TLC5510技术文档
TLC5510I
8位高速A/D转换器TLC5510中文资料TLC5510是美国德州仪器(TI)公司生产的8位半闪速结构模数转换器,它采用CMOS工艺制造,可提供最小20Msps的采样率。
可广泛用于数字TV。
医学图像。
视频会议。
高速数据转换以及QAM解调器等方面。
文中介绍了TLC5510的性能指标。
引脚功能。
内部结构和操作时序,给出了TLC5510的应用线路设计和参考电压的配置方法。
关键词:高速AD转换;数据采集;TLC55101概述TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。
由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。
在推荐工作条件下,TLC5510的功耗仅为130mW。
由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以从+5V的电源获得2V满刻度的基准电压。
TLC5510可应用于数字TV。
医学图像。
视频会议。
高速数据转换以及QAM解调器等方面。
2内部结构。
引脚说明及工作原理2.1TLC5510的引脚说明TLC5510为24引脚。
PSOP表贴封装形式(NS)。
其引脚排列如图1所示。
各引脚功能如下:AGND:模拟信号地;ANALOGIN:模拟信号输入端;CLK:时钟输入端;DGND:数字信号地;D1~D8:数据输出端口。
D1为数据最低位,D8为最高位;OE:输出使能端。
当OE为低时,D1~D8数据有效,当OE为高时,D1~D8为高阻抗;VDDA:模拟电路工作电源;VDDD:数字电路工作电源;REFTS:内部参考电压引出端之一,当使用内部电压分压器产生额定的2V基准电压时,此端短路至REFT端;REFT:参考电压引出端之二;REFB:参考电压引出端之三;REFBS:内部参考电压引出端之四,当使用内部电压基准器产生额定的2V基准电压时,此端短路至REFB端。
LCD5510
#define LCD_DispBlank LCD_WriteCMD(0x08) //显示空白
#define LCD_DispNormal LCD_WriteCMD(0x0c) //正常显示
#define LCD_DispBlack LCD_WriteCMD(0x09) //显示全黑
//函数声明
void LCD_WriteByte(unsigned char wbyte, unsigned char dat_cmd);
void LCD_SetXY(unsigned char x, unsigned char y);
void LCD_ClrScr(void);
void LCD_ClrRow(unsigned char num);
/*--------------------------------------------------------------*/
//写入一个字节(数据或指令)
//wbyte: 待写入的数据
//dat_cmd: 1-数据, 0-指令
void LCD_WriteByte(unsigned char wbyte, unsigned char dat_cmd)
{
unsigned char i;
LCD_CS = 0; //使能
LCD_DC = dat_cmd; //1-数据 //0-指令
for(i = 8; i; i--) //8位数据, 先高后低
{
if(wbyte & 0x80) {LCD_DIN = 1;}
else {LCD_DIN = 0;}
//液晶字符输出(6*8字体)
AD转换简介
A/D转换:就是把模拟信号,转换为数字信号ad:模数转换,将模拟信号变成数字信号,便于数字设备处理。
da:数模转换,将数字信号转换为模拟信号与外部世界接口。
具体可以看看下面的资料,了解一下工作原理:ad转换器的分类1.下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如tlc7135)积分型ad工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片ad转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如tlc0831)逐次比较型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb 开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如tlc5510)并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。
串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为half flash(半快速)型。
还有分成三步或多步实现ad转换的叫做分级(multistep/subrangling)型ad,而从转换时序角度又可称为流水线(pipelined)型ad,现代的分级型ad中还加入了对多次转换结果作数字运算而修正特性等功能。
这类ad速度比逐次比较型高,电路规模比并行型小。
基于单片机简易数字存储示波器
摘要随着计算机技术的发展,数字示波器也得到飞速发展,并给电子测量领域带来巨大变化,它能直接测量信号的幅度、频率等许多基本参数,不仅具有基本的波形显示功能,而且具有相当强的数据处理能力。
数字化测量仪器正越来越多地位用于电子、自动化、机械等各个领域。
比起模拟设备,数字化仪器有许多优点,如抗干扰能力强,数字化后的信号便于存储及输入计算机处理等。
本文详细介绍了一种以单片机和可编程逻辑器件为控制核心,用D/A,A/D 芯片和运放进行前置信号处理和数据采集,以液晶显示模块为终端显示设备的设计方案,并分析了该方案的优缺点,同时给出了硬件和软件设计的结构及思路。
关键词:数字存储示波器,单片机,可编程逻辑器件,液晶AbstractWith the development of computer technology, digital oscilloscope has been rapid development of electronic measurement and to bring about great changes in the field, it has a direct measurement of the signal range, frequency and many other basic parameters, not only has the basic waveform display function, but with a very strong data-handling capacity. Digital measuring instruments are increasingly being used to position electronic, automation, mechanical and other areas. Compared with analog equipment, digital equipment has many advantages, such as anti-interference capability, Digital signal facilitate the importation of computer storage and handling.This paper describes a microprocessor and programmable logic devices for the control of the core, with parallel connectors, etc, D chip and analog switches front signal processing and data collection, a liquid crystal display module for the terminal display device design, and analysis of the advantages and disadvantages of the program. also given pieces of hardware and less on the structure and design ideas.Keywords : Digital Storage Oscilloscope, microcontroller, programmable logic devices, liquid crystal目录第一章方案选择和确定 (4)1.1方案选择 (4)1.1.1控制器选择 (4)1.1.2数据采集 (4)1.1.3数据存储器 (5)1.1.4 幅度控制 (5)1.1.5 显示 (6)1.2方案确定 (6)第二章硬件设计 (8)2.1前级信号处理模块 (8)2.1.1 TLC7528芯片介绍 (8)2.1.2程控衰减 (9)2.1.3 放大电路 (10)2.2数据采集电路 (12)2.2.1 TLC5510介绍 (12)2.2.2数据采集电路 (15)2.3触发电路设计 (15)2.3.1触发电路作用 (15)2.3.2触发电路原理图 (16)2.4存储控制及数据处理电路 (17)2.4.1 AT89C52的简介 (17)2.4.2 EPM7128SLS84-15介绍 (18)2.4.3存储控制及数据处理电路 (21)2.5显示电路设计 (23)2.5.1 JRM19264A 介绍 (23)2.5.2 液晶驱动电路 (26)第三章软件设计 (27)3.1主程序 (27)3.2 显示程序 (28)3.2.1液晶驱动程序 (28)3.2.2波形绘制程序 (29)3.3信号采集及存储程序 (30)3.4键扫程序 (31)第四章调试 (32)4.1软件调试 (32)4.2硬件调试 (33)4.3实测波形 (33)结束语 (35)1设计体会 (35)2谢辞 (35)参考文献 (36)附录 (37)毕业设计任务书一、任务设计并制作一台简易数字存储示波器,示意图如下。
TLC5510的简介与应用
TLC5510的简介与应用1 TLC5510简介TLC5510是美国德州仪器(TI)公司的8位半闪速架构A/D转换器,采用CMOS工艺,大大减少比较器数。
TLC5510最大可提供20 Ms/s的采样率,可广泛应用于高速数据转换、数字TV、医学图像、视频会议以及QAM解调器等领域。
TLC5510的工作电源为5 V,功耗为100 mW(典型值)。
内置采样保持电路,可简化外围电路设计。
TLC5510具有高阻抗并行接口和内部基准电阻,模拟输入范围为0.6 V~2.6 V。
1.1 引脚功能描述TLC5510采用24引脚的贴片封装,其引脚配置如图1所示。
各引脚功能描述如下:∙AGND:模拟信号地;∙ANGLOG IN:模拟信号输入端;∙CLK:时钟输入端;∙DGND:数字信号地;∙D1~D8:数据输出端。
D1为数据低位,D8为数据高位;∙OE:输出使能端。
OE为低电平时数据端有效,否则数据端为高阻态;∙VDDA:模拟电路工作电压;∙VDDD:数字电路工作电压;∙REFTS:内部参考电压。
当内部分压器输出额定2 V基准电压时,该端短路至REFT;∙REFT:参考电压(T代表Top为2.6 V);∙REFB:参考电压(B代表Bottom为0.6 V);∙REFBS:参考电压。
当内部分压器产生2 V的额定基准电压时,该端短路至REFB。
点击看原图1.2 典型应用电路TLC5510的基准电源有多种接法,根据不同场合选择适当基准电源,利用内部基准源,TLC5510典型应用电路如图2所示。
由于其测量范围为0.6 V~2.6 V(即:TLC5510在转换时模拟输入0.6 V时对应数字输出00 000 000,2.6 V对应的数字输出11111 111),因此输入信号在进入TLC5510之前要对其处理,要使该输入信号处于量程内,应加入一个1.6 V的直流分量。
点击看原图。
基于51单片机的高速测控系统设计
基于51单片机的高速测控系统设计作者:石坤郑毅来源:《海峡科技与产业》2017年第08期摘要:在单片机原理及应用课程教学过程中,给出了一种创新性实验案例——基于51单片机的高速测控系统设计。
该系统主要由P89C51RB2单片机、TLC5510A/D转换器和TLC7528D/A转换器等器件组成,对系统进行了软件和硬件设计,并对制作的系统进行了测试及分析。
通过该创新性实验系统设计,学生不仅能掌握单片机系统设计的相关知识,而且学生的实践能力和创新能力也得到提升。
关键词:单片机;创新实验;测控创新性实验是高等学校本科教学质量与教学改革工程的重要组成部分,旨在探索并建立以问题和课题为核心的教学模式,改变目前高等教育培养过程中实践教学环节薄弱,动手能力不强的现状,推广研究性学习和个性化培养的教学方式,调动学生的主动性、积极性和创造性,激发学生的创新思维和创新意识,逐渐掌握思考问题、解决问题的方法,提高其创新实践的能力[1]。
基于51单片机的高速测控系统设计是学生进行单片机基础知识学习后开展的创新性实验项目,要求学生在教师的指导下,自主进行具有一定研究性的学习,以帮助学生更深层次理解单片机的原理与设计方法。
该高速测控系统正是基于以上因素设计的,它主要由A/D转换器TLC5510、P89C51RB2单片机、D/A转换器TLC7528组成[2]。
1 高速测控系统硬件电路设计高速测控系统硬件电路分为高速数据采集和高速数据输出两部分,为实现高速数据采集及处理,选用P89C51RB2单片机为数据采集处理的控制核心,P89C51RB2单片机每个机器周期为6个时钟周期,运行速度是普通的80C51的2倍,晶振频率可达22MHz,有16KB的FLASH ROM和512B的RAM,支持串行ISP和IAP功能。
高速测控系统如图1所示[3,4]。
数据采集部分的核心器件采用TI公司的TLC5510,是一种8位高阻抗并行A/D芯片,最小采样率为20MSPS,采用了半闪速结构及CMOS工艺,减少了器件中比较器的数量,在高速转换的同时能够保持较低的功耗。
tlc5510
PACKAGING INFORMATIONOrderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)TLC5510AINS ACTIVE SO NS2434Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC5510AINSG4ACTIVE SO NS2434Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLC5510AINSLE OBSOLETE SO NS24TBD Call TI Call TITLC5510AINSR ACTIVE SO NS242000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC5510AINSRG4ACTIVE SO NS242000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TLC5510INSLE OBSOLETE SO NS24TBD Call TI Call TITLC5510INSR ACTIVE SO NS242000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC5510INSRG4ACTIVE SO NS242000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIMTLC5510IPW ACTIVE TSSOP PW2460Green (RoHS& no Sb/Br)CU NIPDAU Level-2-260C-1 YEARTLC5510IPWG4ACTIVE TSSOP PW2460Green (RoHS& no Sb/Br)CU NIPDAU Level-2-260C-1 YEARTLC5510IPWR ACTIVE TSSOP PW242000Green (RoHS& no Sb/Br)CU NIPDAU Level-2-260C-1 YEARTLC5510IPWRG4ACTIVE TSSOP PW242000Green (RoHS& no Sb/Br)CU NIPDAU Level-2-260C-1 YEAR(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Addendum-Page 1Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.Addendum-Page 2TAPE AND REEL INFORMATION*All dimensions are nominal Device Package Type Package DrawingPinsSPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TLC5510AINSR SONS 242000330.024.48.215.4 2.512.024.0Q1TLC5510INSR SONS 242000330.024.48.215.4 2.512.024.0Q1TLC5510IPWR TSSOP PW 242000330.016.4 6.958.3 1.68.016.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TLC5510AINSR SO NS242000346.0346.041.0 TLC5510INSR SO NS242000346.0346.041.0TLC5510IPWR TSSOP PW242000346.0346.033.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and /automotiveAutomotiveMicrocontrollers Video and Imaging /videoRFID Wireless /wireless-appsRF/IF and ZigBee®Solutions /lprfTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated。
PanelView 5510终端技术数据指令手册说明书
Technical DataOriginal InstructionsPanelView 5510 Terminals SpecificationsCatalog Numbers 2715P-B7CD, 2715P-B7CD-B, 2715P-T7CD, 2715P-T7CD-B, 2715P-T7WD, 2715P-T7WD-B, 2715P-T9WD, 2715P-T9WD-B,2715P-B10CD, 2715P-B10CD-B, 2715P-T10CD, 2715P-T10CD-B, 2715P-T12WD, 2715P-T12WD-B, 2715P-B15CD, 2715P-B15CD-B, 2715P-T15CD, 2715P-T15CD-B, 2715P-T19CD, 2715P-T19CD-BThe PanelView™ 5510 terminals are operator interface devices that monitor and control devices attached to ControlLogix® L7 or L8 controllers, and CompactLogix™ L1, L2, or L3 controllers over an EtherNet/IP™ network. Animated graphic and text displays provide a view to operators into the operating state of a machine or process. Operators interact with the control system by using the touch screen or keypad of the terminal.The PanelView 5510 terminals include these features and capabilities:•Tightly integrated control and design environment allows information to be shared between the PanelView 5510 terminal and the Logix platforms.•The Studio 5000® environment provides one point of access for the Studio 5000 View Designer® and Studio 5000 Logix Designer® applications.(1)•Connection up to four ControlLogix L7 or L8 controllers, or CompactLogix L1, L2, or L3 controllers.(2)•Supports a maximum of 100 user-defined screens.•Supports a maximum of 4,000 Logix-based alarms.(1)•Ethernet communication that supports Device Level Ring (DLR), linear, or star network topologies.•High-speed human machine interface (HMI) button control and easily configured navigation menu.(1)PanelView 5510 firmware can support up to 4,000 Logix-based alarms if you use Studio 5000 View Designer application version 5 and Studio 5000 Logix Designer application version 32 or higher.Earlier versions of the Studio 5000 View Designer or Studio 5000 Logix Designer applications can support up to 1,000 Logix-based alarms. For more information about the Logic-based alarms, see footnote 2.(2) A combination of up to four of the following Logix controller models: ControlLogix L7 or L8 controller, or CompactLogix L1, L2, or L3 controller with revision 31 firmware or later.NOTE: If the PanelView 5510 terminal supports up to four Logix controllers, then each controller can use a mix (instruction-based and tag-based) of alarms up to 1,000 alarms per controller. If a single Logix controller is supported, then up to 4,000 alarms can be used but only 1,000 of them can be instruction-based.Summary of ChangesThis publication contains new and updated information as indicated in this table.Environmental SpecificationsThis table provides environmental specifications for the PanelView 5510 terminals.(1)The 19-inch terminals (2715P-T19CD and 2715P-T19CD-B) are rated to 0.006 pk-pk, 10…57 Hz, 1 g peak at 57…500 Hz.(2)The 19-inch terminals (2715P-T19CD and 2715P-T19CD-B) are rated to 15 g at 11 ms.CertificationsThis table provides certification information for the PanelView 5510 terminals.(1)When marked. See Product Certifications at rok.auto/certifications for declarations of conformity, certificates, and other certification details.PanelView 5510 Terminals Specifications Technical SpecificationsThis section provides technical specifications for the PanelView 5510 terminals.Technical Specifications, PanelView 5510 Terminals – 6.5-in. 7-in., 9-in., and 10.4-in. ModelsRockwell Automation Publication 2715P-TD001B-EN-P - March 20193PanelView 5510 Terminals SpecificationsTechnical Specifications, PanelView 5510 Terminals – 6.5-in. 7-in., 9-in., and 10.4-in. Models (Continued)(1)Add -B to the end of a catalog number to order a terminal without the Allen-Bradley logo and product identification, for example, 2715-T7CD-B.(2)DC-powered terminals support safety extra low voltage (SELV) and protective extra low voltage (PELV) 24V DC power supplies such as cat. nos. 1606-XLP95E, 1606-XLP100E, 2711P-RSACDIN.(3)Where PELV is defined in IEC 61131-2.4Rockwell Automation Publication 2715P-TD001B-EN-P - March 2019PanelView 5510 Terminals Specifications Technical Specifications, PanelView 5510 Terminals – 12.1-in., 15-in., and 19-in. models(1)Add -B to the end of a catalog number to order a terminal without the Allen-Bradley logo and product identification, for example, 2715-T7CD-B.(2)DC-powered terminals support safety extra low voltage (SELV) and protective extra-low voltage (PELV) 24V DC power supplies such as cat. nos. 1606-XLP95E, 1606-XLP100E, 2711P-RSACDIN.Rockwell Automation Publication 2715P-TD001B-EN-P - March 201956Rockwell Automation Publication 2715P-TD001B-EN-P - March 2019PanelView 5510 Terminals SpecificationsTerminal DimensionsThis section provides dimensions for the PanelView 5510 terminals. The 10.4-inch keypad and touch terminal is shown for illustrative purposes. All other terminal sizes look similar.PanelView 5510 Terminal Dimensions - (10.4-in. wide terminal shown)PanelView 5510 Terminal and Cutout Dimensions(1)When mounted in a panel, the front of the bezel extends less than 6.36 mm (0.25 in.) from the front of the panel.PanelView 5510 Terminals Specifications Studio 5000 EnvironmentUse the Studio 5000 environment to create HMI applications for the PanelView 5510 terminal.This environment includes these major components:•Studio 5000 View Designer – the application where you create and design projects for a specific PanelView 5500 terminal and deploy that project to the terminal.A project that is created for one terminal size can be converted for other terminals across the entire 5500 platform,regardless of size.•Studio 5000 Logix Designer – the application that is used to develop control logic for a CompactLogix or ControlLogix controller and deploy that logic to the terminal.In the Studio 5000 environment, you can create an application for any PanelView 5510 terminal and reuse that same application across the entire platform.AccessoriesThis section lists accessories for the PanelView 5510 terminals.Protective Overlays(1)Three overlays are shipped with each catalog number.Rockwell Automation Publication 2715P-TD001B-EN-P - March 201978Rockwell Automation Publication 2715P-TD001B-EN-P - March 2019PanelView 5510 Terminals SpecificationsThe SD™ and SDHC™ accessory cards in the above table have been designed to meet industrial robustness andenvironmental requirements. Rockwell Automation recommends that you use these accessory cards with the terminal to help reduce the chances of corruption. Studio 5000 View Designer software requires the following for SD cards that are inserted into the HMI device:• 4 GB of free space• A supported SDHC card type, preferably one listed in the Secure Digital (SD) Cards table •An environmental rating for the PanelView 5000 environment • A supported format of either FAT32 or ext3Power Supplies and Power Terminal BlocksUSB Programming CableMounting Hardware(1)Catalog number 2711P-RMCP mounting levers are used with the PanelView 5510 terminals. Do not use gray mounting levers; they arenot compatible with PanelView 5510 terminals.Battery ReplacementSecure Digital (SD) Cards (1)(1)To help reduce the chance of corruption when you use SD Cards or USB driveswith the terminal, Rockwell Automation recommends that you use only the above SD card catalog numbers.PanelView 5510 Terminals Specifications Additional ResourcesThese documents contain more information about related products from Rockwell Automation.Y ou can view or download publications at https:///global/literature-library/ overview.page. T o order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.Rockwell Automation Publication 2715P-TD001B-EN-P - March 20199Rockwell Automation maintains current product environmental information on its website at /rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page. Allen-Bradley, CompactLogix, ControlLogix, LISTEN. THINK. SOLVE., PanelView, Rockwell Automation, Rockwell Software, Studio 5000, Studio 5000 View Designer, and Studio 5000 Logix Designer are trademarks of RockwellAutomation, Inc.EtherNet/IP is a trademark of ODVA.SD and SDHC are trademarks of SD-3C LLC.Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, T el: +90 (216) 5698400Publication 2715P-TD001B-EN-P - March 2019Supersedes Publication 2715P-TD001A-EN-P - June 2018Copyright © 2019 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.。
摄像头工作原理
摄像头传感器概述:摄像头主要构件有镜头、图象传感器、预中放、 AGC、A/D、同步信号发生器、 CCD驱动器、图象信号形成电路、 D/A 转换电路和电源的电路构成。
其中,图象传感器作为摄像头的核心部件,又分为 CCD 传感器和 CMOS 传感器。
在当今各个科学领域,摄像头传感器得到越来越广泛的应用,其重要性不言而喻。
一、发展历史CCD 发展历史:1969 年,由美国的贝尔研究室所开辟出来的。
同年,日本的SONY 公司也开始研究CCD。
1973 年 1 月,SONY 中研所发表第一个以96 个图素并以线性感知的二次元影像传感器〝8H*8V (64 图素) FT 方式三相CCD〞。
1974 年 6 月,彩色影像用的 FT 方式 32H*64V CCD 研究成功了。
1976 年 8 月,完成实验室第一支摄影机的开辟。
1980 年, SONY 发表全世界第一个商品化的 CCD 摄影机 (编号 XC-1) 。
1981 年,发表了 28 万个图素的 CCD (电子式稳定摄影机 MABIKA)。
1983 年, 19 万个图素的 IT 方式 CCD 量产成功。
1984 年,发表了低污点高分辨率的CCD。
1987 年, 1/2 inch 25 万图素的 CCD,在市面上销售。
同年,发表 2/3 inch 38 万图素的CCD,且在市面上销售。
1990 年 7 月,诞生了全世界第一台 V8。
CMOS 发展历史:1989 年, CMOS 图象传感开始研制出来。
1990 年, CMOS 专用的 DSP 研发成功2002 年, CMOS 的 C3D二、摄像头工作原理摄像头主要有镜头、 CCD 图象传感器、预中放、 AGC、A/D、同步信号发生器、 CCD 驱动器、图象信号形成电路、D/A 转换电路和电源的电路构成。
摄像头的主要图象传感部件是 CCD (Charge Coupled Device),即电荷耦合器件,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点, CCD 是电耦合器件(ChargeCouple Device)的简称,它能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄像元件,是代替摄像管传感器的新型器件。
AD_DA电路的频率变换技术
成被抽样信号之间的频谱混叠。
4.实际应用与测试
为了确认以上研究的内容, 设计制作了由 TI 公司 542DSP 组成的
AD/DA 信号抽样与处理硬件系统, 对 AM 调制与解调进行了实际编程
和测试。其中, AD 转换芯片采用 TLC5510, 由于该芯片采用并行输入
与比较, 最高工作时钟可以达到 20MHz, 在本系统中采用 10MHz 时
( 1- 4)
式中, τ为采样脉冲的宽度, P( t) 中包含以采样频率 fs 为基频的各
次谐波分量。读取 AD 采样信号得到序列 V2( n) 为:
V2( n) =K( E0+VmcosΩt) P( t)
( 1- 5)
将上式展开可得到载波基频调制分量和各次谐波调制分量, 其
中, 基频调制分量 VAM( t) 为:
路与系统中的应用。
本 论 文 以 普 通 调 幅 波 ( AM) 的 调 制 和 解 调 为 例 , 在 分 析 模 拟 乘 法
器的频率变换功能基础上, 重点讨论 AD/DA 转换电路的频率变换功
能。
2.模拟乘法器的频率变换功能
模拟乘法器具有对模拟信号相乘的功能,可以完成通信电路与系
统应用中的振幅调制与解调、混频、鉴相和自动增益控制( AGC) , 广泛
2 π
cosω0t-
1 3
cos3ω0t+… …
( 1- 2)
由式
( 1- 2)
可 知 , V0 ( t)
中不仅有载波基频调制分量
KVm
2 π
cosΩtcosω0t,
而且有各次谐波的调制分量
KVm
2 nπ
cosΩtcosnω0t(
n
为奇
数, n>1) 。在乘法器的输出端接一个以 ω0 为中心频率的带通滤波器, 便可得调制信号波形。
钢轨超声探伤技术及其发展探寻
钢轨超声探伤技术及其发展探寻摘要:针对钢轨检测进行分析,其通常运用超声波探伤方法,需要对模拟探伤仪加以使用。
而对于超声探伤技术而言,其主要对超声探伤系统加以运用,采取模拟电路、数字信号处理芯片以及单片机的混合设计方法,并通过加入芯片使系统功能得到增强,从而使数字信号处理速度得到提高。
本文针对钢轨超声探伤技术进行分析,探讨了超声探伤系统的构成、数字信号处理以及系统管理和人机接口,并对其未来发展进行展望,希望能够为相关工作人员起到一些参考作用。
关键词:钢轨检测;超声探伤;技术原理;未来发展在钢轨检测中采用超声探伤技术,需要对模拟探伤仪加以使用,该仪器往往会受到环境因素带来的影响,而且人员自身的操作经验影响也相对较大,无法存储观察结果和自动报警。
对于超声波探伤而言,需要对超声波原理加以利用,有效探测金属或者一些非金属损伤。
在实际探伤过程中,探头可以对超声波进行发射,并在被测钢轨上反射相应强度的回波,有效处理回波,以此来对钢轨损伤进行检测,明确具体的损伤程度。
而通过对数字信号处理技术进行采用,可以将模拟回波信号向数字信号进行转化,并通过DSP芯片来有效实现回波抑制。
一、钢轨超声探伤技术分析(一)系统构成钢轨超声探伤系统具体包括三个组成部分,分别为系统管理和人机接口、数字信号控制和处理以及显示、超声波发射和接收。
对于主从系统而言,其主要由单片机和DSP组成,并通过双口RAM来实现通讯。
通过DSP可以对显示部分有效驱动,并通过单片机来控制整个系统。
结合系统工作原理进行分析,通过DSP可以产生相应的编码信号,并对超声通道进行自动选择,使回波能够得到有效接收。
通过将反射信号向电信号进行转化,可以在放大和整形之后,将其在高速AD转换器当中送入,并在DSP中送入数字信号,在其内部实现回波抑制。
通过在双口RAM当中存储处理后的数据,可以在需要的时候进行读取。
DSP可以对显示部分直接进行驱动,并在显示屏上实时显示波形。
全自动无人服务机器人智能中餐厅的生产技术
一种全自动无人服务机器人智能中餐厅,包括全自动无人服务系统,所述的全自动无人服务系统包括厨房模块和服务模块,所述的厨房模块包括菜品识别图像电路,所述的菜品识别图像电路的输出端连接图像识别相机和六轴机械臂,所述的服务模块的终端连接有智能送餐车、智能扫地机器人及自动取号机,所述的自动取号机无线连接用户手机端。
本技术通过将智能扫地机器人、智能送餐车、图像识别相机及六轴机械臂结合,达到自动一体化点餐、做菜以及用餐后垃圾的处理,实现了客户就餐的自动化,即使在过年期间,顾客也可以在无人餐厅中进行全家聚餐,更避免了由于餐厅服务人员的服务态度差等因素而造成的顾客用餐体验不愉快等状况的发生。
权利要求书1.一种全自动无人服务机器人智能中餐厅,其特征在于,包括全自动无人服务系统,所述的全自动无人服务系统包括厨房模块和服务模块,所述的厨房模块和服务模块均连接云端服务器,所述的厨房模块包括菜品识别图像电路,所述的菜品识别图像电路的输出端连接图像识别相机和六轴机械臂,所述的服务模块的终端连接有智能送餐车、智能扫地机器人及自动取号机,所述的自动取号机无线连接用户手机端。
2.根据权利要求1所述的一种全自动无人服务机器人智能中餐厅,其特征在于:所述的六轴机械臂采用三菱RV-4F-D型。
3.根据权利要求1所述的一种全自动无人服务机器人智能中餐厅,其特征在于:所述的智能扫地机器人的单片机采用STM32F103,所述的单片机连接有红外避障传感器。
4.根据权利要求3所述的一种全自动无人服务机器人智能中餐厅,其特征在于:所述的单片机还连接有电机驱动电路,所述的电机驱动电路的控制芯片型号采用L298N,所述的电机驱动电路的输出端连接有直流驱动电机。
5.根据权利要求1所述的一种全自动无人服务机器人智能中餐厅,其特征在于:所述的自动取号机无线连接有压力检测电路的输出端,所述的压力检测电路的输入端连接有压力传感器,所述的压力传感器设置在用餐座位中。
C5510 DSK Tutorial
C5510 DSK TutorialOverviewThe 5510 DSP Starter Kit (DSK) is a low-cost platform which lets customers evaluate and develop applications for the Texas Instruments C55X DSP family. The primary features of the DSK are:•200 MHz TMS320VC5510 DSP•AIC23 Stereo Codec•Four Position User DIP Switch and Four User LEDs•On-board Flash and SDRAMTI’s Code Composer Studio development tools are bundled with the 5510DSK providing the user with an industrial-strength integrated development environment for C and assembly programming. Code Composer Studio communicates with the DSP using an on-board JTAG emulator through a USB interface.Board TourThe figure below illustrates the main sections of the board:The TMS320VC5510 DSP is the heart of the system. It is a core member of Texas Instruments’ C55X line of fixed point DSPs whose distinguishing features are 160Kwords of fast internal memory, 3 multi-channel buffered serial ports (McBSP s), two on-board timers, a 6 channel direct memory access (DMA) controller and a flexible glueless external memory interface (EMIF). Since members of the C55X family share common features, it is possible to develop software on the 5510 DSK which can be ported to other members of theC55X family with minimal effort.The 5510 has a significant amount of internal memory so typical applications will have all code and dataon-chip. But when external accesses are necessary, it uses a 32-bit wide external memory interface that can be programmed for both synchronous and asynchronous memories. The DSK includes an externalnon-volatile Flash chip to store boot code and an external SDRAM to serve as an example of how to include external memories in your own system. The EMIF and other signals are brought out to standard TI expansion bus connectors so more features can be added by plugging in daughtercard modules.DSPs are frequently used in audio processing applications so the DSK includes an on-board codec called the AIC23. Codec stands for coder/decoder, the job of the AIC23 is to code analog input samples into a digital format for the DSP to process, then decode data coming out of the DSP to generate the processed analog output. Digitial data is sent to and from the codec on the McBSP2.The DSK has 4 light emitting diodes (LED s) and 4 DIP switches that allow users to interact with programs through simple LED displays and user input on the switches. Many of the included examples make use of these user interface options.The DSK implements the logic necessary to tie board components together in a programmable logic device called a CPLD. In addition to random glue logic, the CPLD implements a set of 4 software programmable registers that can be used to access the on-board LEDs and DIP switches as well as control the daughtercard interface.Development EnvironmentCode Composer Studio is TI’s flagship development tool. It consists of an assembler, a C compiler, an integrated development environment (IDE, the graphical interface to the tools) and numerous support utilities like a hex format conversion tool. The DSK includes a special version of Code Composer specially tailored to features on the 5510 DSK board. Other versions of Code Composer are available that fully support each of TI’s processor families on a wide variety of hardware targets.The Code Composer IDE is the piece you see when you run Code Composer. It consists of an editor for creating source code, a project manager to identify the source files and options necessary for your programs and an integrated source level debugger that lets you examine the behavior of your program while it is running. The IDE is responsible for calling other components such as the compiler and assembler so developers don’t have to deal with the hassle of running each tool manually.The 5510 DSK includes a special device called a JTAG emulator on-board that can directly access the register and memory state of the 5510 chip through a standardized JTAG interface port. When a user wants to monitor the progress of his program, Code Composer sends commands to the emulator through its USB host interface to check on any data the user is interested in.This debugging method is extremely powerful because programs can be debugged unobtrusively on real hardware targets without making any special provisions for debug like external probes, software monitors or simulated hardware. When designing your own hardware around the 5510 you can debug your application with the same rich functionality of the DSK simply by using Code Composer with an external emulator and including a header for the JTAG interface signals.You should always be aware that the DSK as a different system than your PC, when you recompile a program in Code Composer on your PC you must specifically load it onto the 5510 on the DSK. Other things to be aware of are:•When you tell Code Composer to run, it simply starts executing at the current program counter. If you want to restart the program, you must reset the program counter by using Debug Restart orre-loading the program which sets the program counter implicitly.•After you start a program running it continues running on the DSP indefinitely. To stop it you need to halt it with Debug Halt.Loading and Running a ProgramThe best way to get started with Code Composer is to run some of the simple examples included with the DSK. The LED example is the easiest example to get started with to become familiar with the DSK and make sure your development tools are configured correctly. When run, it will:•Continuously blink LED #0 about 2.5 times per second.•Continuously read the value of DIP switch #3 and display it on LED #3.To run the program, perform the following steps:6)Open the led.pjt Code Composer project using Project Open and selecting led.pjt. It is in thedirectory C:\CCStudio_v3.1\examples\dsk5510\bsl\led.The default install directory for Code Composer is C:\CCStudio_v3.1. All of the DSK specificdocumentation refers to file paths as if they were installed in the default location. If you install Code Composer in a different location, please remember to mentally remap the files to their location on you computer while you are reading the documentation. For example, if you install Code Composer inC:\CCStudio_v3.1dsk5510 the led example would be located atC:\CCStudio_v3.1dsk5510\examples\dsk5510\bsl\led.7)Load the led.out executable file. Select File Load Program. It will open a file browser dialog.Select the led.out file in the led\Debug directory in the file browser and hit "Open" to load the executable file. You must reload the compiled executable every time you make changes to the program.8)Select the Debug Run option under the Debug menu. LED #0 will start blinking slowly.9)Move DIP switch #3 up and down, you will see LED #3 change with it.10)When you are satisfied that the program is indeed running correctly, stop the program by selectingDebug Halt.To examine the program code, expand the Projects tree at the left of the workspace, then expand the led.pjt and Source subitems. Double click on led.c to see its contents. You should something like this:LED Example DescriptionProgram execution starts at the beginning of main(). The first call is to DSK5510_init() which initializes the Board Support Library (BSL). The BSL is a library designed specifically to make it easier to use the components on the DSK board. DSK5510_init() should be called before any other BSL functions. You can recognize BSL calls easily because they all start with the prefix DSK5510. The BSL programming interface is described fully in the BSL section of this help file. The BSL functions are included as a library calleddsk5510bslx.lib.The LED example demonstrates use of the LED and DIP switch BSL modules. Each has its own initialization function that must be called before other functions in the module. The DSK5510_LED_toggle() call toggles the state of LED #0. A software delay loop:/* Spin in a software delay loop for about 200ms */for (delay = 0; delay < 3000000; delay++);introduces a roughly 200 millisecond display before toggling the LED again. This delay loop is responsible for controlling the speed of the blinking LED,.The DSK5510_DIP_get() function reads the state of LED #3. If the switch is pressed down, the call will return 0, prompting the call to DSK5510_LED_on() to turn LED #3 on. If the switch is up, the opposite will occur and DSK5510_LED_off() will be called to turn the LED off. Since all of this code is in a while loop with no termination condition, the program will run forever unless you halt it with Code Composer.Making Simple ChangesIn order to become familiar with Code Composer, this example will take a quick walk through the steps involved in making simple changes to the example. One of the easiest changes to make is to make the LED blink at a higher rate.View the source for the Blink0() function call. The delay variable contains a value that represents the number of milliseconds to wait inside the while() loop between LED transitions. Change the statement: /* Spin in a software delay loop for about 200ms */for (delay = 0; delay < 3000000; delay++);to:/* Spin in a software delay loop for about 100ms */for (delay = 0; delay < 1500000; delay++);You should change the loop termination count from 3000000 (3 million) to 1500000 (1.5 million) to cut the delay in half, increasing the LED blink rate by a factor of 2. The termination count is not an exact number, it is simply an estimate of how many times the DSP can execute the loop in a certain amount of time.To try out your new changes you must first:1)Save the program code that was just modified. Select File Save.2)Re-compile your program. Every time you make changes to your code you must re-compile the sourcecode to generate a new executable file. Select Project Build. Wait for the build to complete before continuing.3)Load the new led.out executable file. Select File Load Program then select led.out in the led\Debugdirectory in the file browser.4)Select the Debug Run. LED #0 will start blinking faster than before.5)When you are satisfied that the changes you’ve made have actually made the LED blink faster, stop theprogram by selecting Debug Halt.Introduction to DSP/BIOSEven though the LED example may seem simple, it is built on top of TI’s DSP/BIOS, a real-time multitasking kernel. One of the features of the Code Composer development environment is its close integration with DSP/BIOS which allows users to easily add functionality to their code that typically requires a considerable amount of effort with other tools. All of the DSK specific examples use DSP/BIOS.DSP/BIOS programs are organized such that logically independent parts of a program are executed as independent tasks and threads. In the context of an application like a mobile phone, one task could be assigned to listening for wireless communication transfers, another assigned to wait for user input, another to periodically check the battery level and so on rather than have a single task try to do all of these things at once. In addition to basic task scheduling, DSP/BIOS also includes components that allow communication and synchronization between tasks and devices.Using the BIOS Configuration ToolThe ledprd example is a separate example that is performs the exact same function as the led example using the DSP/BIOS scheduler to run a periodic thread every 200ms instead of using the software delay loop. Follow these instructions to load and run the ledprd example.1)Close the LED project you were working with previously by selecting Project Close. You should alsoclose any open files you have open in your workspace such as led.c and led.cdb to avoid confusion.Click on the X in the upper right hand corner of their windows to close them.2)Open the ledprd.pjt Code Composer project using Project Open and selecting ledprd.pjt. It is in thedirectory C:\CCStudio_v3.1\examples\dsk5510\bsl\ledprd.3)Load the ledprd.out executable file. Select File Load Program. It will open a file browser dialog.Select the ledprd.out file in the ledprd\Debug directory in the file browser and hit "Open" to load theexecutable file.4)Select the Debug Run option under the Debug menu. LED #0 will start blinking slowly.5)Move DIP switch #3 up and down, you will see LED #3 change with it.6)When you are satisfied that the program is indeed running correctly, stop the program by selectingDebug Halt.To examine the program code, expand the Projects tree at the left of the workspace, then expand the ledprd.pjt and Source subitems. Double click on ledprd.c to see its contents.You can see that only initialization is done in the main() function. When main() is finished, it returns back to the DSP/BIOS scheduler which takes over responsibility of finding more work to be done. In this case, blinkLED0() is defined as a periodic thread that is scheduled to run every 200ms. Advantages of this method are:•No time is wasted spinning in loops. Work is done when it is scheduled or a resource that work depends on becomes available.•Independent work can be separated into logical threads that are managed by DSP/BIOS, simplifying your code.To view the scheduler settings:1)Expand the "DSP/BIOS Config" entry in the project view. Double-click on the ledprd.cdb file to open itwith the BIOS configuration tool.2)Expand the "Scheduling" entry in the configuration tool view. This exposes groups of configurableparameters related to scheduling.3)Expand the PRD - Periodic Function Manager section to see a list of currently scheduled periodicthreads. There will be one scheduled entry called PRD_blinkLED0. Right click on it and selectProperties.You should see something like this:The function is the name of the thread containing the code to be run, in this case _blinkLED0. The leading underscore is required because blinkLED0() is a C function. Functions written in assembly do not need the underscore. The period is the period blinkLED0() should be called with in ticks. Each tick is equivalent to 1ms, so it will be run every 200ms. Hit cancel to exit out of the properties view.Adding a Second ThreadA second thread is included in the ledprd.c source file called blinkLED1(). It simply toggles LED #1. This section shows how to add it as a second thread that blinks LED #1 at a different rate than LED #0.1)Expand the Scheduling entry in the DSP/BIOS Configuration Tool and right click on PRD - PeriodicFunction Manager. Select the Insert PRD menu option. It will create a new scheduling entry called PRD0.2)Right click on PRD0 and select Properties. Change the period field to 100 and the function field to_blinkLED1. It will look like this when you are done:3)Hit OK to confirm the settings. Single click on PRD0 and the Configuration Tool will let you change thename. Change it to PRD_blinkLED1.4)Save the new DSP/BIOS configuration file. Select File Save.5)Re-compile your program. Select Project Build.6)Load the new led.out executable file. Select File Load Program then select ledprd.out in theledprd\Debug directory in the file browser.7)Select the Debug Run. LED #0 will be blinking as before but LED #1 will also be blinking at twice therate.8)When you are satisfied that both tasks are running, stop the program by selecting Debug Halt.What Next?The 5510 DSK has many components so it’s best to take some time to understand the system before doing serious development. A good way to start is to read the Hardware Overview to get a better picture of the platform then browse through the general Code Composer help to become more familiar with the development environment. The best all-around place to start looking for information about your DSK is the Key Features list.While Code Composer has the comfortable feel of development environments for a PC application, debugging an embedded system like the 5510 DSK is more complicated because you’re in total control of the system. It won’t do anything unless you tell it to. In this environment, the best way to have success with the 5510 DSK is to become intimately familiar with the TMS320VC5510 DSP itself.The DSK comes with a Board Support Library and several examples (see the Software Overview) that can jumpstart your development experience. The BSL contains functions that make using the on-board peripherals easier and the examples demonstrate the most important features of the DSP.After you’ve started developing, please check the 5510 DSK product page on the Spectrum Digital Web Site () for product updates, FAQs and more example code.Navigating the Help FileRemember these tips while navigating the help file:1)Use the BACK button on the help browser to go back to the previous topic you were looking at.2)Use the << and >> buttons to go back and forward to the next logical topic, like going to the next page ina book.。
TC55说明书
TC5510/TC5522/TC5530/TC5522R/TC5530R运动控制器(步进电机控制器)说明书正视图全图右视图后视图右视图TC55-MOD全图注:TC55系列产品,面板尺寸及外壳面膜完全一致,TC55-MOD为选配产品一、概述篇TC55面板型运动控制器(数控系统)采用高性能32位CPU,驱动装置采用细分步进电机或交流伺服电机,配备液晶显示器,全封闭触摸式操作键盘。
该系统具有可靠性高,精度高,噪音小,操作方便等特点。
本控制器可控制1-3个电机运动,可实现点位、直线插补、圆弧插补的操作。
具有循环、跳转及简易PLC等功能。
简单、清晰的参数带给您方便和快捷的操作。
输入/输出的设置功能可方便您的使用和维修,适用于各类的1-3轴运动装置。
产品特点开机画面可自行修改控制器或上位计算机双模式编程独立24V电源反接保护IO光耦隔离输出短接保护手动正反转可同步外部开关控制简易PLC逻辑参数密码可设定适用产品类型l数控钻床系统、数控车床系统、数控铣床系统、数控磨床系统l裁剪机控制系统、切割机控制系统、焊接控制系统、点胶机控制系统、送料控制系统l位移台、一维控制平台、二维控制平台、三维控制平台l螺纹机控制系统、锁螺丝机控制系统l喷涂生产线控制系统、装配生产线控制系统、记米器控制系统技术特点l自动执行:可实现实际运行、空运行、单段执行、终止程序、启动和暂停功能l手动操作:可实现手动高、低速、点动操作、回程序零、回机械零等操作。
l程序管理:可实现对程序进行编辑、读入、删除、保存功能。
l参数设置:可设置与加工、操作有关的各个控制参数,使加工效果达到最佳状态。
系统参数l高性能、高速度32位l高档黑白双色液晶显示器(分辨率:192×64)l专用运动控制芯片(信号输出为:5V TTL)l通用可自定义输入/输出(16路光电隔离24V输入,8路继电器输出)l用户加工程序存储器(可存储20个程序)l最小数据单位0.001mml最大数据尺寸±99999.999mml最高脉冲输出频率150KHzl系统主要功能自动、手动、程序编辑、系统参数、自检、设置等安装形式l面板型安装结构。
8.5 TLC5510接口电路及程序设计
TLC5510时序图
TLC5510 VHDL采样控制程序
TLC5510采样控制程序电路符号
TLC5510 VHDL采样控制程序
library ieee; use ieee.std_logic_1164.all; entity tlc5510 is port(clk :in std_logic; --系统时钟 oe :out std_logic; --TLC5510的输出使能/OE clk1:out std_logic; --TLC5510的转换时钟 din:in std_logic_vector(7 downto 0); --来自TLC5510的采样数据 dout:out std_logic_vector(7 downto 0));--FPGA数据输出 end tlc5510; architecture behav of tlc5510 is signal q:integer range 3 downto 0; begin
FPGA与TLC5510的接口电路图
TLC5510与FPGA接口电路图的注释
FPGA_IO1提供TLC5510工作时钟。 FPGA_IO2~9接收TLC5510的采样数据。 FPGA_IO10为TLC5510提供输出使能信号OE, 低电平有效。
元件 C1~C7 C8~C14 FB1、FB2、FB3 参数 0.01μF 47μF 铁氧体磁环
8.5 TLC5510接口电路及程序设计
TLC5510与FPGA接口电路
TLC5510是CMOS、8位、20MSPS模拟/数字转换 器(ADC),它利用了半闪速结构。TLC5510用 单5V电源工作,消耗功率100mW(典型值),具有 内部采样和保持电路,具有高阻抗方式的并行口 以及内部基准电阻(内部基准电阻使用VDDA可以 产生标准的2V满度转换范围)。 与闪速转换器(flash converters)相比,半闪速 结构减少了功率损耗和晶片尺寸。通过在2步过程 (2-step process)中实现转换,可大大减少比较 器的数目。转换数据的等待时间为2.5个时钟。
【精品】5510操作及故障说明
5510控制器说明书1.概述Deepsea5510模块可以满足工业上最复杂性技术要求。
它用于控制发电机的启动和停机,通过手动或自动给发电机加负载。
控制器利用自带的同步,电压分配和相应的功能来调节市电(稳定发电机输出)。
5510还能用于匹配其他5510负载分配控制器。
5510可以作为单独的系统连接多达16台设置,并进行负载分配。
另外,当它用于连接5560模块时还能调节市电的供给。
5510模块能够监控发动机,显示操作情况内置全能的微处理器的模块具备如下功能特点:·图标LCD多种语言显示·发动机参数监测·功率测量·通讯能力(RS485或RS232包括GSM/SMS功能)·检查同步能力·自动同步能力·负载分配/控制能力·警报或不同功能范围所需的全配置式输入·使用继电器提供大范围的输出功能·前面板操作参数配置2.控制器外形结构与接线2.1详细尺寸注意:此控制器的机壳必须接大地,良好的低阻抗接地可以减小电力系统振荡和暂态过程对仪表的冲击.直流电源 -V E(12 O R 24 V D C )直流电源 +V E注意:10-18号端子是用户自定义输入端,6,7,8端子为自定义输出端,出厂前都已设置好,在没有专业人士指导下,请勿接线。
3操作面版整个操作面版分三部分:测量参数LCD显示,操作开关和运行状态发光二极管指示。
上下翻滚键液晶显示自定义指示灯记事本按键自定义文本合闸按钮分闸按钮带载指示发电指示停止/复位手动自动消音/指示灯按键启动3.1液晶显示及控制键LCD能同时显示多行数据信息,且LCD增加背光功能,令操作者能在白天或黑暗都能清楚看到信息,在任意键后一定时间自动关闭背光。
液晶显示(LCD)及其控制键为操作者提供一个友好的操作界面,方便操作者读取信息和设定运行参数。
注意:发电机和市电按键都只能在手动状态。
4控制与操作说明下面将对具有标准装置的模块程序进行详细说明。
关于AD和带宽
关于AD和msps默认分类 2009-08-31 09:06 阅读52 评论0字号:大中小关于AD的MSPS( Million Samples per Second)始终不是很理解,狠狠得从网上查了下,贴在下面:一、简明扼要转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速A D,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
二、深究根系AD:模数转换,将模拟信号变成数字信号,便于数字设备处理。
具体可以看看下面的资料,了解一下工作原理:1. AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
AD主要指标
AD主要指标AD:模数转换,将模拟信号变成数字信号,便于数字设备处理.DA:数模转换,将数字信号转换为模拟信号与外部世界接口。
具体可以看看下面的资料,了解一下工作原理:1. AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型.1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流.2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值.其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n—1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域.串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD 转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。
这类AD速度比逐次比较型高,电路规模比并行型小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8位高速A/D转换器
TLC5510中文资料
TLC5510是美国德州仪器(TI)公司生产的8位半闪速结构模数转换器,它采用CMOS工艺制造,可提供最小20Msps的采样率。
可广泛用于数字TV。
医学图像。
视频会议。
高速数据转换以及QAM解调器等方面。
文中介绍了TLC5510的性能指标。
引脚功能。
内部结构和操作时序,给出了TLC5510的应用线路设计和参考电压的配置方法。
1概述
TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。
由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。
在推荐工作条件下,TLC5510的功耗仅为130mW。
由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以从+5V的电源获得2V满刻度的基准电压。
TLC5510可应用于数字TV。
医学图像。
视频会议。
高速数据转换以及QAM解调器等方面。
2内部结构。
引脚说明及工作原理
2.1TLC5510的引脚说明
TLC5510为24引脚。
PSOP表贴封装形式(NS)。
其引脚排列如图1所示。
各引脚功能如下:
AGND:模拟信号地;
ANALOGIN:模拟信号输入端;
CLK:时钟输入端;
DGND:数字信号地;
D1~D8:数据输出端口。
D1为数据最低位,D8为最高位;
OE:输出使能端。
当OE为低时,D1~D8数据有效,当OE为高时,D1~D8为高阻抗;
VDDA:模拟电路工作电源;
VDDD:数字电路工作电源;
REFTS:内部参考电压引出端之一,当使用内部电压分压器产生额定的2V基准电压时,此端短路至REFT端;
REFT:参考电压引出端之二;
REFB:参考电压引出端之三;
REFBS:内部参考电压引出端之四,当使用内部电压基准器产生额定的2V基准电压时,此端短路至REFB端。
图2图3
2.2TLC5510的内部结构及工作过程
TLC5510的内部结构如图2所示。
由图中可以看出:TLC5510模数转换器内含时钟发生器。
内部基准电压分压器。
1套高4位采样比较器。
编码器。
锁存器。
2套低4位采样比较器。
编码器和1个低4位锁存器等电路。
TLC5510的外部时钟信号CLK通过其内部的时钟发生器可产生3路内部时钟,以驱动3组采样比较器。
基准电压分压器则可用来为这3组比较器提供基准电压。
输出A/D信号的高4位由高4位编码器直接提供,而低4位的采样数据则由两个低4位的编码器交替提供。
TLC5510的工作时序见图3。
时钟信号CLK在每一个下降沿采集模拟输入信号。
第N次采集的数据经过2.5个时钟周期的延迟之后,将送到内部数据总线上。
在图3所示的工作时序的控制下,当第一个时钟周期的下降沿到来时,模拟输入电压将被采样到高比较器块和低比较器块,高比较器块在第二个时钟周期的上升沿最后确定高位数据,同时,低基准电压产生与高位数据相应的电压。
低比较块在第三个时钟周期的上升沿的最后确定低位数据。
高位数据和低位数据在第四个时钟周期的上升沿进行组合,这样,第N次采集的数据经过2.5个时钟周期的延迟之后,便可送到内部数据总线上。
此时如果输出使能OE有效,则数据便可被送至8位数据总线上。
由于CLK的最大周期为50ns,因此,TLC5510数模转换器的最小采样速率可以达到20MSPS。
3在线阵CCD数据系统中的应用
图4为TLC5510的典型外接电路。
图中的FB1~FB3为高频磁珠,模拟供电电源AVDD经FB1~FB3为三部分模拟电路提供工作电流,以获得更好的高频去耦效果。
笔者研制的该线阵CCD数据采集系统主要由时序发生器。
CCD驱动电路。
视频信号预处理电路及ADC。
数据存储器。
PC机等组成。
TLC5510的高速。
内带采样保持电路等特点使其更利于该设计。
TLC5510的主要作用是将CCD输出的高速模拟视频信号转换为与其模拟幅值相对应的8位数字视频信号。
图5是笔者设计的视频信号A/D转换器TLC5510的外围电路。
TLC5510可使用外部和内部两种基准电压连接方法。
其中外部基准电压从引脚REFT和REFB接入,并应满足:VREFB+2V≤VREF≤VDDA0≤VREFB≤VREFB-2V2V≤VREFT-VREFB≤5V对于从零电平开始的正极性模拟输入电压,REFB应当连接到模拟地AGND。
VREFT的范围为2V~5V。
如果要简化电路,可利用TLC5510的内部分压电阻从模拟电源电压VDDA上取得基准电压。
在本设计中,CCD输出的模拟视频信号经过反相。
滤波。
放大之后即为从零电平开始的正极性模拟电压信号。
因此,为了简化电路并同时满足设计要求,笔者选用了TLC5510的内部基准方式,同时,因为CCD视频信号是2V基准,所以,根据TLC5510的自身的特点,在设计过程中,笔者将REFBS端与AGND,而将REFTS与VDDA端相连,同时将REFBS短接至REFB端,REFTS短接至REFT端来获得2V基准电压。
在用该数据采集系统采集数据的过程中,当CCD输出端输出视频信号时,在由时序发生器产生的A/D
转换控制时钟CLK的同步控制下,TLC5510会将差动放大。
低通滤波后的CCD模拟视频信号实时地转换为与其模拟幅值相对应的8位数字信号,当TLC5510的输出使能OE为低电平且高速数据存储器的地址译码控制和写控制均有效时,系统可将转换结果存入高速数据存储器,以等待PC机的读龋为了使CCD输出的视频信号能够正确可靠的转换和存储,在设计过程中,笔者对TLC5510的工作控制时钟CLK。
输出使能OE及高速数据存储器的地址译码控制时钟。
读写控制时钟的周期做了具体的时间预算,并对它们之间的逻辑相位关系做了详细的研究。
根据预算,笔者将时序发生器内部的计数器。
比较器。
逻辑门以及D触发器等进行逐级分频和逻辑组合,从而使其产生正确可靠的时序逻辑。
系统及数据分析实验证明,采用TLC5510作为线阵CCD视频信号的A/D转换芯片,其接口电路简单实用,使用方便,稳定性好。
图5视频信号A/D转换外围电路图
4结束语
在对TLC5510模数转换器及其在线阵CCD数据采集系统的应用设计中,笔者通过实验总结出如下经验:
(1)为了减少系统噪声,外部模拟和数字电路应当分离,并应尽可能屏蔽。
(2)因为TLC5510芯片的AGND和DGND在内部没有连接,所以,这些引脚需要在外部进行连接。
为了使拾取到的噪声最小,最好把隔开的双绞线电缆用于电源线。
同时,在印制电路板布局上还应当使用模拟和数字地平面。
(3)VDDA至AGND和VDDD至DGND之间应当分别用1μF电容去耦,推荐使用陶瓷电容器。
对于模拟和数字地,为了保证无固态噪声的接地连接,试验时应当小心。
(4)VDDA。
AGND以及ANALOGIN引脚应当与高频引脚CLK和D0~D7隔离开。
在印制电路板上,AGND的走线应当尽可能地放在ANALOGIN走线的两侧以供屏蔽之用。
(5)为了保证TLC5510的工作性能,系统电源最好不要采用开关电源。