low (50 μmol·L−1) and (c) high concentrations (300 μmol·L−1), and in the coexistence of F– and other ions at (b) low (50 μmol·L−1) and (d) highconcentrations (300 μmol·L−1)2.3 NCDs的F–检测机制为探究NCDs对F–的检测机制,考察了Al3+和F–对NCDs荧光寿命的影响. 如图6a所示,NCDs、NCDs+Al3+、NCDs/Al3++F–的荧光衰减曲线几乎重叠,3个体系中NCDs的荧光寿命分别为7.01 ns、7.06 ns、7.02 ns,表明Al3+和F–对NCDs的荧光寿命无明显影响,二者不是通过能量转移过程影响NCDs荧光发光. 由此推测Al3+对NCDs荧光的淬灭机制为静态淬灭,即NCDs与Al3+发生相互作用,形成NCDs/Al3+静态复合物;当F–存在时,F–会与Al3+发生配位反应,使NCDs/Al3+复合物中的Al3+脱附,进而恢复NCDs荧光. 为了验证此假设,进一步分析了加入Al3+和F–后NCDs的表面电荷和FT-IR光谱变化. NCDs表面含有丰富含氧官能团,原始NCDs带负电,Zeta电位为-6.41 mV;加入Al3+后,由于Al3+与含氧官能团发生配位作用,因此NCDs的Zeta电位升至+1.40 mV;而加入F–后,F–与Al3+的配位导致NCDs表面的Al3+脱附,NCDs的Zeta电位又降至-3.97 mV. FT-IR光谱分析结果也印证了这一机制. 如图6b所示,与NCDs相比,NCDs/Al3+的FT-IR光谱在1120 cm−1处出现1个新强峰,对应于Al—OH的弯曲振动,证实了Al3+与NCDs的结合[35 − 36];加入F–后,Al—OH吸收峰的强度显著下降,表明F–的存在使Al3+从NCDs表面脱附.图 6 加入Al3+(100 μmol·L−1)和F–(300 μmol·L−1)前后NCDs的(a)荧光衰减曲线和(b)FT-IR光谱Fig.6 (a) Time-resolved fluorescence decay and (b) FT-IR spectra of NCDs solution in the absence and presence of Al3+(100 μmol·L−1) and/or F– (300 μmol·L−1)2.4 NCDs对实际水样中F–的检测性能为了评估NCDs/Al3+的可应用性,将其用于检测实际水体中的F–浓度. 所测试实际水样分别取自实验室自来水龙头和太湖,过0.45 μm滤膜后直接进行分析. 结果显示,两个水样中的F–浓度均低于方法的LOD值. 论文进一步开展了梯度加标回收实验(加标浓度为20、40、60、80、100 μmol·L−1,表2),测得F–回收率范围为88.2%—105.0%,与常规离子色谱法的检测回收率相当(91.4%—111.9%). 此外,NCDs/Al3+方法也具有较好的精密度,多次检测的相对标准偏差在2.67%以内(n=3),表明可利用NCDs检测实际水样中的F–.表 2 基于NCDs的荧光法对实际水样中F–的检测结果(%, n=3)Table 2 Analytical results for the determination of F– in real water samples加标浓度/(μmol·L−1)Spiked concentration自来水样加标回收率Tap water recoveries太湖水样加标回收率Taihu Lake water recoveries荧光法离子色谱法荧光法离子色谱法2088.2 ± 2.24111.7 ± 0.7688.5 ± 2.66111.9 ± 1.274092.1 ± 2.6398.5 ± 2.0694.7 ± 2.01107.2 ± 1.936095.7 ± 2.6794.0 ± 0.33105.0 ± 1.9799.9 ± 1.758096.9 ± 1.9092.0 ± 1.2197.3 ± 2.2094.7 ± 0.25100101.6 ± 1.5891.4 ± 1.13103.7 ± 2.0191.5 ± 1.053 结论(Conclusion)本文利用简单的水热法成功地制备了具有优异荧光性能的掺氮碳量子点(NCDs). 该量子点能够882环 境 化 学43 卷以铝离子(Al 3+)为介导,通过荧光“关闭”—“开启”模式选择性检测水体中的氟离子(F –). 与已报道的F –荧光检测方法相比,本论文基于NCDs 的检测体系具有更低的F –检测限(0.65 μmol·L −1)和更快的检测速度(F –响应时间约1.0 min ). 此外,NCDs 还具有优异的荧光稳定性和F –选择性,在实际水样的F –分析中也显示了良好的应用性能. 本论文的研究结果可为水体F –的快速检测提供技术支持,也有助于拓展碳量子点材料在荧光检测中的应用.参考文献(References)AOBA T, FEJERSKOV O. Dental fluorosis: Chemistry and biology [J ]. Critical Reviews in Oral Biology and Medicine:an OfficialPublication of the American Association of Oral Biologists, 2002, 13(2): 155-170.[ 1 ]AK S, BHATNAGAR M, VIG K, et al. Excess fluoride ingestion and thyroid hormone derangements in children living in Delhi,India [J ]. Fluoride, 2005, 38(2): 98-108.[ 2 ]AYOOB S, GUPTA A K. Fluoride in drinking water: A review on the status and stress effects [J ]. Critical Reviews in EnvironmentalScience and Technology, 2006, 36(6): 433-487.[ 3 ]刘东生, 陈庆沐, 余志成, 袁芷云. 我国地方性氟病的地球化学问题 [J ]. 地球化学, 1980, 9(1): 13-22.LIU D S, CHEN Q M, YU Z C, et al. Geochemical environment problems concerning the endemic fluorine disease in China [J ].Geochimica, 1980, 9(1): 13-22(in Chinese ).[ 4 ]DAY J K, BRESNER C, COOMBS N D, et al. Colorimetric fluoride ion sensing by polyborylated ferrocenes: Structural influences onthermodynamics and kinetics [J ]. Inorganic Chemistry, 2008, 47(3): 793-804.[ 5 ]MORÉS S, MONTEIRO G C, SANTOS F D S, et al. Determination of fluorine in tea using high-resolution molecular absorptionspectrometry with electrothermal vaporization of the calcium mono-fluoride CaF [J ]. Talanta, 2011, 85(5): 2681-2685.[ 6 ]LI Y H, DUAN Y, ZHENG J, et al. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitivecolorimetric detection of fluoride ions [J ]. Analytical Chemistry, 2013, 85(23): 11456-11463.[ 7 ]ZHU B C, YUAN F, LI R X, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ionsin living cells [J ]. Chemical Communications, 2011, 47(25): 7098-7100.[ 8 ]ZHOU Y, ZHANG J F, YOON J. Fluorescence and colorimetric chemosensors for fluoride-ion detection [J ]. Chemical Reviews, 2014,114(10): 5511-5571.[ 9 ]LIU W, DAI X, BAI Z L, et al. Highly sensitive and selective uranium detection in natural water systems using a luminescentmesoporous metal-organic framework equipped with abundant lewis basic sites: A combined batch, X-ray absorption spectroscopy, and first principles simulation investigation [J ]. Environmental Science & Technology, 2017, 51(7): 3911-3921.[10]LIU W, DAI X, WANG Y, et al. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescenteuropium organic framework [J ]. Environmental science & technology, 2018, 53(1): 332-341.[11]CHENG X H, JIA H, FENG J, et al. “Reactive” probe for fluoride: “Turn-on” fluorescent sensing in aqueous solutionand bioimaging in living cells [J ]. Sensors and Actuators B:Chemical, 2014, 199: 54-61.[12]DU F F, BAO Y Y, LIU B, et al. POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions [J ].Chemical Communications, 2013, 49(41): 4631-4633.[13]SHAMSIPUR M, SAFAVI A, MOHAMMADPOUR Z, et al. Fluorescent carbon nanodots for optical detection of fluoride ion inaqueous media [J ]. Sensors and Actuators B:Chemical, 2015, 221: 1554-1560.[14]LIU J B, YANG X H, WANG K M, et al. A switchable fluorescent quantum dot probe based on aggregation/disaggregationmechanism [J ]. Chemical Communications, 2011, 47(3): 935-937.[15]SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J ]. Journal of the AmericanChemical Society, 2006, 128(24): 7756-7757.[16]ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots,and polymer dots): Current state and future perspective [J ]. Nano Research, 2015, 8(2): 355-381.[17]ZHANG Y Q, MA D K, ZHUANG Y, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties [J ].Journal of Materials Chemistry, 2012, 22(33): 16714-16718.[18]HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage [J ]. Chemical Society Reviews,2019, 48(8): 2315-2337.[19]傅鹏, 周丽华, 唐连凤, 等. 碳量子点的制备及其在能源与环境领域应用进展 [J ]. 应用化学, 2016, 33(7): 742-755.FU P, ZHOU L H, TANG L F, et al. Progress in preparation of carbon quantum dots and its application in the fields of energy and environment [J ]. Chinese Journal of Applied Chemistry, 2016, 33(7): 742-755(in Chinese ).[20]PENG D, ZHANG L, LIANG R P, et al. Rapid detection of mercury ions based on nitrogen-doped graphene quantum dots acceleratingformation of Manganese porphyrin [J ]. ACS Sensors, 2018, 3(5): 1040-1047.[21]3 期陈倍宁等:基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测883LIU H, LI R S, ZHOU J, et al. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes forN -acetylcysteine via an off-on mechanism [J ]. Analyst, 2017, 142(22): 4221-4227.[22]ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acidbased on the inner filter effect [J ]. ACS Applied Materials & Interfaces, 2013, 5(24): 13242-13247.[23]CHEN B B, LIU M L, ZHAN L, et al. Terbium (III) modified fluorescent carbon dots for highly selective and sensitive ratiometry ofstringent [J ]. Analytical chemistry, 2018, 90(6): 4003-4009.[24]ZHANG Z, ZHANG D, SHI C, et al. 3, 4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selectivefluorescent probe for the rapid detection of uranyl ions [J ]. Environmental Science:Nano, 2019, 6(5): 1457-1465.[25]TANG L, JI R, LI X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantumdots [J ]. ACS nano, 2014, 8(6): 6312-6320.[26]LI H, KONG W, LIU J, et al. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection [J ].Carbon, 2015, 91: 66-75.[27]QU D, ZHENG M, ZHANG L G, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantumdots [J ]. Scientific Reports, 2014, 4: 5294.[28]LI L B, YU B, YOU T. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions [J ].Biosensors and Bioelectronics, 2015, 74: 263-269.[29]HUANG W W, LIN H, CAI Z, et al. A novel anthracene-based receptor: Highly sensitive fluorescent and colorimetric receptor forfluoride [J ]. Talanta, 2010, 81(3): 967-971.[30]DONG M, PENG Y, DONG Y M, et al. A selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride andcyanide anions based on 1, 1'-binaphthyl scaffold [J ]. Organic Letters, 2012, 14(1): 130-133.[31]BARUAH U, GOGOI N, MAJUMDAR G, et al. β-Cyclodextrin and calix[4]arene-25, 26, 27, 28-tetrol capped carbon dots for selectiveand sensitive detection of fluoride [J ]. Carbohydrate Polymers, 2015, 117: 377-383.[32]ZHOU Y H, DONG X L, ZHANG Y X, et al. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridgeddiiron complexes [J ]. Dalton Transactions, 2016, 45(16): 6839-6846.[33]WANG H, WANG Y, GUO J, et al. A new chemosensor for Ga 3+ detection by fluorescent nitrogen-doped graphitic carbon dots [J ].RSC Advances, 2015, 5(17): 13036-13041.[34]SHI L H, WANG Q, ZHANG C, et al. Tricolor emission carbon dots for label-free ratiometric fluorescent and colorimetric recognitionof Al 3+ and pyrophosphate ion and cellular imaging [J ]. Sensors and Actuators B:Chemical, 2021, 345: 130375.[35]LIU C S, SHIH K, GAO Y X, et al. Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on thesurface of alumina [J ]. Journal of Soils and Sediments, 2012, 12(5): 724-733.[36]884环 境 化 学43 卷。
氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7
中国环境科学 2017,37(7):2583~2590 China Environmental Science 氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7王 莹,魏成耀,黄天寅,吴玮,陈家斌*(苏州科技大学环境科学与工程学院,江苏苏州 215009)摘要:采用氮掺杂多壁碳纳米管(N-CNT)作为固体活化剂,活化过一硫酸盐(PMS)氧化降解偶氮染料酸性橙7(AO7).结果表明,N-CNT活化PMS降解AO7比颗粒活性炭(GAC)效果好,N-CNT投加量为400mg/L、n(PMS)/n(AO7) 为 40/1时,反应60min可使AO7的脱色率达到99%; 研究了N-CNT活化PMS降解AO7的降解机制,发现N-CNT活化PMS产生的自由基主要是SO4-•,活化场所在N-CNT的表面.在N-CNT/PMS体系中,初始pH值对降解AO7有较大的影响,当pH = 3.0时AO7降解效果最好; Cl-、SO42-和CO32-离子对AO7降解都存在一定促进作用,离子浓度越高,AO7降解速率越快.紫外可见光谱、TOC分析表明AO7分子中偶氮键及萘环结构均被破坏,并进一步矿化为CO2和H2O.关键词:氮掺杂碳纳米管;过一硫酸盐;酸性橙7中图分类号:X703,X131.2文献标识码:A文章编号:1000-6923(2017)07-2583-08Activation of peroxymonosulfate by nitrogen-doped carbon nanotubes to decolorize acid orange 7. WAN G Ying, WEI Cheng-yao, HUANG Tian-yin, WU Wei, CHEN Jia-bin* (School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China). China Environmental Science, 2017,37(7):2583~2590 Abstract:Nitrogen-doped carbon nanotube (N-CNT) was used as an activator to activate peroxymonosulfate (PMS) to degrade azo dye, Acid orange 7 (AO7) in aqueous solution. The results indicated that N-CNT exhibited a much better performance on activating PMS to decolorize AO7 than activated carbon (GAC), the removal of AO7 could reach 99% after 60min with 400mg/L of N-CN T dosage, 40/1of PMS/AO7 molar ratio. The degradation mechanism of AO7 in N-CN T activated PMS system was explored,and SO-4• was found to be dominantly responsible for AO7 degradation, which mainly took place on the surface of N-CNT. The The initial pH had a significant effect on the AO7 degradation, and pH 3.0 was most favorable for its degradation. In addition, the degradation of AO7 was accelerated after addition of Cl-、SO2-4 and CO2-3; From the analysis of UV-vis spectra and TOC analysis indicated that the azo band and naphthaline ring ofAO7 that were destructed and then mineralized into CO2 and H2O.Key words:nitrogen-doped carbon nanotubes;peroxymonosulfate;acid orange 7偶氮染料是分子结构中含有一个或多个偶氮基(—N=N—)的染料,其生产废水具有毒性强、含盐量高、致突变、致癌、难降解等特点[1-2],不经处理直接排放会对环境造成严重污染.偶氮染料废水常用的处理方法有吸附[3]、膜过滤[4]、光催化[5-6]、臭氧化[7-8]等.近年来,基于硫酸根自由基(SO-4•)的高级氧化技术对偶氮染料氧化降解作用明显[9-10].硫酸根自由基(SO-4•)有较高的氧化还原电位(E0= 2.5~3.1V),可以氧化降解大部分有机污染物[11].过硫酸盐(PS)和过一硫酸盐(PMS)是能够产生SO-4•的常用氧化剂,在常温下比较稳定很难分解,但在加热[12-14]、紫外光照射[15-16]、过渡金属离子[4,17-19]等条件下,能够被活化产生SO-4•.诸多研究表明用颗粒活性炭(GAC)能有效活化PS或PMS降解偶氮染料废水[19-21].普通碳纳米管(CNT)因具有比表面积大、热稳定性高、独特管腔和吸附特性以及特有的电学特性等性质,已作为新型催化材料引起了人们的极大兴趣,取得了广泛的应用,例如在其力学性能方面,CNT的强度比其他纤维强度约高200倍,加之CNT的韧性很好,使其可以广泛应用于微米收稿日期:2016-12-19基金项目:国家自然科学基金资助项目(51478283);苏州科技大学大学生创新训练计划项目(201613985007Y)* 责任作者, 讲师, chenjiabincn@2584 中国环境科学 37卷甚至纳米机械;同时,CNT还是一种新型超导材料,具有很高的临界超导电流,这为热敏电阻辐射器件的研制和开发提供了条件.目前,CNT的制备方法主要有石墨电弧法、激光蒸发法和催化热解法.当碳纳米管掺入氮(N-CNT)之后,改变了碳原子周围的电子云密度,使其具有良好的电子传导性,其电子效应也在催化材料方面展示出独特性能.目前,氮掺杂碳纳米管的制备方法可以分为3:(1)同步原位掺杂,即在CNT生成过程中进行掺杂; (2)高温碳化含氮高分子; (3)在含氮条件下,对碳纳米管进行后处理,如采用等离子体、水热等方法进行氮掺杂.氮掺杂将影响CNT的状态密度、微分电容、体电导率和功函数等电化学及电子性质,使得碳纳米管可实现较低电位下氧的吸附解离,从而具有氧化还原反应催化活性.碳纳米管具有独特的电学,机械和结构性能.由于氮和碳的原子半径相差不多,所以在六边形石墨网状结构的碳纳米管中经常用氮原子来取代碳原子以改变碳纳米管的电学和化学性能,从而使碳纳米管具有某些特殊功用,如催化载体,传感器和碳极等.在催化剂载体研究领域,科学家们发现碳纳米管中的氮掺杂原子本身还具有氧还原催化活性,从而使非贵金属负载的N-CNT作为催化材料的研发备受关注.本文采用N-CNT 活化PMS降解AO7,分析其降解过程; 研究了AO7降解的主要影响因素(N-CNT投加量、PMS 浓度、初始pH值、温度、离子浓度),并对各反应条件对降解反应进行分析.1材料与方法1.1材料实验用氮掺杂多壁碳纳米管(N-CNT)主要特性为:外直径30~50nm,长度10~30um,氮含量2.98wt%,比表面积>78.9m2/g,购于南京先丰纳米材料科技有限公司;过一硫酸盐(HKSO5· 0.5KHSO4· 0.5K2SO4,PMS)购于Sigma-Aldrich;酸性橙7(AO7)购于国药集团化学试剂有限公司,苯酚(phenol)、甲醇(CH3OH)、叔丁醇(C4H9OH)、盐酸(HCl)、硫酸(H2SO4)、氯化钠(NaCl)均为分析纯购于国药集团化学试剂有限公司.实验用水为去离子超纯水.1.2降解实验在一定的温度下,将250mL配好的AO7溶液注入锥形瓶,锥形瓶采用磁力搅拌器混合.加入一定量的PMS,用稀H2SO4或NaOH调节pH值,然后迅速加入一定量的N-CNT启动反应,每隔一段时间取样且样品经0.45µm滤膜过滤后,立即测定.1.3分析方法使用Mapada UV-1600(PC)紫外可见分光光度计,于AO7最大吸收波长484nm处测定滤液的吸光度,带入标准曲线求得浓度c; AO7矿化率采用总有机碳分析仪(TOC-LCPH,岛津)测定; 傅立叶红外光谱分析仪(FTIR,美国Thermo公司, Nicole-6700型号)测定N-CNT表面活性官能团; Quanta FEG 250扫描电子显微镜(美国FEI公司)测定碳纳米管表面形貌特征.2结果与讨论2.1FT-IR以及表面形貌分析5001000150020002500 3000 3500 4000波数(cm)透过率(%)(a)(b)图1 N-CNT催化前后的FT-IR图谱(a)活化反应前;(b)活化反应后Fig.1 FT-IR spectra of the N-CNT: (a) before thecatalysis; (b) after the catalysis氮掺杂多壁碳纳米管在催化反应前后的FT-IR谱图如图1所示:3430cm-1处为O—H伸缩振动吸收峰[24];在2917cm-1处的吸收峰为-CH3、-CH2的对称和反对称振动峰;2310cm-17期王 莹等:氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7 2585附近对应—C≡C—的累积双键伸缩振动区; 1630cm-1附近的吸收峰是N-CNT表面羧基及内酯基中的C=O特征伸缩振动峰;1170cm-1处可归于CH2 —O—CH2中的C—O对称伸缩振动峰[25].从图2中可以看出,N-CNT表面有大量活性官能团,且经过活化反应后N-CNT表面在2310处振动峰有明显增大,证明可能是碳质材料表面的含氧酸性官能团活化过一硫酸盐[19]降解AO7.图2为原始碳纳米管和氮掺杂碳纳米管的扫描电镜照片.通过与原始碳纳米管的形貌比较可以看出,经含氮有机物处理后的碳纳米管的形貌并未发生明显的变化,即基本保持了原有的形貌特征,而不像强酸(如硝酸)、强碱(如强氧化钾)或强氧化型物质(如高锰酸钾)等处理时发生碳纳米管被切短、刻蚀而导致碳纳米管本征形貌和结构被破坏的现象[21].图2 CN T和N-CNT扫描电镜照片Fig.2 SEM images of as-prepared CNT (a) and N-CNT (b) 2.2N-CNT活化性能图3显示了AO7在不同反应体系中的降解效果.从中可看出,在60min内,PMS单独氧化体系脱色率仅为2%,同时GAC和N-CNT对AO7的吸附效果也不明显,脱色率分别为27.5%和17.9%,在 PMS/GAC体系中AO7的脱色率可达48.3%,然而在N-CNT/PMS体系中AO7的脱色率可达到97%.由此得出,PMS单独氧化降解AO7速率较低,GAC和N-CNT对AO7的吸附作用也不明显,但N-CNT/PMS体系能够高效氧化降解AO7,其效果远优于PMS/GAC体系. Zhang[26]等曾报道GAC可以活化PMS产生SO-4•氧化降解染料AO7,由此可认为,N-CNT活化PMS产生SO-4•的效率要比GAC强的多,更利于偶氮染料AO7的氧化降解.010203040 50 60t(min)c/c图3 不同体系AO7的降解效果Fig.3 Degradation of AO7 in different systems[AO7] = 20mg/L,[GAC] = 200mg/L,[N-CNT] = 200mg/L,pH = 7.0,T= 20℃,n(PMS)/n(AO7) = 40/12.3N-CNT活化机理在活化PMS体系中,通常产生SO-4•和OH—·,并通过加入自由基淬灭剂判断起作用自由基[20].目前已有研究表明,叔丁醇(TBA)对HO•自由基猝灭效果较好,而对SO-4•自由基猝灭效果较弱,而甲醇(MA)对HO•和SO-4• 均可以猝灭.因此本实验先采用甲醇和叔丁醇对活化体系进行自由基鉴定,结果如图4 (a)、(b)所示.可以看出在投加MA和TBA体系中,60min 时AO7依然可降解99%以上,相比未投加淬灭剂体系几乎没有变化.原因可能是MA和TBA是亲水性化合物,不容易靠近固体表面,由此可以推测降解反应可能发生在N-CNT表面,因此抑制剂对降解反应作用不明显.2586中 国 环 境 科 学 37卷时间(min)c /c 0t (min)c /c 00 10 20 30405060t (min)c /c 0图4 N -CNT/PMS 体系中不同的自由基抑制剂对AO7的降解Fig.4 Degradation of AO7in the N -CNT/PMS system inthe presence of different radical scavengers[AO7] = 20mg /L,[N -CNT] = 200mg /L,pH = 7.0,T = 20℃,n (PMS)/n (AO7) = 40/1此外,苯酚被认为能够更有效的淬灭SO -4• 和HO•[11],同时苯酚具有疏水性,易于吸附于固相物质表面,从而阻止PMS 与固体表面的活性点位接触,导致降解结果下降[20].故推测当溶液中PMS 与N -CNT 接触后,反应产生的SO -4•会被苯酚淬灭,从而导致降解效果下降.如图4(c)所示,在投加苯酚体系中,当n (phenol)/n (AO7)= 100/1时,60min 反应降解了33.0%;增大苯酚浓度为1000:1时,60min 时AO7降解了18.7%.可见苯酚对N -CNT 活化PMS 降解AO7的抑制作用很强.且从N -CNT 的FT -IR 图(图1)可以看出其表面含有大量官能团,如O—H 、C=O 等,这些官能团可以活化PMS 产生自由基[19].由此可以推断N -CNT 活化PMS 产生SO -4•发生在N -CNT表面.2.4 N -CNT 投加量的影响10203040 50 60t (min) c /c 010203040 50 60t (min)c /c 0图5 N -CNT 投加量对AO7降解的影响 Fig.5 Effect of N -CNT dosage on the removal of AO7[AO7] = 20mg /L,n (PMS)/n (AO7) = 40/1,pH = 7.0,T = 20℃N -CNT 投加量对降解AO7的效果如图5所示.固定PMS 投加量为40mg/L,60min 时N -CNT 对AO7吸附了1.6%,在加入一定量PMS 之后,相同浓度下的N -CNT 降解AO7达到31.3%;投加量增加至200mg/L 时,PMS/N -CNT 系统内7期 王 莹等:氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7 2587AO7在60min 时完全降解; 继续增大投加量为400mg/L 时,AO7在20min 就可完全降解.主要原因是N -CNT 用量增加,提供了更多的活化点位,活化效果增强;同时由于N -CNT 的用量的增加,对染料AO7的吸附量也略微提高. 2.5 PMS 浓度的影响图6为不同PMS 浓度对AO7降解的影响.可以看出,与N -CNT 用量对AO7降解的影响相似,随PMS 浓度的增大,AO7降解速度越快,降解完全所需时间越短.当n (PMS):n (AO7)为10:1时,反应至60min 时AO7仅降解59.5%; 然而当n (PMS): n (AO7)为20:1、40:1时,反应至60min 时AO7分别降解了81.4%和97.3%.继续增大PMS 用量至n (PMS): n (AO7)= 80:1,AO7降解至99%以上仅需30min.有研究认为,当PMS 浓度过高时,自由基相互反应,产生氧化能力较弱的SO — 5·等[见式(1) ~ (2)].因此PMS 浓度应控制在适当范围,后续实验选取n (PMS): n (AO7)为40:1.HSO — 5 + SO — 4·→ SO — 5·+ SO 2—4 +H + (1) SO — 4·+ SO — 4·→ S 2O 2—8(2)0 10 20 30405060t (min)c /c 0图6 PMS 浓度对AO7降解的影响Fig.6 Effect of PMS concentration on the removal ofAO7[AO7] = 20mg /L,[N -CNT] = 200mg /L,pH = 7.0,T = 20℃ 2.6 pH 值的影响 图7显示了不同初始pH 值对反应活化体系降解AO7的影响.从中可知,在pH 值为3时反应速率最快,且随着pH 值的增大,在pH 值分别为5、7、9时,反应速率逐渐降低.这一现象可能与N -CNT 的表面零电荷点有关.当溶液pH<pH pzc 时,N -CNT 表面带正电荷,有利于阴离子染料吸附;当溶液pH > pH pzc 时,N -CNT 表面带负电荷,有利于阳离子染料的吸附[19].经测得N -CNT 的pH pzc 为4.4,所以当溶液pH 值分别为5、7、9时,N -CNT 表面带负电荷.由于AO7属于阴离子偶氮染料,导致AO7与N -CNT 的表面产生相互排斥的效果,使得表面反应不容易进行;同时,在碱性条件下,SO — 4·易转化为HO·,且HO·会与OH —反应使氧化剂淬灭[见式(3)~(4)].SO — 4·+ OH —→ SO 2—4+ HO·(3) HO·+ OH — → O —·+ H 2O (4)10203040 50 60t (min)c /c 0图7 初始pH 值对AO7降解的影响 Fig.7 Effect of initial pH on the removal of AO7[AO7]=20mg /L,n (PMS)/n (AO7)=40/1,[N -CNT]=200mg /L,T =20℃2.7 温度变化的影响温度通常是活化反应中的关键因素,如图8(a)所示,考察了不同温度条件下活化降解AO7效果.可以看出,PMS 单独活化降解AO7受温度影响较小,在60℃下反应60min 时,AO7降解率仅为5.5%;而N -CNT 活化PMS 降解AO7,随反应体系温度升高,降解速率加快.当在50℃时,N - CNT 活化降解AO7在20min 时降解率可达到99.5%,而当在60℃时,AO7降解完全仅需15min.这可能是因为在高温条件下N -CNT 更易活化PMS 产生SO —4,并且染料分子在高温下容易克服反应活化能.由图8(b)可知,在不同温度条件下,N -CNT/PMS 体系降解AO7符合一级降解动力学,反应速率常数k 随温度升高逐渐变大,表明2588 中 国 环 境 科 学 37卷随温度升高,降解速率加快;并通过Arrhenius 公式计算出反应活化能E a 为69.7kJ/mol.t (min)c /c 05 10 15202530-8-6-4-2 0 t (min)l n (c /c 0)图8 反应温度对AO7降解的影响以及一级降解动力学与Arrhenius 拟合Fig.8 Effect of reaction temperature on AO7 degradationand first order kinetics model and Arrhenius plot[AO7]=20mg /L,n (PMS)/n (AO7)=40/1,[N -CNT]=200mg /L,pH=7.02.8 NaCl 、Na 2SO 4和Na 2CO 3对反应的影响印染工艺中往往通过投加NaCl 加速染色,导致其产生废水通常含有大量的NaCl,然而Cl -对高级氧化过程有较大影响.图9显示了不同浓度NaCl 对活化降解AO7的影响.可以看出,加入Cl -会促进AO7的降解,且随着Cl -浓度的增加,AO7降解速率增大.当Cl -浓度为10mmol/L 时,反应在30min 时降解99%;当Cl -浓度达到100mmol/L 时,AO7在10min 时已经降解完全.以上实验结果的原因可能是,当NaCl 存在时,Cl-与HSO - 5反应生成具有强氧化性的HClO[见式(5)~(9)].在SO - 4•和ClO -共同作用下,AO7降解速率明显提高. 0.00.20.40.60.81.0t (min) c /c 0图9 N aCl 浓度对AO7降解的影响Fig.9 Effect of NaCl amounts on AO7 removal[AO7] = 20mg /L,n (PMS)/n (AO7) = 40/1,[N -CNT] = 200mg /L,pH =7.0,T = 20℃t (min) c/c 00.00.20.40.60.81.0t (min) c /c 0图10 N a 2SO 4和Na 2CO 3浓度对AO7降解的影响 Fig.10 Effect of N a 2SO 4 and Na 2CO 3 amounts on AO7 removal[AO7] = 20mg /L,n (PMS)/n (AO7) = 40/1,[N -CNT] = 200mg /L,pH =7.0,T = 20 ℃ HSO - 5 + 2Cl - → SO 42- + HOCl (5) Cl — + HSO -5 → SO 42- + HOCl (6) HSO -5 + 2Cl - + H + → SO 42- + Cl 2 + H 2O (7)7期 王 莹等:氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7 2589Cl 2(aq) + H 2O →HOCl + H + + Cl -(8)HOCl → ClO - + H +(9) 染料废水中除NaCl 浓度较高之外,通常以硫酸钠、碳酸钠等作为直接染料而导致染料废水中大量SO 2- 4、CO 2-3的存在.从图10可以看出随着Na 2SO 4和Na 2CO 3浓度的升高,反应体系中AO7降解速率增大.这可能是因为高浓度的SO 2-4和CO 2-3可以增强离子强度,从而导致染料分子之间相互聚合,染料分子团聚后,更容易吸附于N - CNT 表面,从而有利于染料和表面活性自由基的反应,促进AO7氧化脱色. 2.9 降解分析200 300 400500600 700吸光度波长(nm)0 20 40600.50.6 0.7 0.8 0.9 1.0t (min)T O C /T O C 0N-CNT+AO7+PMS N-CNT+AO7(b)图11 AO7降解紫外可见光谱及TOC 去除率 Fig.11 UV -Vis spectra for degradation of AO7 (a) andTOC removal in N -CNT/PMS systems (b)[AO7] = 20mg /L,n (PMS)/n (AO7) = 40/1,[N -CNT] = 200mg /L,pH =7.0,T = 20℃图11(a)所示为N -CNT/PMS 体系降解AO7过程中紫外可见光谱.可以看出,AO7主要有484nm 和310nm 处的特征吸收峰,分别代表AO7的发色基团偶氮键和萘环结构.随活化反应的进行,位于484nm 和310nm 处的AO7特征峰强度不断下降,表明AO7的偶氮键和萘环结构不断被SO -4•氧化;60min 后,偶氮键和萘环的特征峰接近消失.为了进一步研究各N -CNT/PMS 体系降解AO7的TOC 变化情况,本次研究还对反应过程中的TOC 进行了测试,如图11(b)所示,对N -CNT 体系,在0、20、40、60min 分别取样,它们对AO7吸附效果的TOC 去除率分别为0%、14.8%、15.1%和15.3%;而对于N -CNT/PMS 体系中,在0、20、40、60min 分别取样,它们对AO7的TOC 去除率分别为0%、19.6%、20%和20.4%.结果表明N -CNT/PMS 体系对AO7不仅有良好的降解效果,而且具有一定的矿化能力. 3 结论3.1 N -CNT 活化PMS 降解AO7效果良好,可以证实CNT 活化PMS 产生的自由基主要是SO 4-•, PMS 被活化的场所在N -CNT 的表面.3.2 AO7降解效果随N -CNT 投加量、PMS 浓度、温度、Cl -等离子浓度的增大而得到提高.初始pH 值对降解有较大的影响,偏酸性条件下更有利于反应进行.3.3 N -CNT/PMS 体系对AO7的脱色效果良好,且N -CNT/PMS 体系能使AO7分子得到一定程度的矿化.参考文献:[1] Ji P, Zhang J, Chen F, et al. Study of adsorption and degradationof acid orange 7 on the surface of CeO 2 under visible lightirradiation [J]. Applied Catalysis B: Environmental, 2009, 85(3/4):148-154.[2] Xu X, Li X. Degradation of azo dye Orange G in aqueoussolutions by persulfate with ferrous ion [J]. Separation and Purification Technology, 2010,72(1):105-111.[3] Gupta V K, Gupta B, Rastogi A, et al. A comparativeinvestigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113 [J]. Journal of Hazardous Materials, 2011,186(1):891-901.[4] Anipsitakis G P, Dionysiou D D. Degradation of OrganicContaminants in Water with Sulfate Radicals Generated by the2590 中国环境科学 37卷Conjunction of Peroxymonosulfate with Cobalt [J].Environmental Science & Technology, 2003,37(20):4790-4797. [5] Saleh T A, Gupta V K. Photo-catalyzed degradation of hazardousdye methyl orange by use of a composite catalyst consisting ofmulti-walled carbon nanotubes and titanium dioxide [J]. Journalof Colloid and Interface Science, 2012,371(1):101-106.[6] Khataee A R, Pons M N, Zahraa O. Photocatalytic degradation ofthree azo dyes using immobilized TiO2nanoparticles on glassplates activated by UV light irradiation: Influence of dye molecular structure [J]. Journal of H azardous Materials, 2009,168(1):451-457.[7] Cuiping B, Xianfeng X, Wenqi G, et al. Removal of rhodamine Bby ozone-based advanced oxidation process [J]. Desalination,2011,278(1-3):84-90.[8] Faria P C C, órfão J J M, Pereira M F R. Activated carbon andceria catalysts applied to the catalytic ozonation of dyes andtextile effluents [J]. Applied Catalysis B: Environmental, 2009,88(3/4):341-350.[9] 陈家斌,魏成耀,房聪,等.碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7 [J]. 中国环境科学, 2016,36(12):3618-3624. [10] 张黎明,陈家斌,房聪,等.Cl-对碳纳米管/过一硫酸盐体系降解金橙G的影响 [J]. 中国环境科学, 2016,36(12):3591-3600. [11] Yang S, Yang X, Shao X, et al. Activated carbon catalyzedpersulfate oxidation of Azo dye acid orange 7 at ambient temperature [J]. Journal of H azardous Materials, 2011,186(1):659-666.[12] Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation ofChlorinated Ethenes by H eat-Activated Persulfate: Kinetics andProducts [J]. Environmental Science & Technology, 2007,41(3):1010-1015.[13] Liang C, Bruell C J. Thermally Activated Persulfate Oxidation ofTrichloroethylene: Experimental Investigation of Reaction Orders[J]. Industrial & Engineering Chemistry Research, 2008,47(9):2912-2918.[14] Ghauch A, Tuqan A M, Kibbi N, et al. Methylene bluediscoloration by heated persulfate in aqueous solution [J].Chemical Engineering Journal, 2012,213:259-271.[15] Gao Y, Gao N, Deng Y, et al. Ultraviolet (UV) light-activatedpersulfate oxidation of sulfamethazine in water [J]. ChemicalEngineering Journal, 2012,195-196:248-253.[16] H e X, de la Cruz A A, Dionysiou D D. Destruction ofcyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254nm activation of hydrogen peroxide, persulfate and peroxymonosulfate [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013,251:160-166.[17] Kusic H, Peternel I, Ukic S, et al. Modeling of iron activatedpersulfate oxidation treating reactive azo dye in water matrix [J].Chemical Engineering Journal, 2011,172(1):109-121.[18] Rodriguez S, Vasquez L, Costa D, et al. Oxidation of Orange Gby persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI) [J]. Chemosphere, 2014,101:86-92.[19] Yang S, Xiao T, Zhang J, et al. Activated carbon fiber asheterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7in aqueous solution [J].Separation and Purification Technology, 2015,143:19-26.[20] Oh W, Lua S, Dong Z, et al. Performance of magnetic activatedcarbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes [J].Journal of Hazardous Materials, 2015,284:1-9.[21] Lee Y, Lo S, Kuo J, et al. Promoted degradation ofperfluorooctanic acid by persulfate when adding activated carbon [J]. Journal of Hazardous Materials, 2013,261:463-469.[22] O'Reilly J M, Mosher R A. Functional groups in carbon black byFTIR spectroscopy [J]. Carbon, 1983,1(21):47-51.[23] Sun X, Li Y. Colloidal Carbon Spheres and Their Core/ShellStructures with Noble-Metal Nanoparticles [J]. Angewandte Chemie International Edition, 2004,43(5):597-601.[24] Fierro V, Torné-Fernández V, Celzard A, et al. Influence of thedemineralisation on the chemical activation of Kraft lignin with orthophosphoric acid [J]. Journal of H azardous Materials, 2007, 149(1):126-133.[25] 李莉香,刘永长,耿新,等.氮掺杂碳纳米管的制备及其电化学性能 [J]. 物理化学学报, 2011,27(2):443-448.[26] Zhang J, Shao X, Shi C, et al. Decolorization of Acid Orange7with peroxymonosulfate oxidation catalyzed by granular activated carbon [J]. Chemical Engineering Journal, 2013,232: 259-265.致谢:本实验的表征测量等工作由江苏省环境科学与工程重点实验室协助完成,在此表示感谢.作者简介:王莹(1993-),女,黑龙江七台河人,硕士研究生,主要从事污水处理研究.。
富五边形缺陷氮掺杂碳纳米材料的英文缩写
富五边形缺陷氮掺杂碳纳米材料的英文缩写Title: FND-CNM: A review of nitrogen-doped carbon nanomaterials with pentagon-rich defectsAbstract:Nitrogen-doped carbon nanomaterials with pentagon-rich defects, also known as FND-CNM, have garnered significant attention in the field of materials science due to their unique electronic and physical properties. In this review, we provide a comprehensive overview of the synthesis methods, characterization techniques, and potential applications ofFND-CNM.Introduction:Carbon nanomaterials, such as graphene and carbon nanotubes, have shown great promise for a wide range of applications, including energy storage, catalysis, and sensors. One of the key advantages of carbon nanomaterials is their high conductivity and mechanical strength. However, the performance of these materials can be further enhanced by introducing heteroatoms, such as nitrogen, into the carbon lattice. Nitrogen-doping has been shown to improve theelectrochemical properties and catalytic activity of carbon nanomaterials.Methodology:The synthesis of FND-CNM typically involves the pyrolysis of nitrogen-containing precursors, such as melamine, under high temperature and inert atmosphere. The presence of pentagon-rich defects in the carbon lattice can be achieved by controlling the growth conditions, such as temperature and precursor concentration. Characterization of FND-CNM can be performed using various techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy.Results and Discussion:FND-CNM have been shown to exhibit excellent electrocatalytic activity for oxygen reduction reactions, as well as high capacitance for supercapacitor applications. The incorporation of nitrogen atoms into the carbon lattice creates additional active sites for chemical reactions, leading to improved catalytic performance. Furthermore, the presence of pentagon-rich defects enhances the electronic properties of thematerial, resulting in higher conductivity and charge storage capacity.Conclusion:In conclusion, FND-CNM represent a promising class of materials for various applications, including energy storage, catalysis, and sensors. The unique combination of nitrogen doping and pentagon-rich defects leads to enhanced electrochemical properties and mechanical strength. Further research is needed to optimize the synthesis methods and explore new applications for FND-CNM.Keywords: FND-CNM, nitrogen-doped carbon nanomaterials, pentagon-rich defects, electrocatalysis, supercapacitors, energy storage.。
掺氮石墨烯的制备及其ORR催化性能的研究
掺氮石墨烯的制备及其ORR催化性能的研究李鹏飞;王升高;孔垂雄;杜祖荣;邓泉荣;王戈明【摘要】Some outstanding properties of nitrogen-doped graphene has attracted much attention.The most synthesis methods of nitrogen-doped graphene need high temperature and long time which wiil destroy the structure of graphene and weaken the performance. In this article,we propose nitrogen plasma discharge method for synthesis of N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide(GO)sheets. Meantime,various characterization tech-niques,such as Raman,TEM are introduced. Electrical measurements demonstrate that products have higher catalytic per-formance for Oxygen Reduction Reaction in an alkaline solution.%由于掺氮石墨烯具有优异的电化学性能,受到研究者的关注,然而在石墨烯掺氮的方法中大部分(热解法、烧结法)需要过高的温度(500~900℃)和较长的反应时间(2~3 h)[1-3]。
采用微波等离子体对氧化石墨进行还原改性制备掺氮石墨烯,在低功率条件下反应时间只需20 min就得到了催化活性良好的掺氮石墨烯。
氮掺杂石墨烯
Although CNTs and their N-doped counterparts have been synthesized and studied for some years,the large-scale preparation of graphene sheets by chemical vapor deposition(CVD)is only the recent development.17,18More recently,attempts have been quartz purging min. furnaceFigure1.(a)A digital photo image of a transparent N-graphenefilmfloating on water after removal of the nickel layer by dissolving in an aqueous acid so-lution;(b,c)AFM images of the N-graphenefilm and the correpsonding height analyses along the lines marked in the AFM image(c1؊c3in panel c).Figure2.TEM and Raman analyses of the N-graphenefilms.(a)Low-magnification TEM image showing a few layers of the CVD-grown N-graphenefilm on a grid.Inset shows the correspondingelectron diffraction pattern.(b؊d)High magnification TEM imagesshowing edges of the N-graphenefilm regions consisting of(b)2,(c)4,and(d)ca.4؊8graphene layers.(e)The corresponding Ramanspectra of the N-graphenefilms of different graphene layers on aSiO2/Si substrate(Methods).XPS survey for the as-synthesized N-graphene shows the high-resolution N1s spectrum.the C-graphene suggests a stronger O2the former,an additional advantage asRRDE voltammograms for the ORR in air-saturated0.1M KOH at the C-graphene electrode(red line), line),and N-graphene electrode(blue line).Electrode rotating rate:1000rpm.Scan rate:0.01V/s.Mass Mass(N-grapene)؍7.5g.(b)Current density(j)؊time(t)chronoamperometric responses obtained at theN-graphene(square line)electrodes at؊0.4V in air saturated0.1M KOH.The arrow indicates the addition methanol into the air-saturated electrochemical cell.(c)Current(j)؊time(t)chronoamperometric response and N-graphene(square line)electrodes to CO.The arrow indicates the addition of10%(v/v)CO into KOH at؊0.4V;j o defines the initial current.(d)Cyclic voltammograms of N-graphene electrode inbefore(circle line)and after(square line)a continuous potentiodynamic swept for200000cycles at Scan rate:0.1V/s.。
氮掺杂碳材料的制备及在超级电容器中的应用研究
摘要能源稀缺和环境污染已成为21世纪不可忽视的两大社会问题,学者们纷纷致力于寻找和开发清洁环保的可再生能源以及安全高效的储能装置。
其中,超级电容器(电化学电容器或法拉第电容器),因为其具有充放电速率快、功率密度高、循环稳定性好等优点,逐渐成为了科学家们的研究重点。
碳材料作为一种常用的超级电容器电极材料,具有比表面积大、孔径结构可调控、导电性能好和来源广泛、成本低廉等优点,受到了广泛的关注。
但单纯的碳材料作为电极材料时,存在比电容和能量密度较低的缺点,严重限制了其进一步发展和应用。
据报道,在碳基骨架中掺杂氮、磷、氧、硼等杂原子,能有效对碳材料进行改性,增加其比电容和能量密度。
本课题主要制备了三种氮掺杂的多孔碳材料(PNCs),研究不同前驱体及碳化温度对PNCs形貌、结构和电化学性能的影响,并探究了PNCs样品作为超级电容器电极材料的实用性能:首先,以对苯二胺(PPD)和三聚氯氰(TCT)为主要原料,通过缩聚反应生成具有三嗪结构的微孔聚合物,再在不同温度下煅烧碳化,制备氮掺杂的碳材料。
测试表征结果表明:碳化温度是影响电极材料比表面积、孔径分布、氮掺杂量和电化学性能的重要因素;碳化温度升高时,样品的比表面积和微孔孔体积逐渐增大,但当碳化温度过高时,比表面积和微孔孔体积变小,碳化温度为900 ℃时,样品具有最高的比表面积和微孔孔体积;随着碳化温度的逐渐升高,样品的石墨化程度逐渐变大,导电性逐渐增强,氮含量逐渐减少。
在比表面积、孔径结构、氮掺杂量和导电性能的综合作用下,900 ℃碳化的样品(N-CTF-900) 在1 A g-1电流密度时具有264 F g-1的比电容,为各个碳化温度中的最大值,且其具有良好的倍率性能和循环稳定性。
其次,分别以对苯二胺(PPD)为碳源和氮源,六氯环三磷腈(HCCP)为氮源和磷源,通过氨基对氯的亲核取代,生成具有微孔结构的聚合物,再置于不同温度的管式炉中煅烧碳化,制备氮磷共掺杂的多孔碳材料。
纳米管壁数对氮掺杂碳纳米管氧还原反应活性的影响
化工进展Chemical Industry and Engineering Progress2022年第41卷第4期纳米管壁数对氮掺杂碳纳米管氧还原反应活性的影响张爱京1,江胜娟1,周明正1,柴茂荣1,张劲2(1国家电投集团氢能科技发展有限公司,北京102209;2北京航空航天大学空间与环境学院,北京102206)摘要:通过预氧化和氨水水热法在含有不同壁数的碳纳米管表面成功引入含氮基团,从而获得了氮掺杂碳纳米管(NCNT ),并研究了纳米管壁数对不同NCNT 氧还原反应活性的影响。
研究表明,各NCNT 中氮元素的含量和含氮基团的种类相似,但不同含氮基团的比例则相差较大,其中平均壁数为2.5的NCNT 样品含有最低的吡啶氮和石墨氮比例,而该样品却展现出最高的电子转移数和最大的氧还原反应极限扩散电流。
分析表明,NCNT 的氧还原反应活性决定于纳米管壁数,而不是吡啶氮和石墨氮活性基团的比例,即NCNT 的内壁为反应电荷的转移提供了有效导电途径,并通过隧穿效应将电子转移到外壁,而外壁的含氮基团活性位点得到电子从而将O 2转变为OH -。
随着NCNT 壁数的增加,NCNT 中电子隧穿效应减弱,NCNT 的氧还原反应(ORR )活性也随之降低。
关键词:氮掺杂碳纳米管;纳米管壁数;氧还原反应;碱性;隧穿效应中图分类号:TM911文献标志码:A文章编号:1000-6613(2022)04-2038-08Effect of wall number on the electro-catalytic activity of nitrogen-dopedcarbon nanotubes for oxygen reduction reactionZHANG Aijing 1,JIANG Shengjuan 1,ZHOU Mingzheng 1,CHAI Maorong 1,ZHANG Jin 2(1State Power Investment Corporation,Hydrogen Energy Company Limited ,Beijing 102209,China;2School of Space andEnvironment,Beihang University,Beijing 102206,China)Abstract:Nitrogen-doped carbon nanotubes (NCNT)were prepared by introducing nitrogen-containing groups into surface of carbon nanotubes of different wall numbers using the pre-oxidation treatment and the ammonia hydrothermal method.Effect of carbon nanotube wall number on the electro-catalytic activity of NCNT for oxygen reduction reaction (ORR)was investigated.X-ray photoelectronic spectroscopy showed that the nitrogen content and the types of nitrogen-containing groups of each NCNT was similar.On the contrary,the content of different nitrogen-containing groups in each NCNT was quite different.Among them,the NCNT sample with an average wall number of 2.5exhibited the lowest contents of pyridine nitrogen and graphite nitrogen,whereas it exhibited the highest ORR activity in terms of the most positive half-wave potential and the highest limiting current density.This indicated that the ORR activity of NCNT was decided by the number of walls of NCNT,rather than that of pyridine nitrogen and graphite nitrogen active groups when the samples had the similar nitrogen content.For this sample,the inner layer provided an effective conductive path to transfer electrons from the inner layer to the outer layer through the tunneling effect,and then the active sites of the nitrogen-containing groups on the outer研究开发DOI :10.16085/j.issn.1000-6613.2021-0910收稿日期:2021-04-27;修改稿日期:2021-07-07。
天津大学彭文朝课题组--通过多孔工程和掺杂策略微调石墨烯上自由基非自由基途径
天津大学彭文朝课题组--通过多孔工程和掺杂策略微调石墨烯上自由基非自由基途径使用ZnCl2,KOH和CO2活化了氮和硫共掺杂石墨烯(N,S-G),开发了不同种类的缺陷和功能性。
这里,改性的碳催化剂被用来活化过一硫酸盐(PMS),用于苯酚降解。
与掺氮石墨烯(N-G)相比,N,S-G表现出更好的催化活性,并且使用KOH活化会进一步增强氧化效率。
自由基淬火实验,电化学表征和电子顺磁共振表征揭示N-G通过非自由基途径激活了PMS。
二次硫掺杂剂将反应途径转变为自由基主导的氧化反应(SO4·和·OH)。
不同于局限于催化剂表面的非自由基物质,自由基氧化会在本体溶液中产生,并保护碳催化剂免受腐蚀,从而确保碳催化剂更好的结构完整性和稳定性。
基于结构-活性关系,该工作采用了一种简便的策略,设计了一种高性能的可扩展碳催化剂,即KOH活化和N,S共掺杂的石墨烯(N,S-G-rGO-KOH),有望用于实际应用。
Figure 1. 通过不同策略合成碳催化剂的过程示意图。
Figure 2. (a-d)不同样品的扫描电子显微镜(SEM)图像。
(e-f)不同样品的投射电子显微镜(TEM)图像。
(g)N,S-G-CO2的HRTEM图像。
(h和i)N,S-G-KOH的TEM图像。
Figure 3(a)不同碳催化剂的X射线衍射(XRD)谱图,和(b)拉曼光谱。
Figure 4不同碳催化剂的(a)吸附和(b)降解曲线,以及(c)反应速率常数。
Figure 5(a)N,S-G,N,S-G-KOH和N,S-G-CO2的降解性能,以及(b)菲的化学结构。
反应条件:菲的浓度为1 ppm,催化剂的浓度为100 mg/L,PMS的浓度为3.2 mM,温度为25°C。
(c)DMPO-OH和DMPO-SO4,以及(d)TEMP-O2·−加合物的电子顺磁共振(EPR)谱。
该研究工作由天津大学Wenchao Peng课题组联合澳大利亚阿德莱德大学Xiaoguang Duan于2021年发表在ACS Catalysis期刊上。
纳米木质素基多孔炭的制备及其电化学性能
化工进展Chemical Industry and Engineering Progress2022年第41卷第6期纳米木质素基多孔炭的制备及其电化学性能娄瑞1,刘钰1,田杰1,张亚男2(1陕西科技大学机电工程学院,陕西西安710021;2陕西科技大学化学与化工学院,陕西西安710021)摘要:基于绿色低共熔溶剂(DES )高效分离麦草生物质组分以制备纳米木质素(LNP ),本文采用化学活化法并进一步热解炭化制备纳米木质素基多孔炭(LNPC )。
借助SEM 、Raman 、BET-物理吸附等分析手段研究了锌系活化剂及热解炭化温度(600℃、700℃、800℃)对LNPC 的结构特征及电化学性能的影响。
研究结果表明,相对于LNP 直接热解炭化后纳米碳粒子的极易团聚,经锌化物活化后所制备的LNPC 表现出更好的分散性和多级孔道形貌结构。
尤其,以ZnCO 3活化后制备的LNPC-ZnCO 3-800具有更突出的性能,较高石墨化程度(I D /I G 为0.68)、较高BET 比表面积(679m 2/g )、高介孔率(86.7%)、均匀纳米碳粒子构成的介孔结构。
此外,以LNPC-ZnCO 3-800制备的工作电极,在0.5A/g 时的比电容可达179F/g ,与直接热解炭化的LNPC-800(64F/g )相比,其比电容的容量提高了180%。
关键词:纳米木质素;活化;热解;多孔炭;电化学中图分类号:TK6文献标志码:A文章编号:1000-6613(2022)06-3170-08Preparation of LNP-based hierarchical porous carbon and itselectrochemical propertiesLOU Rui 1,LIU Yu 1,TIAN Jie 1,ZHANG Yanan 2(1College of Mechanical and Electrical Engineering,Shaanxi University of Science and Technology,Xi ’an 710021,Shaanxi,China;2College of Chemistry and Chemical Engineering,Shaanxi University of Science and Technology,Xi ’an710021,Shaanxi,China)Abstract:Based on green deep eutectic solvent (DES),wheat straw biomass fractionations were efficiently isolated to prepare lignin nanoparticles (LNP).LNP-based carbon (LNPC)with hierarchical porous microstructure was prepared by chemical activation and further pyrolysis and carbonization.The influences of Zn-activators and pyrolysis temperatures (600℃,700℃,800℃)on the structural properties and electrochemical performances of LNPC were studied by means of SEM,Raman,BET analyzers,etc .The results proved that the activated LNPC with Zn-activators exhibited better dispersibility and more hierarchical porous morphology compared with LNPC from direct pyrolysis consisted of massive carbon nanoparticles aggregation.In particular,LNPC-ZnCO 3-800possessed outstanding performances on better graphitization (I D /I G =0.68),higher BET specific surface area (679m 2/g),more mesoporous pores (86.7%)and uniform carbon nanoparticles.Moreover,LNPC-ZnCO 3-800had a high specific capacitance of 179F/g at a current density of 0.5A/g,which was 180%higher than that of LNPC-800(64F/g).Keywords:lignin nanoparticles;activation;pyrolysis;porous carbon;electrochemical研究开发DOI :10.16085/j.issn.1000-6613.2021-1567收稿日期:2021-07-23;修改稿日期:2021-09-18。
多金属掺杂氮化碳英语表达
多金属掺杂氮化碳英语表达全文共四篇示例,供读者参考第一篇示例:Multi-metal-doped carbon nitride, a type of carbon-based material, has attracted increasing attention in recent years due to its unique properties and wide range of applications. The incorporation of multiple metals into the carbon nitride structure enhances its catalytic activity, stability, and conductivity, making it a promising material for various industrial and environmental applications.第二篇示例:英文:Title: Multimetal Doped Nitrogen-Carbon: A Versatile Material for Various ApplicationsSynthesis of MM-N-C Materials:The synthesis of MM-N-C materials involves the incorporation of multiple metals into the nitrogen-carbon matrix through various methods such as chemical vapor deposition, hydrothermal synthesis, and solvothermal synthesis. The choiceof metals and their doping levels can significantly affect the properties of MM-N-C materials, such as conductivity, catalytic activity, and mechanical strength.第三篇示例:Properties of multi-metal doped carbon nitrideThe incorporation of multiple metal dopants into carbon nitride can induce significant changes in its electronic and structural properties. Metal dopants can act as active sites for catalytic reactions by facilitating charge transfer processes and modifying the energetics of surface reactions. Additionally, the presence of metal atoms can create defects and vacancies in the CN lattice, leading to increased catalytic activity and stability. The synergistic effects between different metal dopants can further enhance the performance of multi-metal doped carbon nitride as a catalyst. For instance, the co-existence of iron and cobalt dopants in CN can promote the formation of active species for oxygen reduction reactions and improve the overall efficiency of fuel cells.第四篇示例:Multi-metal-doped carbon nitride (CNx) is a novel and promising material that has attracted significant attention inrecent years due to its unique properties and wide range of potential applications. In this article, we will discuss the synthesis, properties, and applications of multi-metal-doped CNx.。
氮化碳催化有机反应
氮化碳催化有机反应英文回答:Nitrogen-doped carbon materials have gained significant attention in recent years due to their unique properties and potential applications in catalysis. Nitrogen-doped carbon catalysts have been widely used in various organic reactions, showing excellent catalytic performance and high selectivity.One of the key advantages of nitrogen-doped carbon catalysts is their ability to activate and stabilize reactive intermediates during organic reactions. The nitrogen atoms in the carbon matrix can serve as Lewis bases, providing electron-rich sites for coordination with reactants or intermediates. This coordination interaction can enhance the reactivity of the reactants and facilitate the formation of desired products.For example, in the hydrogenation of nitroarenes,nitrogen-doped carbon catalysts can effectively adsorb and activate the nitro group, leading to a more facile hydrogenation process. The presence of nitrogen atoms in the carbon matrix can stabilize the intermediate formed during the reaction, preventing its further decomposition and promoting the selective formation of the corresponding aminoarene.In addition to their role in activating reactive intermediates, nitrogen-doped carbon catalysts can also exhibit unique catalytic properties due to the presence of different nitrogen functional groups. Nitrogen atoms can be incorporated into the carbon matrix in various forms, such as pyridinic, pyrrolic, and graphitic nitrogen. Each type of nitrogen species can contribute differently to the catalytic activity and selectivity of the catalyst.For instance, pyridinic nitrogen species have been found to exhibit strong interaction with metal nanoparticles, leading to enhanced catalytic activity in various reactions, such as oxygen reduction reaction and hydrogen evolution reaction. On the other hand, pyrrolicnitrogen species can act as basic sites, facilitating acid-base catalysis in reactions like Knoevenagel condensation and aldol reaction.Furthermore, the presence of graphitic nitrogen in the carbon matrix can improve the conductivity of the catalyst, enabling efficient charge transfer during electrocatalytic reactions. This property is particularly beneficial for reactions involving electron transfer processes, such as oxygen reduction reaction in fuel cells.Overall, nitrogen-doped carbon catalysts have shown great potential for various organic reactions due to their unique properties and versatile catalytic performance. The incorporation of nitrogen atoms in the carbon matrix can activate reactive intermediates, stabilize reaction intermediates, and provide different types of active sites for specific reactions. These catalysts offer new opportunities for the development of sustainable and efficient organic synthesis methodologies.中文回答:氮化碳材料由于其独特的性质和在催化领域的潜在应用而受到了广泛关注。
氮掺杂的碳纳米管分子式
氮掺杂的碳纳米管分子式氮掺杂的碳纳米管分子式(N-doped carbon nanotube formula)引言骤然兴起的纳米技术在各个领域都带来了巨大的影响和潜力。
在纳米材料的研究中,碳纳米管因其独特的结构和优异的性能备受关注。
然而,传统的碳纳米管在某些应用中的局限性使得科学家们开始寻求一种能够更好满足特定需求的改良方法。
其中,氮掺杂的碳纳米管成为了研究的热点之一。
本文将从深度和广度两个方面探讨氮掺杂的碳纳米管分子式,为读者提供全面的了解。
一、对氮掺杂的碳纳米管分子式的深入评估1. 碳纳米管的基本结构碳纳米管是由碳原子排列形成的纳米级管道状结构。
其形成过程受到生长条件和碳原子排列方式的影响。
碳纳米管可分为单壁碳纳米管和多壁碳纳米管两种,分别由一个和多个层次的碳原子构成。
2. 氮原子的掺杂方式氮掺杂是指将氮原子引入碳纳米管结构中,生成氮掺杂的碳纳米管。
氮原子可通过不同的方法掺杂,如在碳纳米管生长过程中引入氮源、热处理或离子注入等。
氮掺杂的方式对碳纳米管的性质产生重要影响。
3. 氮掺杂对碳纳米管性能的影响氮掺杂的碳纳米管相较于传统的纯碳纳米管具有独特的物理和化学性质。
氮原子的引入改变了碳纳米管的电子结构、导电性和化学反应活性等。
氮掺杂可增加碳纳米管的导电性、提高其催化活性,并增加其在能源、储能和催化等领域的应用潜力。
二、对氮掺杂的碳纳米管分子式的广度评估1. 氮掺杂的碳纳米管的结构特征氮原子的引入使得碳纳米管结构发生改变。
通过调控氮原子的掺杂位置和浓度,可以制备出不同性质和结构的氮掺杂碳纳米管。
不同的掺杂方式产生不同的氮掺杂碳纳米管分子式,如C1-xNx (x为掺杂浓度)等。
2. 氮掺杂的碳纳米管在能源领域的应用氮掺杂的碳纳米管在能源领域展现出巨大的应用潜力。
在锂离子电池中,氮掺杂的碳纳米管作为锂离子电池负极材料能够提供更高的容量和稳定性,从而增强电池性能。
类似地,氮掺杂的碳纳米管在超级电容器、燃料电池和光催化等领域也显示出优异的性能。
氮掺多孔炭 硫酸根吸附
氮掺多孔炭硫酸根吸附
【最新版】
目录
1.氮掺多孔炭的概述
2.硫酸根吸附的重要性
3.氮掺多孔炭对硫酸根的吸附能力
4.应用前景及挑战
正文
1.氮掺多孔炭的概述
氮掺多孔炭(Nitrogen-doped porous carbon)是一种具有高比表面积、多孔性和良好吸附性能的碳材料。
通过将氮原子掺杂进多孔炭中,可以提高其电子密度和吸附能力,使其在催化、电化学和环境等领域具有广泛的应用前景。
2.硫酸根吸附的重要性
硫酸根(SO4 2-)是一种常见的阴离子,广泛存在于废水、土壤和空气中。
过量的硫酸根会对环境造成污染,对人体健康和生态系统产生危害。
因此,研究和开发高效的硫酸根吸附材料具有重要的环境意义和应用价值。
3.氮掺多孔炭对硫酸根的吸附能力
氮掺多孔炭作为一种高性能的吸附剂,在硫酸根吸附方面表现出优异的性能。
研究表明,氮掺多孔炭对硫酸根的吸附能力与其比表面积、孔径分布、氮原子掺杂量和溶液 pH 值等因素密切相关。
在一定条件下,氮掺多孔炭对硫酸根的吸附容量可以达到很高的水平,显示出良好的应用前景。
4.应用前景及挑战
氮掺多孔炭在硫酸根吸附方面具有很大的潜力,可以应用于废水处理、
土壤修复和空气净化等领域。
然而,在实际应用中,还需要克服一些挑战,如提高吸附剂的制备效率、降低成本、提高稳定性和可回收性等。
此外,针对不同场景和污染物,需要对氮掺多孔炭的制备工艺和应用策略进行优化和调整。
综上所述,氮掺多孔炭作为一种高效的硫酸根吸附剂,在环境保护领域具有广泛的应用前景。
氮掺杂碳量子点
氮掺杂碳量子点
氮掺杂碳量子点(Nitrogen-doped carbon quantum dots)是一种纳米级的碳材料,具有荧光性质和低毒性。
氮掺杂可以改变碳量子点的电子结构,增强其荧光性能和化学稳定性。
氮掺杂碳量子点可以通过简单的合成方法制备,常见的方法包括热处理、微波辅助合成、溶剂热法等。
氮掺杂碳量子点在生物成像、生物传感、能源储存等领域具有广泛的应用潜力。
由于其荧光性质优良且对生物体无毒性,可以作为生物标记物,用于细胞成像和药物释放监测等。
此外,氮掺杂碳量子点在光电器件、催化剂、传感器等方面也有着重要的应用价值。
在制备氮掺杂碳量子点时,通常会选择含氮原料和碳源进行反应。
氮原料可以是氨、尿素等,而碳源可以是葡萄糖、柠檬酸等有机物。
通过控制反应条件和材料比例,可以调控氮掺杂量和碳量子点的形貌、尺寸等特性。
总而言之,氮掺杂碳量子点是一种多功能的纳米材料,具有广泛的应用前景。
通过调控其合成方法和材料组成,可以进一步优化其性能,满足不同领域的需求。
碳点制备总结
碳量子点和碳纳米管、石墨烯一样是一种新型碳纳米材料,除了碳材料本身的低毒特性,原材料丰富,生物相容性好之外,碳量子点还有一系列其他的独特的性质,例如:多色荧光性、荧光稳定性、导电性和催化特性等。
常用来制备碳量子点的方法分为自上而下和自下而上两种方法,其中自上而下的方法是指大分子碳材料通过一定的物理、化学等方法破碎成小分子的碳纳米颗粒,包括:电解法、酸刻蚀、激光刻蚀和高温热解等方法。
而自下而上的方法是指将小分子的碳材料通过一定的化学手段合成团聚成更大分子量的碳纳米颗粒,其中包括:化学合成法、水热法、溶剂热法、等方法。
其中我们主要挑选了几种比较常见的制备碳量子点的方法。
自上而下中最长用的是酸刻蚀自然界存在的碳源,或者人工合成出来具有特定结构的碳源,前者是对自然存在的碳源加以利用,后者是为了得到更好的碳结构而处理的。
常用酸刻蚀的自然界的碳源包括动物毛发、植物纤维等,例如酸刻蚀人类头发[3],这类材料最大的特点就是原料丰富,价格低廉,是材料多级利用很好的选择。
另外常用碳纤维、石墨烯、氧化石墨烯、碳纳米管等结构有序的碳材料[4-8]作为碳点的制备原材料,这类材料可以给碳量子点提供更加规则,具有高度结晶特性的结构。
碳量子点一般选择硫酸和硝酸等稳定的浓酸作为溶剂刻蚀碳材料,硝酸和硫酸按体积比3:1的混酸是现在酸刻蚀碳材料制备碳量子点的主要方法。
这种方法可以根据不同的需要来调节碳量子点表面的含氧基团,是一种表面改性的很好的方法。
但是由于酸的引入很难简单地分离和纯化,这也是限制这种方法发展的主要原因。
此外除了酸刻蚀方法外,电化学方法点解石墨棒也得到了很大的发展[1]。
将电极两端接上一定的电压电解成碳量子点溶液,这种方法简单,易操作,而且基本不引入其他杂质,很好的提纯和分离,是这种方法得到广泛的关注。
高温热解碳材料是一种传统的制备碳量子点的方法,一般将碳源材料在高温下人分解成小分子碳点,通过溶剂提取,从而分离纯化,但是这种方法的产率太低,因此发展受到很大的限制。
氮掺杂碳功函数
氮掺杂碳功函数
氮掺杂碳(Nitrogen-Doped Carbon)通常指的是碳材料中引入氮原子的一种过程,以改变其电子结构和化学性质。
氮掺杂碳的功函数是指该材料的功函数,它是指在表征材料表面电子特性时的一个重要参数。
功函数(Work Function)是描述材料表面的一种物理性质,它表示在材料表面的电子需要克服多少能量才能逃离材料并进入自由空间(例如,空气或真空)。
具体来说,功函数是从材料内部到表面的电子排斥能量的量度。
对于氮掺杂碳,氮原子的引入可以改变碳材料的电子结构,导致功函数的变化。
一般来说,氮掺杂碳的功函数可能会减小,使其更容易释放电子。
这对于许多应用非常重要,如电子器件、电池、电催化等。
通过控制氮掺杂的方式,可以调节材料的电子性质,以满足特定应用的要求。
需要注意的是,氮掺杂碳的功函数可以通过不同的合成方法和氮掺杂程度进行调控,因此具体数值可能因材料类型和处理方法而异。
功函数通常用电子伏特(eV)为单位来表示。
氮掺杂多孔炭材料的制备及在多相催化中的应用_杨勇
mail: liying@ zjut. edu. cn. 博士, 研究员, 主要从事新型炭材料及催化剂工程研究。E-
20160227 收稿, 20160420 接受
· 906·
化学通报 2016 年 第 79 卷 第 10 期
http: / / www. hxtb. org
2 的 sp 杂化结构离域 π 体系带来负电荷, 可以增 强其导电性能。 因此, 氮元素的引入可以有效地
Preparation of Nitrogen Doped Porous Carbon Materials and Their Application in Heterogeneous Catalysis
Yang Yong , Wang Yan, Lan Guojun, Li Jian, Li Ying *
图式 2
氮掺杂炭材料中氮的存在形式及
XPS 中相应 N1s 的结合能[24] Scheme 2 Nitrogen functional forms possibly present in carbonaceous materቤተ መጻሕፍቲ ባይዱals,with their N 1s electronbinding energy[24]
2 材料的比表面积达到 1000 ~ 1300 m / g, 且氮含量 [ 27 ] 为 2% ~ 5% 。 Vinu 通过将乙二胺、 四氯化碳、
对孔结构不是很发达的材料有一定的扩孔作用 。 但其缺陷在于以气相模板法制备的氮掺杂多孔炭 材料容易引起孔结构的坍塌, 且材料中氮含量一 般都较低。 2. 1. 3 水热法 水热法是以含氮有机化合物为 原料, 大多使用生物质及生物质衍生物 ( 如树叶、
[1 ~ 6 ]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Supporting Information
for Adv. Mater., DOI: 10.1002/adma.201102200
Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core–Sheath Structure for Novel Electrodes
12
Figure S11. Cyclic voltammograms of the ORR for the composite NCNT fiber (red line) and platinum wire (black line) in 0.1 M O2-saturated KOH aqueous solution with the same scan rate of 100 mV s-1.
11
Figure S10. Linear sweep voltammograms for the dioxygen electroreduction in 0.1 M KOH based on pure CNT and composite NCNT fiber electrodes under different atmospheres with the same scan rate of 100 mV s-1. The dashed lines correspond to linear sweep voltammograms for pure CNT fibers in air-saturated (black color), N2-saturated (blue color), and O2-saturated (red color) atmospheres, respectively. The solid lines correspond to linear sweep voltammograms for composite fiber in air-saturated (black color), N2-saturated (blue color), and O2-saturated (red color) atmospheres, respectively.
Tao Chen , Zhenbo Cai , Zhibin Yang , Li Li , Xuemei Sun , Tao Huang , Aishui Yu , Hamid G. Kia , and Huisheng Peng *
Supporting Information
Figure S1. Optical micrograph of the spinning process to obtain a CNT fiber from a CNT array through a rotating probe. The left curved arrow shows the rotating direction during the spinning.
6
Table S2. Summary of the Raman characterizations for pure CNT fibers (P1-P4) and composite NCNT fibers (N1-N4). The average intensity ratio of D-band to G-band (IG/ID) for pure CNT fibers is 0.62, and the average IG/ID rises to 0.77 for composite NCNT fibers. That is, the defects increase after incorporation of nitrogen atoms into the graphitic layers in CNTs. Sample number P1 P2 P3 P4 N1 N2 N3 N4 ID 11165 10882 9117 11472 3731 3456 1606 4378 IG 16716 20026 14677 17691 4435 4699 2174 5907 ID/IG 0.67 0.54 0.62 0.65 0.84 0.74 0.74 0.74
7
Figure S6. Scaling of electrical conductivity () with temperature (T) according to the equation of exp(-A/T[1/(d+1)]) based on the Mott’s hopping model, where A is a constant and d is the dimensionality. a) Schematic illustration to the measurement based on a four-probe method. b) The plot of ln versus T-1/2 (for d = 1) with linear fitting coefficient of 0.927. c) The plot of ln versus T-1/3 (for d = 2) with linear fitting coefficient of 0.971. d) The plot of ln versus T-1/4 (for d = 3) with linear fitting coefficients of 0.981. The results indicate that the electron transport of CNT fibers is consistent with a three-dimensional hopping mechanism (Adv. Mater. 2007, 19, 3358).
2
Figure S3. Temperature distribution during the growth of NCNTs (EDA represents ethylenediamine).
3
Figure S4. a) TEM image of NCNTs; b) The diameter distribution of NCNTs calculated from TEM images. Note that the smaller linear CNTs at a are undoped CNTs coming for the core part of composite fiber.
1
Figure S2. a) Schematic illustration for the preparation of FeCl3 catalyst on the CNT fibers to grow NCNTs on their outer surfaces; b) Experimental setup for synthesis of NCNTs on the pure CNT fibers. Here “1” and “2” represent different channels for the gas flow. At the beginning of the synthesis, Channel 1 was turned on to induce the production of catalytic iron nanoparticles, while Channel 2 was turned off. After about 40 min Channel 1 was turned off while Channel 2 was turned on to image of a typical area used for energy-dispersive X-ray spectroscopy analysis of composite fiber.
5
Table S1. Summary of the elemental contents in NCNTs obtained from energy-dispersive X-ray spectroscopy. Eight different areas in two composite fibers were analyzed to produce the average values of elemental contents. The N content ranges from 4.7 to 6.0, and a trace of iron was also detected here. Sample number C atom / % N1 N2 N3 N4 86.9 84.6 86.4 85.8 N atom / % 4.7 5.7 5.5 5.2 O atom / % 8.4 9.7 8.1 9.0 Fe atom / % 0.03 0.06 0.05 0.02
8
Figure S7. Scaling of electrical conductivity () with temperature (T) according to the equation of exp(-A/T[1/(d+1)]) based on the Mott’s hopping model, where A is a constant and d is the dimensionality. a) Schematic illustration to the measurement based on a two-probe method. b) The plot of ln versus T-1/2 (for d = 1) with linear fitting coefficient of 0.927. c) The plot of ln versus T-1/3 (for d = 2) with linear fitting coefficient of 0.960. d) The plot of ln versus T-1/4 (for d = 3) with linear fitting coefficients of 0.976. The results also indicate that the electron transport of CNT fibers is consistent with a three-dimensional hopping mechanism (Adv. Mater. 2007, 19, 3358).