Discovery of Rapid X-ray Oscillations in the Tail of the SGR 1806-20 Hyperflare

合集下载

X射线吸收精细结构PPT课件

X射线吸收精细结构PPT课件
3
前言
X射线与物质的相互作用
• 一束能量为 E 的X射线穿透物质时,强度因物
质吸收有所衰减,入射光强度为Iο,穿过厚 度为d的物质后强度为I,则
I = I0 e-(E)d
(1)
吸收系数(E) 是X射线光子能量的函数
4
XAS现象(X-ray Absorption Spectroscopy)
X-射线穿过物质时产生吸收,吸收系数随 X-光光电子 能量变化。
10
In applications of EXAFS to surface science
SEXAFS (surface-EXAFS)
EXAFS SEXAFS
The principles and analysis are the same
11
XAFS提供的信息
(1)EXAFS 提供局域 (~6 Å) 结构参数 键长(± ~0.01 Å);配位数 (最近邻原子数) • 吸收原子周围的原子的种类、数量等信息,可以
晶体学的理论和结构研究方法不适用于非晶体, 而EXAFS 的理论和方法却能同时适用于晶体 和非晶体.
2
前言
• X射线与物质的相互作用 • XAS (X-ray Absorption Spectroscopy)现象 • XAFS (X-ray Absorption Fine Structure)现象 • EXAFS 现象 • XANES 现象
测定待分析物中某种特定原子周围配位状况,它 反映的仅仅是物质内部吸收原子周围短程有序的 结构状态。 • 由于不同原子的吸收边相隔足够远,其EXAFS谱 互不交叠,原则上讲可以一次实验测出样品中各 种原子的配位结构。 • 该方法可表征非晶、无序和准晶材料结构。
12

地球元素丰度及其演化规律激光探针以及激光探针(LA-ICPMS)在地学方向的应用

地球元素丰度及其演化规律激光探针以及激光探针(LA-ICPMS)在地学方向的应用

地球元素丰度及其演化规律激光探针以及激光探针(LA-ICPMS)在地学方向的应用木言(大学地球科学学院,湖北武汉55106)摘要:激光探针在各个学科应用广泛,对于微区分析及材料分析有着重要作用。

激光探针在当前分析化学技术正向着痕量微区方向发展。

这使得我们能够用更小更少的样品直接得到更多的地球化学信息。

在诸多微区测试技术中,激光剥蚀等离子质谱(LA-ICPMS)技术发展最快。

其地质应用较广,激光探针等离子体质谱能够进行固体样品的微区微量元素和同位素的分析,具有灵敏度高、简便、快速的特点,同样具有在同位素定年上的潜力。

近年来又研制出激光剥蚀多道接收等离子质谱(LA-MC-ICPMS)仪,使得微区同位素分析开始了新的革命。

而多种微区技术综合应用为近几年分析地球化学新的趋势。

关键词:同位素;激光探针;微区分析;质谱;等离子体1.引言激光探针亦称激光诱导击穿光谱分析仪,是以激光诱导击穿光谱技术为基础的物质成分分析仪,激光诱导击穿光谱利用高能量激光激发样品表面产生高温高电子数密度的等离子体,对等离子体发射光的离子或原子光谱进行分析,由其谱线波长和强度对样品元素进行定性和定量分析。

激光探针亦称激光诱导击穿光谱分析仪,是以激光诱导击穿光谱技术(LIBS)为基础的物质成分分析仪,激光诱导击穿光谱利用高能量激光激发样品表面产生高温高电子数密度的等离子体,对等离子体发射光的离子或原子光谱进行分析,由其谱线波长和强度对样品元素进行定性和定量分析。

[1]2.应用领域激光探针弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,还可以广泛适用于地质、煤炭、冶金、制药、环境、科研等不同领域的应用。

3.产品特点与其他常用元素分析的方法相比,激光探针主要优点有:[2](1)利用激光特有的性能,可实现远程、实时、在线元素检测。

(2)仪器体积相对较小,适用于现场分析、可在恶劣条件下进行测定。

HOT GAS IN THE GALAXY WHAT DO WE KNOW FOR SURE

HOT GAS IN THE GALAXY WHAT DO WE KNOW FOR SURE

A s t r o p h y s i c a l P l a s m a s : C o d e s , M o d e l s , a n d O b s e r v a t i o n s (M e x i c o C i t y , 25-29 O c t o b e r 1999)E ditors:Jan eArthu r,NancyB rick house,&JoséFra nco RevMexAA (Serie de Conferencias),9,1–5(2000)HOT GAS IN THE GALAXY:WHAT DO WE KNOW FOR SURE?W.T.Sanders Department of Physics,University of Wisconsin-Madison,USA RESUMEN En la d´e cada pasada se lograron grandes avances en nuestra concepci´o n del gas interestelar caliente de la V´ıa L´a ctea.El Diffuse X-ray Spectrometer obtuvo es-pectros del plano gal´a ctico (esto es,de la Burbuja Local),en el rango 0.15–0.28keV,que muestran l´ıneas y mezclas de l´ıneas de emisi´o n.Los espectros confirman que el fondo de rayos-X suaves,en estas energ´ıas,es de origen t´e rmico a aproximadamente 106K,pero el espectro no puede ser bien ajustado con los modelos de emisi´o n de plasma existentes.Los datos del sat´e lite ROSAT ,tanto de muestreo de todo el cielo como de observaciones puntuales,restringen las distancias del gas que emite dentro de la Burbuja Local,el medio interestelar local y el halo.Los datos confirman que la Burbuja Local tiene un tama˜n o de ∼100pc y que el halo gal´a ctico tiene dos componentes de gas caliente;una componente muy inhomog´e nea de 106K y otra componente m´a s caliente,de varios 106K,cuya distribuci´o n es suave y sigue a la es-tructura general de la Galaxia.El sat´e lite ASCA ha detectado emisi´o n de plasmas a m´a s de 107K en la cresta gal´a ctica,en dos regiones del centro gal´a ctico y en el bulbo.M´a s recientemente,el micro calor´ımetro del experimento Wisconsin/Goddard con cohetes observ´o el espectro de la emisi´o n difusa en (l,b )∼(90◦,60◦),con un campo visual de 1sr en el rango espectral 0.1–1keV y con una resoluci´o n de ∼s l´ıneas de O VII y O VIII son detectadas,pero s´o lo se obtienen l´ımites superiores para las l´ıneas esperadas de Fe XVII .ABSTRACT Major advances have been made in the past decade in our knowledge of the hot interstellar gas of our Milky Way galaxy.The Diffuse X-ray Spectrometer obtained spectra in the 0.15–0.28keV range from the Galactic plane (i.e.,from the Local Bubble)that show emission lines and blends.These spectra confirm that the soft X-ray background in this energy range is thermal in origin,at temperature roughly 106K,but the spectra are not well fit by standard plasma emission models.Data fromthe ROSAT satellite,both from the all-sky survey and from pointed observations,have provided constraints on the distances to some of the hot gas emitting regions inthe Local Bubble,the local ISM,and the Galactic halo.These data confirm that thelocal bubble is ∼100pc in size,and they indicate the existence of two independenthot gas components in the Galactic halo:a patchy,localized lower temperaturehalo component near 106K,and a smoother higher temperature halo component atseveral 106K,with a spatial structure reflective of the overall structure of the galaxy.The ASCA satellite has observed emission from hot plasmas at temperatures above107K from the Galactic ridge,from two different galactic center components,andfrom the Galactic bulge.More recently,the Wisconsin/Goddard micro-calorimetersounding rocket payload has observed the spectrum of the diffuse emission from(l,b )∼(90◦,60◦)with a 1sr field of view over the 0.1–1keV spectral range with∼8eV resolution.Lines from O VII and O VIII are clearly seen,but there are onlyupper limits to the expected Fe XVII lines.Key Words:GALAXY:GENERAL —GALAXY:STRUCTURE —ISM:BUBBLES —ISM:GENERAL —X-RAYS:ISM 1A s t r o p h y s i c a l P l a s m a s : C o d e s , M o d e l s , a n d O b s e r v a t i o n s (M e x i c o C i t y , 25-29 O c t o b e r 1999)E d i t o r s : J a n e A r t h u r , N a n c yB r i c k h o u s e , & J o s é F r a n c o2SANDERSWhat I would like to do in this talk is to summarize the observations of diffuse interstellar hot gas—meaning temperatures of order 106K—in our Galaxy.Trying to cover such a broad range of observations means that I probably won’t do a very good job describing any of them,so I apologize in advance and proceed.1.SPATIAL STRUCTUREThe most comprehensive data set we have is that obtained by the ROSAT satellite—both its all-sky survey and its pointed observations.The ROSAT all-sky survey is presented as maps in 3bands,1/4keV,3/4keV,and 1.5keV,in Snowden et al.(1995b,1997).In the 1/4keV band map,we see X-rays characteristically emitted by plasmas with T ∼106K,but interstellar absorption is large,so we can see only out to an N H of a few 1020cm −2,roughly 100–200pc.In the 3/4keV band,we are more sensitive to plasmas at T ∼3×106K,and interstellar absorption is smaller,so we can see out to N H ∼few 1021cm −2,several kpc.In the 1.5keV band we are seeing plasmas with T >107K and we see through almost the entire Galaxy.The different structures that we see in these maps reflect the structure of the Galaxy on those different distance scales.1.1.The 1/4keV BandSome of the bright features visible on the 1/4keV band map have names or are associated with features seen at other wavelengths.A large arc extending from (l,b )∼(30◦,45◦)through (l,b )∼(330◦,75◦)and reaching as far as (l,b )∼(290◦,60◦)is associated with the radio continuum North Polar Spur,which is part of radio Loop I (Berkhuijsen,Haslam,&Salter 1971).This Loop appears coincident with the edge of a superbubble associated with the Scorpius-Centaurus OB associations at a distance of ∼150pc.This is the superbubble nearest to the Local Bubble.Another superbubble,several hundred pc away,is seen in Eridanus,roughly centered at (l,b )∼(205◦,−40◦).It is associated with the cavity generated and heated by the Orion OB stars (Reynolds &Ogden 1979;Snowden et al.1995a;Guo et al.1995).The Monogem Ring (Plucinsky et al.1996),centered at (l,b )∼(205◦,10◦),is thought to be an ancient supernova remnant at a distance of ∼200pc.Also visible on this map are the Cygnus Loop supernova remnant at (l,b )∼(74◦,−9◦),and the Vela supernova remnant (l,b )∼(263◦,−3◦).In the 1/4keV band map,we see that there is emission from all directions,even the Galactic plane where we cannot see farther than ∼100pc.This implies that there is some amount of very local emission.We know from interstellar absorption studies (Sfeir et al.1999)that there is locally a deficiency of neutral material,the local cavity,so inside this local cavity is the natural place to find this local X-ray emission,the Local Bubble.Then there is the question of the bright regions at high Galactic latitudes:are they extensions of the Local Bubble,or are they due to halo or more distant emission shining into the local cavity?A number of shadowing experiments have been done with ROSAT ,in which the X-ray telescope was pointed towards a high latitude H I or molecular cloud and the decrease in X-ray brightness seen toward the cloud was used to constrain foreground and background X-ray emission.One of my favorite shadowing papers is the Snowden et al.(1994)ROSAT observation towards a 300deg 2region in Ursa Major around the direction of the lowest neutral hydrogen column density on the sky,the Lockman Window at (l,b )∼(150◦,52◦).In the 21-cm map of that paper,neutral hydrogen clouds of column density ∼3x 1020cm −2can be seen around (l,b )∼(136◦,53◦)near the Window where the N H drops as low as 0.5x 1020cm −2.The distance to these clouds has been determined by Benjamin et al.(1996)to be ∼350pc.The corresponding ROSAT 1/4keV band X-ray map has the H I contours overlaid.We see X-ray minima on the face of the clouds providing a measure of the Local Bubble contribution in this direction:more than twice as bright as in the Galactic plane,but only 70%of the total 1/4keV band emission in this direction.We also see brighter X-ray emission in directions of lower N H providing a measure of the 1/4keV halo emission.We note the lack of detailed anticorrelation between the H I and the X-ray emission,indicating that the 1/4keV halo emission is patchy on scales of 1◦.In Draco,roughly 30◦away,we see somewhat less bright emission from the Local Bubble,and much brighter 1/4keV halo emission (Burrows &Mendenhall 1991;Snowden et al.1991).But not all clouds give 1/4keV band shadows.MBM 12is a dense low latitude cloud at a distance of 90pc,located just in front of the larger Taurus-Auriga dark cloud complex.It shows little or no 1/4keV shadow (Snowden,McCammon,&Verter 1993),which is consistent with its being at the edge of the Local Bubble,butA s t r o p h y s i c a l P l a s m a s : C o d e s , M o d e l s , a n d O b s e r v a t i o n s (M e x i c o C i t y , 25-29 O c t o b e r 1999)E d i t o r s : J a n e A r t h u r , N a n c yB r i c k h o u s e , & J o s é F r a n c oHOT GAS IN THE GALAXY 3it has a definite 3/4keV shadow that is consistent with little or none (<20%)of the 3/4keV band emission arising from within the Local Bubble.Figures 2and 3in Sanders (1995)give views of the local solar neighborhood from within the plane of the Galaxy and from the north Galactic pole,showing the Sun within the local cavity,filled with the Local Bubble,the nearby Sco-Cen bubble,MBM 12within the local cavity and the Taurus cloud beyond,the UMa lines of sight,the Eridanus superbubble,and the Monogem ring.1.2.The 3/4keV BandAt 3/4keV we again see the Cygnus Loop and Vela supernova remnants and the Eridanus superbubble.The Loop I emission is more pronounced,but towards the direction (l,b )∼(0◦,0◦)much of the emission is likely from the Galactic Bulge.In this band,we now see the Large Magellanic Cloud and the so-called Cygnus Superbubble.We also see clear signs of absorption both along the Galactic plane from galactic longitude ∼330◦through the Galactic center to almost longitude 90◦,and toward the Taurus-Auriga cloud complex in the Galactic anti-center direction.The patchy halo emission seen in 1/4keV is not seen at 3/4keV,but rather at high latitudes we see smooth,nearly isotropic emission with few features.The origin of the 3/4keV band flux is still a mystery.Roughly half of the total high latitude diffuse emission has been resolved into point sources that are almost entirely AGNs (Hasinger et al.1993).Galactic stars may contribute as much as 10%of the apparently diffuse flux (Schmitt &Snowden 1990).The Local Bubble may contribute as much as 30%if the MBM 123/4keV band upper limit on the local emision scales with the 1/4keV band local count rate.An appreciable fraction appears to be coming from a smooth 3/4keV halo that is distinct from the patchy 3/4keV band halo (Wang 1998).A related mystery is why does the competition between the extragalactic and halo components that dominate at high Galactic latitudes and the Galactic components that dominate at low Galactic latitudes not produce a feature somewhere on the map?Why does the stellar and local bubble emission in the plane so exactly fill in the extragalactic emission that is absorbed in the plane?Returning to the Bulge,Park et al.(1997,1998)have presented evidence for an X-ray emitting Galactic Bulge using shadows cast by molecular clouds at distances greater than 3kpc along several lines of sight around (l,b )∼(10◦,0◦)and (l,b )∼(25◦,0◦).Almy et al.(2000)have found similar results toward a molecular cloud ∼2kpc away toward (l,b )∼(337◦,4◦).Snowden et al.(1997)have modeled the Bulge as a cylindrical emission region 5kpc in radius with a 1.9kpc scale height and with all of the N H along the line of sight between us and the emission region.Their Figure 12shows a plot of a cut through this region along Galactic longitude 335◦for both the 3/4keV band and the 1.5keV band.At all points along the cut,the data lie on or above the model,with the excess emission attributed to the Loop I superbubble along the same line of sight.The Bulge surface brightnesses found by these three groups are consistent with one another to within roughly 30%.1.3.The 1.5keV BandAs we turn to the 1.5keV band map,we see that the Galactic features are relatively weaker,and Hasinger et al.(1998)find that the fraction of the background contributed by AGNs is in the 70–80%range.More distant and hotter Galactic gas is not easily studied using ROSAT because of its limited high energy response.Both ASCA (Kaneda et al.1997)and XTE (Valinia &Marshall 1998)have observed the Galactic ridge,a very narrow strip of enhanced harder X-ray emission within 1◦of the Galactic plane towards the inner 60◦of the Galaxy.Both groups discuss this emission as arising from a population of young supernova remnants,but are not able to explain all features of the data satisfactorily.There seem to be two different Galactic ridge components,with different scale heights as well as different temperatures.Valinia &Marshall (1998)use Raymond &Smith models and obtain temperatures ∼3×107K for the ridge plasma.Kaneda et al.(1997)use two NEI plasmas to fit the ASCA data,one plasma with kT ∼0.8keV and far from equilibrium,and the other plasma having kT ∼7keV but close to equilibrium.The hottest diffuse gas seems to be within 0.5◦of the Galactic center where Maeda (1998)used ASCA data to find plasma temperatures in the range of 107−108K.A s t r o p h y s i c a l P l a s m a s : C o d e s , M o d e l s , a n d O b s e r v a t i o n s (M e x i c o C i t y , 25-29 O c t o b e r 1999)E d i t o r s : J a n e A r t h u r , N a n c yB r i c k h o u s e , & J o s é F r a n c o4SANDERS2.SPECTRAL DATAOn the subject of temperature,what do we know about the temperature,composition,or state of equilibrium of the plasmas in the Local Bubble and the Galactic halo?Not all that much,ing band ratios from the ROSAT all sky survey and from University of Wisconsin sounding rockets,and using pulse height fits to UW,ROSAT ,or ASCA data typically give temperatures ∼106K for the Local Bubble and the 1/4keV halo,with some hints of low abundances of Fe (Bloch et al.1990).For the 3/4keV band,typical temperatures are 106.4−6.5K,and for the Galactic Bulge both Park et al.(1997)and Snowden et al.(1997)found T ∼106.6−6.7K.To get higher spectral resolution,we turn to two other instruments,the Diffuse X-ray Spectrometer (DXS)and the X-ray Quantum Calorimeter (XQC).2.1.Diffuse X-Ray SpectrometerDXS is a Bragg crystal spectrometer that flew once on the Space Shuttle and was sensitive over the energy range 150–284eV,essentially the 1/4keV band,with energy resolution that varied from 5–17eV over that range.During its flight,it scanned along the Galactic plane in the longitude interval 150◦<l <300◦.Sanders et al.(1998)give a brief description of the instrument and its calibration.Figure 3of Sanders et al.(1998)shows the DXS data from the interval 220◦<l <250◦along the Galactic plane (the Puppis region),displayed as a function of energy.In this direction,the X-rays that we detect should be X-rays of Local Bubble origin almost entirely.The intensity of the DXS data is in good agreement with that measured in this direction by ROSAT and by the Wisconsin rocket survey.The spectrum shows lines and line blends that indicate that its origin is thermal,but the spectrum is not in agreement with the predictions of a single-temperature plasma in collisional equilibrium,independent of whether the model is Raymond &Smith or MekaL.As discussed in more detail in Sanders et al.(1998),the best fit that was obtained using standard equilibrium models was a modified Raymond &Smith,using line data calculated by Liedahl,with the elemental abundances allowed to float.This fit required reducing the abundances of Fe,Si,and S by factors of 2–3,but the result was still not a good fit (reduced chi-square was ∼2).Several NEI models were also tried,but their fits were no better.A lot of work remains to be done in analyzing these data,in particular not doing global model fitting,but focusing on individual ions and their lines.2.2.The X-ray Quantum CalorimeterThe XQC sounding rocket detector is a micro-calorimeter—a device that is small enough (∼1mm 2)and cold enough (∼60mK)that its heat capacity is so small that the energy of one X-ray photon raises its temperature a measurable amount.This process can be made highly repeatable so that very good energy resolution,a few eV,is obtainable.The detectors flown on the most recent University of Wisconsin/Goddard Space Flight Center sounding rocket flight achieved 4–5eV resolution in the laboratory and ∼8eV resolution in flight.The data in the 0.1–1keV energy range from that most recent XQC flight are shown in the first figure of Stahle,McCammon,&Irwin (1999).The field of view was 1sr,centered on (l,b )∼(90◦,60◦).The intensity of the XQC data is consistent with the ROSAT and UW rocket survey data from this part of the sky.In the spectrum,the lines of O VII at 560–574eV and O VIII at 653eV are clearly visible.Just as clearly,the lines of Fe XVII and Fe XV in the energy range between 727–827eV are not seen.This is consistent with the ASCA results of Gendreau et al.(1995)and Chen,Fabian,&Gendreau (1997),but not with the models having a thermal component at T ∼3×106K used by the Wisconsin group to account for the measured flux in their 3/4keV band (M band).Either the temperature of this component is lower than we thought previously,or the abundance of iron in the emitting plasma is <25%of solar.The spectrum also does not show a strong line or line complex due to Fe IX ,Fe X ,Fe XI at ∼70eV as most models do.This might be an indication of reduced Fe abundance in the Local Bubble,but it is too early to be sure.The data in the Stahle et al.(1999)spectrum are not reliable below about 200eV due to data reduction issues that are still being worked on.Other features of the spectrum are a probable C VI line at 367eV and possibly emission from N VII in the 450–550eV region.A s t r o p h y s i c a l P l a s m a s : C o d e s , M o d e l s , a n d O b s e r v a t i o n s (M e x i c o C i t y , 25-29 O c t o b e r 1999)E d i t o r s : J a n e A r t h u r , N a n c yB r i c k h o u s e , & J o s é F r a n c oHOT GAS IN THE GALAXY 5Clearly there is a lot of work to be done yet to understand and interpret these plications are the large field of view,which makes it more difficult to separate Galactic and extragalactic contributions,and the small number of counts.But the potential for making progress towards understanding the emission from hot gas in the Galaxy in the 0.1–1keV band through analysis of these data is very high.REFERENCESAlmy,R.C.,McCammon,D.,Digel,S.W.,Bronfman,L.,&May,J.2000,ApJ,submittedBenjamin,R.A.,Venn,K.A.,Hiltgen,D.D.,&Sneden,C.1996,ApJ,464,836Berkhuijsen,E.M.,Haslam,C.G.T.,&Salter,C.J.1971,A&A,14,252Bloch,J.J.,Priedhorsky,W.C.,&Smith,B.W.1990,in IAU Colloq.115,High Resolution X-ray Spectroscopy of Cosmic Plasmas,ed.P.Gorenstein &M.Zombeck (Cambridge:Cambridge University Press),160Burrows,D.N.,&Mendenhall,J.A.1991,Nature,351,629Chen,L.-W.,Fabian,A.C.,&Gendreau,K.C.1997,MNRAS,285,449Gendreau,K.C.,et al.1995,PASJ,47,L5Guo,Z.,Burrows,D.N.,Sanders,W.T.,Snowden,S.L.,&Penprase,B.E.1995,ApJ,453,256Hasinger,G.,Burg,R.,Giacconi,R.,Hartner,G.,Schmidt,M.,Truemper,J.,&Zamorani,G.1993,A&A,275,1Hasinger,G.,Burg,R.,Giacconi,R.,Schmidt,M.,Truemper,J.,&Zamorani,G.1998,A&A,329,482Kaneda,H.,Makishima,K.,Yamauchi,S.,Koyama,K.,Matsuzaki,K.,&Yamasaki,N.Y.1997,ApJ,491,638Maeda,Y.1998,Ph.D.Thesis,Kyoto UniversityPark,S.,Finley,J.P.,&Dame,T.M.1998,ApJ,509,203Park,S.,Finley,J.P.,Snowden,S.L,&Dame,T.M.1997,ApJ,476,L77Plucinsky,P.P.,Snowden,S.L.,Aschenbach,B.,Egger,R.,Edgar,R.J.,&McCammon,D.1996,ApJ,463,224Reynolds,R.J.,&Ogden,P.M.1979,ApJ,229,942Sanders,W.T.1995,in ASP Conf.Ser.Vol.80,The Physics of the Interstellar Medium and Intergalactic Medium,A Meeting in Honor of Professor George B.Field,ed.A.Ferrara,C.F.McKee,C.Heiles,&P.R.Shapiro (San Francisco:ASP),498Sanders,W.T.,Edgar,R.J.,Liedahl,D.A.,&Morgenthaler,J.P.1998,in Lecture Notes in Physics 506,IAU Colloq.166,The Local Bubble and Beyond,ed.D.Breitschwerdt,M.J.Freyberg,&J.Truemper (Berlin:Springer-Verlag),83Schmitt,J.H.M.M.,&Snowden,S.L.1990,ApJ,361,207Sfeir,D.M.,Lallement,R.,Crifo,F.,&Welsh,B.Y.1999,A&A,346,785Snowden,S.L.,Burrows,D.N.,Sanders,W.T.,Aschenbach,B.,&Pfeffermann,E.1995a,ApJ,439,399Snowden,S.L.,Egger,R.,Freyberg,M.J.,Plucinsky,P.P.,Schmitt,J.H.M.M.,Truemper,J.,Voges,W.,McCammon,D.,&Sanders,W.T.1997,ApJ,485,125Snowden,S.L.,Freyberg,M.J.,Plucinsky,P.P.,Schmitt,J.H.M.M.,Truemper,J.,Voges,W.,Edgar,R.J.,McCammon,D.,&Sanders,W.T.1995b,ApJ,454,643Snowden,S.L.,Hasinger,G.,Jahoda,K.,Lockman,Felix.J.,McCammon,D.,&Sanders,W.T.1994,ApJ,430,601Snowden,S.L.,McCammon,D.,&Verter,F.1993,ApJ,409,L21Snowden,S.L,Mebold,U.,Hirth,W.,Herbstmeier,U.,&Schmitt,J.H.M.M.1991,Science,252,1529Stahle,C.K.,McCammon,D.,&Irwin,K.D.1999,Physics Today,52,32Valinia,A.,&Marshall,F.E.1998,ApJ,505,134Wang,Q.D.1998,in Lecture Notes in Physics 506,IAU Colloq.166,The Local Bubble and Beyond,ed.D.Breitschwerdt,M.J.Freyberg,&J.Truemper (Berlin:Springer-Verlag),503W.T.Sanders:Department of Physics,University of Wisconsin-Madison,1150University Avenue,Madison,WI 53706,USA (sanders@).。

【初中化学】X射线衍射被用于分析恐龙化石中的胶原蛋白

【初中化学】X射线衍射被用于分析恐龙化石中的胶原蛋白

【初中化学】X射线衍射被用于分析恐龙化石中的胶原蛋白美国伊利诺伊理工大学一个实验室正利用纤维衍射分析人类大脑和心脏以及霸王龙化石中的组织结构。

极少有研究人员利用这种x射线衍射,因为完成实验需要大量时间和人力。

但由于该校josephorgel实验室专门从事相关研究,因此其开展了很多定制项目。

orgel团队制作的结缔组织、神经组织和恐龙组织中细丝状胶原纤维图像的分辨率达到一米的十亿分之一。

在加拿大多伦多举行的美国结晶学会第68届年会上,安吉尔解释了X射线纤维衍射所做的工作。

在x射线衍射中,研究人员向样本发射x射线束并且测量光束的衍射角度和强度,以创建样本分子结构图。

和医生可能拍摄的基于密度反差的x射线图不同,x射线衍射探寻的是衍射光的模式,以便查看样本的内部对称性并且判断其晶体属性。

Angel通过X射线衍射研究了骨、组织和韧带中的I型胶原。

“这是一种非常有效的方法,因为它可以在不修改样本的情况下采集样本。

您可以尽可能多地采集样本,将它们放入X射线束中,然后对样本进行衍射。

”“它还可以显示大分子的结构,”安吉尔说在一些可能带来争议的结果中,orgel的x射线衍射数据展示了来自基本被认为是恐龙化石的大量晶体状组织成分。

orgel解释说,尽管研究胶原蛋白的专家就该结果达成一致意见,但古生物学家尚未就此项发现达成共识,因为它打破了这个领域长期存在的范式。

“人们不愿相信,在一些被搁置到博物馆架子上的化石样本中,实际上保存了相当数量的组织。

”Angel实验室还利用X射线衍射来探索人体组织的结构。

通过观察大脑和心脏组织的结构变化,研究人员可以追踪与损伤相关的损伤和潜在风险部位。

(慢慢地)《中国科学报》(2021-07-26第2版国际)。

很全面的资料-中子星与黑洞 Neutron Stars and Black Holes

很全面的资料-中子星与黑洞 Neutron Stars and Black Holes
If you could compress Earth to a smaller radius => higher escape velocity from the surface.
vesc
vesc
The Schwarzschild Radius
=> There is a limiting radius where the escape velocity reaches the speed of light, c:
Black Holes
Just like white dwarfs (Chandrasekhar limit: 1.4 Msun), there is a mass limit for neutron stars:
Neutron stars can not exist with masses > 3 Msun
We know of no mechanism to halt the collapse of a compact object with > 3 Msun. It will collapse into a single point – a singularity:
=> A Black Hole!
Escape Velocity
Pulsars / Neutron Stars
Neutron star surface has a temperature of ~ 1 million K.
Cas A in X-rays
Wien’s displacement law,
lmax = 3,000,000 nm / T[K] gives a maximum wavelength of lmax = 3 nm, which corresponds to X-rays.

2022年河南省周口市郸城县第一中学高一英语联考试卷含解析

2022年河南省周口市郸城县第一中学高一英语联考试卷含解析

2022年河南省周口市郸城县第一中学高一英语联考试卷含解析一、选择题1. —Why not try that?—Do you think I can beat Mike?A. Are you joking?B. What's up?C. It's hard to say.D. Don't mention it.参考答案:A考察常用语句。

句意:- 为什么不尝试呢?-……。

你觉得我能打败麦克吗?A. Are you joking?你在开玩笑吗?B. What's up?什么事?C. It's hard to say.这很难说;D. Don't mention it.别提了。

根据回答“Do you think I can beat Mike?”可知说话的人明显赢不了Mike。

让他去试试有点开玩笑。

故选A。

2. I think the group ___settled in London, although neither the weather nor the food ___ good.A. had, isB. have, areC. have, isD. has, are参考答案:C3. — How long has your brother been working in this factory?— he graduated from college.A. WhenB. By the timeC. UntilD. Ever since参考答案:D4. —Anny is rushed to the People's Hospital after the accident.—Oh, really? I know. I'll go and visit her.A.didn't B.don't C.won’t D. wouldn't参考答案:A5. In crowded streets, for the safety of people, it is ______ to drive faster than 20mph.A. preventedB. forbiddenC.upset D. annoyed参考答案:B6. My father _______ to come here at five o’clock, but he hasn’t turned up so farA allowedB promisedC agreedD admitted参考答案:B7. I hear it won’t be ______ he graduates from the university.A. before longB. long agoC. long beforeD. long after参考答案:C8. —Could I use your computer for a few moments,please?—________.I’m not u sing it myself.A. Come onB. It dependsC. Go aheadD. That’s great参考答案:C9. ______ means to do what you promised.A. Keeping your wordsB. Giving your wordC. To keep your wordD. To have words 参考答案:C略10. 20. Much attention must education, especially in the countryside.A. be paid to developB. pay to developingC. be paid to developingD. pay to develop参考答案:C略11. The beggar asked me for a meal and a glass of beer.________,he stood on his head and sang songs. A.As a result B.In return for thisC.In turn for this D.As a matter of fact参考答案:B解析考查介词短语。

X射线衍射和小角X射线散射

X射线衍射和小角X射线散射

晶体的X射线衍射特征
[Crystal Structure Analysis, 3rd Edition, p. 48]
晶体结构及其晶胞类型
[Methods of Experimental Physics Volume 16: Polymers, Part B Crystal Structure and Morphology, p. 5]
X射线衍射需要在广角范围内测定,因此又 被称为广角X射线衍射(Wide-Angle X-ray Scattering, WAXS)。
小角X射线散射
如果被照射试样具有不同电子密度的非周 期性结构,则次生X射线不会发生干涉现象, 该现象被称为漫射X射线衍射(简称散射)。
X射线散射需要在小角度范围内测定,因此 又被称为小角X射线散射(Small-Angle Xray Scattering, SAXS)。
晶面指数与晶胞参数
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 9]
Bragg方程
设晶体的晶面距为 d,X射线以与晶面间交
角为 的方向照射,从晶面散射出来的X射
粉末衍射条纹摄制及处理
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 265]
粉末衍射平板图案摄制
[Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd Edition, p. 153]

materials science英文缩写

materials science英文缩写

materials science英文缩写在材料科学领域,有许多常见的英文缩写。

以下是一些常见的材料科学英文缩写:1. SEM: Scanning Electron Microscopy(扫描电子显微镜)2. TEM: Transmission Electron Microscopy(透射电子显微镜)3. XRD: X-ray Diffraction(X射线衍射)4. FTIR: Fourier Transform Infrared Spectroscopy(傅立叶变换红外光谱)5. NMR: Nuclear Magnetic Resonance(核磁共振)6. AFM: Atomic Force Microscopy(原子力显微镜)7. STM: Scanning Tunneling Microscopy(扫描隧道显微镜)8. XPS: X-ray Photoelectron Spectroscopy(X射线光电子能谱)9. HRTEM: High-Resolution Transmission Electron Microscopy(高分辨透射电子显微镜)10. UV-Vis: Ultraviolet-Visible Spectroscopy(紫外-可见光谱)11. DSC: Differential Scanning Calorimetry(差示扫描量热法)12. TGA: Thermogravimetric Analysis(热重分析)13. DMA: Dynamic Mechanical Analysis(动态机械分析)14. CVD: Chemical Vapor Deposition(化学气相沉积)15. PECVD: Plasma-Enhanced Chemical Vapor Deposition(等离子体增强化学气相沉积)这些缩写通常用于科学文献、实验室报告和学术讨论中,以简洁地表示各种实验方法、仪器和技术。

X射线的种类及应用

X射线的种类及应用

X射线的种类及应用摘要:Like many imperishable discoveries,X-rays’s invention or discovery was accidental. 1895 at Wurzburg, Wilhelm Rontgen discovered X-rays (Rontgen rays). After all these years, the technology of the X-rays has not only got extensivedevelopment in industry, also play a more and more important role in medical science. It is mainly used for the human body perspective and check injury. While scientists explore the essence of,they found the phenomenon of diffraction of X-rays and opened the gate of the crystal structure. With the widely use of x-ray both in micro fields and macro fields, it have brought great gospel to human.引言:自1895年X射线被发现,X射线已被广泛应用到医疗卫生、军事、科学及工农业各方面,为人类社会的发展做出了巨大贡献。

在X射线自从发现以来,医学就成为其主要应用,经过近百年的发展,X射线技术已广泛的应用于医学影像诊断,成为医学临床和科研不可或缺的因素。

本文就X射线的分类以及X射线的主要运用展开论述。

具体内容如下:内容X射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间,又称伦琴射线。

单晶X射线衍射仪(RAPIDIP)操作规程

单晶X射线衍射仪(RAPIDIP)操作规程

单晶X射线衍射仪(RAPID IP)操作规程1.打开水箱电源2.打开衍射仪控制面板开关(POWER ON)3.打开X射线开关(X-RAY ON)4.先把电压调到40kV,再把电流调到100-200mA5.按DOOR按钮,等待听到“嘀嘀”的提示音后,打开衍射仪的防护门,取出侧角头6.到显微镜下挑选单晶样品,并将其粘在侧角头的尖端7.将粘有晶体的侧角头放到侧角头的基座上,旋紧螺丝8.到仪器控制电脑前,打开控制软件,把晶体的中心调整到与摄像头的十字叉丝中心重合,关闭衍射仪的防护门9.进入控制软件,先做指标化(INDEX),选中合理的晶胞参数10.根据LAUE群,设定合理的数据收集策略,保证完全度(completeness)在98%以上,冗余度(redundancy)在2-3之间,开始收集数据11.结束后,对数据作积分,吸收校正和还原,最后得到hkl文件12.全部测试完成后,先关闭控制软件,再关闭仪器13.关闭仪器的顺序是,先把电流降到最小值,然后把电压降到最小值,然后关闭X射线(X-RAY OFF)14.关闭衍射仪控制面板开关(POWER OFF)15.等待至少30分钟,关闭水箱电源16.仪器校准使用标准物cytidine,测试结果应达到如下指标:Table 1. Crystal data and structure refinement for cytidine. Identification code cytidineEmpirical formula C9 H13 N3 O5Formula weight 243.22Temperature 296(2) KWavelength 0.71073 ACrystal system, space group Orthorhombic, P2(1)2(1)2(1)Unit cell dimensions a = 5.1158(7) A alpha = 90 deg.b = 13.987(2) A beta = 90 deg.c = 14.784(2) A gamma = 90 deg. V olume 1057.9(3) A^3Z, Calculated density 4, 1.527 Mg/m^3Absorption coefficient 0.126 mm^-1F(000) 512Theta range for data collection 2.76 to 26.50 deg.Limiting indices -6<=h<=6, -17<=k<=17, -17<=l<=18 Reflections collected / unique 6830 / 1300 [R(int) = 0.0354] Completeness to theta = 26.50 99.0 %Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1300 / 0 / 154Goodness-of-fit on F^2 1.108Final R indices [I>2sigma(I)] R1 = 0.0300, wR2 = 0.0825R indices (all data) R1 = 0.0305, wR2 = 0.0829Figure 1. Crystal structure of cytidine (50% thermal ellipsoid plot) .。

X-ray Crystallography(X射线晶体衍射)

X-ray Crystallography(X射线晶体衍射)

Image from Biomolecular Crystallography by Bernhard Rupp
X-ray crystallography
Most widely used method for determining 3D structures of macromolecules
• Typically: single-crystal, single X-ray wavelength • Multiple crystals = powder diffraction; multiple-wavelength = Laue diffraction
See a com pl ete l i st ofw i nners at i ucr. org/ peopl e/ nobel -pri ze
Li nus Paul i ng
Al pha-hel i cal structure of protei ns,nature of chem i calbonds
Difference between this...
Nuclear RNA export factor 2 is believed to interact with NTF2-related export protein
...and this.
PDB code: 3nv0 1.84 Å resolution
Electron Microscopy Size limitations > 120 kDa, signal/noise (improvements) Nuclear Magnetic Resonance Size limitations < 25 kDa, protein labeling X-ray crystallography Requires crystals

利物浦大学是不是最差的

利物浦大学是不是最差的

利物浦大学是不是最差的利物浦大学当然不是最差的。

利物浦是一所英国的研究型大学之一,吸引着众多留学生前来进修学位。

利物浦大学拥有超过27000名学生,超过400多个项目,涵盖54个学科领域等诸多领域进行广泛的教学和研究,包括艺术人文(考古、英语、历史、语言文化、音乐、哲学)、工程(电子工程)、社会环境研究(建筑、城市设计、地理、法学、管理学、政治学和社会学)、科学(生物科学、化学、电脑科学、物理、心理学等)、法律和顶尖的医学(生物医学研究、牙医学、癌症研究、临床学等)等。

另外,利物浦大学还提供着各种方向的MBA课程,涉及人力资源、私营企业、财务、音乐管理等。

利物浦大学医学院成立于1835年,先后有四位诺贝尔奖得主在此工作过。

利物浦大学开创了世界上最早的建筑系,利物浦大学建筑系在英国最权威的研究水平考核(RAE2008)中排名第三,仅次于剑桥和伦敦大学学院。

此外在Research Assessment Exercise(RAE)的结果中41门学科获得最高分5*、5或4*分(5*代表多数领域为世界领先水平;4*代表多数领域为英国内领先水平,且部分领域为世界优秀水平)。

学术成就利物浦大学作为英国享有盛誉的百年名校,杰出的学术研究水平吸引着来自世界各地的众多优秀学者、学子来这里工作、学习。

它出色的研究环境和教学水平培养出了众多杰出人才,其中包括九位诺贝尔奖得主。

诺贝尔奖得主1902年诺贝尔医学奖也是英国获得的第一个诺贝尔奖Sir Ronald Ross (awarded the Nobel Prize inMedicinein 1902) for his work with malaria治疗疟疾1917年诺贝尔物理学奖Professor Charles Barkla (awarded the Nobel Prize inPhysicsin 1917) for discovering the electromagnetic properties of X-rays发现X射线的电磁性能1932年诺贝尔生理医学奖Sir Charles Sherrington (awarded the Nobel Prize inPhysiology/Medicinein 1932) for his research into neurons神经元的研究1935年诺贝尔物理学奖Sir James Chadwick (awarded the Nobel Prize inPhysicsin 1935) for discovering neutrons发现中子1947年诺贝尔化学奖Sir Robert Robinson (awarded the Nobel Prize inChemistryin 1947) for his research into anthocyanins and alkaloids对花青素和生物碱的研究1968年诺贝尔生理医学奖Professor Har Gobind Khorana (awarded the Nobel Prize inPhysiology/Medicinein 1968) for his work on the interpretation of the genetic code and its function in protein synthesis解释遗传密码和它在蛋白质合成中的功能1972年诺贝尔生理医学奖Professor Rodney Porter (awarded the Nobel Prize inPhysiology/Medicinein 1972) for his discovery of the structure of antibodies发现抗体的结构1991年诺贝尔经济学奖Ronald Coase(awarded the Nobel Prize inEconomicsin 1991) for his discovery and clarification of the significance of transaction costs and property rights for the institutional structure and functioning of the economy.1995年诺贝尔和平奖Professor Joseph Rotblat (awarded the NobelPeacePrize in 1995) for his efforts with nuclear disarmament对核裁军的努力其他重要学术成就查尔斯谢林顿爵士发现了突触威廉·布莱尔贝尔教授研究化疗治疗癌症20世纪30年代至40年代约瑟夫·罗特布拉特对原子弹的发展作出了重大贡献1943年至1966年细菌学教授艾伦·唐尼参与消灭天花... ...21世纪利物浦大学的物理学家,工程师和技术人员作为主心骨参与欧洲核子研究中心的大型强子对撞机建设。

有趣的化学反应英语作文

有趣的化学反应英语作文

有趣的化学反应英语作文Title: Fascinating Chemical Reactions。

Chemistry, often referred to as the central science, encompasses a myriad of captivating phenomena. From the simplest reactions to the most complex processes, chemistry continuously astounds us with its wonders. In this essay,we delve into some of the most intriguing chemical reactions, exploring their mechanisms and implications.One of the most visually striking reactions is the Briggs-Rauscher oscillating reaction. This reactioninvolves the oxidation of malonic acid by bromate ions inan acidic medium containing hydrogen peroxide and manganese(II) ions. What makes this reaction particularly fascinating is its oscillatory nature. The solution undergoes a series of color changes, shifting between clear, blue, and amber hues in a rhythmic fashion. Thisoscillation arises from the intricate interplay of various chemical species and their concentrations, leading toperiodic fluctuations in reaction rates.Another captivating reaction is the Belousov-Zhabotinsky reaction, also known as the BZ reaction. Similar to the Briggs-Rauscher reaction, the BZ reaction exhibits oscillatory behavior, but in this case, it involves the oxidation of an organic compound by bromate ions in acidic solution. The oscillations manifest as concentric waves of color spreading across the reaction mixture, reminiscent of a living, breathing organism. This reaction exemplifies the concept of non-equilibrium thermodynamics, where systems far from equilibrium can exhibit complex, self-organizing behavior.Moving beyond oscillating reactions, the combustion of magnesium in air offers a spectacular display of chemistry in action. When a strip of magnesium ribbon is ignited, it undergoes a vigorous exothermic reaction with oxygen from the air, producing intense white light and magnesium oxide as the product. This reaction serves as a reminder of the transformative power of chemical energy, as well as the importance of combustion processes in everyday life, frompowering engines to providing light and heat.In the realm of organic chemistry, the Diels-Alder reaction stands out as a cornerstone of synthetic methodology. Named after Otto Diels and Kurt Alder, who received the Nobel Prize in Chemistry for its discovery, this reaction involves the cycloaddition of a conjugated diene with a dienophile to form a cyclic compound known as a cyclohexene. The reaction proceeds via a concerted mechanism, where all bonds are formed or broken simultaneously, leading to high stereoselectivity and regioselectivity. The Diels-Alder reaction finds wide application in the synthesis of complex organic molecules, serving as a versatile tool for chemists in their quest to create new materials and pharmaceuticals.Transitioning to the realm of biochemistry, enzymatic reactions offer a glimpse into the remarkable specificity and efficiency of biological catalysts. One such example is the catalytic conversion of hydrogen peroxide to water and oxygen by the enzyme catalase. Found in nearly all living organisms, catalase plays a crucial role in protectingcells from oxidative damage by facilitating the decomposition of hydrogen peroxide, a byproduct of various metabolic processes. The enzyme achieves this feat by providing a catalytic environment that lowers theactivation energy barrier for the reaction, allowing it to proceed at a rapid rate without itself being consumed inthe process.In conclusion, chemistry is replete with fascinating reactions that span a wide range of disciplines and applications. Whether it's the mesmerizing oscillations of the Briggs-Rauscher and Belousov-Zhabotinsky reactions, the dazzling light of magnesium combustion, the precision ofthe Diels-Alder reaction, or the efficiency of enzymatic catalysis, each chemical reaction offers a glimpse into the intricate dance of atoms and molecules that governs our world. As we continue to unravel the mysteries of chemistry, we gain not only a deeper understanding of nature but also the tools to harness its power for the betterment of society.。

X射线衍射新技术介绍

X射线衍射新技术介绍

2
The New D8 with DAVINCI.DESIGN
The New D8 ADVANCE & DISCOVER 开创XRD的新世纪
The New D8 ADVANCE Unequalled Abundance of Innovations
新的D8 ADVANCE 衍射仪世界上第一台真正的“智能化”衍射 仪
Absorption Edge Modelling
33
Monochromatization Effect of Kß -Filter
Remnant white radiation
Pecharsky & Zavalij (2009)
Absorption Edge Modelling
34
LYNXEYE XE 能量色散阵列探测器——XRD单色化背景介绍 (Cu)
不同功能之间的互换就象您玩游戏机一样的简单、快捷!
No problem with DIFFRAC.DAVINCI !
The New D8 ADVANCE DIFFRAC.DAVINCI
Dynamic list displaying all currently mounted components
Current setting
全球率先推出 的能量色散阵列探测器(工作 条件为实验室室温条件)
The LYNXEYE XE
The LYNXEYE XE 超高强度与能量分辨首次完美结合!
LYNXEYE II
30
LYNXEYE XE 能量色散阵列探测器
• 450倍的强度或者测试速度的提高 (相比常规的点探测器与石墨单色器系统)
USP
1.DAVINCI.MODE 元器件自动识别 2.DAVINCI.SNAP-LOCK 无工具元器件互换

扫描隧道显微镜--20世纪重大科技成果之一

扫描隧道显微镜--20世纪重大科技成果之一

扫描隧道显微镜之马矢奏春创作20世纪重年夜科技功效之一关键词:扫描隧道显微镜隧道效应分辨率控制电路摘要:扫描隧道显微镜是利用探针尖端与物质概况原子间的分歧种类的局域相互作用, 来丈量概况原子结构和电子结构的显微新技术, 它的呈现被科学界誉为是概况科学和概况现象分析技术的一次革命.扫描隧道显微镜(Scanning Tunnelins Microscopy以下简称STM)是20世纪80年代初发展起来的一种新型显微概况研究新技术, 其核心思想是利用探针尖端与物质概况原子间的分歧种类的局域相互作用来丈量概况原子结构和电子结构.1981年在IBM公司瑞士苏黎世实验室工作的G.宾尼希(G.Binning)和H.罗雷尔(H.Rohrer)利用针尖和概况间的隧道电流随间距变动的性质来探测概况的结构, 获得了实空间的原子级分辨图象.这一发明使显微科学达到了一个新的境界, 并对物理、化学、生物、资料等领域的研究发生了巨年夜的推举措用.为此G.宾尼希和H.罗雷尔于1986年被授予诺贝尔物理奖.1.显微镜的历史人类观察微小物体的历史是从放年夜镜开始的, 然后进人光学显微镜时代.据说世界上第一台光学显微镜是荷兰的眼镜师詹森父子于1590年偶然发明的.詹森父子制造的显微镜是一支可以伸缩的管子, 在它的两头各放了一片凸透镜, 当管子的长短调节得合适的距离, 用它可以看清很小的物体.在那时人们仅是把他制作了这种管子看成玩具, 并没有用到科学研究上.直到十七世纪中叶, 才真正认识到显微镜发明的科学意义, 人们竞相利用显微镜观察微观世界, 并给生物学带来了划时代的进步.尤其是英国物理学家罗伯特·胡克(R.Hooke1635一1703), 使用自制的显微镜观察生物, 并于1665年出书了《显微镜图集》.为了提高放年夜率, 人们必需增加透镜的数目, 但随着透镜数目的增加, 便遇到了透镜像差.所谓透镜的像差, 就是经过透镜所成的像会发生畸变、弯曲或延展等缺陷, 当放年夜率增年夜时, 透镜的这些缺陷也随之扩年夜, 物象也就变得模糊起来, 这样就失去了增年夜放年夜率的真实意义.十八世纪中叶, 德国数学家欧拉(L.Euler 1707—1783)和英国光学家J·多隆特(J.Dellond 1706—1761)等人发现了用分歧的玻璃制作的透镜加以组合消去色差的法子, 这一发现增进了对光学玻璃的研究.到了十九世纪中叶, 光学显微镜的放年夜率已达到l000到1500倍左右;人们发现, 如果再提高显微镜的放年夜率, 映像将变得极不清晰, 这就说明光学显微镜的放年夜本事有一个难以超越的极限.那么, 光学显微镜的性能为什么会有这个难以超越的极限呢?决定这个极限的因素是什么?德国耶拿年夜学的阿贝(E.Abbe 1840—1905)从摆荡光学的基础对显微镜的映像理论进行了分析, 他认为:问题其实不在于显微镜自己, 而起因于作为成像媒介的光波.光线是具有一定波长的光波, 光波遇到粒子会发生衍射效应.当粒子小于光的波长时, 光波将绕过粒子, 因而不发生粒子的阴影, 我们也就看不清粒子的像.光学显微镜是用可见光来观察物体的, 由于光的摆荡性发生的衍射效应使光学显微镜的分辨极限只能达到光波的半波长左右, 确切的表达式为:1)其中λ为波长, α为物镜的孔径角, N为折射率, d为最小可分辨长度.显然在可见光范围内d的最小值约为0.3μm.阿贝从理论上推得, 光学显微镜的分辨本事不超越2000Å, 这个数值与实验获得的极限值一致.由阿贝理论得知:如果利用波长更短的波来作为像的形成源, 显微镜的分辨本事有可能进一步提高.本世纪二十年代, 法国物理学家德布罗意(de.Broglie 1892—1980)发现:一切微观粒子, 例如:电子、质子、中子等, 也具有摆荡性.人们把这种波称为德布罗意波.电子的德布罗意波长为:2)其中h为普朗克常数, 电子受电场V加速获得动能, 其速度为:所以当加速电压在几十千伏以上时, 考虑相对论修正, 则有:3)式中m0为电子静止质量, c为光速.当电子被100kV的电压加速时, 电子的波长为0.0037nrn.显然, 电子的波长比光波的波长短很多, 比γ射线的波长还短.于是, 人们立即想到是不是可以利用电子束来取代光波?1932年, 德国年轻的研究员E·卢斯卡(E.Ruska 1906—1988)等人, 第一次用电子束获得了钢网放年夜形成的电子像, 它雄辩地证实了使用电子束可以形成与光学透镜完全无异的像, 从此开始了电子显微镜的历史.显然电子显微镜的分辨本事年夜年夜高于光学显微镜.现代高分辨透射电子显微镜(Transmission Electron Microscopy, TEM)分辨率优于0.3nm, 晶格分辨率可达0.l~0.2nm.几十年来许多分析方法和仪器相继问世, 如:场离子显微镜(Field Ion Microscopy, FIM), 扫描电子显微镜(Scanning Electron Microscopy, SEM), 俄歇谱仪(Auger ElectronSpectroscopy, AES), 光电子能谱(X-ray Photoemission Spectroscopy, XPS), 低能电子衍射(Low Energy Electron Diffraction, LEED)等等, 这些技术在概况研究中都起着重要作用.可是任何一种技术都有一定的局限性, 如透射电子显微镜主要研究薄膜样品的结构, 场离子显微镜只能探测曲率半径小于100nm的针尖状样品的原子结构, 俄歇谱仪只用以提供空间平均的电子结构信息, 且这些技术只在真空环境下才华工作, 并对样品将发生一定水平的损伤;因而电子显微镜也存在着自身的缺陷性.2.STM 的理论依据依照经典物理学计算标明, 微观粒子不能越过比它自身能量高的势垒, 就好像有一座环形山从外部将它们包围住一样, 粒子的能量没有达到使它们可以越过这座山而跑到外边去.但量子力学认为, 由于微观粒子具有摆荡性, 当一粒子进入一势垒中, 势垒的高度Φo 比粒子能量E 年夜时, 粒子穿过势垒呈现在势垒另一边的几率p (z )其实不为零(如图1所示), 即粒子在偶然间可以不从山的上面越过去, 而是从穿过山的一条隧道中通过去, 人们称这种现象为“隧道效应”.依照量子理论可推导出在两平板电极间的粒子穿过势垒的电流密度为:如图(1)势垒示意图 s k T o o e V s k h e J 2224-⋅⎪⎭⎫ ⎝⎛=π(4)其中h 为普朗克常数, V T 为板间电压, k o 为功的函数, s 为两个电极的间距.J 和极间距s 成指数关系, 若s 增加 0.1nm 时, 电流将改变一个数量级.当一个电极由平板状改酿成针尖状时就要用隧道结构的三维理论来计算隧道电流.计算结果是:)()](1[)(22νμμννμνμσπE E M eV E f E f h e I -+-=∑(5)其中)(E f 是费米统计分布函数,V是针尖和概况之间电压, Eμ和Eν分别是针尖和概况的某一能态, Mμν是隧道矩阵元., 括号中的量是电流算符, 积分对整个概况进行;这就是STM的理论依据.3.STM的技术实现任何一项重年夜科技进步都是在前人众多胜利的经验和失败的教训基础上, 由若干具有远见卓识的人经过持之不懈的探索再加之以画龙点睛式的创举才华够取得的, STM发明也不例外.早在50年代, 就有人提出过STM的最初设想, 那时他们希望用光束透射一个极细小的圆孔来获得显微图象.因为技术条件不成熟而未实现.70年代初, 一位名叫罗伯特·杨(R.Yang)的科学家在“场发射显微镜”的仪器关键部位上已经做到了和如今的STM 非常接近.杨和他的同事们采纳了一个极细小的针尖, 通过扫描样品概况来获取显微图象.然而, 他们并未利用隧道电流, 而是通过在针尖上加一个高电压, 从针尖最尖端发射出一束微小电流(称为场发射电流), 冲击到样品概况上, 进而观察到其概况形貌.这种被杨称作“形貌仪”的显微镜分辨率只达到一般光学显微镜的水平(0.2微米).原因是杨的“形貌仪”傍边, 针尖与样品概况的距离隔得太远, 针尖与样品概况发生不了隧道电流, 而只能依靠针尖前真个场发射电流来成像, 分辩率固然不会太高.宾尼希和罗雷尔在看到杨的“形貌仪”后, 立即发生了一种天才的想法, 利用隧道效应再发明一种新型显微镜.从实际把持的可行性上宾尼希和罗雷尔花了很长时间才使这一设想趋于成熟, 并付诸实际应用, 于1979年提出了STM 这一新型显微镜的专利申请.在1981年, 他们制作了第一台STM 实体, 并获得了若干高分辨率显微图象.他们制成的这种新型显微镜达到前所未有的惊人的高分辨率, 一举观测到了单个原子的真面目.若以针尖为一电极, 被测固体概况为另一电极, 当它们之间的距离小到纳米数量级时根据公式(4)可知:电子可以从一个电极通过隧道效应穿过空间势垒达到另一个电极形成电流, 其电流年夜小取决于针尖与概况间距及概况的电子状态.如果概况是由同一种原子组成, 由于电流与间距成指数关系, 当针尖在被测概况上方做平面扫描时, 即使概况仅有原子标准的起伏, 电流却有成十倍的变动, 这样就可用现代电子技术测出电流的变动, 它反映了概况的起伏.当样品概况起伏较年夜时, 由于针尖离样品仅纳米高度, 恒高度模式扫描会使针尖撞击样品概况造成针尖损坏, 此时可将针尖安排在压电陶瓷上, 控制压电陶瓷上电压, 使针尖在扫描中随概况起伏上下移动, 在扫描过程中坚持隧道电流不变(即间距不变), 压电陶瓷上的电压变动即反映了概况的起伏.这种运行模式称为恒电流模式, 目前 STM 年夜都采纳这种工作模式.STM 主要部件可以分为三年夜部份:隧道显微镜主体、控制电路、计算机系统(丈量软件及数据处置软隧道显微镜主体控制电路 计算机系统件)如图(2).隧道显微镜在正常工作时针尖与样品概况的间距仅为纳米标准, 而且间距的微小变动城市引起电流的剧烈变动.任何建筑物都有振动, 其谐振频率在20Hz附近, 振幅可达微米量级, 还有人的运动和声音的传布等发生的振动城市影响隧道电流的稳定性.所以STM一般需要采用严格的隔震办法和与环境隔离的办法来保证其获得原子级的分辨能力和稳定的图象.为了获得原子级的分辨本事, STM的针尖结构如图(2)为扫描隧道显微镜构造原理图十分关键, 针尖的粗细、形状和化学性质不单影响STM图象的分辨率和图象的特性, 而且在谱的测定中影响所测定的电子态.理想的针尖其最尖端只有一个稳定的原子, 而且针尖的概况没有氧化层和吸附物质, 这样才华获得稳定的隧道电流和原子级分辨率的图象.经常使用的针尖资料为钨或铂铱合金, 钨针尖由于刚性好而被广泛使用, 但其概况容易形成氧化物, 所以在使用前需要加以适当处置并坚持在真空中.铂铱针尖由于其高度的化学稳定性尤其适合于年夜气或液态环境中使用.针尖的制备一般采纳电化学腐蚀方法, 在NaOH或KOH溶液中将钨丝作为阳极, 施加交流或直流电压, 控制电压和电流及其它电化学参数可使腐蚀后的针尖尖端曲率半径小于50nrn.STM由计算机控制数一模变换提供阶梯电压, 经过直流高压放年夜器后, 分别加在一平面压电陶瓷管的外电极上, 使针尖沿二维平面方向作光栅扫描.隧道结电流经过控制电路进入计算机系统与预定电流设置值比力, 不相等时根据差值符号和幅度输出相应控制值, 经过高压放年夜来改变扫描机构压电晶体的伸长或收缩, 使隧道电流稳定在预定的设置值.控制电路的其它部份是用于控制步进机构和提供偏压等功能.由于隧道电流非常微弱仅为纳米量级, STM要求各机械运动部份十分稳定, 所以控制电路除要求高灵敏度、高稳定度等性能外, 其噪声必需很小.4、STM的优越性及其应用STM的分辨本事非常之高, 年夜年夜优于一般的电子显微镜, 它的横向(概况)及纵向(深度)分辨率可以达到1埃至0.l埃, 而一般的电子显微镜仅能达到几十纳米分辨率就相当不错了.用STM来观察石墨时, 它概况上的碳原子在显微图象上就像一个小馒头一样清晰.STM还可以直接观察到物质概况的三维立体图象, 能够获得物质概况的局域结构信息以及电子信息.在STM仪器上可以同时探测扫描隧道谱(STS)而获得物质概况的势垒高度、电荷密度波等物理参数, 这都是电子显微镜无法做到的.电子显微镜只能够在高度真空的条件下才华工作;而STM既可以在真空也可以在年夜气中工作.工作环境可以是常温, 也可以是高温;甚至可以把样品浸泡在水里, 电解液里, 或者液氮傍边.这就年夜年夜拓宽了STM的应用范围, 许多只能在溶液中坚持活性的生物样品, 只有采纳STM才华够做出最接近自然状态的观察.STM的针尖还可以用来移动和把持单个的原子和分子, 这是其他任何类型的显微镜都做不到的.电子显微镜由于附带了真空系统, 体积上都显失宠年夜粗笨, 而在年夜气环境中工作的STM则小巧玲珑多了.一台STM只由三部份组成, 每部份的体积都不会超越一般的个人用微型计算机.STM使人们第一次能够直接观察到原子在物质概况的排列状态和跟概况电子行为有关系的物理化学性质.因此, 它对概况科学、资料科学、生命科学和微电子技术的研究都有着重年夜的意义和广阔的应用前景.科学界一致认为, STM的呈现是概况科学和概况现象分析技术的一次革命.借助性能如此优越的显微镜, 中外科学家在众多领域里, 开展了各种卓有成效的研究工作, 解决了许多理论和实验上的疑难问题.这里只举出一个最经典的研究实例:硅的7×7概况重构问题.硅是一种最经常使用的半导体资料, 它的内部结构属于晶体类.在晶体的概况, 构成晶体结构的基本单元——晶胞, 往往会发生一定的变动, 重新形成概况上特有的晶胞结构, 这种现象称为概况重构.概况重构后的基本结构与晶体内部相比, 可以用一些数字化的指标来进行表征分类.例如可有2×1、5×5、7×7等概况重构, 意为概况的基本组成结构和晶体内部的基本单元晶胞相比, 在某一方向上增年夜几多倍等等.硅概况的重构现象究竟属于哪一种?这个问题困扰了科学家们长达30多年.其间有人用X射线衍射, 低能电子衍射等手段观察过屡次, 始终只是获得推测的重构模式.而没有直观的图象.宾尼希和罗雷尔发明STM后不久, 即把它应用于观察硅的概况重构, 从显微照片上(如如图(3)为Si(111)概况图 4)清晰地显示出硅概况发生了7×7重构而不是其他类型.如今, 硅概况(7×7)再构图示7×7重构的图象已成为 STM发展史上的一张非常经典的图象, 而且, 许多STM实验室都可在超高真空条件下, 轻而易举地获得这一结果.STM对金属概况原子结构、金属的氧化和腐蚀机理等进行了深入的研究.例如研究Cu概况具有分歧氧覆盖度时, 通过氧在概况化学吸附诱导铜概况再构的形成和生长过程, 发现在Cu(100)概况每隔4行丧失1行铜原子, Cu-O-Cu原子链在Cu(100)概况某一方向成核, 然后外延生长.而在Cu(100)概况在分歧氧覆盖度时有多种再构情况, 其中(2×1)再构是先在平整的平台上成核, 然后各向异性地生长出Cu-O-Cu链, 而Cu( 6×2)再构却先在台阶边缘上成核, 然后各向异性生长.STM还用于超导资料的研究, 它可以在原子标准的T c氧化物超导体的BiO面电子态密度丈量, 结合其它分析技术就可确定资料分歧层的电导特性.已有许多实验室将STM用于薄膜生长机理研究和薄膜结构性能的研究.例如对C60分子薄膜在Si和GaAs分歧晶面上的生长过程研究, 弄清了生核初始阶段的标度规律和成核设置.STM可在年夜气和液态环境下使用, 而且对样品不发生损伤.这些特点对生物研究特别具有吸引力.以往用电镜研究生物样品, 由于必需在真空中进行, 所以样品处于脱水状态, 引起样品状态的极年夜变动.STM已应用于核酸结构、卵白质、酶、生物膜结构研究中, 并取得一系列进展.例如对决定人类遗传性状的年夜分子DNA的研究, 用STM获得了在分歧环境下(水、年夜气、真空)DNA分子的形貌, 能在接近原子标准上观察DNA的结构, 测定DNA双螺旋的螺距、碱基对间距、碱基对夹角等重要参数.第一张DNA分子的STM图像于1989年1月如图(4)为DNA分子的STM图像问世(如图4), 被评为昔时美国的第一号科技功效.1990年中国科学院上海原子核研究所单分子检测和单分子把持实验室利用自制的STM, 与中国科学院上海细胞生物学研究所及前苏联科学院分子生物学研究所合作, 首次获得了一种新的DNA构型——平行双链 DNA(Parallel strandedDNA)的STM图像.一切生命物质中的DNA复制过程是每时每刻在进行着, 但过去人们从未直观见过, 中国科学院生物化学研究所利用STM拍摄到了表征DNA复制过程中一瞬间的照片, 即对DNA生物年夜分子的把持和拍摄生命体系内部生化反应时引起的年夜分子结构的静态变动——所谓“分子片子”已成为前沿课题, 这对生命科学和人类基因组学研究有重要意义.STM从发明至今, 不外短短十几年时间.正如宾尼希和罗雷尔在他们的诺贝尔演讲题目中所形容的一样, STM从出生、发展到现在, 还只是处于它的青少年时期.虽然在某些方面还时而显露稚气, 然而究竟已经锋芒初露, 正在以它的旺盛的生命力茁壮生长.继STM之后, 又有一批基于STM工作原理或扫描成像方法的派生显微镜相继问世, 如原子力显微镜、光子扫描隧道显微镜, 弹道电子发射电子显微镜、摩擦力显微镜、磁力显微镜、分子力显微镜等等, 这些进展充沛显示了STM蓬勃发展的势头和巨年夜的影响力;科学家仍预言, STM将在不久的将来进入它辉煌的壮年时代.参考书目:[1].R.Wiesendanger, H.Guntherodt.Scanning Tunneling Microscopy.Springer-Verlag BerlinHeidelberg, 1992.74~79.[2].白春礼.扫描隧道显微镜及其应用.上海:上海科学技术出书社, 1992.43~66.[3].陆廷济胡德敬陈铭南主编.物理实验教程.上海:同济年夜学出书社.2000.248~250.[4].倪光炯等编著.改变世界的物理学.上海:复旦年夜学出书社.1999.194~197, 364~365.[5].白春礼.原子和分子的观察与把持.长沙:湖南教育出书社.1996.120~122.[6].郭奕玲沈慧君.诺贝尔物理学奖.北京:高等教育出书社.海德堡:施普林格出书社.1999.411~416.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0505255v 1 12 M a y 2005R ECEIVED :15M ARCH 2005;A CCEPTED :10M AY 2005Preprint typeset using L A T E X style emulateapj v.21/08/00DISCOVERY OF RAPID X–RAY OSCILLATIONS IN THE TAIL OF THE SGR 1806–20HYPERFLAREG.L.I SRAEL 1,T.B ELLONI 2,L.S TELLA 1,Y.R EPHAELI 3,4,D.E.G RUBER 5,P.C ASELLA 2,S.D ALL ’O SSO 1,N.R EA 6,1M.P ERSIC 7,R.E.R OTHSCHILD 41.INAF –Osservatorio Astronomico di Roma,Via Frascati 33,I–00040Monteporzio Catone (Roma),Italy,gianluca@mporzio.astro.it stella@mporzio.astro.it dallosso@mporzio.astro.it2.INAF –Osservatorio Astronomico di Brera,Via Bianchi 46,I–23807Merate (Lc),Italy,belloni@merate.mi.astro.it and casella@merate.mi.astro.it3.School of Physics and Astronomy,Tel Aviv University,69978Tel Aviv,Israel,yoelr@wise.tau.ac.il4.Center for Astrophysics and Space Sciences,University of California,San Diego,La Jolla,CA 92093-0424,USA,rrothschild@5.Eureka Scientific Corporation,Oakland CA 94602-3017,USA,dgruber@6.SRON –National Institute for Space Research,Sorbonnelan 2,3584CA,Utrecht,The Netherlands,N.Rea@sron.nl7.INAF –Osservatorio Astronomico di Trieste,Via G.B.Tiepolo 11,Trieste,Italy,persic@ts.astro.itReceived:15March 2005;Accepted:10May 2005ABSTRACTWe have discovered rapid Quasi Periodic Oscillations (QPOs)in RXTE/PCA measurements of the pulsating tail of the 27th December 2004giant flare of SGR 1806–20.QPOs at ∼92.5Hz are detected in a 50s interval starting 170s after the onset of the giant flare.These QPOs appear to be associated with increased emission by a relatively hard unpulsed component and are seen only over phases of the 7.56s spin period pulsations away from the main peak.QPOs at ∼18and ∼30Hz are also detected ∼200-300s after the onset of the giant flare.This is the first time that QPOs are unambiguously detected in the flux of a Soft Gamma–ray Repeater,or any other magnetar candidate.We interpret the highest QPOs in terms of the coupling of toroidal seismic modes with Alfvén waves propagating along magnetospheric field lines.The lowest frequency QPO might instead provide indirect evidence on the strength of the internal magnetic field of the neutron star.Subject headings:pulsar:individual (SGR 1806–20)—star:flare —star:neutron —stars:oscillations —X–rays:burst1.INTRODUCTIONSoft Gamma-ray Repeaters (SGRs)are characterized by short and recurrent bursts (<1s)of soft γrays.Only four confirmed SGRs are known,three in the Galaxy and one in the Large Magellanic Cloud (for a review see e.g.Woods &Thompson 2004).Giant flares from SGRs,with a fluence more than 3orders of magnitude higher than that of typical bursts,are rare.Energy release in the 1979March 5th event from SGR 0526–66was ∼1044erg (Mazets et al.1979),while on 1998August 27th a giant flare was detected from SGR 1900+14at a level of 2×1044erg (Cline et al.1998;Hurley et al.1999;Feroci et al.1999).The nature of SGRs has remained a mys-tery for many years.The ∼8s periodicity clearly seen in the tail of the 1979March 5th giant flare of SGR 0526–66(Mazets et al.1979)suggested an association of SGRs with neutron stars.Further evidence came with the discovery and study of the per-sistent counterparts to SGRs in the soft X–ray range (<10keV).These display X-ray coherent pulsations at a period of ∼5−8s,a secular spin-down in the range ∼10−11–10−10s s −1,and a qui-escent X–ray luminosity orders of magnitude larger than the rotational energy loss.Several observational properties of SGRs are successfully modelled in terms of “magnetars”(Duncan &Thompson 1992;Thompson &Duncan 1995),isolated neutron stars in which the dominant source of free energy is their intense magnetic field (B ∼1014-1015G).Within this model the short bursts are produced by the propagation of Alfvén waves in the magneto-sphere,driven by magnetic field diffusion across small cracks in the neutron star crust.The much more energetic giant flares likely arise from a sudden reconfiguration of the star’s magneticfield that produces large fractures in the crust and propagates outwards through Alfvén waves of enormous power.On 2004December 27th a giant flare from SGR 1806–20was detected by a number of different satellites (INTEGRAL,RHESSI,Swift,Wind,Mars Odyssey,etc.;Borkowski et al.2004,Hurley et al.2005,Palmer et al.2005,Hurley et al.2004,Mazets et al.2004).This “hyperflare”caused a strong perturba-tion in the Earth ionosphere and saturated the detectors on every high-energy satellite (except GEOTAIL;Yamazaki et al.2005,Terasawa et al.2005).A total energy of ∼3−10×1046erg (isotropic emission at a source distance of 8-15kpc;Cameron et al.2005;McClure-Griffiths &Gaensler 2005)was released during the main ∼0.2-0.5s long spike at the beginning of the event.Seven days after the event,SGR 1806–20was observed and detected in the radio band for the first time (VLA;Gaensler et al.2005a).The radio polarization and flux decay was found to be consistent with synchrotron radiation from an expanding nebula (Gaensler et al.2005b).Based on high-time resolution data obtained with the Rossi X–ray Timing Explorer (RXTE)Proportional Counter Array (PCA),we report the first detailed X–ray timing analysis of the 2004December 27th hyperflare of SGR 1806–20.In particu-lar,we discover fast X–ray Quasi Periodic Oscillations during the pulsating tail of the event.Such QPOs are clearly associated with a relatively hard emission component which dominates the overall energy emission,about 170-220s after the beginning of the flare.These QPOs are only detected during a given phase interval of the 7.56s period,(Fig.1a).We briefly discuss some implications of these find-ings for the magnetar model.2F IG.1.— 3.2to3.7;(b) Light curve corresponding to the same time axis as panel(a).The time resolution is0.75s.The gray-shaded area indicates the time interval shown in panel(c);(c) Close–up of the gray area in panel(b).The different symbols mark thefirst peak(black circles),the second peak(stars)and the DC level(gray circles);(d)average power spectrum(at0.5Hz resolution)of the gray area in panel(b);(e)average power spectrum(at1.33Hz resolution)of the phase interval including thefirst peak as seen in panel(c);(f)same as(e)for the second peak;(g)same as(e)for the DC level.2.OBSERVATIONS AND TIMING ANALYSISThe giantflare of SGR1806–20was recorded by RXTE on 2004December27th at21:31:30.7UT during the observation of the cluster of galaxies A2163.The PCA was observing in GoodXenon mode,resulting in full timing(∼1µs)and spec-tral resolution(covering the nominal energy range∼2-80keV). Even though the position of SGR1806–20was∼30degrees away from the RXTE pointing direction and well outside the field of view,the giantflare was detected by the PCA at a peak rate of∼83700counts/s,not corrected for deadtime effects (note that photons from SGR1806–20propagated through the passive material of the proportional counter units and collima-tors before they were recorded by the instruments,which likely resulted in modification of the incident spectrum).The RXTE telemetry was saturated,gcausing data gaps in thefirst∼13s of theflare.We restricted our timing analysis to the saturation-and gap-free interval,starting12.8s after the onset of the ini-tial spike.A search for anomalous values and/or trends in the housekeeping parameters for the data in this interval gave nega-tive results.A light curve was accumulated from all PCA chan-nels with a resolution of1/256s(a0.5s binned light curve is shown in Fig.2).Two spectrograms(also known as dynamical power spectrum,see Nespoli et al.2003)consisting of power spectra built on interval lengths of2and64seconds,respec-tively,each shifted from the other by2seconds,were produced.A contour plot of the64s spectrogram is shown in Fig.1a, where time0is set to T0+12.8s,where T0is the RHESSI time marking the onset of the main peak as given by Hurley et al. (2005),that is774026.64s of TJD13366.In addition to com-plex signals below∼30Hz(see below),a peak in the power spectra around90Hz was detected during the interval170-220s from T0.A Lorentzianfit to the peak in Fig.1d(limited to the frequency range70–110Hz)yields a centroid frequency of92.5±0.2Hz,a FWHM of1.7+0.7−0.4Hz(uncertainties are at 1σconfidence level),corresponding to a signal coherence of Q∼50.The integrated fractional rms of the peak is7.3±0.7%. The single trial chance probability of the92.5Hz QPO peak, calculated by using the prescription of Israel&Stella(1996), is1.3×10−7which reduces to∼1.5×10−5–1.3×10−4after nor-malization for the number of periods(128–1024)over which the search was carried out.We thus consider the92.5Hz QPO detection to be quite robust.In order to investigate a possible dependence of the QPOs on the pulsations in the tail of the hyperflare,we adopted a refer-ence period of7.5605(6)s(Woods et al.2005)and divided the individual pulsation cycles into different phase intervals(see in-sets in Fig.2)We selected intervals centered around the main peak at phase∼0.4,the second peak at phase∼0.7,and the minimum around phase0(including also the third low peak at phase∼0.15;see insets of Fig2).The results of pulse–phase timing analysis are summarized in panels e,f and g of Fig.1,which show power spectra for the main peak,the sec-ond peak and the minima,respectively.It is evident that the 92.5Hz oscillations are absent in the main peak(3σupper limit of4.1%rms),clearly detected in the minima(rms amplitude of 10.7±1.2%),and still present,though at a lower significance, in the second peak(rms amplitude of8.0±0.9%;no depen-dence with energy was detected).The data thus rule out the assumptions that QPO fraction andflux level are independent of pulsation phase.The observed pulse phase dependence of the QPO amplitude makes us confident that the oscillations are intrinsic to SGR1806–201.1A search for QPOs in the light curve of the on-axis source(A2163)just before and after the SGR1806–20hyperflare also gave negative results.ISRAEL ET AL.3 F IG.2.—The RXTE/PCA0.5s binned light curve including the time intervalof the SGR1806–20hyperflare(upper panel).Overimposed are four param-eters resulting from thefitting of each7.56s pulse with a constant plusfiveGaussian components:the DC level(green circles),the intensity of the mainpeak(orange squares),of the second peak(red squares),and of all compo-nents(blue stars).The three insets show the average pulse shapes as a functionof time with the two main peak marked in orange and red lines,respectively.Time intervals over which the light curve have been folded are approxima-tively those where insets lie(before,during and after the gray region of Fig1b).In the lower panel we show the PCA9–25keV over1–9keV energy bandlight curve ratio(see text for details).Since the92.5Hz QPO is detected during the minima of thepulsation cycle and is absent during the main peak,we checkedwhether the signal is more coherent,but smeared out by thepeak intervals.The check was carried out by producing a singlepower spectrum of the data in the gray area of Fig.1b with pulsepeaks replaced with the average level of the out-of-peak inter-vals and,therefore,minimizing the aliasing due to the pulse os-cillation.The analysis indicates that the92.5Hz peak is indeedintrinsically broad and not consistent with a coherent signal.From Fig.1a,one can see also a significant amount of powerin the20-30Hz interval.The structure of this signal is complexand the accumulation of all power spectra leads only to a broadexcess.We subdivided the light curve into smaller intervalsand checked for significant signal below40Hz.Power spec-tra obtained from data in the time range∼200-300s(right afterthe gray area in Fig.1b),showed two peaks at18and30Hz(see Fig.3).Afit to the continuum(constant plus a power–law)yields two QPOs at18.1±0.3Hz and30.4±0.3Hz with a singletrial significance of3.6and4.7σ,respectively.A weak excessis also visible at∼95Hz,indicating a possible time evolutionof the∼92.5Hz QPO frequency.The relatively low statisticsin the time intervals∼200-300s prevented us from checkingwhether these additional QPOs show a7.56s pulse phase de-pendence like that displayed by the92.5Hz QPO.Finally,wenote that the contours in Fig.1a indicate a lower level of low-frequency power before t∼70.Although a detailed analysisof the shape of the signal is difficult because of low statis-tics,it is evident from the data that before that time the low-frequency noise is steeper and contributes substantially onlybelow∼10Hz.In the following,we study the92.5Hz QPOs with respect tothe other parameters of the hyperflare light curve,looking forcorrelations which might provide clues to the origin of the os-cillations.To this end we further analyzed the individual7.56spulses.Given the highly non-sinusoidal shape of the pulses weaccumulated50light curves each containing one pulse dividedinto50phasebins,and used a multi-Gaussianfitting model pro-duced acceptablefits to all the50pulses(we have ignored thefirst2pulses after the initial spike).The number of degree offreedom in eachfit was33(for50phasebins).Figure2showsthe result of this analysis where thefitted parameters are showntogether with the PCA light curve:the DC level(green circles),the count rates of the main peak(orange squares),of the secondpeak(red squares),and of all components together(blue stars).From the comparison between Fig.1and Fig.2it is evidentthat the time interval over which the92.5Hz QPOs are signifi-cantly detected coincides with a bell-shape enhancement in theDC level about200s after the beginning of theflare.Moreover,it is apparent that the intensity of the DC level and that of themain peak of the pulse are anti-correlated(i.e.,thefirst peakcomponent shows a marked decrease corresponding to the riseof the bell–shaped intensity bump of the DC),possibly imply-ing two competing emission components.We also note thatthe ratio between the nominal1-9keV(effectively,∼8-9keV,due to the steep photoelectric absorption by the PCA coppercollimators)and9-25keV energy band light curves shows thatthe pulse minima are always softer than the peaks(this behav-ior is similar to that of the SGR1900+14giantflare;Feroci etal.1999),except during the bell–shaped bump where minimaare nearly as hard as the maxima(see lowest panel of Fig.2).Thesefindings clearly suggest that the bell–shaped bump in thedecaying pulsating tail of the giantflare represents an additionalunpulsed component underlying the main pulse component.3.DISCUSSIONWe discovered rapid quasi periodic X–ray oscillations inthe evolving X–rayflux of the2004Dec27th hyperflare ofSGR1806–20,thefirst ever for a magnetar candidate.Thehigher frequency QPOs at∼92.5Hz were detected between170and220s after the onset of the hyperflare,in association withan emission bump that occurred in the DC component(anda reduction of the amplitude of the7.56s pulsations).TheseQPOs were detected only in the spin phase intervals away fromthe main peak and reached maximum amplitude correspondingto the DC component phase intervals.Evidence for∼18and∼30Hz QPOs was found between200and300s from the on-set of the hyperflare,and not obviously related to any specificinterval of pulse phases.In the context of the magnetar scenario,the main spikeof the giantflare arises from afireball of pair-dominatedplasma that expands at relativistic speeds,while the energydeposited in the magnetosphere can give rise to a"trappedfireball"that remains confined to the star’s closed magneticfield lines.The long pulsating tail of giantflares probablyarises from the cooling of plasma that remains confined insuch a trappedfireball.The bump in the DC component ofthe decay some200s after the main spike during which the∼92.5Hz QPOs were seen,might be due to a temporary en-hancement of the Alfvén wave emission due to dissipationof the seismic energy.This may lead to the formation ofa hot pair-dominated corona which partially enshrouds thetrappedfireball,thereby reducing the amplitude of main peak4RAPID X–RAY OSCILLATIONS IN SGR1806–20300s(see Fig.1).Two low–frequency peaks at∼18Hz and∼30Hz are visible,together with a small excess at∼95Hz(see text for details).of the7.56s modulation.A similar interpretation was originally proposed by Feroci et al.(2001;see also Thompson&Duncan 2001)to explain the smoothflux decay in thefirst tens of sec-onds of the1998giantflare from SGR1900+14.Indeed,a vari-ety of seismic modes are expected to be excited as consequence of the magnetically-induced large scale fracturing of the crust which gives rise to giant SGRflares.After the main event,the shaking of the neutron star crust by these seismic modes gives rise to a coupling with sheared Alfvén waves onfield lines in the neutron star’s magnetosphere,in turn causing electromotive pair heating(Thompson&Blaes1998).A modulation of this heating at the seismic frequencies would easily generate aflux modulation,as long as the frequencies are sufficiently low that phase coherence can be maintained across the photosphere of the trappedfireball.Out of the variety of non-radial neutron star modes studied by McDermott et al(1988),there are several classes that have characteristic frequencies in the∼10-100Hz range.Toroidal modes appear to be especially promising because they should be easily excited by the large crustal fracturing.Moreover, these torsional modes couple more easily with the external magneticfield lines than modes originating deeper in the stellar interior(Blaes et al.1989;Duncan1998).The fundamental toroidal mode of a rigid neutron star’s crust is the l=2(2t0)whose frequency corresponds to a period of∼33.6ms,dependent on the mass,radius and crustal magnetic(McDermott et al.1988,Duncan1998).The30.4Hz32.8ms)oscillation could very well be identified with the2t0and the92.5Hz(∼10.8ms)QPO would thus corresponda higher harmonic:indeed,it matches well the expected fre-of the l=7mode,suggesting a relatively small-scalein the seismic wave pattern(and thus the magneticstructure).This could be due,for example,to themode inducing further fractures at various sites incrust.The shortest duration of the higher frequency QPOqualitatively in accord with the expectation that the damp-rate of the oscillations strongly increases with frequency1998).Recently,a large(∼5km)crustal fracturingthe surface of SGR1806–20was inferred from a∼5ms rise observed during the onset of the hyperflare(Schwartzal.2005).We note that such fracturing can easily excite themodes with characteristic frequencies at which QPOs have been detected.The18Hz oscillation,on the other hand,might be associ-ated with a different mode which must couple to the magneto-sphere as well.A poloidal component of the core magneticfieldsupports a torsional mode with a frequencyνcore≃2.5B z,15Hz (Thompson&Duncan2001)with R∼10km and a core den-sity≃1015g cm−3,B z,15being the core poloidalfield in units of 1015G:a strong B z,15≃7would be required to match the ob-served18Hz.Although extremely strong,such afield is fully plausible given that a(mainly toroidal)field in excess of1016G is required to power repeated giantflares of this magnitude over the∼104yr lifetime of an SGR(Stella,Dall’Osso,&Israel 2005).In summary,the discovery of rapid QPOs in the tail of the2004giantflare of SGR1806–20could constitute thefirst di-rect information on the neutron star crust and magneticfield, thought to be of magnetar strength,and provides a new per-spective in the study of neutron star oscillations.This work is partially supported through Agenzia Spaziale Italiana(ASI),Ministero dell’Istruzione,Universitàe Ricerca Scientifica e Tecnologica(MIUR–COFIN),and Istituto Nazionale di Astrofisica(INAF)grants.Work at UCSD has been supported by a NASA grant.We thank an anonymous ref-eree for his/her valuable suggestions.REFERENCESBlaes,O.,Blandford,R.D.,Goldreich,P.,&Madau,P.1989,ApJ,343,839 Borkowski,J.et al.2004,GCN#2920Cameron,P.B.et al.2005,Nature,434,1112Cline,T.,Mazets,E.,&Golenetskii,S.V.1998,IAU Circ.7002Duncan,R.C.1998,ApJ,498,L45Duncan,R.C.,&Thompson,C.1992,ApJ,392,L9Feroci,M.,Frontera,F.,Costa,E.,Amati,L.,Tavani,M.,Rapisarda,M.,& Orlandini,M.1999,ApJ,515,L9Feroci,M.,Hurley,K.,Duncan,R.C.&Thompson,C.2001,ApJ,549,1021 Gaensler,B.M.et al.2005a,GCN#2929Gaensler,B.M.et al.2005b,Nature,434,1104Hurley,K.,et al.1999,Nature,397,41Hurley,K.et al.2004,GCN Circ.#2921Hurley,K.et al.2005,Nature,submitted,astro–ph/0502329Israel,G.L.,&Stella,L.1996,ApJ,468,369McClure-Griffiths,N.M.,&Gaensler,B.M.,2005,ApJ,submitted,astro–ph/0503171McDermott,P.N.,Van Horn,H.M.,&Hansen,C.J.1988,ApJ,325,725 Mazets,E.P.,Golentskii,S.V.,Ilinskii,V.N.,Aptekar,R.L.,&Guryan,I.A.1979,Nature,282,587Mazets,E.P.,et al.2004,GCN Circ.#2922Nespoli,E.,Belloni,T.,Homan,J.,Miller,J.M.,Lewin,W.H.G.,Mendez,M., van der Klis,M.,2003,A&A,412,235Palmer,D.M.et al.2005,Nature,434,1107Schwartz,S.J.,et al.2005,ApJ,submitted,astro–ph/0504056Stella,L.,Dall’Osso,S.&Israel,G.L.2005,ApJ,submittedTerasawa,T.et al.2005,Nature,434,1110Thompson,C.,&Duncan,R.C.1995,MNRAS,275,255Thompson,C.,&Blaes,O.1998,Phys.Rev.D,57,3219Thompson,C.,&Duncan,R.C.2001ApJ,561,980Woods,P.M.&Thompson,C.2004,ApJ,submitted,astro-ph/0406133 Woods,P.M.,et al1005,GCN#2950Yamazaki,R.et al.2005,Nature,submitted,astro–ph/0502320。

相关文档
最新文档