高考数学解析问题汇总
高中数学经典高考难题集锦(解析版)
2021年10月18日姚杰的高中数学组卷一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.2.〔2021•江苏模拟〕直线l:y=k〔x+2〕与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.〔Ⅰ〕试将S表示成的函数S〔k〕,并求出它的定义域;〔Ⅱ〕求S的最大值,并求取得最大值时k的值.3.〔2021•越秀区校级模拟〕圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.6.〔2021•东城区一模〕如图,定圆C:x2+〔y﹣3〕2=4,定直线m:x+3y+6=0,过A〔﹣1,0〕的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.〔Ⅰ〕当l与m垂直时,求证:l过圆心C;〔Ⅱ〕当时,求直线l的方程;〔Ⅲ〕设t=,试问t是否为定值,假设为定值,请求出t的值;假设不为定值,请说明理由.7.〔2021•天河区校级模拟〕圆C:〔x+4〕2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,定点P的坐标为〔﹣3,0〕.〔1〕假设点D〔0,3〕,求∠APB的正切值;〔2〕当点D在y轴上运动时,求∠APB的最大值;〔3〕在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.〔2007•海南〕在平面直角坐标系xOy中,圆x2+y2﹣12x+32=0的圆心为Q,过点P〔0,2〕且斜率为k的直线与圆Q相交于不同的两点A,B.〔Ⅰ〕求k的取值范围;〔Ⅱ〕是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.考点:直线和圆的方程的应用.专题:计算题;压轴题.分析:〔1〕由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;〔2〕由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.解答:解:〔1〕证明:点〔t>0〕,因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.所以点E是直角坐标系原点,即E〔0,0〕.于是圆C的方程是.那么.由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,于是多边形EACB为Rt△AEB,其面积.所以多边形EACB的面积是定值,这个定值是4.〔2〕假设|EM|=|EN|,那么E在MN的垂直平分线上,即EC是MN的垂直平分线,,k MN=﹣2.所以由k EC•k MN=﹣1,得t=2,所以圆C的方程是〔x﹣2〕2+〔y﹣1〕2=5.点评:〔1〕重点考查了利用方程的思想用以变量t写出圆的方程,判断出圆心O在AB上,故四边形为直角三角形,还考查了三角形的面积公式;〔2〕重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数.2.〔2021•江苏模拟〕直线l :y=k 〔x+2〕与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S . 〔Ⅰ〕试将S 表示成的函数S 〔k 〕,并求出它的定义域; 〔Ⅱ〕求S 的最大值,并求取得最大值时k 的值.考点:直线与圆的位置关系;二次函数的性质. 专题:计算题;压轴题. 分析: 〔Ⅰ〕先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.〔Ⅱ〕换元后把函数S 的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变. 解答:解:〔Ⅰ〕直线l 方程, 原点O 到l 的距离为〔3分〕弦长〔5分〕•ABO 面积•∵|AB|>0,∴﹣1<K <1〔K ≠0〕,• ∴〔﹣1<k <1且K ≠0〕〔8分〕, 〔Ⅱ〕 令 ,∴.∴当t=时,时,S max =2〔12分〕点评: 此题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变. 3.〔2021•越秀区校级模拟〕圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x ﹣2y=0的距离为.求该圆的方程.考点:直线与圆的位置关系.专题:综合题;压轴题.分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x 轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.解答:解:设圆P的圆心为P〔a,b〕,半径为r,那么点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P〔a,b〕到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:〔x+1〕2+〔y+1〕2=2,或〔x﹣1〕2+〔y﹣1〕2=2.点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:〔Ⅰ〕设抛物线方程为x2=2py,把点〔2,1〕代入运算求得p的值,即可求得抛物线的标准方程.〔Ⅱ〕由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得,求得点O到直线的距离,从而求得,由此函数在〔0,4〕单调递增,故有,从而得出结论.解答:解:〔Ⅰ〕设抛物线方程为x2=2py,由得:22=2p,所以p=2,所以抛物线的标准方程为x2=4y.〔Ⅱ〕不存在.因为直线与圆相切,所以.把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.由△=16k2+16t=16〔t2+2t〕+16t>0,得t>0或t<﹣3.设M〔x1,y1〕,N〔x2,y2〕,那么x1+x2=4k且x1•x2=﹣4t,∴.∵∠MON为钝角,∴,解得0<t<4,∵,点O到直线的距离为,∴,易证在〔0,4〕单调递增,∴,故不存在直线,当∠MON为钝角时,S△MON=48成立.点评:此题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.专题:计算题;压轴题;转化思想.分析:〔1〕由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;〔2〕把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比拟大小得到直线与圆的位置关系,即可得到交点的个数;〔3〕分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.解答:解:〔1〕由题意可知〔x,y〕=〔13,5〕,即,解得,所以A〔2,﹣3〕;设矩阵M的逆矩阵为,那么•=,即,且,解得a=﹣1,b=3,c=﹣1,d=2所以矩阵M的逆矩阵为;〔2〕把圆的参数方程化为普通方程得〔x+1〕2+〔y﹣2〕2=4,圆心〔﹣1,2〕,半径r=2那么圆心到直线的距离d==<2=r,得到直线与圆的位置关系是相交,所以直线与圆的公共点有两个;〔3〕当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2〕;当0≤x <时,原不等式变为:1﹣2x <x+1,解得x >0,所以原不等式的解集为〔0,〕;当x <0时,原不等式变为:1﹣2x <﹣x+1,解得x >0,所以原不等式无解. 综上,原不等式的解集为[0,2〕. 点评: 此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.6.〔2021•东城区一模〕如图,定圆C :x 2+〔y ﹣3〕2=4,定直线m :x+3y+6=0,过A 〔﹣1,0〕的一条动直线l 与直线相交于N ,与圆C 相交于P ,Q 两点,M 是PQ 中点. 〔Ⅰ〕当l 与m 垂直时,求证:l 过圆心C ; 〔Ⅱ〕当时,求直线l 的方程; 〔Ⅲ〕设t=,试问t 是否为定值,假设为定值,请求出t 的值;假设不为定值,请说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程. 专题:压轴题. 分析: 〔Ⅰ〕根据,容易写出直线l 的方程为y=3〔x+1〕.将圆心C 〔0,3〕代入方程易知l 过圆心C .〔Ⅱ〕过A 〔﹣1,0〕的一条动直线l .应当分为斜率存在和不存在两种情况;当直线l 与x 轴垂直时,进行验证.当直线与x 轴不垂直时,设直线l 的方程为y=k 〔x+1〕,由于弦长,利用垂径定理,那么圆心C 到弦的距离|CM|=1.从而解得斜率K 来得出直线l 的方程为.〔Ⅲ〕同样,当l 与x 轴垂直时,要对设t=,进行验证.当l 的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得到一个二次方程.充分利用“两根之和〞和“两根之积〞去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.解解:〔Ⅰ〕由,故k l=3,答:所以直线l的方程为y=3〔x+1〕.将圆心C〔0,3〕代入方程易知l过圆心C.〔3分〕〔Ⅱ〕当直线l与x轴垂直时,易知x=﹣1符合题意;〔4分〕当直线与x轴不垂直时,设直线l的方程为y=k〔x+1〕,由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.〔8分〕〔Ⅲ〕当l与x轴垂直时,易得M〔﹣1,3〕,,又A〔﹣1,0〕那么,,故.即t=﹣5.〔10分〕当l的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得〔1+k2〕x2+〔2k2﹣6k〕x+k2﹣6k+5=0.那么,,即,=.又由得,那么.故t=.综上,t的值为定值,且t=﹣5.〔14分〕另解一:连接CA,延长交m于点R,由〔Ⅰ〕知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|•|AN|=|AC|•|AR|.由,得|AM|•|AN|=5.故〔14分〕另解二:连接CA 并延长交直线m 于点B ,连接CM ,CN ,由〔Ⅰ〕知AC ⊥m ,又CM ⊥l , 所以四点M ,C ,N ,B 都在以CN 为直径的圆上, 由相交弦定理得.〔14分〕点评: 〔1〕用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.〔2〕解决直线与圆相交弦相关计算时一般采用垂径定理求解.〔3〕涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和〞和“两根之积〞整体求解.这种方法通常叫做“设而不求〞. 7.〔2021•天河区校级模拟〕圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,定点P 的坐标为〔﹣3,0〕. 〔1〕假设点D 〔0,3〕,求∠APB 的正切值;〔2〕当点D 在y 轴上运动时,求∠APB 的最大值;〔3〕在x 轴上是否存在定点Q ,当圆D 在y 轴上运动时,∠AQB 是定值?如果存在,求出Q 点坐标;如果不存在,说明理由.考点:直线和圆的方程的应用. 专题:计算题;证明题;压轴题. 分析: 〔1〕由中圆C :〔x+4〕2+y 2=4,点D 〔0,3〕,我们易求出CD 的长,进而求出圆D 的半径,求出A ,B 两点坐标后,可由tan ∠APB=k BP 得到结果.〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,我们可以求出对应的圆D 的方程和A ,B 两点的坐标,进而求出∠APB 正切的表达式〔含参数r 〕,求出其最值后,即可根据正切函数的单调性,求出∠APB 的最大值; 〔3〕假设存在点Q 〔b ,0〕,根据∠AQB 是定值,我们构造关于b 的方程,假设方程有解,那么存在这样的点,假设方程无实根,那么不存在这样的点. 解答: 解:〔1〕∵|CD|=5, ∴圆D 的半径r=5﹣2=3,此时A 、B 坐标分别为A 〔0,0〕、B 〔0,6〕∴tan ∠APB=k BP =2〔3分〕 〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,那么〔r+2〕2=16+a 2,A 、B 的坐标分别为〔0,a ﹣r 〕,〔0,a+r 〕∴,∴==∵|r+2|2≥16, ∴r ≥2,∴8r ﹣6≥10, ∴∴.〔8分〕〔3〕假设存在点Q 〔b ,0〕,由,,得∵a 2=〔r+2〕2﹣16, ∴欲使∠AQB 的大小与r 无关,那么当且仅当b 2=12,即,此时有,即得∠AQB=60°为定值,故存在或,使∠AQB 为定值60°.〔13分〕 点评: 此题考查的知识点是直线和圆的方程的应用,其中根据中圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,确定圆D 的方程,进而求出A ,B 的方程是解答此题的关键.8.〔2007•海南〕在平面直角坐标系xOy 中,圆x 2+y 2﹣12x+32=0的圆心为Q ,过点P 〔0,2〕且斜率为k 的直线与圆Q 相交于不同的两点A ,B . 〔Ⅰ〕求k 的取值范围; 〔Ⅱ〕是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.考点: 直线和圆的方程的应用;向量的共线定理. 专题: 计算题;压轴题. 分析:〔Ⅰ〕先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,〔Ⅱ〕A 〔x 1,y 1〕,B 〔x 2,y 2〕,根据〔1〕中的方程和韦达定理可求得x 1+x 2的表达式,根据直线方程可求得y 1+y 2的表达式,进而根据以与共线可推知〔x 1+x 2〕=﹣3〔y 1+y 2〕,进而求得k ,根据〔1〕k 的范围可知,k 不符合题意. 解答: 解:〔Ⅰ〕圆的方程可写成〔x ﹣6〕2+y 2=4,所以圆心为Q 〔6,0〕,过P 〔0,2〕且斜率为k 的直线方程为y=kx+2.代入圆方程得x 2+〔kx+2〕2﹣12x+32=0, 整理得〔1+k 2〕x 2+4〔k ﹣3〕x+36=0. ①直线与圆交于两个不同的点A ,B 等价于△=[4〔k ﹣3〕2]﹣4×36〔1+k 2〕=42〔﹣8k 2﹣6k 〕>0, 解得,即k 的取值范围为.〔Ⅱ〕设A 〔x 1,y 1〕,B 〔x 2,y 2〕,那么,由方程①,②又y 1+y 2=k 〔x 1+x 2〕+4. ③ 而.所以与共线等价于〔x 1+x 2〕=﹣3〔y 1+y 2〕,将②③代入上式,解得.由〔Ⅰ〕知,故没有符合题意的常数k .点评:此题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.9.如图,圆心为O ,半径为1的圆与直线l 相切于点A ,一动点P 自切点A 沿直线l 向右移动时,取弧AC 的长为,直线PC 与直线AO 交于点M .又知当AP=时,点P 的速度为v ,求这时点M 的速度.考点:直线与圆的位置关系. 专题:压轴题. 分析: 设AP 的长为x ,AM 的长为y ,用x 表示y ,并用复合函数求导法那么对时间t 进行求导.解答:解:如图,作CD ⊥AM ,并设AP=x ,AM=y ,∠COA=θ, 由题意弧AC 的长为,半径OC=1,可知θ=,考虑θ∈〔0,π〕.∵△APM ∽△DCM ,∴.∵DM=y ﹣〔1﹣cos 〕,DC=sin ,∴∴.上式两边对时间t 进行求导,那么y ′t =y ′x •x ′t .∴y ′t =当时,x ′t =v ,代入上式得点M 的速度.点评: 此题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;同时也考查了逻辑思维能力和计算能力.10.过原点O 作圆x 2+y 2﹣2x ﹣4y+4=0的任意割线交圆于P 1,P 2两点,求P 1P 2的中点P 的轨迹.考点: 直线与圆的位置关系;轨迹方程. 专题: 计算题;压轴题;数形结合. 分析: 设割线OP 1P 2的直线方程为y=kx 与圆的方程联立得〔1+k 2〕x 2﹣2〔1+2k 〕x+4=0,再由韦达定理得:,因为P 是P 1P 2的中点,所以,再由P点在直线y=kx上,得到,代入上式得整理即可.要注意范围.解答:解:设割线OP1P2的直线方程为y=kx代入圆的方程,得:x2+k2x2﹣2x﹣4kx+4=0即〔1+k2〕x2﹣2〔1+2k〕x+4=0设两根为x1,x2即直线与圆的两交点的横坐标;由韦达定理得:又设P点的坐标是〔x,y〕P是P1P2的中点,所以又P点在直线y=kx上,∴,代入上式得两端乘以,得即x2+y2=x+2y〔0<x<〕这是一个一点为中心,以为半径的圆弧,所求轨迹是这个圆在所给圆内的一段弧.点评:此题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.考点卡片1.二次函数的性质【知识点的认识】其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.【解题方法点拨】以y=ax2+bx+c为例:①开口、对称轴、最值与x轴交点个数,当a>0〔<0〕时,图象开口向上〔向下〕;对称轴x=﹣;最值为:f〔﹣〕;判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.假设△≥0,且x1、x2为方程y=ax2+bx+c的两根,那么有x1+x2=﹣,x1•x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为〔0,〕,准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a〔x+b〕2+c向右平移一个单位时,函数变成y=a〔x﹣1+b〕2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f〔﹣〕=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1•x2=﹣;另外,方程可以写成〔y+〕=2〔x+〕2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理【概念】共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=〔1,2〕,向量=〔2,4〕,那么=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=〔x1,y1〕与向量=〔x2,y2〕平行时,有x1•y2﹣x2•y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,那么λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k〔〕∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.根据向量共线的充要条件,假设向量与共线,就能得到含λ的等式,解出λ即可.【考点分析】向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.3.平面向量数量积的运算【平面向量数量积的运算】平面向量数量积运算的一般定理为①〔±〕2=2±2•+2.②〔﹣〕〔+〕=2﹣2.③•〔•〕≠〔•〕•,从这里可以看出它的运算法那么和数的运算法那么有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法那么类比推导向量的数量积的运算法那么:①“mn=nm〞类比得到“〞②“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;③“t≠0,mt=nt⇒m=n〞类比得到“⇒〞;④“|m•n|=|m|•|n|〞类比得到“||=||•||〞;⑤“〔m•n〕t=m〔n•t〕〞类比得到“〔〕•=〞;⑥“〞类比得到.以上的式子中,类比得到的结论正确的选项是①②.解:∵向量的数量积满足交换律,∴“mn=nm〞类比得到“〞,即①正确;∵向量的数量积满足分配律,∴“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞,即②正确;∵向量的数量积不满足消元律,∴“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞,即③错误;∵||≠||•||,∴“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;即④错误;∵向量的数量积不满足结合律,∴“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞,即⑤错误;∵向量的数量积不满足消元律,∴〞不能类比得到,即⑥错误.故答案为:①②.向量的数量积满足交换律,由“mn=nm〞类比得到“〞;向量的数量积满足分配律,故“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;向量的数量积不满足消元律,故“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞;||≠||•||,故“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;向量的数量积不满足结合律,故“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞;向量的数量积不满足消元律,故〞不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比拟多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对〔x,y〕表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标〔x,y〕中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C〔看做适合某种条件的点的集合或轨迹〕上的点与一个二元方程f〔x,y〕=0的实数解建立了如下的关系:〔1〕曲线上点的坐标都是这个方程的解;〔2〕以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤〔直接法〕〔1〕建系设点:建立适当的直角坐标系,用〔x,y〕表示曲线上任一点M的坐标;〔2〕列式:写出适合条件p的点M的集合{M|p〔M〕};〔3〕代入:用坐标表示出条件p〔M〕,列出方程f〔x,y〕=0;〔4〕化简:化方程f〔x,y〕=0为最简形式;〔5〕证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】〔1〕直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式〔如两点间的距离公式、点到直线的距离公式、夹角公式等〕进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.〔2〕定义法:假设动点轨迹的条件符合某一根本轨迹的定义〔如椭圆、双曲线、抛物线、圆等〕,可用定义直接探求.关键是条件的转化,即转化为某一根本轨迹的定义条件.〔3〕相关点法:用所求动点P的坐标〔x,y〕表示动点M的坐标〔x0,y0〕,即得到x0=f 〔x,y〕,y0=g〔x,y〕,再将x0,y0代入M满足的条件F〔x0,y0〕=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.〔4〕待定系数法〔5〕参数法〔6〕交轨法.6.直线与圆的位置关系【知识点的认识】1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕的位置关系的判断方法:〔1〕几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r〔2〕代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:〔1〕圆的标准方程:〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕,其中圆心C〔a,b〕,半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心〔a,b〕是圆的定位条件,半径r是圆的定形条件.〔2〕圆的一般方程:x2+y2+Dx+Ey+F=0〔D2+E2﹣4F>0〕其中圆心〔﹣,﹣〕,半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:〔1〕y2=2px,焦点在x轴上,焦点坐标为F〔,0〕,〔p可为正负〕〔2〕x2=2py,焦点在y轴上,焦点坐标为F〔0,〕,〔p可为正负〕四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px〔p>0〕,焦点在x轴上x2=2py〔p>0〕,焦点在y轴上图形顶点〔0,0〕〔0,0〕对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点〔,0〕〔0,〕焦距无无离心率e=1 e=1准线x=﹣y=﹣9.二阶矩阵【知识点的知识】1、矩阵由m×n个数a ij〔i=1,2,…,m;j=1,2,…,n〕排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的〔i,j〕元.以数a ij为〔i,j〕元的矩阵可简记作〔a ij〕或〔a ij〕m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号〔在数表外加上双竖线〕是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或〔aij〕表示〔其中i,j分别为元素aij所在的行和列〕.2.矩阵的乘法行矩阵[a11 a12]与列矩阵的乘法规那么为,二阶矩阵与列矩阵的乘法规那么为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c〔c>0〕和|ax+b|≥c〔c>0〕型不等式的解法:〔1〕|ax+b|≤c⇔﹣c≤ax+b≤c;〔2〕|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;〔3〕|x﹣a|+|x﹣b|≥c〔c>0〕和|x﹣a|+|x﹣b|≤c〔c>0〕型不等式的解法:方法一:利用绝对值不等式的几何意义求解,表达了数形结合的思想.方法二:利用“零点分段法〞求解,表达了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,表达了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的根本方法:〔1〕利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;〔2〕当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;〔3〕利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式〔组〕进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m 〔m为正常数〕,利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A〔a〕,B〔b〕两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=〞成立的条件是ab≥0,左侧“=〞成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=〞成立的条件是ab≤0,左侧“=〞成立的条件是ab≥0且|a|≥|b|.。
高中数学经典高考难题集锦(解析版)1
2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。
高三数学试题分析及答案
高三数学试题分析及答案一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 1,求f'(x)。
A. 6x^2 - 6xB. 6x^2 - 3xC. 6x^2 - 6x + 1D. 6x^2 + 3x答案:A2. 若直线y = kx + b与圆x^2 + y^2 = 1相切,且k > 0,则k的取值范围是?A. (0, 1)B. (0, √2)C. (0, √3)D. (0, ∞)答案:A3. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a5的值。
A. 11B. 15C. 31D. 63答案:C二、填空题4. 计算定积分∫(0 to 1) x^2 dx的值。
答案:1/35. 已知向量a = (3, -2),b = (1, 2),求向量a与向量b的数量积。
答案:-4三、解答题6. 证明:若x > 0,y > 0,则x + y ≥ 2√(xy)。
证明:根据基本不等式,对于任意正数x和y,有x^2 + y^2 ≥ 2xy,即(x^2 + y^2) / 2 ≥ xy。
由于x和y都大于0,我们可以对不等式两边同时开平方根,得到(x^2 + y^2)^(1/2) / √2 ≥ √(xy),即x + y ≥ 2√(xy)。
7. 解方程:x^3 - 3x^2 + 2 = 0。
解:首先观察方程,可以发现x = 1是一个根。
将x - 1提取出来,得到x^3 - 3x^2 + 2 = (x - 1)(x^2 - 2x - 2)。
接下来解二次方程x^2 - 2x - 2 = 0,使用求根公式得到x = 1 ± √3。
因此,原方程的解为x = 1,x = 1 + √3,x = 1 - √3。
结束语:以上为本次高三数学试题的分析及答案,希望对同学们的复习有所帮助。
在实际考试中,务必仔细审题,合理分配时间,注意检查。
祝大家取得优异成绩。
数学高考真题答案及解析版
数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
高考数学 常见难题大盘点 解析几何
1. 设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅ay b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.解析:本例(1)通过32e =,22b =,及,,a b c 之间的关系可得椭圆的方程;(2)从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与一般的关系,分直线的斜率存在与不存在讨论。
答案:(1)2232 2.1, 2.32c a b b b e a e a a -=====⇒==椭圆的方程为1422=+x y (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y 由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x ay y b x x ±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2(3)当A 为顶点时,B 必为顶点.S △AOB =1 当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到 442221+-=k b x x:04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x4222=+k b 41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S1||242==b k 所以三角形的面积为定值.2. 在直角坐标平面中,△ABC 的两个顶点为 A (0,-1),B (0, 1)平面内两点G 、M 同时满足①0GA GB GC ++=u u u r u u u r u u u r r , ②||MA uuu r = ||MB uuu r = ||MC u u u u r ③GM u u u u r ∥AB u u u r(1)求顶点C 的轨迹E 的方程(2)设P 、Q 、R 、N 都在曲线E 上 ,定点F 的坐标为(2, 0) ,已知PF u u u r ∥FQ uuur ,RF u u u r ∥FN u u u r 且PF u u u r ·RF u u u r= 0.求四边形PRQN 面积S 的最大值和最小值.解析:本例(1)要熟悉用向量的方式表达点特征;(2)要把握好直线与椭圆的位置关系,弦长公式,灵活的运算技巧是解决好本题的关键。
2023 高考数学分类解析汇总彩色版
2023高考数学分类解析汇总2023集合运算与逻辑术语 1 2023复数 3 2023算法与程序框图 4 2023平面向量 5 2023数列 6 2023排列与组合 8 2023概率与统计 9 2023三角函数 14 2023解三角形 16 2023解析几何初步(直线与圆) 18 2023圆锥曲线 19 2023函数 22 2023线性规划 24 2023立体几何 25 2023导数 30 2023参数方程 32 2023不等式 332023集合运算与逻辑术语1.【2023甲卷理科T1】设集合A={x∣x=3k+1,k∈Z},B={x∣x=3k+2,k∈Z},U为整数集,则∁U(A∪B)=()A.{x∣x=3k,k∈z}B.{x∣x=3k-1,k∈z}C.{x∣x=3k-2,k∈Z}D.ϕ2.【2023甲卷文科T1】设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪(C∪M)=()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}3.【2023乙卷理科T2】设集合U=R, 集合M={x x<1},N={x|-1<x<2},则{x|x≥2}=()A.C U(M∪N)B.N∪C U MC.C U(M∩N)D.M∪C U N4.【2023乙卷文科T2】设全集U={0,1,2,4,6,8}, 集合M={0,4,6},N={0,1,6}, 则M∪C U N=()A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U5.【2023新一卷T1】已知集合M={-2,-1,0,1,2},A={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.0,1,2C.{-2}D.{2}6.【2023新一卷T7】记S n为数列a n的前n项和,设甲:a n为等差数列;乙:S n n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.【2023新二卷T2】设集合A=0,-a,B=1,a-2,2a-2,若A⊆B,则a=()A.2B.1C.23D.-18.【2023上海卷T13】已知P={1,2},Q={2,3},若M={x|x∈P且x∉Q},则M=()A.{1}B.{2}C.{1,2}D.{1,2,3}9.【2023天津卷T1】已知集合U={1,2,3,4,5},A={1,3},B={1,2,4},则C U(B∪A)=()A.{1,3,5}B.{1,3}C.{1,2,4}D.{1,2,4,5}10.【2023天津卷T2】“a2=b2”是“a2+b2=2ab”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件2023复数1.【2023甲卷理科T2】若复数(a+i)1-a i,则a=()A.-1B.0C.1D.22.【2023甲卷文科T2】51+i32+i2-i=()A.-1B.1C.1-iD.1+i3.【2023乙卷理科T1】设z=2+i1+i2+i5, 则z=()A.1-2iB.1+2iC.2-iD.2+i4.【2023乙卷文科T1】2+i2+2i3=()A.1B.2C.5D.55.【2023新一卷T2】已知z=1-i2+2i,则z-z=()A.-iB.iC.0D.16.【2023新二卷T1】在复平面内,(1+3i)(3-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限7.【2023上海卷T6】已知当z=1+i,则|1-i·z|=8.【2023天津卷T10】已知i是虚数单位,化简5+14i2+3i的结果为2023算法与程序框图1.【2023甲卷理科T3】执行下面的程序框圈,输出的B=()A.21B.34C.55D.89开始n=1,A=1,B=2n≤3?A=A+BB=A+Bn=n+1输出结束2.【2023甲卷文科T6】执行右边的程序框图,输出的B=()A.21B.34C.55D.89开始n=3,A=1,B=2,k=1k≤n?A=A+BB=A+Bk=k+1输出B结束2023平面向量1.【2023甲卷理科T4】向量|a |=|b |=b ,|c |=2,且a +b +c =0 ,则cos ‹a -c ,b-c ›=()A.-15B.-25. C.25D.452.【2023甲卷文科T3】已知向量a =(3,1),b =(2,2),则cos ‹a +b,a -b ›=()A.117B.1717. C.55D.2553.【2023乙卷理科T12】已知⊙O 的半径为1, 直线PA 与⊙O 相切于点A , 直线PB 与⊙O 交于B ,C 两点, D 为BC 的中点,若|PO |=2, 则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+24.【2023乙卷文科T6】正方形ABCD 的边长是2,E 是AB 的中点, 则EC ⋅ED=()A.5B.3C.25D.55.【2023新一卷T3】已知向量a =(1,1),b =(1,-1). 若(a +λb )⊥(a+μb ),则()A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-16.【2023新二卷T13】已知向量a ,b 满足a -b =3,a +b =2a -b,则b =.7.【2023上海卷T2】已知a =-2,3 ,b =1,2 , 求a ⋅b =.8.【2023天津卷T14】在△ABC 中.∠A =60°,点D 为AB 的中点,点E 为CD 的中点,若设AB =a ,AC =b , 则AE 可用a、b表示为.若BF =13BC ,则AE ⋅AF 的最大值为.2023数列1.【2023甲卷理科T5】已知数到a n中,a1=1,S n为a n前n项和,S5=5S3-4,则S4=()A.7B.9C.15D.302.【2023甲卷文科T5】记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=()A.25B.22C.20D.153.【2023甲卷文科T13】记S n为等比数列{a n}的前n项和.若8S6=7S3,则{a n}的公比为.4.【2023乙卷理科T10】已知等差数列a n的公差为2π3, 集合S=cos a n∣n∈N∗, 若S={a,b}, 则ab=()A.-1B.-12C.0D.125.【2023乙卷理科T15】已知a n为等比数列, a2a4a5=a3a6,a9a10=-8, 则a7=6.【2023新二卷T8】记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-1207.【2023上海卷T3】已知{a n}为等比数列,且a1=3,q=2,求S6=8.【2023天津卷T6】已知{a n}为等差数列, S n为数列{a n}的前n项和,a n+1=2S n+2, 则a4的值为()A.3B.18C.54D.1529.【2023甲卷理科T17】已知数列a n中,a2=1,设S n为{a n}前n项和,2S n=na n.(1)求a n的通项公式;(2)求数列a n+12n的前n项和Tn.10.【2023乙卷文科T18】记S n为等差数列a n的前n项和, 已知a2=11,S10=40.(1)求a n的通项公式;(2)求数列a n的前n项和T n.11.【2023新一卷T20】设等差数列a n的公差为d,且d>1. 令b n=n2+na n,记S n,T n分别为数列a n,b n的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求a n的通项公式;(2)若b n为等差数列,且S99-T99=99,求d.12.【2023新二卷T18】若等差数列{a n},数列{b n}满足b n=a n-6,n为奇数,2a n,n为偶数,记Sn,T n分别为{a n},{b n}的前n项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:n>5时,T n>S n.13.【2023天津卷T19】已知{an}是等差数列,a2+a5=16, a5-a3=4.(1)求{an}的通项公式和n-1i=2n-1a i(2)已知{b n}为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1, 则b k<a n<b k+1i.当k≥2时,求证:2k-1<b n<2k+1ii.求{b n}的通项公式及其前n项和.1.【2023甲卷理科T9】有五名志愿者参加社服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.302.【2023乙卷理科T7】甲乙两位同学从6种课外读物中各自选读2种, 则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种3.【2023新一卷T13】某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).4.【2023新二卷T3】某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有()A.C45400∙C15200种B.C20400∙C40200种C.C30400∙C30200种D.C40400∙C20200种5.【2023上海卷T10】已知1+2023x10+2023-x100=a0+a1x+a2x2+⋯+a100x100, 其中a0,a1,a2⋯a100∈R,若0≤k≤100且k∈N,当a k<0时,k的最大值是6.【2023上海卷T12】空间内存在三点A、B、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A、B、C可以组成正四棱锥,求方案数为7.【2023天津卷T11】在2x3-1 x6的展开式中,x2项的系数为1.【2023甲卷理科T6】有50人报名足球倶乐部,60人报名乒乓球倶乐部,人报名足球或与丘球倶乐部,若已知某人报足球倶乐部,则其报乒乓球倶乐部的概率为()A.0.8B.0.4C.0.2D.0.12.【2023甲卷文科T4】某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.233.【2023乙卷理科T5,文科T7】已知O是平面直角坐标系的原点, 在区域(x,y)∣1≤x2+y2≤4内随机取一点A, 则直线OA的倾斜角不大于π4的概率为()A.18B.16C.14D.124.【2023乙卷文科T9】某学校举办作文比赛, 共6个主题, 每位参赛同学从中随机抽取一个主题准备作文, 则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.135.【2023新一卷T9】有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差6.【2023新二卷T12】在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如:若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)2D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.【2023上海卷T9】国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为.8.【2023上海卷T14】根据身高和体重散点图,下列说法正确的是()A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.【2023天津卷T7】忘了。
高考数学热点问题专题解析——定值问题
圆锥曲线中的定值问题一、基础知识:所谓定值问题,是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值。
1、常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数。
2、定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向。
(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢 (3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算 二、典型例题:例1:已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为43y x =,右焦点()5,0F ,双曲线的实轴为12A A ,P 为双曲线上一点(不同于12,A A ),直线12,A P A P 分别于直线9:5l x =交于,M N 两点 (1)求双曲线的方程(2)试判断FM FN ⋅是否为定值,若为定值,求出该值;若不为定值,请说明理由解:(1)由()5,0F 可得5c =,且焦点在x 轴上所以设双曲线方程为:22221x y a b -=,则渐近线方程为b y x a=±43b a ∴= 由22225a b c +==解得:34a b =⎧⎨=⎩∴双曲线方程为1916-=(2)由(1)可得:()()123,0,3,0A A -,设()00,P x y设()11:3A P y k x =+,联立方程()1395y k x x =+⎧⎪⎨=⎪⎩解得:1924,55M k ⎛⎫⎪⎝⎭同理:设()22:3A P y k x =-,联立方程()1395y k x x =-⎧⎪⎨=⎪⎩可得:296,55N k ⎛⎫- ⎪⎝⎭121624166,,,5555k k FM FN ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭ 122561442525k k FM FN ∴⋅=- 下面考虑计算12k k 的值001200,33y y k k x x ==+- 2012209y k k x ∴=- ()00,P x y 在双曲线上()22222000001616116991699x y x y x -=⇒=-=- 2012201699y k k x ∴==-25614416025259FM FN ∴⋅=-⋅= 所以FM FN ⋅为定值例2:已知椭圆()222210x y a b ab +=>>2⎭ (1)求椭圆方程(2)设不过原点O 的直线():0l y kx m k =+≠,与该椭圆交于,P Q 两点,直线,OP OQ 的斜率依次为12,k k ,且满足124k k k =+,试问:当k 变化时,2m 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由解:(1)由e a ==可得:::2a b c =∴椭圆方程为222214x y b b +=代入2⎭可得:22221142b b ⎛+⋅= ⎝⎭解得:1b = 2a ∴= ∴椭圆方程为2214x y +=(2)设()()1122,,,P x y Q x y ,联立方程可得:2244y kx m x y =+⎧⎨+=⎩消去y 可得:()2244x kx m ++=,整理可得: ()222418440kx kmx m +++-=依题意可知:112212111222,y kx m m y kx m m k k k k x x x x x x ++===+===+ 121211442k k k k k m x x ⎛⎫∴=+⇒=++ ⎪⎝⎭即12122x x k m x x +=⋅① 由方程()222418440k x kmx m +++-=可得:2121222844,4141km m x x x x k k -+=-=++ 代入①可得: 22284124441km k k m m k -+=⋅-+,整理可得:222282144km k m m m =-⇒-=-- 212m =∴可知2m 为定值,与k 的取值无关例3:已知椭圆()222210x y a b a b +=>>经过点122P ⎛⎫ ⎪⎝⎭,2e =,动点()()2,0M t t >(1)求椭圆标准方程(2)设F 为椭圆的右焦点,过F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:ON 的长为定值,并求出这个定值 解:(1)由2e =::a b c = ∴椭圆方程可转化为:222212x y b b +=,将122P ⎛⎫ ⎪⎝⎭代入椭圆方程可得:22221111222b b ⎛⎛⎫+= ⎪⎝⎭⎝⎭,解得:21b = ∴椭圆方程为2212x y +=(2)由(1)可得:()1,0F :2t OM y x =思路一:通过圆的性质可得ON MN ⊥,而NF OM ⊥(设垂足为K ),由双垂直可想到射影定理,从而2ON OK OM =⋅,即可判定ON 为定值()2:1FN y x t∴=--,设OM 与FN 相交于K 则()2:21t y x K y x t ⎧=⎪⎪⎨⎪=--⎪⎩解得:2242,44t K t t ⎛⎫ ⎪++⎝⎭OK ∴==OM = OM 为圆的直径 ON MN ∴⊥NK OM ⊥由射影定理可得:22ON OK OM =⋅=ON ∴=思路二:本题也可从坐标入手,设()00,N x y ,则只需证明22200ON x y =+为定值即可,通过条件寻找00,x y 关系,一方面:0FN OM FN OM ⊥⇒⋅=,可得0022x ty +=;另一方面由N 点在圆上,可求出圆的方程()2221124t t x y ⎛⎫-+-=+ ⎪⎝⎭,从而()222001124t t x y ⎛⎫-+-=+ ⎪⎝⎭,展开后即可得到2200x y +为定值解:设()00,N x y ,则()()001,,2,FN x y OM t =-=()00210FN OM x y t ∴⋅=-+=0022x y t ∴+=OM 的中点坐标为1,2t ⎛⎫⎪⎝⎭,OM =2r ∴=∴以OM 为直径的圆方程为:()2221124t t x y ⎛⎫-+-=+ ⎪⎝⎭代入()00,N x y ,可得:()222001124t t x y ⎛⎫-+-=+ ⎪⎝⎭222200021144t t x y x ty ∴+-+-+=+22000022x y x ty ⇒+=+=22002x y ∴+=即22ON =ON ∴=例4:已知椭圆()2222:10x y C a b a b +=>>的离心率为23,半焦距为()0c c >,且1a c -=,经过椭圆的左焦点F ,斜率为()110k k ≠的直线与椭圆交于,A B 两点,O 为坐标原点(1)求椭圆C 的方程(2)设()1,0R ,延长,AR BR 分别与椭圆交于,C D 两点,直线CD 的斜率为2k ,求证:12k k 为定值 解:(1)23c e a ==,设2,3c k a k == 由1a c -=可得:3211k k k -=⇒=3,2a c ∴==2225b a c ∴=-=22:195x y C ∴+=(2)由(1)可得()2,0F - ,设()()()()11223344,,,,,,,A x y B x y C x y D x y 可得:()11111:111y x AR y x x y x y -=-⇒=+- ∴联立方程1211122211115140195x x y y x x y y y y x y -⎧=+⎪--⎪⇒+-=⎨⎪+=⎪⎩221113114455y y y y x x ∴=-=-- 13145y y x ∴=- 11331115915x x x y y x --∴=+=- 1111594,55x y C x x ⎛⎫-∴ ⎪--⎝⎭同理,直线BR 与椭圆交点D 的坐标为2222594,55x y D x x ⎛⎫- ⎪--⎝⎭()()()()()()12122134122123412211244454555595959559555y y y x y x y y x x k x x x x x x x x x x -------∴===-----------()()()()()1221122121212145455164y x y x y x y x y y x x x x ----+-==--设()1:2AB y k x =+ ()()11121222y k x y k x =+⎧⎪∴⎨=+⎪⎩,代入可得:()()()()()()()1121212112121221212252544k x x k x x y y k x x y y k x x x x +-++--+-==--211111211515724244y y k k k k x x -=+⋅=+=- 2174k k ∴= 例5:已知椭圆()2222:10x y C a b a b +=>>的右焦点为()1,0F,且点2P ⎭在椭圆C 上,O 为坐标原点 (1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为,M N (,M N 不在坐标轴上),若直线MN 的横纵截距分别为,m n ,求证:22113m n +为定值 解:(1)依()1,0F 可知1c = ∴椭圆方程为222211x y a a +=-代入2P ⎫⎪⎭解得:24a = 2223b a c ∴=-=∴椭圆方程为22143x y +=(2)思路:由(1)可得:2213:144x y C +=,可设()00,Q x y ,由题意可知MN 为过Q 作圆切线所产生的切点弦,所以004:3MN x x y y +=,从而可得0044,33m n x y ==,所以()2200221193348x y m n +=+,由椭圆方程可得220034x y +=,从而2211933124m n +==为定值 解:由(1)可得:222213:11544433x y x y C +=⇒+=-设()00,Q x y ∴可知MN 是过Q 作圆切线所产生的切点弦 设()()1122,,,M x y N x y ,由,M N 是切点可得:,OM MQ ON NQ ⊥⊥111MQ OMx k k y ∴=-=-()1001:x MQ y y x x y ∴-=-,代入()11,M x y :()110101xy y x x y -=--, 即22101011x x y y x y +=+ ,同理可知对于NQ ,有22202022x x y y x y +=+因为,M N 在圆224:3O x y +=上 221122224343x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩101020204343x x y y x x y y ⎧+=⎪⎪∴⎨⎪+=⎪⎩ ,M N ∴为直线0043x x y y +=上的点因为两点唯一确定一条直线004:3MN x x y y ∴+=,即0014433x y x y +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭由截距式可知0044,33m n x y ==()2222000022111999333161648x y x y m n ∴+=⋅+=+ Q 在椭圆1C 上220034x y ∴+=()220022119333484x y m n ∴+=+=即22113m n +为定值 (1)本题定值是通过整体代入的手段,即抓住最后22034x y +=的特点整体消去00,x y 所得,所以在处理定值问题时,涉及的变量个数可以多,但是要有一定的条件保证能够消去。
高考数学真题及答案解析版
高考数学真题及答案解析版一、选择题1. 题目内容:已知函数f(x) = ax^2 + bx + c在点x=1取得最小值3,且知道a>0,求a+b+c的值。
答案解析:根据题意,函数f(x) = ax^2 + bx + c在x=1处取得最小值,可以得出f(x)的对称轴为x=-b/2a=1,由此可得b=-2a。
又因为f(1)=3,代入得a+b+c=3。
将b=-2a代入,得到a-2a+c=3,即c=5-a。
由于a>0,所以c>5。
综合以上信息,我们可以得出a+b+c=a-2a+5-a=3,解得a=1,进而得到b=-2,c=4。
所以a+b+c=1+(-2)+4=3。
2. 题目内容:设集合A={x|x^2 < 4},B={x|x < 0},求A∪B的值。
答案解析:集合A表示的是所有满足x^2 < 4的x值的集合,即-2 <x < 2。
集合B表示的是所有小于0的x值的集合。
求A∪B,即求A和B的并集,也就是所有属于A或属于B的元素构成的集合。
由于A的范围是-2到2之间,而B是小于0的所有数,因此A∪B的范围是从负无穷到2,即A∪B={x|x < 2}。
3. 题目内容:已知数列{an}满足a1=1,an=3an-1+2(n≥2),求a5的值。
答案解析:根据递推公式an=3an-1+2,我们可以逐步计算数列的前几项。
首先a1=1,然后a2=3a1+2=5,a3=3a2+2=17,a4=3a3+2=53,最后a5=3a4+2=161。
所以a5的值为161。
二、填空题1. 题目内容:若sinθ=0.6,则cosθ的值为______。
答案解析:根据三角函数的基本关系,sin^2θ+cos^2θ=1。
已知sinθ=0.6,所以0.6^2+cos^2θ=1,解得cos^2θ=1-0.36=0.64。
由于cosθ的值在-1到1之间,所以cosθ的值为±√0.64=±0.8。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
高中数学试题分析及答案
高中数学试题分析及答案一、选择题1. 若函数f(x) = x^2 - 4x + 3的图像与x轴有两个交点,则这两个交点的横坐标之和为:A. 4B. 2C. 0D. -2答案:A解析:根据二次函数的图像性质,函数f(x) = x^2 - 4x + 3的图像与x轴的交点即为方程x^2 - 4x + 3 = 0的根。
根据韦达定理,方程的两个根之和等于系数-4的相反数,即4。
2. 已知向量a = (3, -1),向量b = (2, 4),求向量a与向量b的数量积:A. 10B. -2C. 8D. 2答案:B解析:向量a与向量b的数量积计算公式为a·b = |a||b|cosθ,其中θ为两向量之间的夹角。
根据数量积的定义,a·b = 3×2 + (-1)×4 = 6 - 4 = 2。
因此,正确答案为D。
二、填空题3. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第5项a5。
答案:17解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
4. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的圆心坐标和半径。
答案:圆心坐标为(2, -1),半径为3。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
将已知圆的方程与标准方程对比,可得圆心坐标为(2, -1),半径为3。
三、解答题5. 已知函数f(x) = 2x^3 - 9x^2 + 12x - 3,求该函数的极值点。
解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 18x + 12。
令f'(x) = 0,解得x1 = 1,x2 = 2。
然后计算二阶导数f''(x) = 12x - 18,判断极值点。
高考真题数学答案及解析
高考真题数学答案及解析一、选择题1. 题目:若函数f(x) = ax^2 + bx + c在点x=2处取得极小值,且已知f(1)=3,f(3)=15,则a的值为____。
解析:由题意可知,函数f(x) = ax^2 + bx + c在x=2处取得极小值,所以f'(x)在x=2处为0。
首先求导数f'(x) = 2ax + b。
将x=2代入得到4a + b = 0。
又已知f(1)=3,f(3)=15,将x=1和x=3分别代入原函数得到两个方程:a + b + c = 3和9a + 3b + c = 15。
联立这三个方程解得a=1,b=-2,c=4。
所以a的值为1。
2. 题目:设集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∪B的元素个数为____。
解析:集合A表示所有偶数的集合,集合B表示所有奇数的集合。
由于整数集包括所有的偶数和奇数,所以A∪B就是整个整数集。
因此,A∪B的元素个数为无穷多个。
3. 题目:已知三角形ABC中,∠A=90°-∠B,AB=AC,点D为BC中点,连接AD,若∠BAD=15°,则∠BAC的度数为____。
解析:由于AB=AC,所以三角形ABC为等腰直角三角形,∠BAC=45°。
又因为∠A=90°-∠B,所以∠B=45°。
由于点D为BC中点,AD为中线,所以AD=BD=CD。
又因为∠BAD=15°,所以∠DAC=∠BAC-∠BAD=45°-15°=30°。
因此,∠BAC的度数为30°。
二、填空题1. 题目:若等差数列{an}的前n项和为Sn,已知a1=2,公差d=3,求S10的值为____。
解析:等差数列的前n项和公式为Sn = n/2 * (2a1 + (n-1)d)。
将n=10,a1=2,d=3代入公式得:S10 = 10/2 * (2*2 + (10-1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
数学2024高考试卷解析
数学2024高考试卷解析一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A = {xx^2-3x + 2 = 0},B={xx>1},则A∩ B = ( )A. {1}B. {2}C. {1,2}D. varnothing解析:先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
又因为B = {xx>1},所以A∩ B={2},答案为B。
2. 复数z=(1 + i)/(1 - i),则z的共轭复数¯z=( )A. -iB. iC. 1 - iD. 1 + i解析:对z=(1 + i)/(1 - i)进行化简,分子分母同时乘以1 + i,得到z=frac{(1 +i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=i,共轭复数实部相同,虚部相反,所以¯z=-i,答案为A。
3. 已知向量→a=(1,2),→b=(m, - 1),若→a⊥→b,则m = ( )A. 2C. (1)/(2)D. -(1)/(2)解析:因为→a⊥→b,根据向量垂直的性质→a·→b=0,即1× m+2×(- 1)=0,解得m = 2,答案为A。
4. 函数y=sin(2x+(π)/(3))的最小正周期是(\space)A. πB. 2πC. (π)/(2)D. (2π)/(3)解析:对于函数y = Asin(ω x+φ),其最小正周期T=(2π)/(ω),这里ω = 2,所以T=π,答案为A。
5. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5=( )A. 9B. 11C. 13D. 15解析:根据等差数列通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=1+(5 - 1)×2=1 + 8 = 9,答案为A。
2024年高考数学问题解决答案解析
2024年高考数学问题解决答案解析2024年的高考数学试卷中,涵盖了广泛而且深入的数学知识,考察了学生们在解决问题和运用数学知识的能力。
本文将为大家解析该年高考数学试卷的各道题目,帮助大家更好地理解和掌握解题思路。
1.选择题1.1 第一题的解析在第一题中,要求学生根据给定的条件求解某个未知数的值。
解题的关键在于理解并推断出隐藏的条件,然后运用解方程的方法进行求解。
1.2 第二题的解析第二题中考察了对数学概念的理解和运用。
学生需要根据题目中的条件和给出的选择项进行推理和比较,选出符合要求的正确答案。
2.填空题2.1 第一题的解析第一题为填空题,要求学生根据已知的条件计算未知数的值。
解题过程中,学生需要注意运算的顺序和精确性,避免计算错误。
2.2 第二题的解析第二题是一道较为复杂的填空题,考察了学生对数学概念和运算法则的掌握。
解题时,学生需要通过综合运用多个知识点进行推理和计算,得出正确的答案。
3.解答题3.1 第一题的解析第一题为解答题,要求学生通过证明或计算等方式解决一个数学问题。
解题的关键在于理解问题的本质和解题思路,并且清晰地展示出解题的步骤和思考过程。
3.2 第二题的解析第二题是一道较难的解答题,需要学生综合运用多个数学知识点和解题方法进行推理和计算。
解答时,学生需要明确每一步的目标和方法,严谨地进行论证和计算,最终得出正确的解答。
通过对2024年高考数学试卷的解析,我们可以看出,在高考数学试卷中,题目难度较大,考察的知识点广泛,要求学生具备扎实的数学基础和灵活运用数学方法的能力。
因此,备考时,学生们应注重理解和掌握数学概念,积累解题经验,注重思维的灵活性和创造性,更好地应对高考数学考试的挑战。
高考数学问题解决答案解析到此结束。
希望以上分析对大家在备考数学高考中有所帮助,希望大家都能取得优异的成绩!。
数字问题(解析版)--新高考数学题型全归纳
数字问题--新高考数学题型全归纳例1.由0,1,2,3,4,5这6个数字可以组成五位没有重复数字的奇数个数为() A.288B.360C.480D.600【解析】根据题意,末位数字可以为1、3、5,有13A种取法,首位数字不能为0,有14A种取法,再选3个数字,排在中间,有34A种排法,则五位奇数共有113344288A A A=,故选:A.例2.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:数字123456789形式ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示.(如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为()A.87B.95C.100D.103【解析】用6根火柴表示数字,所有搭配情况如下:1根火柴和5根火柴:1根火柴可表示的数为1;5根火柴可表示的数为8,和0一起,能表示的数共有4个(108,180,801,810).2根火柴和4根火柴:2根火柴可表示的数为2、5;4根火柴可表示的数为7,和0一起,能表示的数有1248C⨯=个.3根火柴和3根火柴:3根火柴可表示的数为3、4、6、9,和0一起,能表示的数分为2类:除0外的两个数字相同,可表示的数有1248C ⨯=个;除0外的两个数字不同,则有24424C ⨯=个,所以共有82432+=个.1根火柴、1根火柴和4根火柴:即有1、1、7组成的数,共有3个(117,171,711).1根火柴、2根火柴和3根火柴:即由1,2或5中的一个,3、4、6、9中的一个数字组成的三位数,共有113243243248C C A =⨯⨯⨯=个.2根火柴、2根火柴、2根火柴:即由2或5组成的三位数,分为两类:三个数字都相同,共有2个(222,555);三个数字中的两个数字相同,则有1236C ⨯=个,共有268+=个.综上可知,可组成的三位数共有48323488103+++++=个.故选:D.例3.用0、1、2、3、4、5这六个数字,组成数字不重复且大于3000,小于5421的四位数有()个A .175B .174C .180D .185【解析】分以下三种情况讨论:①首位数字为3或4,则后面三个数位上的数随便选择,此时,符合条件的数的个数为352120A =;②首位数字为5,百位数字不是4,则百位数字可以在0、1、2、3中随便选择一个,后面两个数位上的数没有限制,此时,符合条件的数的个数为124448C A =;③首位数字为5,百位数字为4,则符合条件的数有5401、5402、5403、5410、5412、5413、5420,共7个.综上所述,大于3000,小于5421的四位数的个数为120487175++=.故选:A.例4.将数字1、1、2、2、3、3、4、4排成四行两列,要求每行的数字互不相同,每列的数字也互不相同,则不同的排列方法共有()A .216B .72C .266D .274【解析】由于每行的数字互不相同,每列的数字也互不相同,则第一行数字是1、2、3、4的全排列,共44A 种,现考虑第一行数字的排列为()1,2,3,4,则第二行数字的排列可以是:()2,1,4,3、()2,3,4,1、()2,4,1,3、()3,1,4,2、()3,4,1,2、()3,4,2,1、()4,1,2,3、()4,3,1,2、()4,3,2,1,共9种.由分步乘法计数原理可知,不同的排列方法共有449924216A =⨯=种.故选:A.例5.从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为()A .85B .95C .2040D .2280【解析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C 和数字4,7至少出现两个,若字母C 和数字4,7都出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,有5种选法,若字母C 和数字4出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C 和数字7出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A ,B ,D ,E ,F 中选出2个字母,有C 52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A 44=24种情况,则一共有85×24=2040种不同排法;故选:C .例6.由0,1,2,3,4,5,6,7,8,9组成没有重复数字的五位数,且是奇数,其中恰有两个数字是偶数,则这样的五位数的个数为().A .7200B .6480C .4320D .5040【解析】第一类,偶数数字取0先从1,3,5,7,9中取3个奇数,从2,4,6,8中取1个偶数,有315440C C =中取法,然后将个位数排一个奇数,十位、百位、千位选一个出来排0,剩下3个数字全排列,即有11333354A A A =种排法所以本类满足条件的五位数有4054=2160⨯个第二类,偶数数字不取0,先从1,3,5,7,9中取3个奇数,从2,4,6,8中取2个偶数,有325460C C =中取法,然后将个位数排一个奇数,剩下4个数字全排列,即有143472A A =种排法所以本类满足条件的五位数有6072=4320⨯个综上:这样的五位数个数为2160+4320=6480故选:B例7.将6个数2,0,1,9,20,19将任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数是()A .546B .498C .516D .534【解析】解:将2,0,1,9,20,19的首位不为0的排列的全体记为A ,记为A 为A 的元素全数,则555600A A =⨯=,将A 中的2的后一项是0,且1的后一项是9的排列的全体记为B ,A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ,A 中1的后一项是9,但2的后一项不是0的排列的全体记为D ,则454454,,4B A B C A B D A =+=+=⨯,可得24,96,72B C D ===,由B 中排列产生的每一个8位数,恰对应B 中的224⨯=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换),类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列,因此满足条件的8位数的个数为:42B C D A B C D +-++342B C D A +=--600184836498=---=,故选:B例8.2016里约奥运会期间,小赵常看的6个电视频道中有2个频道在转播奥运比赛,若小赵这时打开电视,随机打开其中一个频道,若在转播奥运比赛,则停止换台,否则就进行换台,那么,小赵所看到的第三个电视台恰好在转播奥运比赛的不同情况有()A .6种B .24种C .36种D .42种【解析】解:第一步从4个没转播的频道选出2个共有24A 种,再把2个报道的频道选1个有12A 种,根据分步计数原理小赵所看到的第三个电视台恰好在转播奥运比赛的不同情况有214224A A = 种.故选:B .例9.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为()A .72B .84C .96D .120【解析】先选择一个非0数排在首位,剩余数全排列,共有144496C A ⋅=种,其中1和0排在一起形成10和原来的10有重复,考虑1和0相邻时,且1在0的左边,和剩余数字共有4!=24种排法,其中一半是重复的,故此时有12种重复.故共有961284-=种.故选:B.例10.由0,1,2,3,5组成的无重复数字的五位偶数共有()A .36个B .42个C .48个D .120个【解析】分两类:一、若五位数的个位数是0,则有1432124n =⨯⨯⨯=种情形;二、若五位数的个位数是2,由于0不排首位,因此只有1,3,5有3种情形,中间的三个位置有3216⨯⨯=种情形,依据分步计数原理可得23618n =⨯=种情形.由分类计数原理可得所有无重复五位偶数的个数为12241842n n n =+=+=,应选答案B .例11.用数字2、3、4、5、6组成没有重复数字的五位数,其中偶数的个数为()A .120B .72C .60D .48【解析】由于五位数为偶数,则个位数必为偶数,可在2、4、6种任选一个数,有13C种选择,其它数位任意排列,由分步乘法计数原理可知,所求偶数的个数为143432472C A=⨯=.故选:B.例12.在0、1、2、3、4、5这6个数字组成的没有重复数字的六位数中,能被2整除的数的个数为()A.216B.288C.312D.360【解析】由能够被2整除,可知该六位数为偶数,根据末位情况,分两种情况讨论:当末位数字为0时,其余五个数为任意全排列,即有55A种;当末位数字为2或4时,最高位从剩余四个非零数字安排,其余四个数位全排列,则有114 244 C C A,综上可知,共有5114524454321244321120192312A C C A+=⨯⨯⨯⨯+⨯⨯⨯⨯⨯=+=个.故选:C.例13.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有()A.512个B.192个C.240个D.108个【解析】试题分析:由于能被5整除的数,其个位必为0或5,由此分两类:第一类:个位为0的,有个;第二类:个位为5的,再分两小类:第1小类:不含0的,有个,第2小类:含0的,有个,从而第二类共有48个;故在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有60+48=108个,故选D.例14.用数字0,1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数的个数为()A.1260B.1320C.1200D.1140【解析】当没有偶数时,这样的四位数的个数为45120A=当含有一个偶数时这个偶数为0时,这样的四位数的个数为1335180A A=当这个偶数为2,4,6,8其中一个时,这样的四位数的个数为113445960C A A =即满足题意的四位数的个数为1201809601260++=故选:A例15.一个三位自然数abc 的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a b >且c b >时称为“凹数”;若,,{0,2,3,4,5}a b c ∈,且a ,b ,c 互不相同,则“凹数”的个数为().A .20B .36C .24D .30【解析】根据题意,分2步进行分析:(1)在0,2,3,4,5五个数中任取3个数,来组成“凹数”,有3510C =种取法,(2)将取出的3个数中最小的数放在十位,其余2个数放在百位,个位,有222A =种情况,则“凹数”的个数为10220⨯=个.故选:A例16.从1,3,5,7,9中任取2个不同的数字,从0,2,4,6中任取2个不同的数字,组成没有重复数字的四位数,则所组成的四位数是奇数的概率为___________.(用最简分数作答)【解析】若选出的4个数中有0,则组成的四位无重复的数字共有21135333540C C C A =个,其中奇数有2112253222240C C C C A =个;若选出的4个数中无0,则组成的无重复数字的四位数有224534720C C A =个,其中奇数有22135323360C C C A =个,所以,组成的四位数为奇数的概率为240+36060010==540+720126021P =.故答案为:1021.例17.对于数列{}n x ,若123n x x x x ≤≤≤⋅⋅⋅≤,则称数列{}n x 为“广义递增数列”,若123n x x x x ≥≥≥≥ ,则称数列{}n x 为“广义递减数列”,否则称数列{}n x 为“摆动数列”.已知数列{}n a 共4项,且{}()1,2,3,41,2,3,4i a i ==,则数列{}n a 是摆动数列的概率为______.【解析】根据题意可知,{}()1,2,3,41,2,3,4i a i ==,则四位数字组成的数列有以下四类:(1)由单个数字组成:共有4个数列;(2)由2个数字组成:则共有246C =种数字搭配,每种数字搭配又分为两种情况:由1个数字和3个相同数字组成4个数的数列(如1222,2111等),则有1248C ⨯=个数列;分别由2个相同数字组成的4个数的数列(如1122等)共有6个数列,因而此种情况共有()248684C +=种;(3)由3个数字组成:共有344C =种数字搭配(如1123等),相同数字有3种可能,则共有4312144⨯⨯=个数列;(4)由4个数字组成:共有44432124A =⨯⨯⨯=个数列.因而组成数列的个数为48414424256+++=个数列.其中,符合“广义递增数列”或“广义递减数列”的个数分别为:(1)由单个数字组成:4个数列均符合“广义递增数列”或“广义递减数列”,因而有4个数列;(2)由2个数字组成:满足“广义递增数列”或“广义递减数列”的个数为()2422236C ⨯++=个;(3)由3个数字组成:1143224C C ⨯=个;(4)由4个数字组成:则有2个数列符合“广义递增数列”或“广义递减数列”,综上可知,符合“广义递增数列”或“广义递减数列”的个数为66个.所以“摆动数列”的个数为25666190-=个,因而数列{}n a 是摆动数列的概率为19095256128=,故答案为:95128.例18.将6个数2、0、1、9、20、19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为______.【解析】2、0、1、9、20、19的首位不为0的排列的全体记为A .易知|A |=5×5!=600(这里及以下,||X 表示有限集X 的元素个数).将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知|B |=4!,|B |+|C |=5!,|B |+|D |=4×4!,即||24B =,||96C =,||72D =.由B 中排列产生的每个8位数,恰对应B 中的2×2=4个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换)类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列因此满足条件的8位数的个数为|||||||\()|42B C D A B C D +⋃⋃++3||||||||422B C D A =---600184836498=---=.例19.由数字0,1,2,3,4,5可以组成_________个是3的倍数,但不是5的倍数的四位数.【解析】一个数是3的倍数需满足各位数之和是3的倍数,一个数是5的倍数需满足个位是0或者5,从数字0,1,2,3,4,5中选四个数字出来,其中满足四个数字是3的倍数的有:0123,0135,0234,0345,1245当选择的数字是0123时,能够组成33318A =个数,其中个位数是0的有6个,所以满足题意的有18612-=个当选择的数字是0135时,能够组成33318A =个数,其中个位数是0或5的有6410+=个,所以满足题意的有18108-=个当选择的数字是0234时,能够组成33318A =个数,其中个位数是0的有6个,所以满足题意的有18612-=个当选择的数字是0345时,能够组成33318A =个数,其中个位数是0或5的有6410+=个,所以满足题意的有18108-=个当选择的数字是1245时,能够组成4424A =个数,其中个位数是5的有6个,所以满足题意的有24618-=个综上:共有1281281858++++=个故答案为:58例20.从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成_____个没有重复数字的四位偶数.【解析】当用0时,0只能在个位,十位,百位三个位置之一.当个位为0时,从2,4,6中再取1个数字(3种方法),从1,3,5中任取2个数字(即排除1个,有3种不同的方法),将这取得的3个数字在十百千位任意排列,共有3!=6中不同的排列方式,根据分步乘法计数原理,有3×3×6=54种方法;当十位或百位为0时(2种不同方法),从2,4,6中再取1个数字放置在个位(3种方法),然后从1,3,5中任取2个数字(即排除1个,有3种不同的方法),在其余两位上任意排列,共有2!=2中不同的排列方式,根据分步乘法计数原理,有2×3×3×2=36种方法;当没有用0时,从2,4,6中任取1个数字放置在个位(有3中不同的方法);在从其余的2个非零偶数字中任取一个数字(2种不同方法),从1,3,5中任取2个数字(有3种不同方法),将这3个数字在除个位之外的十百千3个位置上任意排列(有3!=6种不同的方法),由分步乘法计数原理方法数为3×2×3×6=108种.根据分类加法计数原理,一共有没有重复数字的四位偶数54+36+108=198个,故答案为:198.例21.用1,2,3,4,5组成一个没有重复数字的五位数,三个奇数中仅有两个相邻的五位数有________.【解析】用1,2,3,4,5组成一个没有重复数字的五位数,共有55120A=个;三个奇数中仅有两个相邻;其对立面是三个奇数都相邻或者都不相邻;当三个奇数都相邻时,把这三个奇数看成一个整体与2和4全排列共有333336A A⨯=个;三个奇数都不相邻时,把这三个奇数分别插入2和4形成的三个空内共有232312A A⨯=个;故符合条件的有120123672--=;故答案为:72.例22.由0,1,2,…,9十个数字组成的无重复数字的三位数共______个【解析】因为百位不能为0,所以百位共有9种情况,再在剩下的9个数中,任选2个安排在十位与个位,有2972A=种情况,根据分步计数原理可得,符合要求的三位数有972648⨯=个.故答案为:648.例23.现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”,那么由这十个数字组成的所有“渐减数”共有多少个?【解析】(1)由题意,无重复的三位数共有1299972648A A =⨯=个;(2)当百位为1时,共有299872A =⨯=个数;当百位为2时,共有299872A =⨯=个数;当百位为3时,共有118412A A +=个数,所以315是第727212156++=个数;(3)无重复的四位偶数,所以个位必须为0,2,4,6,8,千位上不能为0,当个位上为0时,共有39504A =个数;当个位上是2,4,6,8中的一个时,共有1218841792A A A =个数,所以无重复的四位偶数共有50417922296+=个数;(4)当选出的偶数为0时,共有1335180A A =个数,当选出的偶数不为0时,共有134454960C C A =个数,所以这样的四位数共有9601801140+=个数;(5)当挑出两个数时,渐减数共有210C 个,当挑出三个数时,渐减数共有310C 个,⋅⋅⋅,当挑出十个数时,渐减数共有1010C 个,所以这样的数共有23101001101010101021013C C C C C ++⋅⋅⋅+=--=个.例24.用0,1,2,3,4这五个数字,可以组成没有重复数字的:(1)三位偶数有多少个?(2)能被3整除的三位数有多少个?(3)可以组成多少个比210大的三位数?【解析】(1)个位是0时,有2412A =个;个位是2时,有339⨯=个;个位是4时,有339⨯=个.故共有30个三位偶数.(2)能被3整除的三位数的数字组成共有:0,1,2;0,2,4;1,2,3;2,3,4四种情况.共有:12123322223320C A C A A A ⨯+⨯++=个.(3)当百位是2时,共有112328A A ⨯+=个;当百位是3时,共有2412A =个;当百位是4时,共有2412A =个;故共有32个.。
高考数学中的超高难度问题解析
高考数学中的超高难度问题解析数学是高考中的重要科目之一,对学生们的综合能力和素养检验是严格的。
数学试题中,难度较高、思维难度大的问题可称为超高难度问题。
这些问题需要学生具备扎实的数学基础,高超的分析解决问题的能力以及大量的实际训练,才能够成功应对。
本文将从数学应用、解题技巧、复合类问题等多个角度,对高考数学中的超高难度问题进行解析。
(一)数学应用高考数学中一些超高难度的问题从本质上来看常常是数学知识的深度应用。
举个例子,在数列中,每个数都比前一个数少2,同时第一个数为1,第1000个数是多少?这道问题需要用到等差数列求和的知识,即Sn = (a1 + an)×n/2。
同时,其让求解的是第1000个数,也可以直接使用等差数列求项公式an = a1+(n-1)d,其中时n=1000,d=-2的情况下求得。
通过对于数学知识的深刻理解和熟悉程度,才能在高考数学中迅速解决超高难度问题。
(二)解题技巧在高考数学中,有些超高难度问题是需要一些高级的解题技巧来解决的。
比如说,卡特兰数问题,提示:Cn= (2n)!/[(n+1)!n!],这是因为可以将矩阵乘同理变形成n长只由2、-1这两个整数组成的序列,其中任何一个主子式都是正整数。
接着,观察式子后,找出规律,利用递推公式成形也是一种好方法。
当然,这里提到的卡特兰数问题并没有出现在数学高考中,只作为我们对于解决超高难题的思考过程中的一种参考。
(三)复合类问题高考数学中的复合类问题也是超高难度问题中的一类。
这类问题比单一类问题多考虑了多方因素,要求考生提供全面、合理的解决方案。
比如说,在解决某个空间内的体积转化问题时,需要先作出高精度真分数/五分数计算,在将分母、分子分别相乘后再进行体积问题的解答。
这不仅是数学知识的应用,也考察了学生的细心程度、逻辑思维和耐心。
综上,高考数学中的超高难度问题解析不仅要具备扎实的数学知识和技巧,更需要学生们的思维和解题能力在各个方面的发展和提升。
数学高考解答题
数学高考解答题1.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。
(I )求函数()h a 的解析式;(II )画出函数()y h x =的图象并指出()h x 的最小值。
2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=;数列{}n b 满足1111,(1)22n n b b n b +=≥+,*n N ∈.求证: (Ⅰ)101;n n a a +<<< (Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n n b a n >⋅.3.已知定义在R 上的函数f (x )同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数);(2)(0)()14f f π==; (3)当0,4x π∈[]时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.4.设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.个 个 5.已知数列{}n a 中各项为:12、1122、111222、……、111n ⋅⋅⋅⋅⋅⋅ 222n⋅⋅⋅⋅⋅⋅ …… (1)证明这个数列中的每一项都是两个相邻整数的积.(2)求这个数列前n 项之和S n .6.设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7.已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上。
高考数学试卷全部解析
一、选择题解析1. 本题主要考查集合的概念。
答案为C。
解析:由题意可知,集合A={x|x≤1},集合B={x|x≥2},所以A∩B=∅,故选C。
2. 本题主要考查函数的单调性。
答案为A。
解析:函数f(x)=x^2-2x在定义域内单调递增,所以选A。
3. 本题主要考查数列的通项公式。
答案为B。
解析:由题意可知,数列{an}是等差数列,公差为2,首项为1,所以通项公式为an=2n-1,故选B。
4. 本题主要考查三角函数的性质。
答案为D。
解析:由题意可知,函数f(x)=sin(x+π/2)的周期为2π,所以选D。
5. 本题主要考查立体几何。
答案为C。
解析:由题意可知,正方体的对角线长度为2,所以棱长为√2,故选C。
二、填空题解析1. 本题主要考查一元二次方程的解法。
答案为x=1。
解析:由题意可知,方程x^2-2x+1=0的解为x=1。
2. 本题主要考查数列的前n项和。
答案为S_n=n(n+1)/2。
解析:由题意可知,数列{an}是等差数列,首项为1,公差为2,所以前n项和为S_n=n(n+1)/2。
3. 本题主要考查函数的导数。
答案为f'(x)=2x。
解析:由题意可知,函数f(x)=x^2的导数为f'(x)=2x。
4. 本题主要考查概率的计算。
答案为1/4。
解析:由题意可知,事件A、B、C相互独立,且P(A)=P(B)=P(C)=1/2,所以P(AB)=P(A)P(B)=1/4。
5. 本题主要考查平面几何。
答案为√3。
解析:由题意可知,等边三角形的边长为2,所以高为√3。
三、解答题解析1. 本题主要考查解析几何。
答案:圆心为(2,1),半径为2。
解析:设圆心为C(x,y),则由题意可知,圆C上任意一点到点A(0,0)的距离等于圆C的半径。
即√(x^2+y^2)=2,化简得x^2+y^2=4。
又因为点C在直线x+y-3=0上,所以联立方程组\begin{cases}x^2+y^2=4 \\x+y-3=0\end{cases}解得x=2,y=1,即圆心为(2,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学校对及解析基本规范说明v1.6
整体的解析语言风格杜绝白话,注意自己的语文素养,关联词搭配等等。
而采用书面表述语言。
具体规范如下。
红色为更新内容。
1.解析以“本题主要考查XXX”开头,由于考点很不详细,希望用这样的开头更精确的说明本题考查点,点出具体内容,此段单独成行。
不许使用“考察了”“考查的是”表述。
请自习阅读数学考点大纲,明确考查点。
2.对于部分试题,增加“本题的易错点是XXX”表述。
3.定理和性质的引用“由……定理/性质可得/知…”
4. 选择题结尾以“故本题正确答案为X。
”,本段单独成行。
5.多个方法的题目“方法一:方法二:”
其他常用表述方法。
6.当……时,……
7.因为……所以……(不可用三个点来代表因为所以)
8.通过证明……,即可证明……
9.欲证明……,可先证明……
10.列出……表格/图象如下,从表格/图象可得/知
11.由于……,本题可采用……法。
12. 选择题能解释理由的,每一个选项都要解释为何正确为何错误。
①②③④题型尤其需要每个都解析,格式范例:①项,\cdots,故正确/错误。
综上所述,①②正确,故本题正确答案为A。
13. 自己画图的题目截图时需要隐藏点(大红点),且需要颜色填充时用淡色。
14. 解答题注意总结题目思路,概括题目思路是基本解析要求
15. 分选项解释时,格式统一:“A项,”“故A项错误。
”“综上所述,”
16. 由……,可知/容易看出。
由于前期录入过程未能严格规范,目前需要通过校对完善试题质量,以下列举几个常见问题及解决办法,希望大家耐心进行修改,并一定程度上体谅录入人的失误,更重要的是,解析过程严格按照规范进行,避免解析校对也出现类似问题。
校对注意:
1.标点符号校对是重点,除了数学公式内部外,都采用中文标点输入。
标点符
号必须要有,且分清巨逗,不可出现无标点,不可出现无关空格。
格外注意使用逗号和顿号的区别。
2.图片不能出现扫描图,不能显示题号,不能有水印,不能有回车符,图案不
清楚时请重新绘图,熟练掌握几何画板,图片大小调节至美观。
3.录入大段文字时不要进行无意义分段。
只有在录入证明公式时,可通过强制
分段便于阅读。
4.对于大题答案,只有在文字极少数情况下允许公式内输入,其他情况需要将
文字在外面输入,修改可以通过在源码模式下修改[tex][/tex]进行。
5.重视错别字排查。