最新梁弯曲时横截面上的正应力教程文件
单一材料梁的弯曲正应力实验指导
单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。
2.初步掌握电测法原理和静态电阻应变仪的使用方法。
二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。
由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。
图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。
当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。
通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。
由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。
3.3纯弯曲时梁横截面上的正应力详解
剪切弯曲:横截面上既有剪力 又有弯矩。 纯弯曲:横截面上只有弯矩而 无剪力。
4
《化工设备设计基础》
3.3.1 纯弯曲时的变形现象与假设
1、变形现象 ① 两条横向线mm nn不再相互平行,而是相互 倾斜,但仍然是直线,且仍与梁的轴线垂直。 ② 两条纵向线aa、 bb 变成 曲线 梁的轴线 内凹一侧的纵向线aa缩短了, 外凸一侧的纵向线bb伸长了。 中性层既不伸长也不缩短。
①纯弯曲 ( pure bending )
2
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
②横力弯曲
3
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
纯弯曲 ( pure bending )
横力弯曲 ( transverse load bending )
W I /y
Z z
max
14
《化工设备设计基础》
第三章 直梁的弯曲
3.1 平面弯曲的概念 3.2 直梁弯曲时的内力分析 3.3纯弯曲时梁横截面上的正应力 3.4 截面惯性矩和抗弯截面模量 3.5 梁的弯曲强度计算 3.7 提高梁弯曲强度的主要途径 3.8 梁的弯曲变形与刚度校核
1
《化工设备设计基础》
3.3纯弯曲时梁横截面上的正应力
1.纯弯曲和横力弯曲
3.3.2 弯曲变形与应力的关系
4.弯曲应力
横力弯曲正应力公式
弹性力学精确分析表明,当跨 度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时,纯弯曲正应力公 式对于横力弯曲近似成立。 危险点应力:
max
M max ymax Iz
Mmax:在梁的所有横截面中,选择弯矩为峰值的截面 ymax: 在指定的横截上,选择离中性轴最远的点
梁的弯曲正应力实验报告
一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。
二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。
实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。
实验装置主要包括梁、应变片、静态数字电阻应变仪等。
三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。
四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。
五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。
等直梁纯弯曲时横截面上正应力的分布规律
等直梁纯弯曲时横截面上正应力的分布规律下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!等直梁纯弯曲时横截面上正应力的分布规律引言在工程力学中,等直梁的弯曲是一种常见的载荷形式。
实验三 直梁弯曲正应力测定实验指导书
实验三 直梁弯曲正应力测定实验指导书一、实验目的1、用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。
2、了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。
二、实验设备和器材 1、万能试验机或弯曲试验台 2、加力装置3、电阻应变仪4、预调平衡箱5、游标卡尺6、钢制矩形截面直梁(已贴好电阻应变片)试件(梁)付梁蝶形螺母杠杆砝码砝码托三、实验原理1、试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5—7枚电阻应变片。
2、弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为z I y M ⋅=σ式中,σ的单位为MPa ;M 为梁横截面上的弯矩,单位为N ·mm ;y 为应力σ所在的点到中性轴的距离,单位为mm ;I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。
面积二次矩对于矩形截面按下式计算123bh I z =式中,b 为梁横截面的宽度,单位为mm ;h 为梁横截面的高度,单位为mm 。
令使载荷P 对称地加在矩形截面直梁上(如图所示)。
这时,梁的中段将产生纯弯曲。
若载荷每增加一级p ∆(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε∆,根据虎克定律求出各点实测正应力增量σ实为σ实=E ε∆此值与理论公式计算出的各点正应力的增量即σ理=ZI My∆ 进行比较,就可验证弯曲正应力公式。
这里,弯矩增量2paM ∆=∆。
梁上各点的应变测量,采用半桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤1.准备试样。
如图所示,测量试样的高度h 、宽度b ,以及试样各测量点的坐标y ;。
将试样放在试验机活动台的支座上,布置成纯弯曲梁,测量梁的跨度l 及加载梁的支点到支座的距离a 。
2.准备应变仪。
把梁上各测量点的应变片(工作应变片)按编号逐点接到预调平衡箱A 、B 接线柱上,将温度补偿片接到预调平衡箱上任一工作应变片所在列的B 、C 接线柱上作公共补偿,此时C 排接线柱应用金属连接片或导线连接起来。
工程力学教学实验梁的弯曲正应力实验
梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。
2.了解电测法,练习电阻应变仪的使用。
二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。
图3--16(a)为弯曲实验台装置示意图。
试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。
图3—16(b)为将梁放在万能试验机上加载实验情况。
梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。
载荷作用于纵向对称平面内,而且在弹性极限内进行实验。
故为弹性范围内的平面弯曲问题。
梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。
以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。
各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。
当梁承受变形时,各测点将发生伸长或缩短的线应变。
通过应变仪可依次测出各测点懂得线应变值。
从而确定横截面上应变的分布规律。
由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。
本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。
四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。
2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。
10-1-1梁横截面上的正应力(精)
国家共享型教学资源库
四川建筑职业技术学院
根据所观察到的表面现象,对梁的内部变形情况进行推断, 作出如下假设:
① 梁的横截面在变形后仍然为一平面,并且与变形后梁的轴 线正交,只是绕横截面内某一轴旋转了一个角度。这个假设称 为平面假设。
四川建筑职业技术学院
3. 惯性矩和弯曲截面系数的计算
几种常见简单截面如矩形、圆形及圆环形等的惯性矩Iz和 弯曲截面系数Wz列于表10中,以备查用。由简单截面组合 而成的截面的惯性矩计算,见附录Ⅰ。 型钢截面的惯性矩和弯曲截面系数可由型钢规格表查得。
国家共享型教学资源库
四川建筑职业技术学院
4. 横力弯曲时梁横截面上正应力的计算公式
四川建筑职业技术学院
§10-1 梁弯曲时的应力
10-1 -1
梁横截面上的正应力
剪力和弯矩是横截面上分布内力 的合力。在横截面上只有切向分 布内力才能合成为剪力,只有法 向分布内力才能合成为弯矩 (图)。因此,梁的横截面上一
般存在着切应力和正应力,它 们分别由剪力FS和弯矩M所引起
的。
国家共享型教学资源库
27.2 106 Pa 27.2MPa
国家共享型教学资源库
四川建筑职业技术学院
cB
M
B
y 2
Iz
4 103 N m 8.8 10-2m 7.6410-6 m4
46.1106 Pa 46.1MPa
综合以上可知,梁的最大拉、压应力分别为
tmax=tC=28.8MPa cmax=cB=46.1MPa
国家共享型教学资源库
梁弯曲时横截面上的应力及强度计算.
《机械设计基础》课程单元教学设计单元标题:梁弯曲时横截面上的应力及强度计算单元教学学时 2在整体设计中的位置第16次授课班级上课地点教学目标能力目标知识目标素质目标能利用强度计算条件进行承载能力计算1.掌握应力计算公式2.掌握强度计算条件1.培养学生热爱本专业、爱学、会学的思想意识。
2.培养学生应用理论知识分析和解决实际问题的能力;3.培养学生的团队合作意识;4.培养学生仔细、认真、严谨的工作态度。
能力训练任务及案例任务:能利用强度计算条件进行承载能力计算教学材料1.教材2.使用多媒体辅助教学单元教学进度步骤教学内容教学方法学生活动工具手段时间分配1复习、导入复习总结:弯曲变形截面上剪力和弯矩的求法,剪力图、弯矩图的绘图步骤。
导入:梁弯曲时横截面上的应力及强度计算。
提问讲授讨论回答黑板课件视频5分钟2设置情景提出问题简支矩形截面木梁如图所示,L=5m,承受均布载荷q=3.6kN/m,木材顺纹许用应力[σ]=10MPa,梁截面的高宽比h/b=2,试选择梁的截面尺寸。
问题探究问题引领听讲思考黑板、ppt5分钟一.纯弯曲概念:1.纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。
2.剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。
二.纯弯曲时梁的正应力:1.中性层和中性轴的概念:中性层:纯弯曲时梁的纤维层有的变长,有的变短。
其中有一层既不伸长也不缩短,这一层称为中性层。
中性轴:中性层与横截面的交线称为中性轴。
10分钟3讲授新知提供咨询2.纯弯曲时梁的正应力的分布规律:以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。
3、纯弯曲时梁的正应力的计算公式:(1).任一点正应力的计算公式:(2).最大正应力的计算公式:其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。
实验四 纯弯曲梁正应力实验参考资料
74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。
二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。
三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。
为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。
图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。
从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。
根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。
因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。
最后,将实测值与理论值相比较,进一步可验证公式的正确性。
五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。
实验五 纯弯曲梁的正应力实验
实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。
2、验证纯弯曲梁的正应力计算公式。
3、测定泊松比μ。
4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。
二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。
由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。
实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。
根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。
4.根据加载方案,调整好实验加载装置。
5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。
用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。
五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。
梁平面弯曲时横截面上的正应力,材料力学
Iz M
1 / 为梁轴线变形后的曲率 EI越大 1 / 越小 EI 梁的抗弯刚度
3、纯弯曲时正应力公式的推导
( y) E
y
M 该点的弯矩 Iz 截面对 z 轴(中性轴)的惯性矩
4、纯弯曲时正应力分布关系 对某一截面而言,M和Iz 若都是确定的,当 横截面的弯矩为正时,则 ( y )沿截面高度 的分布规律:
实验和弹性力学理论的研究都表明:当跨度 l 与横截 面高度 h 之比 l / h > 5 (细长梁)时,纯弯曲正应力公 式对于横力弯曲近似成立。
弯曲正应力公式
可推广应用于横力弯曲和小曲率梁但公式中的M应为所研 究截面上的弯矩,即为截面位置的函数。
1、梁横力弯曲时横截面上的正应力 对于变截面梁,最大弯曲正应力并不一定出现在弯矩最大 的横截面上,其大小应为:
2.9 107 mm 4
y2 200 53.2 146.8 mm
4、应力计算 考察C截面,弯矩为正
C截面下边受拉上边受压
M C y1 12 106 53.2 22MPa 7 Iz 2.9 10
C
M C y2 12 106 146.8 60.74MPa 7 Iz 2.9 10
⑴
截面关于中性轴对称
z
t max
c max
M Wz
t
Wz ——截面的抗弯截面系数
⑵ 截面关于中性轴不对称
max
z
t
My max Iz
max
c
My max Iz
c
几种常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
梁的弯矩和应力关系式【最新】
第17讲教学方案——弯曲正应力第七章弯曲应力§7-1纯弯曲正应力梁的横截面上同时存在剪力和弯矩时,这种弯曲称为横弯曲。
剪力Q是横截面切向分布内力的合力;弯矩M是横截面法向分布内力的合力偶矩。
所以横弯梁横截面上将同时存在剪应力τ和正应力σ。
实践和理论都证明,其中弯矩是影响梁的强度和变形的主要因素。
因此,我们先讨论Q = 0,M = 常数的弯曲问题,这种弯曲称为纯弯曲。
图6-1所示梁的CD段为纯弯曲;其余部分则为横弯曲。
与扭转相似,分析纯弯梁横截面上的正应力,同样需要综合考虑变形、物理和静力三方面的关系。
1.变形关系——平面假设考察等截面直梁。
加载前在梁表面上画上与轴线垂直的横线,和与轴线平行的纵线,如图6-2a所示。
然后在梁的两端纵向对称面内施加一对力偶,使梁发生弯曲变形,如图图6-2b所示。
可以发现梁表面变形具有如下特征:(1)横线(m-m和n-n)仍是曲线,只是发生相对转动,但仍与纵线(如a-a,b-b)正交。
(2)纵线(a-a和b-b)弯曲成曲线,且梁的一侧伸长,另一侧缩短。
根据上述梁表面变形的特征,可以作出以下假设:梁变形后,其横截面仍保持平面,并垂直于变形后梁的轴线,只是绕着梁上某一轴转过一个角度。
与扭转时相同,这一假设也称平面假设。
此外,还假设:梁的各纵向层互不挤压,即梁的纵截面上无正应力作用。
根据上述假设,梁弯曲后,其纵向层一部分产生伸长变形,另一部分则产生缩短变形,二者交界处存在既不伸长也不缩短的一层,这一层称为中性层。
如图6-3所示。
中性层与横截面的交线为截面的中性轴。
横截面上位于中性轴两侧的各点分别承受拉应力或压应力;中性轴上各点的应力为零。
下面根据平面假设找出纵向线应变沿截面高度的变化规律。
考察梁上相距为dx 的微段(图6-4a ),其变形如图6-4b 所示。
其中x 轴沿梁的轴线,y 轴与横截面的对称轴重合,z 轴为中性轴。
则距中性轴为y 处的纵向层a-a 弯曲后的长度为θρd y )(+,其纵向正应变为ρθρθρθρεy d d d y =-+=)( (a ) 式(a )表明:纯弯曲时梁横截面上各点的纵向线应变沿截面高度线性分布。
梁的弯曲正应力公式
梁的弯曲正应力公式在我们学习力学的奇妙世界里,梁的弯曲正应力公式就像是一把神奇的钥匙,能帮我们打开很多难题的大门。
先来说说梁是啥吧。
想象一下,你家里的房梁,或者是一座桥上的大梁,它们都是承受各种力量的重要结构。
梁在受到外力作用时,会发生弯曲,而这时候梁内部就会产生应力。
那梁的弯曲正应力公式到底是啥呢?它其实就是用来计算梁在弯曲时,不同位置处的应力大小的。
公式是:σ = My / I 。
这里的σ就是正应力,M 是弯矩,y 是所求应力点到中性轴的距离,I 是惯性矩。
咱们来具体讲讲这个公式里的每个部分。
先说弯矩 M ,它就像是一个大力士,决定了梁弯曲的程度和力量大小。
比如说,在一个建筑工地上,一根钢梁要承受上面重重的建筑材料的压力,这个压力让钢梁产生弯曲,而这个弯曲的力量大小就是弯矩。
再看 y ,也就是所求应力点到中性轴的距离。
中性轴就像是梁的“平衡线”,上面的部分受压,下面的部分受拉。
比如说,你拿一根竹条弯曲,中间不怎么变形的那一条线就类似中性轴。
而应力点到中性轴的距离越大,应力也就越大。
惯性矩 I 呢,它反映了梁横截面的形状和尺寸对抗弯能力的影响。
比如说,同样长度的钢梁,如果一个是实心的粗钢梁,一个是空心的细钢梁,那实心的粗钢梁惯性矩就大,抗弯能力也就更强。
我记得有一次去工厂参观,看到工人们正在加工一批钢梁。
工程师拿着图纸,嘴里不停地念叨着梁的弯曲正应力公式,计算着每根钢梁在不同工作条件下的应力情况。
他们神情专注,一丝不苟,因为哪怕一点点的误差,都可能导致钢梁在使用过程中出现问题,造成严重的后果。
在实际应用中,梁的弯曲正应力公式用处可大了。
比如在设计桥梁的时候,工程师得根据车辆的通行量、桥的跨度等因素,利用这个公式准确计算出桥梁中各个部位的应力,确保桥梁的安全稳固。
又比如在机械制造中,要设计一个能承受特定载荷的传动轴,也得靠这个公式来确定轴的尺寸和材料。
总之,梁的弯曲正应力公式虽然看起来有点复杂,但它可是力学世界里的宝贝,能帮助我们解决很多实际问题,让我们的生活更加安全和便捷。
梁的弯曲正应力试验
梁的弯曲正应力试验一、目的1.测定矩形截面梁在纯弯曲时横截面上正应力的大小及其分布规律,并与理论计算结果进行比较,以验证纯弯曲正应力公式zI My =σ的正确性。
2.学习电测法,并熟悉静态电阻应变仪的使用和半桥接线方法。
二、仪器设备1.静态电阻应变仪2.多功能组合实验台三、实验原理与方法实验装置见图3-19。
它由固定立柱1、加载手轮2、旋转臂3、荷载传感器9、压头8、分力梁6、弯曲梁5、简支支座4、图3-19 弯曲正应力实验装置底板7、数字测力仪10、应变仪11等部分组成。
弯曲梁为矩形截面钢梁,其弹性模量E =2.05×105MPa ,几何尺寸见图3-20,CD 段为纯弯曲段,梁上各点为单向应力状态,在正应力不超过比例极限时,只要测出各点的轴向应变实ε,即可按实实εσE =计算正应力。
为此在梁的CD 段某一截面的前后两侧面上,在不同高度沿平行于中性层各贴有五枚电阻应变片。
其中编号3和3′片位于中性层上,编号2和2′片与编号4和4′片分别位于梁的上半部分的中间和梁 图3-20 梁的尺寸、测点布置及加载示意图的下半部分的中间,编号1和1′片位于梁的顶面的中线上,编号5和5′片位于梁的底面的中线上(见图3-20),并把各前后片进行串接。
图3-21半桥接线图温度补偿片贴在一块与试件相同的材料上,实验时放在被测试件的附近。
上面粘贴有各种应变片和应变花,实验时根据工作片的情况自行组合。
为了便于检验测量结果的线性度,实验时采用等量逐级缓慢加载方法,即每次增加等量的荷载ΔP ,测出每级荷载下各点的应变增量εΔ,然后取应变增量的平均值实εΔ,依次求出各点应力增量实实实εσΔ=ΔE 。
实验可采用半桥接法、公共外补偿。
即工作片与不受力的温度补偿片分别接到应变仪的A 、B和B 、C 接线柱上(如图3-21),其中R 1为工作片,R 2为温度补偿片。
对于多个不同的工作片,用同一个温度补偿片进行温度补偿,这种方法叫做“多点公共外补偿法”。
01-横力弯曲时梁横截面上的正应力课件
横力弯曲时梁横截面上的正应力
横力弯曲时,梁的横截面上既有正应力又 有 切应力,切应力使横截面发生翘曲,横向力 引起 与中性层平行的纵截面的挤压应力,纯弯 曲时所 作的平面假设和单向受力假设都不成立 。
虽然横力弯曲与纯弯曲存在这些差异,但进 一步的分析表明,工程中常用的梁,纯弯曲时的正 应力计算公式,可以精确的计算横力弯曲时横截 面上的正应力。
(3)确定许可载荷 Mmax W[ ]
横力弯曲时梁横截面上的正应力
对于铸铁等脆性材料制成的梁,由于材料的
[t ] [c ]
且梁横截面的中性轴一般也不是对称轴,所以梁的
t max
c max
(两者有时并不发生在同一横截面上)
要求分别不超过材料的许用拉应力和许用压应力t maLeabharlann [ t]cmax [c ]
横力弯曲时梁横截面上的正应力
一、公式的应用范围
1、在弹性范围内 2、具有切应力的梁
3、平面弯曲
4、直梁
二、强度条件
梁内的最大工作应力不超过材料的许用应力。
max
Mmax W
[ ]
横力弯曲时梁横截面上的正应力
强度条件的应用
(1)强度校核 Mmax [ ]
W
(2)设计截面
W
M max
[ ]
横力弯曲时梁横截面上的正应力一公式的应用范围1在弹性范围内3平面弯曲二强度条件2具有切应力的梁maxmax横力弯曲时梁横截面上的正应力强度条件的应用1强度校核max2设计截面max3确定许可载荷max横力弯曲时梁横截面上的正应力对于铸铁等脆性材料制成的梁由于材料的且梁横截面的中性轴一般也不是对称轴所以梁的两者有时并不发生在同一横截面上要求分别不超过材料的许用拉应力和许用压应力maxmax
单一材料梁的弯曲正应力实验技术文件.doc
单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。2.初步掌握电测法原理和静态电阻应变仪的使用方法。二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε∆,依次求出各点的应力增量Δσ实。Δσ实=E·实ε∆ (1-43)把Δσ实与理论公式计算的应力增量Δσ理=zI yM ⋅∆ (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即%100⨯∆∆-∆=理理实σσση(1-45)从而验证梁的弯曲正应力公式的正确性。 五、实验步骤1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h,载荷作用点到梁支点的距离a 。2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻应变仪的灵敏系数。4.依照静态电阻应变仪的操作规程对应变仪进行检验并调平衡,然后再对各测点预调平衡,反复几次以确保各测点的电桥处于初始平衡状态。5.按照所拟定的加载方案逐级加载,每加一级载荷,相应测读一次各点的应变值εi,并随时算出各点的应变增量Δεi,观察其线性程度,直至加到预计的最终载荷为止。然后全部卸载,应变仪回到初始平衡状态,对于应变增量线性程度不好的测点可分析其原因,重复上述测试步骤几次取其实测值的应变增量的算术平均值。6.实验结束,卸载。关闭应变仪,清理现场。六、实验数据处理1.将梁材料的弹性模量,梁的尺寸及测点位置,应变计的灵敏系数,实验荷载及其相应测点的应变值填入表1-15中并将计算的应变增量的平均值,应力的实验值和理论值,相对误差等也列入该表中表1-15梁的弯曲正应力实验测量记录表2.将各点的σ实和σ理描绘在同一个σ-y坐标系中,并运用数理统计的知识分别作出σ实-y和σ理-y分布曲线,以便进行比较,从而检验梁的弯曲正应力理论公式的正确性。七、思考与分析1.实验为何采用“等增量法”加载?为何取各测点应变增量的算术平均值作为实验值?2.电阻应变计是布设在梁的表面上,为什么把测得的表面上的应变看作是梁横截面上的应变?其依据是什么?3.如果梁采用的是拉压不等强度材料(E拉≠E压),其弯曲正应力在整个横截面上的分布曲线较之拉压等强度材料梁将会有何变化?。
纯弯曲梁横截面上的正应力
11.74 MPa
内max
Mmax Iz
h 2
1.44130Nm81 02m
731 6 08m4
2
78.3 MPa
例7-2 一受集中载荷的简支梁,由18号槽钢制成,如图7-7(a)所示。已知 梁的跨度 l=2 m,F=5 kN。求此梁的最大拉应力和最大压应力。 解:1、作弯矩图
h
b
d
[注:各种型钢的抗弯截面模量可从型钢表中查到]
若梁的横截面对中性轴不对称,其最大拉、压应力并不相等,这时 应分别进行计算。
思考题1:
梁发生平面弯曲时,其横截面绕______旋转。 A.梁的轴线 B.中性轴 C.截面的对称轴 D.截面的上(或下)边缘
答案 B.
扭转时横截面才绕轴线旋转,A不对。弯曲时横截面是绕中性轴旋转。 中性轴不一定是对称轴,中性轴过形心,不会在上、下边缘,所以C、D不 对。
抗弯截面模量
max
M Wz
四、截面惯性矩与抗弯截面模量
1、矩形截面
Iz
1b3h, 12
Wz 1 6b2h
c
z
h
y b
2、圆形截面
Iz
d4,
64
Wz 32d3
d
c
3、圆环形截面
d
d
z
D
Iz
D4(14),
64
Wz 32D3(14)
y
D
思考: Wz ?
Z
各种型钢的抗弯截面模量可从型钢表中查到若梁的横截面对中性轴不对称其最大拉压应力并不相等这时应分别进行计算
一、纯弯曲和横力弯曲的概念
剪力“FQ” 切应力“τ”; 弯矩“M” 正应力“σ”
1、纯弯曲 梁的横截面上只有弯矩而无剪力的弯曲(横截面上只有正应力而无剪应
纯弯曲时梁横截面上的正应力
E E Sz N Aσ dA A ydA o ρ ρ
(g)
E I yz E o M y A zσ dA A zydA ρ ρ E E Iz 2 M M z A yσ dA A y dA ρ ρ
(h)
(I)
E E Sz N Aσ dA A ydA o ρ ρ
o1
y
dx
o2
B1
B
B1B为 A B1 的伸长量
AB1
(c)
y (d θ ) AB1 B1 B ε dx O1 O2 AB1
为 A 点的纵向线应变。
C
d
O1 O2 dx 为中性层上纵向线段的
长度 A
o1
y
dx
o2
B1
B
中性层的曲率为
1 dθ ρ dx
(c)
y (d θ ) AB1 B1 B ε dx O1 O2 AB1
画两条相邻的横向线 mm 和 nn ,并在两横向线间靠近顶
面和底面处分别划将条纵向线 aa 和 bb (图5-1 a ) m
a b m n
m a b
n
m
(a)
(b)
根据观察,梁变形后: 1. 侧面上的两纵向线 aa , bb 弯成弧线; 2. 横向线 mm , nn 仍为直线,但相对转了一个角度且 与弯曲后的 aa ,bb垂直; 3. 靠近底面的纵线 bb 伸长,而靠近顶面的纵线 aa 缩短;
m a b m n n a b b m
m
a
m
n
m
a b n
(a)
(b)
平面假设 :梁在受力弯曲后,原 来的横截面仍为平面,它绕其上的 某一轴 旋转了一个角度,且仍垂 C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁弯曲时横截面上的正应力
在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。
1、纯弯曲与横力弯曲
从火车轴的力学模型为图2-53a所示的外伸梁。
画其剪力、弯矩图(见图2-53b、c),在其AC、BD段内各横截面上有弯矩M和剪力同时存在,故梁在这些段内发生弯曲变形的F
Q
同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。
在其CD段内各段截面,
,梁的这种弯曲称为纯只有弯矩M而无剪力F
Q
弯曲。
2、梁纯弯曲时横截面上的正应力
如图2-54a所示,取一矩形截面梁,弯曲前在其表面两条横向线m—m和n—n,再画两条纵向线a—a和b—b,然后在其两端外力偶矩M,梁将发生平面纯弯曲变形(见图2-54b)。
此时可以观察到如下变形现象:
⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。
⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。
由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。
可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。
从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。
中性层与横截面的交线称为中性轴。
梁弯曲时,横截面绕中心轴绕动了一个角度。
由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点:
⑴中性轴的线应变为零,所以其正应力也为零。
⑵距中性轴距离相等的各点,其线应变相等。
根据胡克定律,它们的正应力也必相等。
⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。
⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。
最大正应力(绝对值)在离中性轴最远的上、下边缘处。
由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知
y E
y E E •=•=•=ρρεσ
2-24 对于指定的横截面,ρE
为常数(即为上述k 的值)看,由于此时梁轴线的曲率
半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得
图2-55 正应力分布图
图2-56 梁纯弯曲时横截面上的内力和应力
⎰=A M ydA σ
2-25 将公式(2-24)代入(2-25),得
M dA y E
dA y E
A A ==⎰⎰22ρρ
令
dA y I A
z ⎰=2 为截面对中性轴z 轴的轴惯性矩)(4mm ,则
z EI M =ρ
1 这是研究梁变形的一个基本公式,式中z EI 称为梁的抗弯刚度。
将公式(2-26)代入(2-24),即得到梁在纯弯曲时截面上任一点处的正应力计算公式:
z
I My =σ 为计算梁横截面上的最大正应力,可定义抗弯截面系数m ax y I W z z =
,则式(2-27),可写作:
z W M =
max σ 式中 M ——截面上的弯曲(N ·mm );
W z——抗弯截面系数(mm3).
I z 和W z 是仅与截面几何尺寸有关的量,常用型钢的I z 和W z 可在有关
设计手册中查得。
式(2-27)和(2-28)是由梁受纯弯曲变形推导出的,但只要梁具有纵向对称面,且载荷作用在其纵向对称面内,梁的跨度又较大的,横力弯曲也可以应用上述两式。
当梁横截面上的最大应力大于材料的比例极限时,公式不在适用。
3、惯性矩和抗弯截面系数的计算
梁常见横截面的I z 、W z 计算公式表2-2。