中考数学复习专题二---动点问题题型方法归纳

合集下载

历年中考数学动点问题题型方法计划归纳

历年中考数学动点问题题型方法计划归纳

动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。

)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。

下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳动点问题是初中生学习数学时常遇到的难题之一。

这类问题需要学生掌握一定的解题方法和技巧才能够解决。

本文将从动点问题的基本概念、解题思路和常见解题方法等方面进行详细的归纳和总结,希望能够帮助学生更好地掌握动点问题的解题技巧。

一、动点问题的基本概念动点问题是数学中的一个重要课题,在初中数学中占据着重要的地位。

动点问题通常是指以点的运动规律为基础,通过分析和推理,确定动点在一定条件下的运动轨迹或者位置。

动点问题涉及到数学中的线性代数、平面几何等多个知识领域,对学生的逻辑思维和解决问题的能力提出了较高的要求。

动点问题的基本概念可以概括为以下几个方面:1.动点的定义:动点是指在一定条件下,按照一定的规律进行运动的点。

动点的轨迹、速度等都是动点问题的研究对象。

2.动点的运动规律:动点在其运动过程中会遵循一定的规律,这种规律可以是直线运动、曲线运动、周期性运动等。

了解动点的运动规律是解决动点问题的基础。

3.动点问题的应用:动点问题在生活和工作中有着广泛的应用,如汽车在高速公路上行驶的轨迹、射击运动中子弹的轨迹等,都可以通过动点问题进行模拟和分析。

二、动点问题的解题思路解动点问题需要遵循一定的思维逻辑和解题方法,下面将对解题思路进行详细的介绍:1.熟悉动点的运动规律:在解动点问题之前,首先需要了解动点所遵循的运动规律。

这包括动点的速度、加速度、运动轨迹等相关信息。

只有了解了动点的运动规律,才能够有针对性地解决动点问题。

2.建立数学模型:解动点问题需要建立适当的数学模型,根据动点的运动规律和条件进行建模。

这包括建立坐标系、确定参照物、建立方程等步骤,通过数学模型能够更清晰地描述动点的运动状态。

3.运用数学知识进行推理:在建立数学模型之后,需要通过数学知识进行推理和分析。

这包括运用几何知识、代数知识、函数知识等进行推导和计算,找出动点在不同条件下的位置和轨迹。

4.检验和求解:在进行推理之后,需要对所得的结果进行检验和求解,验证计算结果的正确性,并对结果进行解释和讨论,这样才能够得出准确的结论。

初三数学动点问题归类及解题技巧

初三数学动点问题归类及解题技巧

初三数学动点问题归类及解题技巧初三数学学科是学生学习的重要科目之一,数学知识的掌握对学生的数学素养和综合能力提高有着非常重要的作用。

其中,解题技巧和问题分类是学生学习数学的关键点之一。

以下将从初三数学动点问题的归类和解题技巧展开讨论。

一、问题归类初三数学动点问题主要包括以下几种类型:1.几何问题:主要涉及到点、线、面等几何图形的性质和运动规律,如点的坐标、直线的方程、圆的性质等。

2.图像问题:主要是通过图像呈现的运动问题,要求学生根据图像进行分析和解答,比如速度图、位移图、加速度图等。

3.速度问题:主要是针对运动物体的速度和位移等概念展开的问题,要求学生掌握速度的定义和相关计算方法。

4.运动方程问题:主要是要求学生建立物体运动的数学模型,并求解相关问题,如撞击问题、相遇问题等。

5.加速度问题:主要是针对物体加速度的概念和计算方法进行考察,要求学生对加速度的定义和公式进行灵活运用。

6.综合问题:综合了以上几种类型的数学问题,要求学生在综合运用各种知识和方法的基础上解答问题。

以上这些类型的动点问题,对学生的数学能力和解题技巧有着很高的要求,需要学生通过不断的练习和思考,逐渐提高自己的解题能力。

二、解题技巧初三数学动点问题的解题技巧主要包括以下几点:1.充分理解问题:在解题前,要先充分理解问题的意思和要求,明确问题中涉及到的数学概念和知识点,了解问题的背景和条件。

2.建立数学模型:对于涉及到物体运动的问题,要根据问题的要求建立数学模型,明确物体的运动规律和相关参数,建立方程或不等式。

3.运用相关知识和公式:根据问题的情况,灵活运用速度、加速度、位移等物理量的定义和相关公式进行计算,注意在计算过程中要完整标明单位。

4.图像分析:对于图像问题,要细致分析图像的特点和变化规律,结合数学知识对图像进行解释和分析,从图像中得出相关信息。

5.综合能力:对于综合问题,要能够综合运用各种知识和方法,进行综合分析和推理,完成问题的解答。

中考动点问题的解题技巧

中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。

这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。

以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。

对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。

2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。

比如,可以建立方程或不等式来描述点的位置和运动轨迹。

3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。

因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。

4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。

因此,需要进行分类讨论,逐一解决不同情况下的数学问题。

5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。

因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。

6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。

因此,在平时的学习中,需要加强这些知识点的学习和训练。

7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。

如果这些细节处理不当,可能会导致解题错误。

总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。

同时,也需要注意细节处理。

中考动点题解题思路

中考动点题解题思路

中考动点题解题思路中考动点题是数学中的一种题型,主要考察学生对于动点运动轨迹和运动规律的理解和应用能力。

这类题目通常会给出一个动点在二维平面上的运动过程或条件,并要求学生回答有关该动点运动的问题,如到达某一位置的时间、速度、加速度等。

下面将结合具体的例题,从问题的分析、解题思路和方法、以及注意事项三个方面详细探讨中考动点题的解题思路。

一、问题的分析在解动点题之前,学生首先要对问题进行分析,确定动点的运动过程或条件。

通常可以从题目中找到以下几点信息:1.动点的运动方式:动点是直线运动还是曲线运动,是匀速运动还是变速运动;2.动点的起始条件:动点开始的位置、速度或其他相关条件;3.动点的运动过程:动点在规定的时间内或规定的条件下的运动情况。

二、解题思路和方法1.画图辅助分析:将问题中的相关信息用图形表示出来,有助于更好地理解问题和分析解题思路。

可以根据问题的要求,画出动点在平面上的运动轨迹图或示意图,标注出起始位置、终止位置、运动方向等信息。

2.分析运动过程:根据问题中给出的动点运动过程或条件,分析动点在不同时间或条件下的运动状况,如位置的变化、速度的变化、加速度的变化等。

通过对运动过程的分析,可以找到解题的关键点。

3.应用运动公式求解:根据动点的运动方式和相关条件,利用数学中的运动公式来求解问题。

常用的运动公式有:物体在匀速直线运动中的位移公式、速度公式和时间公式;物体在匀变速直线运动中的位移公式、速度公式和加速度公式等。

根据题目所给的条件和要求,选择合适的公式进行计算,得到问题所求的答案。

4.根据图像和运动规律推理解答:有时候,问题中给出的信息比较复杂,难以直接利用运动公式来求解。

这时候可以通过观察图像和分析运动规律来得到解题的思路。

可以利用图像中的形状、对称性、周期性等特点,运用数学推理和逻辑推理的方法,得到问题所求的答案。

三、注意事项1.注意运动方式和条件的特殊性:有些题目中给出的动点运动方式或条件比较特殊,需要特别注意。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳初中物理学动点问题是指分析物体在空间中沿特定轨迹运动的问题。

动点问题通常涉及位置、速度、加速度等物理量的变化及其关系,通常可以通过数学方法进行分析和解决。

在初中物理教学中,动点问题是一个重要的知识点,对学生的数学思维能力和物理理解能力具有一定的要求。

下面将对初中动点问题的解决方法进行归纳总结。

1.位置、速度和加速度的关系在解决动点问题时,首先需要了解位置、速度和加速度三者之间的关系。

位置是描述物体在空间中的具体位置,速度是描述物体在单位时间内所走的距离和方向的改变,加速度是描述速度随时间的变化率。

在物理学中,位置、速度和加速度之间有着具体的数学关系,通过这些关系可以解决动点问题。

初中生需要掌握位置、速度和加速度的数学表达式,以及它们之间的相互转化关系,才能解决动点问题。

2.匀速直线运动的解决方法在解决动点问题时,最简单的情况是匀速直线运动。

匀速直线运动的特点是物体在单位时间内所走的距离相等,速度不变。

针对匀速直线运动,可以通过速度和时间的关系,求出物体的位移。

在初中物理教学中,学生通常会接触到匀速直线运动的解决方法,可以通过公式计算物体的位移、速度和时间等物理量。

3.变速直线运动的解决方法相对于匀速直线运动,变速直线运动在初中物理学中更具有挑战性。

在变速直线运动中,物体的速度随时间的变化,加速度不为0。

在解决变速直线运动问题时,需要利用速度和加速度的关系,求出物体在不同时间内的速度和位移。

针对变速直线运动的问题,通常需要运用微积分等高等数学知识进行分析和解决。

4.抛体运动的解决方法抛体运动是一个常见的动点问题,描述的是物体在被施加初速度的情况下,同时沿水平方向和竖直方向运动的情况。

在初中物理学中,学生通常需要掌握抛体运动的解决方法,包括通过初速度、加速度等参数计算物体的运动轨迹、最大高度、飞行时间等物理量。

对于抛体运动,学生需要了解抛体的水平运动和竖直运动之间的关系,以及如何通过物理公式和数学方法进行求解。

动点问题所有题型解题技巧

动点问题所有题型解题技巧

动点问题所有题型解题技巧摘要:1.动点问题概述2.动点问题分类与解题思路a.直线动点问题b.圆动点问题c.曲线动点问题3.解题技巧总结4.动点问题应用实例解析5.动点问题练习与解答正文:动点问题是指在数学中,涉及点到点之间运动的问题。

它具有一定的复杂性和挑战性,需要掌握一定的解题技巧。

本文将为大家介绍动点问题的解题技巧,以及如何应对不同类型的动点问题。

一、动点问题概述动点问题涉及几何、函数、方程等多个方面的知识。

一般来说,动点问题有以下几个特点:1.题目中存在一个或多个点在运动。

2.运动过程中,点与直线、曲线之间存在一定的关系。

3.求解问题时,需要运用数学知识进行分析。

二、动点问题分类与解题思路1.直线动点问题直线动点问题主要涉及点到直线的距离、角度等关系。

解题思路如下:(1)找出关键信息,如直线的方程、点的坐标等。

(2)根据题目条件,建立点到直线的距离或角度的方程。

(3)求解方程,得到点的坐标或位置。

2.圆动点问题圆动点问题主要涉及点到圆心、圆上的点等关系。

解题思路如下:(1)找出关键信息,如圆的方程、点的坐标等。

(2)根据题目条件,建立点到圆心距离、圆上的角度等方程。

(3)求解方程,得到点的坐标或位置。

3.曲线动点问题曲线动点问题涉及点到曲线的关系。

解题思路如下:(1)找出关键信息,如曲线的方程、点的坐标等。

(2)根据题目条件,建立点到曲线的关系方程。

(3)求解方程,得到点的坐标或位置。

三、解题技巧总结1.熟练掌握几何知识,如直线、圆的方程,以及点到直线、圆的距离公式。

2.灵活运用函数、方程的知识,建立动点问题的关系方程。

3.利用数学方法求解方程,如代数法、几何法等。

四、动点问题应用实例解析以下为一个动点问题的实例:已知直线l的方程为2x+3y-1=0,点P在直线l上,且满足PA=PB,其中A、B为圆O的两点,圆O的方程为x^2+y^2=4。

求点P的坐标。

解:根据题意,先求出点A、B的坐标,然后根据PA=PB建立方程,最后求解得到点P的坐标。

数学动点问题解题技巧初三

数学动点问题解题技巧初三

数学动点问题解题技巧初三
1. 着重理解问题意思:要仔细阅读题目,明确所求,理解问题中涉及的各项条件,并将其表示为数学式子。

2. 建立坐标系:尽量建立合适的坐标系,明确各个动点所在位置的坐标轴位置和数值。

这有助于我们更直观地看到动点运动的方向和路径。

3. 利用几何图形:有时候将问题中所涉及的几何图形画出来有助于我们更好地理解和解决问题。

4. 运用向量和向量运算:向量和向量运算是解决动点问题的重要基础,尤其是位移向量、速度向量和加速度向量。

5. 建立方程组:对于复杂的动点问题,可以通过建立方程组来求解,利用各个动点的运动状态和条件,把问题转化为数学方程进行求解。

6. 合理选择计算方法:对于复杂的动点问题,选择合适的计算方法也是非常重要的,有些问题可以通过空间几何、三角函数、微积分等方面的运算方法解决。

数学动点问题解题技巧初二

数学动点问题解题技巧初二

数学动点问题解题技巧初二动点问题是在数学中经常遇到的一类问题,特别是在初二阶段,动点问题逐渐成为考试的重点和难点。

解决这类问题需要一定的技巧和步骤。

下面我们将从四个方面探讨动点问题的解题技巧。

1.理解题意首先,我们需要仔细阅读题目,了解题目所给的条件和需要求解的问题。

对于动点问题,要特别注意题目中关于点或物体移动的描述,以及所求问题的具体要求。

在理解题意的过程中,我们可以先画出简图,将题目中的信息以直观的方式呈现出来,以便更好地理解。

2.建立模型在理解题意之后,我们需要建立数学模型。

动点问题的数学模型通常包括方程和不等式。

首先,我们需要根据题目中的信息确定方程或不等式的形式。

然后,我们需要将题目中的变量代入方程或不等式中,建立数学模型。

在建立模型的过程中,需要注意变量的取值范围和单位的统一。

3.求解模型建立模型之后,我们需要求解方程或不等式。

对于简单的方程或不等式,我们可以直接求解。

对于复杂的方程或不等式,我们需要使用数学软件或计算器进行求解。

在求解模型的过程中,需要注意单位的转换和取值范围的限制。

4.整合答案最后,我们需要整合答案。

在整合答案的过程中,需要注意答案的完整性和准确性。

同时,还需要注意答案的表达方式,尽可能地让答案简洁明了。

在整合答案的过程中,还需要对解题过程进行反思和总结,以便更好地掌握解题技巧和提高解题效率。

总之,解决动点问题需要一定的技巧和步骤。

在解题过程中,我们需要先理解题意,然后建立模型并求解模型,最后整合答案。

通过不断练习和实践,我们可以逐渐掌握解决动点问题的技巧和方法。

1。

中考数学动点问题题型及解题方法归纳

中考数学动点问题题型及解题方法归纳

中考数学动点问题题型及解题方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点例1:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

二、 特殊四边形边上动点例2:如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为BO 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

动点问题解题技巧总结

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。

中考数学动点问题题型方法归纳

中考数学动点问题题型方法归纳

图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点———-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨.一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A(8,0) B(0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8—t )t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-————①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标. 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm, ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1位和2个长度单位的速度沿OC 和BO 停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

做动点问题的解题技巧

做动点问题的解题技巧

做动点问题的解题技巧
动点问题是数学中常见的问题,通常涉及到在给定图形中,一个或多个点在某些条件下移动,并求出某些量(如距离、角度等)的变化。

解决这类问题需要一定的技巧和策略。

解题技巧:
1. 确定动点的轨迹:首先需要确定动点的移动轨迹,是直线、圆、抛物线还是其他曲线。

2. 找出动点的移动规律:如果动点的移动有特定的规律(如匀速、匀加速等),需要找出这个规律。

3. 运用数学模型:根据动点的轨迹和移动规律,建立数学模型,如方程、不等式或函数等。

4. 利用几何性质:在解决与图形相关的问题时,要充分利用几何性质,如勾股定理、相似三角形等。

5. 数形结合:将数学模型与图形结合起来,通过直观的图形来理解问题,有助于找到解题思路。

6. 分类讨论:对于涉及多种情况的问题,需要进行分类讨论,逐一解决。

7. 检验答案:得出答案后,需要进行检验,确保答案符合题目的要求和条件。

解题步骤:
1. 读懂题目:仔细阅读题目,理解题目的要求和条件。

2. 分析问题:分析问题涉及的数学概念和知识点,确定解题思路。

3. 建立模型:根据题目的要求和条件,建立数学模型。

4. 求解模型:利用数学知识和技巧求解模型,得出答案。

5. 检验答案:对答案进行检验,确保其正确性和合理性。

通过掌握这些技巧和步骤,可以更好地解决动点问题。

动点题的解题技巧

动点题的解题技巧

动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。

解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。

根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。

2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。

这些关键点在解题过程中可能会起到重要的作用。

3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。

这些变量和参数通常与动点的位置、速度、加速度等有关。

4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。

例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。

5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。

因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。

6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。

这些等量关系可以帮助我们建立方程或方程组。

7. 数形结合:数形结合是解决动点问题的重要方法之一。

通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。

8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。

根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。

9. 检验答案:在解决问题后,我们需要对答案进行检验。

检查答案是否符合题目的要求,是否符合实际情况等等。

通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。

动点题初三数学技巧

动点题初三数学技巧

动点题初三数学技巧
1.利用图像解题:在解决动点题时,可以先画出图像,从中找出规律,进而得出解题方法。

2. 列方程解题:动点题中经常涉及到时间、距离等变量,可以将其列成方程,从而解决问题。

3. 利用相似三角形求解:在动点题中,经常存在相似三角形的情况,可以利用相似三角形的性质求解。

4. 利用勾股定理求解:在动点题中,勾股定理也是一个常用的解题方法,可以帮助我们找到两点之间的距离。

5. 利用三角函数求解:在某些情况下,可以利用正弦、余弦、正切等三角函数来求解动点题。

6. 注意图像的变化:在解决动点题时,要注意动点的运动轨迹以及图像的变化,这可以帮助我们更好地理解问题并找到解决方法。

7. 多做练习:练习是提高解题能力的有效途径,多做动点题练习可以帮助我们熟悉解题方法,并提高解题速度和准确率。

- 1 -。

中考数学动点问题的解题技巧(备考)

中考数学动点问题的解题技巧(备考)

中考数学动点问题的解题技巧(备考)为了能更好更全面的做好复习和迎考预备,确保将所涉及的中考考点全面复习到位,让小孩们充满信心的步入考场,现特预备了中考数学动点问题的解题技巧的内容。

解题技巧1.这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,表达了数形结合的思想,能充分考查学生的观看、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。

2.解题步骤:解答此类问题的策略能够归纳为三步:“看”?、“写”?、“选”。

(1)“看”确实是认真观看几何图形,完全弄清晰动点从何点开始动身,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是专门点(时刻),这是准确解答的前提和关键(2)“写”确实是运算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范畴,求出在专门点的函数数值和自变量的值(3)“选”确实是依照解析式选择准确的函数图像或答案,多用排除法。

第一,排除不符合函数类形的图像选项,其次,关于相同函数类型的函数图像选项,再用自变量的取值范畴或函数数值的最大和最小值进行排除,选出准确答案。

典型例题如图,动点P从点A动身,沿线段AB运动至点B后,赶忙按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的周长c与点P的运动时刻t之间的函数图象大致为()“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

中考数学复习专题二---动点问题题型方法归纳

中考数学复习专题二---动点问题题型方法归纳

长度单位和 2 个长度单位的速度沿 OC 和
BO 运动,当其中一个点停止运动时另一
个点也随之停止运动.设它们的运动的时
间 为 t ( s) , 连 接 y D
M
C PQ , 当
3
P
A O
Q Bx
(这里规定:点和线段是面积为 形),解答下列问题:
O 的三角
( 1)点 P 、 Q 从出发到相遇所用时间是
3 时,求 m的取值范围 ( 写出答案即可 ) .
注 意:发现特殊性, DE∥OA
6
动.
( 1)直接写出 A、 B 两点的坐标;
( 2)设点 Q 的运动时间为 t 秒, △OPQ
的面积为 S ,求出 S 与 t 之间的函数关系
式;
( 3)当 S 48 时,求出点 P 的坐标,并 5
直接写出以点 O、 P、Q 为顶点的平行四边
形的第四个顶点 M 的坐标.
y B
提示:第( 2 )问按点 P 到拐点 B 所有时 间分段分类; 第( 3 )问是分类讨论:已知三定点 O 、 P、 Q , 探究第四点构成平行四 边形时按已知线段身份不同分类 ---- ① OP 为 边 、 OQ 为 边 , ② OP 为 边 、 OQ 为 对 角 线 , ③ OP 为 对 角 线、 OQ 为边。然后画出各类的图 形,根据图形性质求顶点坐标。
动时间为 t( s)(0 t 2) ,连结 EF,当 t 为
何值时,△ BEF 为直角三角形. 注意:第( 3 )问按直角位置分类讨论
C F
A
OEB

2
t 为何值时,四边形 BCPQ 的面积最小? 并求出最小值及此时 PQ 的长.
注意:发现并充分运用特殊角∠ DAB=60 ° 当 △OPQ 面 积 最 大 时 , 四 边 形

中考数学动点问题的解题技巧(备考)

中考数学动点问题的解题技巧(备考)

中考数学动点问题的解题技巧(备考)为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了中考数学动点问题的解题技巧的内容。

解题技巧1.这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,体现了数形结合的思想,能充分考查学生的观察、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。

2.解题步骤:解答此类问题的策略可以归纳为三步:“看”?、“写”?、“选”。

(1)“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键(2)“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值(3)“选”就是根据解析式选择准确的函数图像或答案,多用排除法。

首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。

典型例题如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的周长c与点P的运动时间t之间的函数图象大致为()“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、( 齐齐哈尔市)直线与364y x =-+坐标轴分别交于两点,动点A B 、P Q 、同时从点出发,同时到达点,运动停O A 止.点沿线段运动,速度为每秒Q OA1个单位长度,点沿路线→→运P O B A 动.(1)直接写出两点的坐标;A B 、(2)设点的运动时间为秒,Q t OPQ △的面积为,求出与之间的函数关系S S t 式;(3)当时,求出点的坐标,并485S =P 直接写出以点为顶点的平行四边O P Q 、、形的第四个顶点的坐标.M 提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

图B图B图2、( 年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为,连结EF ,当为)20)((<<t s t t 何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、( 重庆綦江)如图,已知抛物线经过点(1)20)y a x a =-+≠,抛物线的顶点为,过作(2)A -,0D O 射线.过顶点平行于轴的OM AD ∥D x 直线交射线于点,在轴正半轴OM C B x 上,连结.BC (1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长P O 度单位的速度沿射线运动,设点运OM P 动的时间为.问当为何值时,四边形()t s t 分别为平行四边形?直角梯形?等DAOP 腰梯形?(3)若,动点和动点分别OC OB =P Q 从点和点同时出发,分别以每秒1个O B 长度单位和2个长度单位的速度沿和OC 运动,当其中一个点停止运动时另一BO 个点也随之停止运动.设它们的运动的时间为,t ()s 当为何值时,四边形的面积最小?t BCPQ 并求出最小值及此时的长.PQ注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

二、特殊四边形边上动点4、( 年吉林省)如图所示,菱形的ABCD 边长为6厘米,.从初始时刻开60B ∠=°始,点、同时从点出发,点以1P Q A P 厘米/秒的速度沿的方向运A C B →→动,点以2厘米/秒的速度沿Q 的方向运动,当点运A B C D →→→Q 动到点时,、两点同时停止运动,D P Q 设、运动的时间为秒时,P Q x APQ △与重叠部分的面积为平方厘米ABC △y (这里规定:点和线段是面积为的三角O 形),解答下列问题: (1)点、从出发到相遇所用时间是 P Q 秒;(2)点、从开始运动到停止的过程P Q 中,当是等边三角形时的值是 APQ △x 秒;(3)求与之间的函数关系式.y x 提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

图图5、( 年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2)问按点P 到拐点B 所用时间分段分类;第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t值。

利用OB ⊥AC,再求OP 与AC 夹角正切值.6、( 年温州)如图,在平面直角坐标系中,33点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.(1)求∠ABC的度数;(2)当t为何值时,AB∥DF;(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线y=x2+mx经过动点E,当S<2 3时,求m的取值范围(写出答案即可).注意:发现特殊性,DE∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设秒后,直线PQ 交OB 于点D.(08)t t <≤(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式;(3)当时,求t 的值及3,a OD ==此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与相似?当a 为何值OAB ∆时,以O ,P ,Q ,D 为顶点的三角形与不相似?请给出你的结论,并加以OAB ∆证明.8、(08黄冈)已知:如图,在直角梯形中,,以为原点建立COAB OC AB ∥O 平面直角坐标系,三点的坐标分A B C ,,别为,点为(80)(810)(04)A B C ,,,,,D 线段的中点,动点从点出发,以BC P O 每秒1个单位的速度,沿折线的路OABD 线移动,移动的时间为秒.t (1)求直线的解析式;BC (2)若动点在线段上移动,当为P OA t 何值时,四边形的面积是梯形OPDC 面积的?COAB 27(3)动点从点出发,沿折线P O OABD 的路线移动过程中,设的面积为OPD △,请直接写出与的函数关系式,并指S S t 出自变量的取值范围;t (4)当动点在线段上移动时,能否P AB 在线段上找到一点,使四边形OA Q 为矩形?请求出此时动点的坐CQPDP标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线与x 轴的交点为点A,21410189y x x =--与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(此题备(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当0<t <时,△PQ F 的面积是否总为92定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.提示:第(3)问用相似比的代换,得PF=OA (定值)。

第(4)问按哪两边相等分类讨论①PQ=PF,②PQ=FQ,③QF=PF.三、直线上动点8、( 年湖南长沙)如图,二次函数()的图象与轴2y ax bx c =++0a ≠x 交于两点,与轴相交于点.连A B 、y C 结两点的坐标分别为AC BC A C 、,、、,且当和(30)A -,(0C 4x =-时二次函数的函数值相等.2x =y (1)求实数的值;a b c ,,(2)若点同时从点出发,均以M N 、B 每秒1个单位长度的速度分别沿BA BC、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连t 结,将沿翻折, MN BMN △MN B 点恰好落在边上的处,求的值及AC P t 点的坐标;P (3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以Q 为项点的三角形与相B N Q ,,ABC △坐提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。

9、( 眉山)如图,已知直线与112y x =+轴交于点A ,与轴交于点D ,抛物线y x 与直线交于A 、E 两点,212y x bx c =++与轴交于B 、C 两点,且B 点坐标为 (1,x 0)。

⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。

⑶在抛物线的对称轴上找一点M ,使的值最大,求出点M 的坐||AM MC -标。

提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。

10、(年兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的x函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.注意:第(4)问按点P 分别在AB 、BC 、CD 边上分类讨论;求t 值时,灵活运用等腰三角形“三线合一”。

相关文档
最新文档