第28章锐角三角函数复习课课件
合集下载
人教版九年级数学下册精品教学课件 第二十八章 锐角三角函数 解直角三角形及其应用 第一课时
新课讲解
归纳:(1)在直角三角形的六个元素中,除直角 外的五个元素,只要知道两个元素(其中至少有一 条边),就可以求出其余的三个元素. (2)定义:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形. (3)解直角三角形有四种基本类型:①已知斜边 和一条直角边;②已知两条直角边;③已知斜边和 一个锐角;④已知一条直角边和一个锐角.
2
课堂小结
1.解直角三角形的概念 由直角三角形中的已知元素,求出其余未知元素的 过程,叫做解直角三角形. 2.解直角三角形的类型及方法 (1)解直角三角形有四种基本类型:①已知斜边和 一条直角边;②已知两条直角边;③已知斜边和一 个锐角;④已知一条直角边和一个锐角.
课堂小结
(2)在解直角三角形时,可以用勾股定理确定直角 三角形的三边关系,由锐角三角函数得到边角关系. 在选择关系时,应遵循以下基本原则:有斜(斜边) 用弦(正弦、余弦),无斜(斜边)用切(正切), 宁乘勿除,尽量采用原始数据.
第28章:锐角三角函数 28.2 解直角三角形及其应用(1)
人教版·九年级下册
导入新课
导入新课
意大利比萨斜塔在1350年落成时就已倾斜,其塔 顶中心点偏离垂直中心线2.1 m.1972年比萨地区发 生地震,这座高54.5 m的斜塔在大幅度摇摆后仍巍然 屹立,但塔顶中心点偏离垂直中心线增至5.2 m,而 且还以每年增加1 cm的速度继续倾斜,随时都有倒塌 的危险.为此,意大利当局从1990年起对斜塔进行维 修纠偏,2001年竣工,此时塔顶中心点偏离垂直中心 线的距离比纠偏前减少了43.8 cm.
导入新课
C 垂 直 中 心 线Ө
A
B
如果要求你根据
塔 身
上述信息,用
中 “塔身中心线与
人教版初中数学九年级下册 28.1 锐角三角函数(第3课时)课件 【经典初中数学课件】
本课时主要讲解了人教版初中数学九年级下册锐角三角函数的相关内容通过这些值能迅速说出对应锐角的度数。同时,讲解了如何熟练计算含有这些角度的三角函数的运算式。此外,还深入探讨了互为余角的两个锐角A,B正切值的关系,以及一个锐角A的正弦值、余弦值和正切值之间的关系。通过仔细观察和推导,得出了这些三角函数之间的重要规律。在例题部分,详细解析了如何运用这些知识点求解实际问题,如计算特定角度的三角函数值,以及利用三角函数关系解决梯形中的角度和边长问题等。通过这些讲解和练习,旨在帮助学生深入理解和掌握锐角三角函数的相关知识,提高解题能力。
初中数学 九年级下册 28-1 锐角三角函数(教学课件)
∵ ∠C=90°,∠A=45°∴ BC=AC=2
由勾股定理得AB=
+ =2 ∴cos A=
=
=
变式2-2 Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于_____.
在 △ 中,∵ =
∴
,
=
A.
B.
C.
D.
【详解】作AB⊥x轴交x轴于点B,
∵A(3,4),∴AB=4,BO=3,∴AO= AB 2 + BO2 = 42 + 32 =5,
B
AB 4
= .故选C.
AO 5
∴sinα =
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变
B.缩小为原来的
在直角三角形中,当锐角 A 的度数一定时,
不管三角形的大小如何,它的对边与斜边的比是一个固定值.
′′
与
’
′′
01
锐角三角函数-正弦
在 Rt△ABC 中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作:sinA.
即 sin A=
∠所对的边
斜边
=
B
斜边
c
a 对边
∠所邻的边
斜边
B
=
斜边
c
A
正弦和余弦的注意事项:
b
邻边
a 对边
C
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA是一个比值(数值,无单位)。
人教版九年级数学下册课件:28.1锐角三角函数--1.2余弦、余切
因此
16
知识点二:正 切
合作探究
如图,若点E为BC的中点,则 tan∠CAE的值是 .
17
知识点二:正 切
学以致用
1.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值 是( A )
A.
B.
C.
D.
2.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍, 则tan B的值是( D )
的坐标为(4,3),那么cos α的值是( B )
A. B.
C. D.
11
知识点一:余 弦
学以致用
3.如图,在Rt△ABC中,∠B=90°,∠A= 30°,以点A为 圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心, AB长为半径画弧,两弧交于点E,连接 AE,DE,则∠EAD的余弦值是( B )
28
知识点三:锐角三角函数
归纳总结
(3)sin2A表示sinA·sinA=(sinA)2,不能写成sinA2; (4)由于直角三角形的斜边大于直角边,且各边的边长均 为正数,所以锐角三角函数值都是正实数, 且0<sinA<1,0<cosA<1,tanA>0. (5)正弦、余弦、正切符号后面可以直接写锐角的度数, 如sin28°,cos8°,tan18°等.
A.
B. 3 C.
D.
18
知识点二:正 切
学以致用
3.如图,在△ABC中,∠BAC=90°,AB
=AC,点D 为边AC的中点,DE⊥BC于点
E,连接BD,则tan ∠DBC的值为( A )
A.
B.
C.
D.
4.如图,P(12,a)在反比例函数 y= 图象
Байду номын сангаас
16
知识点二:正 切
合作探究
如图,若点E为BC的中点,则 tan∠CAE的值是 .
17
知识点二:正 切
学以致用
1.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值 是( A )
A.
B.
C.
D.
2.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍, 则tan B的值是( D )
的坐标为(4,3),那么cos α的值是( B )
A. B.
C. D.
11
知识点一:余 弦
学以致用
3.如图,在Rt△ABC中,∠B=90°,∠A= 30°,以点A为 圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心, AB长为半径画弧,两弧交于点E,连接 AE,DE,则∠EAD的余弦值是( B )
28
知识点三:锐角三角函数
归纳总结
(3)sin2A表示sinA·sinA=(sinA)2,不能写成sinA2; (4)由于直角三角形的斜边大于直角边,且各边的边长均 为正数,所以锐角三角函数值都是正实数, 且0<sinA<1,0<cosA<1,tanA>0. (5)正弦、余弦、正切符号后面可以直接写锐角的度数, 如sin28°,cos8°,tan18°等.
A.
B. 3 C.
D.
18
知识点二:正 切
学以致用
3.如图,在△ABC中,∠BAC=90°,AB
=AC,点D 为边AC的中点,DE⊥BC于点
E,连接BD,则tan ∠DBC的值为( A )
A.
B.
C.
D.
4.如图,P(12,a)在反比例函数 y= 图象
Байду номын сангаас
人教版九年级下册数学《解直角三角形应用举例》锐角三角函数研讨复习说课教学课件
学以致用
如图水坝的横断面是梯形,迎水坡的坡角∠B=30°,背
水坡的坡度为1: 2 (坡面的铅直高度DF与水平宽度AF的
比),坝高CE(DF)是45米,求AF、BE的长,迎水坡BC的长,
以及BC的坡度.
AF=45 2 m BE=45 3
BC=90m
= 1: 3
知识点二:坡度、坡角的实际应用
角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
课堂小结
1.坡度:我们通常把坡面的铅直高度h和水平宽度 l 的比
叫坡度(或叫坡比)用字母 i 表示:
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
D.500
米
第5课时 解直角三角形
解直角三角形的应用
探索新知
例 1.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔
80海里的A处,它沿正南方向航行一段时间后,到达位于灯
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
典例讲评
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡
AB的坡度i=1:3,斜坡CD的坡度i' =1:2.5,求坝底宽AD和斜坡AB
的长.
(精确到0.1m,tan18°26′ ≈0.3333,sin18°26′≈0.3162)
课件
课件
课件
人教新课标版初中九下28.1锐角三角函数(3)ppt课件
( 2) )
cos 45° 2 2 - tan45° = ° ÷ - 1=0 sin 45° 2 2
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
例 2: ( 1) 如 图 ( 1) , 在 Rt△ ABC 中 , ∠ C=90, AB= 6 , BC= 3 , : ) ) △ , 求∠A 的度数.
双基演练 能力提升 聚焦中考
Rt△ 1 . B 是 Rt △ ABC 的 一 个 内 角 , sinB= ∠ 且
3 B =______. , cos =______ . 则 2 2 1 3 2 . 在 △ ABC 中 , ∠ A , ∠ B 都 是 锐 角 , 且 sinA= , cosB= , 2 2
课本第8 页练习1 课本第83页练习1、2、3题
补充练习 在△ABC中,AD是BC边上的高,∠B=30°, ABC中 AD是BC边上的高, B=30° 边上的高 ∠C=45°,BD=10,求AC. C=45° BD=10, AC.
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
3 A=30° 例 3. 如 图 , 在 ⊿ ABC 中 , ∠ A=30 ° ,tanB= . , 2 AC=2 3 , 求 AB
C
A
B
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 小结
1 , 则 点 A′ 的 坐 2
电 子 教 案 目 标 呈 现 教 材 析 教 学 流 程 同 步 演 练 课 后 练 习 分
cos 45° 2 2 - tan45° = ° ÷ - 1=0 sin 45° 2 2
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
例 2: ( 1) 如 图 ( 1) , 在 Rt△ ABC 中 , ∠ C=90, AB= 6 , BC= 3 , : ) ) △ , 求∠A 的度数.
双基演练 能力提升 聚焦中考
Rt△ 1 . B 是 Rt △ ABC 的 一 个 内 角 , sinB= ∠ 且
3 B =______. , cos =______ . 则 2 2 1 3 2 . 在 △ ABC 中 , ∠ A , ∠ B 都 是 锐 角 , 且 sinA= , cosB= , 2 2
课本第8 页练习1 课本第83页练习1、2、3题
补充练习 在△ABC中,AD是BC边上的高,∠B=30°, ABC中 AD是BC边上的高, B=30° 边上的高 ∠C=45°,BD=10,求AC. C=45° BD=10, AC.
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
3 A=30° 例 3. 如 图 , 在 ⊿ ABC 中 , ∠ A=30 ° ,tanB= . , 2 AC=2 3 , 求 AB
C
A
B
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 小结
1 , 则 点 A′ 的 坐 2
电 子 教 案 目 标 呈 现 教 材 析 教 学 流 程 同 步 演 练 课 后 练 习 分
锐角三角函数复习课课件
90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
人教新课标版初中九下28.1锐角三角函数(2)ppt课件
1+ 3 2
B.
1+ 2 2
C.
2+ 3 2
D. D.
2
3 . 如 图 2 所 示 , AB 是 斜 靠 在 墙 上 的 长 梯 , AB 与 地 面 的 夹 角 为 α , 当 梯 顶 A 下 滑 1m 至 A ′ 时 , 梯 脚 B 滑 至 B′ , A′ B′ 与 地 面 的 夹 角 为 β , 若 tanα = tan α A. A . 4m
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
1.我们是怎样定义直角三角形中一个锐角的正 1.我们是怎样定义直角三角形中一个锐角的正 弦的?为什么可以这样定义它? 弦的?为什么可以这样定义它? 在上一节课中我们知道,如图所示, 2. 在上一节课中我们知道,如图所示,在 Rt△ABC中 C=90° 当锐角A确定时, Rt△ABC中,∠C=90°,当锐角A确定时, 的对边与斜边的比就随之确定了, ∠A的对边与斜边的比就随之确定了,现在要 其他边之间的比是否也确定了呢? 问:其他边之间的比是否也确现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 范例
例 1: 如 图 , 在 Rt△ ABC 中 , ∠ C=90° , BC= 6, sinA= : △ ° , 求 cosA、 tanB 的 值 . 、
B 斜的c A ∠A的的的b ∠A的的的a C
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 探究
数学:28.1锐角三角函数(复习巩固)课件(人教新课标九年级下)
=2×6.6+2×5.65+3.5=28m
锐角A sinA · · · · · · 15° 18° 20° 22° 0.26 0.31 0.34 0.37 0.927 · · · 80° 82° 84° 0.99 0.994 · · · · · ·
· · · 0.98
cosA
tanA
· · · 0.966 0.951 0.94
· · · 0.174 0.139 0.105
D. 60°< A < 90°
3. 计算 (1) tan30°+cos45°+tan60°
3 2 3 3 2 4 3 2 3 2
(2) tan30°· tan60°+ cos230°
3 3 3 3 2
3 7 1 4 4
2
4. 用计算器求锐角的三角函数值,填入下表:
· · · 5.671 7.115 9.514
· · ·
· · ·
· · · 0.268 0.325 0.364 0.404
随着锐角A的度数的不断增大,sinA有怎样的变化趋势?cosA呢? tanA呢?你能说明你的结论吗? 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小)
特殊角的三角函数值
填出下பைடு நூலகம்:
三角函数 30° 45°
2 2
2 2
60°
3 2
sina
cos a tan a
1 2
3 2
1 2
3 3
1
3
练习巩固
1 60 度;若 cos 1.填空: 若 tan 3 ,则 α=_______ 则α= 2 1 45 30 ____________ 度;若 tan ,则α=____________ 度. 3
人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
新人教版九年级数学下册《28章 锐角三角函数 28.1特殊角的三角函数值及用计算器求角的三角函数值》课件_1
300
450
600
SinA
1
2
3
2
2
2
COSA
3
2
1
2
2
2
tanA
3
1
3
3
实践操作
如图:在点B处测得塔顶A的仰角为300,点B到塔底C的
水平距离BC是30m,那么塔AC的高度是多少m?(结
果保留根号)
A
C
B
实践操作:如图:已知A点的坐标为(-1,
0),点B在直线y=x上运动。当线段AB最短
时,点B的坐标为?
y
B
A
0xB来自解:∵点B在直线y=x上
y
∴直线OB 与X轴或y轴组成的角为
450 ,B点的横、纵坐标相等,则设B (a,
B
a),
当点B运动到AB与直线x=y垂直时AB最短 A 0
x
在直角三角形ABO中,
B
∵ AOB=450 ABO=900
∴AB=BO
Sin450 = 2 = AB
2
1
Sin
AOB=
AB AO
∴AB=BO= 2
2
∵ B (a,a),
∴a2+a2=OB2
2a2 = 1 a
2
=±
1 2
又∵B点在第三象限
∴B( -1 ,-1 ) 22
在Rt△ABC中,∠C=900,
SinA = A的对边
斜边
( ∠A的正弦)
cosA = A的邻边
斜边
tanA = A的对边
A的邻边
COtA =
A的邻边 A的对边
(∠A的余弦) (∠A的正切)
( ∠A的余切)
九年级数学人教版下册第二十八章锐角三角函数 解直角三角形及其应用 解直角三角形课件
=20,解这个直角三角形(结果保留小数点后一位).
解: A = 9 0 º - B = 9 0 º - 3 5 º = 5 5 º ,A
∵ tanB=b ,
c
b
a
20
∴ a = tan bB = tan 20 35°≈ 28. 6 . C
35° a
B
二、探究新知
∵ sinB=b , c
A. b=a·tan A
B. b=c·sin A
C. b=c·cos A
D. a=c·cos A
四、课堂训练
3.如图,在菱形 ABCD 中,AE⊥BC 于点 E,EC=4, sin B= 4 ,则菱形的周长是( C ).
5 A.10 B.20 C.40 D.28
A
D
B
EC
四、课堂训练
4.如图,已知 AC=4,求 AB 和 BC 的长.
一般地,由直角三角形中的已知元素,求出其余未知元 素的过程,叫做解直角三角形.
二、探究新知
(1)在直角三角形中,除直角外还有哪几个元素? (2)结合右图说一说这几个元素之间有哪些关系? (3)知道这几个元素中的几个,就可以求其余元素? 解:(1)在 Rt△ABC 中除直角外还有五个元素,三边: AB,AC,BC 或 a,b,c 两锐角:∠A ,∠B.
∴ c= sin bB = sin 23 05°≈ 34. 9. 注意:选取函数关系求值时尽可能用原始数据,减少因 为近似产生的累积误差.
二º,∠B=72º,c=14,解这个
直角三角形. A
解: A = 9 0 º - 7 2 º = 1 8 º ,
, B
二、探究新知
在 Rt△ABC 中,∠C=90º,a=30,b=20.解这个直 角三角形. 在 Rt△ACD 中,
人教版初中数学九年级下册 28.1 锐角三角函数(第1课时)课件 【经典初中数学课件】
C
18
21
78°
83°
β
24
G
E
F
H
α
x
118°
【例题】
例2.已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.
当堂检测,反馈提高
1.△ABC与△DEF相似,且相似比是 ,则△DEF 与△ABC与的相似比是( ). A. B. C. D. 2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A.3个 B.4个 C.5个 D.6个 3.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?
小结: 1、谈谈你的收获。 2.你有哪些困惑。 3.学会了哪些解决问题的方法。
27.1 图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
观察下面两张照片,你发现有什么相同与不同?
想一想:我们刚才所见到的图形有什么相同和不同的地方?
相同点:形状相同. 不同点:大小不一定相同.
A
C
B
┌
【解析】在Rt△ABC中,
【尝试应用】
1.判断对错:
A
10m
6m
B
C
(1)如图 sin A= ( ) ②sin B= . ( ) ③sin A=0.6m. ( ) ④sin B=0.8. ( )
18
21
78°
83°
β
24
G
E
F
H
α
x
118°
【例题】
例2.已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.
当堂检测,反馈提高
1.△ABC与△DEF相似,且相似比是 ,则△DEF 与△ABC与的相似比是( ). A. B. C. D. 2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A.3个 B.4个 C.5个 D.6个 3.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?
小结: 1、谈谈你的收获。 2.你有哪些困惑。 3.学会了哪些解决问题的方法。
27.1 图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
观察下面两张照片,你发现有什么相同与不同?
想一想:我们刚才所见到的图形有什么相同和不同的地方?
相同点:形状相同. 不同点:大小不一定相同.
A
C
B
┌
【解析】在Rt△ABC中,
【尝试应用】
1.判断对错:
A
10m
6m
B
C
(1)如图 sin A= ( ) ②sin B= . ( ) ③sin A=0.6m. ( ) ④sin B=0.8. ( )
28章锐角三角函数全章ppt课件
问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜
边AB=6,求∠A的对边BC的长.
B
由 sin A BC 得 AB
BC AB sin A 6sin 75
由计算器求得 sin75°≈0.97
α
A
C
所以 BC≈6×0.97≈5.8
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的 角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6, 求锐角a的度数
由于
B
cos a AC 2.4 0.4
AB 6
tan A BC 8k 8 AC 15k 15
例题示范
例3: 如图,在Rt△ABC中,∠C=90° B
1.求证:sinA=cosB,sinB=cosA
2.求证:tan A sin A ;tan A 1
cos A
tan B
3.求证:sin2 A cos2 A 1
A
C
sin2 A sin A sin A
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
新人教版第28章锐角三角函数复习课件
l 的比叫做坡度,
h 用字母i表示,即 i tan ,如图2。 l
i h tg l
h
l
图2
┃知识归纳┃
(3)方向角:指北或指南方向线与目标方向线所成的小于90的 水平角叫做方向角,
D 北 A
30 60
西 0 东
30 45
C 南 图4 B
如图4中,目标A、B、C、D的方向角分别表示北偏东 60、 南偏东 45、南偏西 30、北偏西 30 。又如,东南方向,指 的是南偏东 45 角。
已知ab是o的直径cd是弦cdabbc6ac8则sinabddeaceade4ad162025课堂练习尽管一生只在学校里读过三个月的书但通过勤奋好学勤于思考发明了电灯电报留声机电影等一千多种成果成为著名的发明家人民海关缉私巡逻艇在东海海域执行巡逻任务时发现在其所处位置o点的正北方向10海里处的a点有一涉嫌走私船只正以24海里时的速度向正东方向航行为迅速实施检查巡逻艇调整好航向以26海里时的速度追赶在涉嫌船只不改变航向和航速的前提下问
AE AD DE AD 160 3 120(海里)
160 3 120 38 . (小时) 40 ∴该船应在 3.8 小时内卸完货物。 t
┃课堂练习┃
1.在Rt△ABC中,∠C=90°若AB=2AC,则cosA的值为( )。 B
3 2.在Rt△ABC中,∠C=90°,cosA= ,b 2
西 B A
分析:( 1 )台风中心在AC 上移动,要知道 B 处是否受影响,只要求 出B 到AC 的最短距离并比较这个最短距离与 200 的关系,若大于或等 于200海里则受影响,若小于200海里则不受影响。 (2)要使卸货过程不受台风影响,就应在台风中心从出发到 第一次到达距B 200海里的这段时间内卸完货,弄清楚这一点,再结 合直角三角形边角关系,此题就不难得到解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2) 2 1 3 tan 30 2 (sin 45 1)
3 2 2 2 解: 原式: 2 1 3 ( ) 2 ( 1) 3 2 2 2 1 1 2 (1 ) 2 2
0 c 90 , 若3 AC 3BC, 1.在Rt△ABC中,
知识点一 锐角三角函数的定义: A的对边 a sin A A 斜边
c
A的邻边 cos A 斜边
b c A的对边 a tan A A的邻边 b
b
c a
C
B
范例
锐角三角函数的定义
1、在Rt△ABC中,∠C=90°,a=2, 1 sinA= ,求cosA和tanA的值。c
AD 25 3 25 68.3m
答:小明他家到公路l的距离AD的长度约为 68.3m.
⑴、正弦;
1、锐角三角函数的定义 ⑵、余弦; ⑶、正切。
锐 角 三 角 函 数
2、30°、45°、60°特殊角的三角函数值。
⑴、定义; 3、解直角三角形 ⑵、直角三角形的性质
①、三边间关系; ②、锐角间关系; ③、边角间关系。
B
a
a 解: sin A , c
3
根据勾股定理得:b c a 6 2 4 2
2 2 2 2
1 c a sin A 2 6。 3
A
b
C
b 4 2 2 2 a 2 2 cos A , tan A c 6 3 b 4 2 4
知识点二 特殊角的三角函数值:
A的邻边 b cos A = 斜边 c
A的对边 a tan A = A的邻边 b
3、解直角三角形条件:已知两边,或已知一边一角。 4、解直角三角形在实际问题中的应用。
范例
根据图中所给的数据,求避雷针CD的长。
解:在Rt△ABD 中, 0 在Rt△ABC中,
BAD 45 , BD AB 52m.
B
3
1、(2011年广东中考)计算:
( 2011 1) 18 sin 45 2
0
2
2 解: 原式 1 3 2 4 2 0
2 、(2011年广东中考)如图,小明家在A处,门前有一口池塘,隔着 池塘有一条公路l,AB是A到l的小路. 现新修一条路AC到公路l. 小明 测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家 到公路l的距离AD的长度(精确到0.1m;参考数 据: 2 1.414 , 3 1.732 ).
D B C l
A
解: 如图,∠ACD=30º ,∠ABD=45º ,BC=50m.
在Rt△ABD中, 设AD=
x ,则BD= x ,CD=50+ x ,
D
B
50m 30°CΒιβλιοθήκη l在Rt△ABC中,
45°
AD tan ACD , CD AD CD tan ACD
A
x (50 x) tan 30 解得:x 25 3 25
⑶、解直角三角形在实际问题中的应用。
锐角α 三角函数
30o
1 2 3 2 3 3
45o
2 2 2 2
60o
3 2 1 2
增减性
sinα cosα tanα
递增 递减
1
3
递增
(1) sin 30 cos 45 tan 60 2、计算:
2
范 特殊角的三角函数值可以“熟记”或“推 例 导”。 2
1 6 1 2 6 1 2 2 解: 原式: ( ) 3 4 2 4 2 2
5.⊙O是△ABC的外接圆,连接OA,OC, ⊙O的半径是2,
sinB=
3 ,则弦AC的长为 4
3
。
D
6、在△ABC中,∠C=90°,AB=15, 1 sinA= ,则BC等于( B ) 1 1 3 D. A. 45 B. 5 C. 5 45 7、在△ABC中,∠C=90°,AC=6, BC= 2 3,则∠B等于( C ) A. 30
B. 45
C. 60
D. 90
知识点三
解直角三角形
2 2 2
1、解直角三角形的定义:利用已知元素,求出未知元素的过程。 2、解直角三角形的性质:
①三边间关系:
a b c (勾股定理) 0 ②两锐角间关系: A B= 90
③边角间关系:
A的对边 a sin A = 斜边 c
c 90 , 3.在Rt△ABC中, A.sinA=sinB B.cosA= cosB 4.在△ABC中,∠A=60°,∠B=45°,AC=2,则 1 3 。 AB=
0
2. tan 45 tan 60 cos30
则∠A= 60° , cosB=
3 2
。
3 2
。
方法小巧门:在图中如 D) 则下列式子定成立的是( 果没有直角三角形,可 适当地构造直角三角形, C.tanA= tanB D. sinA= cosB 从而创设运用锐角三角 函数解题的问题情景。
锐角三角函数
(新人教版) (复习课)
⑴、正弦;
1、锐角三角函数的定义 ⑵、余弦; ⑶、正切。
锐 角 三 角 函 数
2、30°、45°、60°特殊角的三角函数值。
⑴、定义; 3、解直角三角形 ⑵、直角三角形的性质
①、三边间关系; ②、锐角间关系; ③、边角间关系。
⑶、解直角三角形在实际问题中的应用。
BC tan BAC , AB BC AB tan BAC 52 0 52 tan 30 3 3
D
C A
CD BD BC
52 52 3 3 156 52 3 156 52 3 ( m) 答: 避雷针CD的长为( )m。 3
45° 30° 52m
(2) 2 1 3 tan 30 2 (sin 45 1)
3 2 2 2 解: 原式: 2 1 3 ( ) 2 ( 1) 3 2 2 2 1 1 2 (1 ) 2 2
0 c 90 , 若3 AC 3BC, 1.在Rt△ABC中,
知识点一 锐角三角函数的定义: A的对边 a sin A A 斜边
c
A的邻边 cos A 斜边
b c A的对边 a tan A A的邻边 b
b
c a
C
B
范例
锐角三角函数的定义
1、在Rt△ABC中,∠C=90°,a=2, 1 sinA= ,求cosA和tanA的值。c
AD 25 3 25 68.3m
答:小明他家到公路l的距离AD的长度约为 68.3m.
⑴、正弦;
1、锐角三角函数的定义 ⑵、余弦; ⑶、正切。
锐 角 三 角 函 数
2、30°、45°、60°特殊角的三角函数值。
⑴、定义; 3、解直角三角形 ⑵、直角三角形的性质
①、三边间关系; ②、锐角间关系; ③、边角间关系。
B
a
a 解: sin A , c
3
根据勾股定理得:b c a 6 2 4 2
2 2 2 2
1 c a sin A 2 6。 3
A
b
C
b 4 2 2 2 a 2 2 cos A , tan A c 6 3 b 4 2 4
知识点二 特殊角的三角函数值:
A的邻边 b cos A = 斜边 c
A的对边 a tan A = A的邻边 b
3、解直角三角形条件:已知两边,或已知一边一角。 4、解直角三角形在实际问题中的应用。
范例
根据图中所给的数据,求避雷针CD的长。
解:在Rt△ABD 中, 0 在Rt△ABC中,
BAD 45 , BD AB 52m.
B
3
1、(2011年广东中考)计算:
( 2011 1) 18 sin 45 2
0
2
2 解: 原式 1 3 2 4 2 0
2 、(2011年广东中考)如图,小明家在A处,门前有一口池塘,隔着 池塘有一条公路l,AB是A到l的小路. 现新修一条路AC到公路l. 小明 测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家 到公路l的距离AD的长度(精确到0.1m;参考数 据: 2 1.414 , 3 1.732 ).
D B C l
A
解: 如图,∠ACD=30º ,∠ABD=45º ,BC=50m.
在Rt△ABD中, 设AD=
x ,则BD= x ,CD=50+ x ,
D
B
50m 30°CΒιβλιοθήκη l在Rt△ABC中,
45°
AD tan ACD , CD AD CD tan ACD
A
x (50 x) tan 30 解得:x 25 3 25
⑶、解直角三角形在实际问题中的应用。
锐角α 三角函数
30o
1 2 3 2 3 3
45o
2 2 2 2
60o
3 2 1 2
增减性
sinα cosα tanα
递增 递减
1
3
递增
(1) sin 30 cos 45 tan 60 2、计算:
2
范 特殊角的三角函数值可以“熟记”或“推 例 导”。 2
1 6 1 2 6 1 2 2 解: 原式: ( ) 3 4 2 4 2 2
5.⊙O是△ABC的外接圆,连接OA,OC, ⊙O的半径是2,
sinB=
3 ,则弦AC的长为 4
3
。
D
6、在△ABC中,∠C=90°,AB=15, 1 sinA= ,则BC等于( B ) 1 1 3 D. A. 45 B. 5 C. 5 45 7、在△ABC中,∠C=90°,AC=6, BC= 2 3,则∠B等于( C ) A. 30
B. 45
C. 60
D. 90
知识点三
解直角三角形
2 2 2
1、解直角三角形的定义:利用已知元素,求出未知元素的过程。 2、解直角三角形的性质:
①三边间关系:
a b c (勾股定理) 0 ②两锐角间关系: A B= 90
③边角间关系:
A的对边 a sin A = 斜边 c
c 90 , 3.在Rt△ABC中, A.sinA=sinB B.cosA= cosB 4.在△ABC中,∠A=60°,∠B=45°,AC=2,则 1 3 。 AB=
0
2. tan 45 tan 60 cos30
则∠A= 60° , cosB=
3 2
。
3 2
。
方法小巧门:在图中如 D) 则下列式子定成立的是( 果没有直角三角形,可 适当地构造直角三角形, C.tanA= tanB D. sinA= cosB 从而创设运用锐角三角 函数解题的问题情景。
锐角三角函数
(新人教版) (复习课)
⑴、正弦;
1、锐角三角函数的定义 ⑵、余弦; ⑶、正切。
锐 角 三 角 函 数
2、30°、45°、60°特殊角的三角函数值。
⑴、定义; 3、解直角三角形 ⑵、直角三角形的性质
①、三边间关系; ②、锐角间关系; ③、边角间关系。
⑶、解直角三角形在实际问题中的应用。
BC tan BAC , AB BC AB tan BAC 52 0 52 tan 30 3 3
D
C A
CD BD BC
52 52 3 3 156 52 3 156 52 3 ( m) 答: 避雷针CD的长为( )m。 3
45° 30° 52m