高中数学第二讲直线与圆的位置关系第三节圆的切线的性质及判定定理课前导引素材新人教A版4-1!

合集下载

高中数学第二讲直线与圆的位置关系三圆的切线的性质及判定定理课堂探究新人教A版选修4-1

高中数学第二讲直线与圆的位置关系三圆的切线的性质及判定定理课堂探究新人教A版选修4-1

三圆的切线的性质及判定定理课堂探究探究一圆的切线的性质的应用利用圆的切线的性质来证明或进行有关的计算时,连接圆心和切点的半径是常用辅助线.【典型例题1】如图所示,AB为⊙O的直径,BC,CD为⊙O的切线,B,D为切点,(1)求证:AD∥OC;(2)若⊙O的半径为1,求AD·O C的值.思路分析:(1)要证AD∥OC,由于AB是⊙O的直径,所以BD⊥AD.故可转化为证明BD ⊥OC;(2)由AD·OC可以联想到△ABD∽△OCB,利用等积式转化线段间的关系.(1)证明:如图,连接OD,BD.∵BC,CD是⊙O的切线,∴OB⊥BC,OD⊥CD.∴∠OBC=∠ODC=90°.又∵OB=OD,OC=OC,∴Rt△OBC≌Rt△ODC.∴BC=CD.又∵OB=OD,∴OC⊥BD.∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BD.∴AD∥OC.(2)解:∵AD∥OC,∴∠A=∠BOC.又∠ADB=∠OBC=90°,∴△ABD∽△OCB.∴ABOC=ADOB.∴AD·OC=AB·OB=2×1=2.点评若题目中有圆的切线,则首先想到的是连接圆心和切点构造垂直关系.探究二圆的切线的判定在不知道圆与直线是否有公共点的情况下,通常过圆心作直线的垂线段,然后证垂线段的长等于半径,即“作垂直,证半径”,这是证直线与圆相切的常用方法之一.【典型例题2】如图,AB是⊙O的直径,AE平分∠BAF交⊙O于点E,过E作直线与AF 垂直,交AF的延长线于点D,且交AB的延长线于点C.求证:CD是⊙O的切线.分析:连接OE,只需证明OE⊥CD即可.证明:如图,连接OE.∵OA=OE,∴∠1=∠2.又∵AE平分∠BAF,∴∠2=∠3.∴∠1=∠3.∴OE∥AD.∵AD⊥CD,∴OE⊥CD.∴CD与⊙O相切于点E.规律小结定理法判定圆的切线是平面几何中最常用的方法.这种方法的步骤是:①连接圆心和公共点;②转化为证明直线过公共点且垂直于所连线段.由此看出,证明圆的切线可转化为证明直线垂直.。

24.2直线和圆的位置关系(3)切线的性质课件

24.2直线和圆的位置关系(3)切线的性质课件
切线的性质
思考:
1.什么是圆的切线?判断一条直线是圆的 切线有哪些方法?
•切线的判定方法有三种: •①直线与圆有唯一公共点; •②直线到圆心的距离等于该圆的半径; •③切线的判定定理.即 •经过半径的外端并且垂直这条半径的直 线是圆的切线
2.前面我们已学过的切线的性质有哪些? 答: ①、切线和圆有且只有一个公共点;
∴△ABD为等腰直角三角形 ∴∠ABD=45°
B
课堂小结
• 1.掌握切线性质定理及两个推论,注意每 个定理中均有过切点、过圆心和垂直于 切线三要素 。
切线性质 ①、切线和圆有且只有一个公共点
②、切线和圆心的距离等于半径
③、圆的切线垂直于经过切点的半径 ④、经过圆心且垂直于切线的直线必经过切点
⑤、经过切点且垂直于切线的直线必经过圆心
A C
O
证明:如图, 连接OC, 则 ∵AB是小圆的切线, C为切点 ∴OC⊥AB 在大圆⊙O中, 根据垂径定理,得 AC=BC ∴ C是AB的中点.
B
练习3
如图,在⊙O中,AB为直 径, AD为弦, 过B点的切 线与AD的延长线交于点C, 且AD=DC 求∠ABD的度数.
A
D
O
C 解:∵ AB为直径 ∴∠ADB=90° ∴∠ABC=90° 又∵BC为切线 ∵ △ABC为直角三角形 AD=DC ∴AD=DB
即圆心O到直线AT的距离d<R
O
∴直线AT 与⊙O 相交
这与已知“AT是 ⊙O 的切线”矛盾
A M
T
∴假设不成立,即AT⊥OA
切线的性质定理
1.圆的切线垂直于经过切点的半径
O
几何符号语言:
∵AT是
⊙O 的切线,A 为切点
A

高中数学第二讲直线与圆的位置关系2.2圆内接四边形的性质与判定定理a41a高二41数学

高中数学第二讲直线与圆的位置关系2.2圆内接四边形的性质与判定定理a41a高二41数学
于点G.求证:
(1)D,E,F,G四点共圆;
(2)G,B,C,F四点共圆.
分析(1)连接GF,则易证△GDF与△GEF均为直角三角形,由直角三角形斜
边的中点到三个顶点的距离相等可得出结论.
(2)连接DE,由条件易证DE∥BC,从而∠ADE=∠B,由(1)知∠ADE=∠GFE,从
而12/9/2021
∠GFE=∠B,从而得到结论.
∵∠EAC=∠CAD,∴△ADC∽△ACE,


2=AD·

=
,故
AC
AE.
12/9/2021


第十四页,共三十三页。
首页
探究
(tànjiū)一
探究(tànjiū)

规范
(guīfàn)解

12/9/2021
第十五页,共三十三页。
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
3
做一做2
如图所示,四边形ABCD的边AB的延长线上有一点E,且
BC=BE,∠D=80°,∠E=50°,求证(qiúzhèng):A,B,C,D四点共圆.
证明∵BC=BE,∴∠E=∠BCE.
∴∠EBC=180°-2∠E=80°,
∴∠EBC=∠D.
∴A,B,C,D四点共圆.
12/9/2021
第十一页,共三十三页。
规范
(guīfàn)解

【答题模板】(1)第1步:证△EDC两底角相等;
第2步:利用圆内接四边形的性质定理得两角相等;
第3步:利用同位角相等证得结论.
(2)第1步:证明两角相等;
第2步:证明两三角形全等;
第3步:由圆内接四边形的判定定理证得结论.

高中数学第二讲直线与圆的位置关系五与圆有关的比例线段教材梳理素材

高中数学第二讲直线与圆的位置关系五与圆有关的比例线段教材梳理素材

五 与圆有关的比例线段庖丁巧解牛知识·巧学一、相交弦定理1。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

2。

定理的证明:如图2-5—2,已知⊙O 的两条弦AB 、CD 相交于圆内的一点P 。

图2—5-2求证:PA·PB=PC·PD.证明:连结AC 、BD ,则由圆周角定理有∠B=∠C,又∵∠BPD=∠CPA,∴△APC∽△DPB.∴PA∶PD=PC∶PB,即PA·PB=PC·PD.当然,连结AD 、BC 也能利用同样道理,证得同样结论。

3。

由于在问题的证明中,⊙O 的弦AB 、CD 是任意的,因此,PA·PB=PC·PD 成立,表明“过圆内一定点P 的弦,被P 点分成的两条线段长的积应为一个定值”.虽然过定点P 的弦有无数多条,然而在这众多的弦中有一些长度比较特殊的弦,如过点P 的最长或最短的弦,通过它们可以找到定值。

图2-5-3如图2—5-3(1),考察动弦AB ,若AB 过⊙O 的圆心O ,则AB 为过点P 的最长的弦,设⊙O 的半径为R ,则PA·PB=(R+OP )(R —OP )。

如图2-5—3(2),考察过点P 的弦中最短的弦,AB 为过⊙O 内一点P 的直径,CD 为过点P 且垂直于AB 的弦,显然,由垂直定理和相交弦定理,应有PA·PB=PC·PD=(21CD)2=OC 2—OP 2= R 2-OP 2。

由于⊙O 是定圆,P 为⊙O 内一定点,故⊙O 的半径R 与OP 的长为定值.设OP=d,比较上述两式,其结论是一致的,即PA·PB=(R+d )(R-d )=R 2-d 2,为定值.于是,相交弦定理可进一步表述为:“圆内的两条相交弦,被交点分成的两条线段长的积为一定量,它等于圆的半径与交点到圆心距离的平方差.”定圆的任一弦被定点分得两线段长的积为定值,这个定值与点P 的位置有关,对圆内不同的点P,一般来说,定值是不同的,即这个定值是相对于定点P 与定圆O 而言的。

高中数学第二讲直线与圆的位置关系三圆的切线的性质及判定定理课后训练新人教A版选修4-1

高中数学第二讲直线与圆的位置关系三圆的切线的性质及判定定理课后训练新人教A版选修4-1

故为避免触礁,航向改变角度至少应为东偏北
20°.
(2) 过点 C作 A 的切线 CE,E 为切点,连接 AE,
则∠ AEC=90°.
在 Rt△ ACE中, AC= 45-15= 30,
sin ∠ ACE=
,则 ∠ ACE= 30° .
故为避免触礁,轮船航向改变的角度至少应为东偏南
30°.
5/5
D,连接 CD,则 CD⊥ AB, CD= r .
8 答案:
∵ AC⊥CB, ∴ CD2=AD· BD. 又 AB= 12, AC= 6, AC2=AD· AB,
∴ AD=
= 3.
∴ BD= AB- AD= 12- 3= 9.
∴ CD2= 3×9= 27, ∴CD=
.
如图所示,连接 OA,则 OA⊥ PA.
故 PA= PB,所以
.
9 答案: 分析:欲证 PA= PD,只要证明∠ A=∠ D=30°即可 .
证明:如图,连接 OP,
∵ PD是 O的切线, P 为 切点 .
∴ PO⊥ PD.
∵∠ D= 30°,
∴∠ POD= 60° . 又∵ OA= OP0° . ∴∠ A=∠ D. ∴ PA= PD.
圆的切线的性质及判定定理
练习 1 下列说法:①与圆有公共点的直线是圆的切线;②垂直于圆的半径的直线是圆的切 线;③与圆心的距离等于半径的直线是圆的切线;④过直径的端点,且垂直于此直径的直 线是圆的切线.其中正确的是 ( ) A.①② B .②③ C .③④ D .①④ 2 如图所示, AB与 O切于点 B,AO= 6 cm, AB= 4 cm,则 O的半径 r 等于 ( )
A.
cm
B.
cm
C.

高中数学第二讲直线与圆的位置关系2.3圆的切线的性质及判定定理课件新人教A版选修4-1

高中数学第二讲直线与圆的位置关系2.3圆的切线的性质及判定定理课件新人教A版选修4-1
解析:如图,连接 OC,因为 PC 是⊙O 的切线,
类型 1 性质定理的应用 [典例 1] 如图所示,已知 AB 是⊙O 的 直径,ED 切⊙O 于 D,EM⊥AB 于 M, 交 AD 于 C,交⊙O 于 F.求证:EC=ED. 证明:法一:连接 BD(如图①所示), 因为 AB 是⊙O 的直径,
所以∠BCD+∠ADC=180°,
(2)解:过点 D 作 DE⊥BC 于点 E(如图), 则四边形 ABED 是矩形, DE 等于⊙O 的直径, 在 Rt△DEC 中,∠DEC=90°, ∠ECD=60°,CD=4 cm,
[变式训练] 如图所示,四边形 ABCD 是平行四边 形,以对角线 BD 为直径作⊙O,分别与 BC,AD 相交于 点 E,F.
第二讲 直线与圆的位置关系
[知识提炼·梳理]
1.直线与圆的位置关系 直线与圆有两个公共点,称直线与圆相交;直线与圆 只有一个公共点,称直线与圆相切;直线与圆没有公共点, 称直线与圆相离.
2.如图所示,直线 l 与⊙O 相切,P 是 l 上任一点, 当 OP⊥l 时,则( )
A.P 不在⊙O 上 B.P 在⊙O 上 C.P 不可能是切点 D.OP 大于⊙O 的半径
解析:连接 OM,ON(如图). 因为∠MON=2∠MBN=2×70°=140°.
又因为 AM,AN 分别是圆 O 的切线, 所以∠AMO=∠ANO=90°. 因此∠A=360°-140°-90°-90°=40°. 答案:40°
5.如图所示,圆 O 的直径 AB=6, P 是 AB 的延长线上一点,过点 P 作圆 O 的切线,切点为 C,连接 AC,若∠CPA=30°,则 PC =________.
3.如图所示,CD 切⊙O 于 B,CO 的延长线交⊙O 于 A.若∠C=36°,则∠ABD 等于( )

数学学案:本讲小结第二讲直线与圆的位置关系

数学学案:本讲小结第二讲直线与圆的位置关系

整合提升知识网络典例精讲直线与圆的位置关系是初等几何的核心,通过本章学习进一步熟悉并应用分类思想、运动变化思想和猜想与证明的数学思想方法。

本讲有四类问题,一是与圆有关角的计算与证明,二是圆内接四边形性质与判定,三是切线的性质与判定,四是与圆有关线段的计算与证明.【例1】如图2—1,EB、EC是⊙O的两条切线,B、C是切点,A、D 是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是______________。

图2—1思路分析:要求∠A,可转化为求∠BCD。

由已知∠DCF的度数,想到先求∠ECB的度数,从而注意到题目所给的EB、EC为切线,将∠ECB 与∠E的度数联系起来.解法一:∵EB、EC是⊙O的切线,∴EC=EB.又∠E=46°,∴∠ECB=246180︒-︒=67°。

∵∠DCF=32°,∴∠BCD=180°—67°-32°=81°。

∵∠A+∠BCD=180°,∴∠A=180°—81°=99°.温馨提示本解法借助切线长定理和圆内接四边形的有关性质,此题还可借助于弦切角定理来求。

解法二:连结AC,∵EB、EC是⊙O切线,图2—2∴EB=EC。

∴∠ECB=246180︒-︒=67°.∵EF切⊙O于点C,∴∠BAC=∠ECB=67°,∠CAD=∠DCF=32°。

∴∠BAD=∠BAC+∠DAC=67°+32°=99°。

答案:99°【例2】如图2—3,D、E是△ABC的BC、AC两边上两点,且∠ADB=∠AEB.求证:∠CED=∠ABC。

图2-3思路分析:要证∠CED=∠ABC,容易想到圆内接四边形的性质。

而证A、B、D、E四点共圆,用圆内接四边形判定定理不易找到条件,我们采用分类讨论思想.证明:作△ABE的外接圆⊙O,则点D与⊙O有三种位置关系:①点D在圆外;②点D在圆内;③点D在圆上.(1)如果点D在圆外,设BD与⊙O交于点F,连结AF,则∠AFB=∠AEB,而∠AEB=∠ADB.∴∠AFB=∠ADB。

直线与圆的位置关系及切线的判定与性质(知识解读+真题演练+课后巩固)(原卷版)

直线与圆的位置关系及切线的判定与性质(知识解读+真题演练+课后巩固)(原卷版)

第05讲 直线与圆的位置关系及切线的判定与性质1. 了解直线与圆的三种位置关系;2. 了解圆的切线的概念;3. 掌握直线与圆位置关系的性质。

知识点1 直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;知识点2 切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

知识点3 切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =;PO 平分BPA ∠知识点4 三角形的内切圆和内心1、三角形的内切圆 与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

注意:内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2c b a -+ 。

(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。

(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。

C【题型1 直线与圆的位置关系的判定】【典例1】(2023•滨江区二模)已知⊙O 的直径为4,圆心O 到直线l 的距离为2,则直线l 与⊙O ( )A .相交B .相切C .相离D .无法确定【变式1-1】(2022秋•江汉区校级期末)已知⊙O 半径为4cm ,若直线上一点P 与圆心O 距离为4cm ,那么直线与圆的位置关系是( )A .相离B .相切C .相交D .无法确定【变式1-2】(2022秋•洪山区校级期末)圆的半径是6.5cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( )A .相离B .相切C .相交D .相交或相切P BAO B O A D【变式1-3】(2022秋•江夏区校级期末)已知⊙O的半径等于5,圆心O到直线l的距离为4,那么直线l与⊙O的公共点的个数是()A.0B.1C.2D.无法确定【题型2利用切线的性质求有关的角度/边长的运算】【典例2】(2023•西湖区校级二模)如图,菱形OABC的顶点A,B,C在⊙O 上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为2,则BD 的长为()A.2B.4C.D.【变式2-1】(2023•西湖区校级二模)如图,菱形OABC的顶点A,B,C在⊙O 上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为2,则BD 的长为()A.2B.4C.D.【变式2-2】(2023•九龙坡区模拟)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,OA=2,则BD的长为()A.2B.2C.3D.3【变式2-3】(2023•沙坪坝区校级模拟)如图,在△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,,则线段AB的长是()A.B.C.3D.6【典例3】(2023•鹿城区校级模拟)如图,在△ABC中,D是AC上一点,以AD为直径的半圆O恰好切CB于点B.连接BD,若∠CBD=21°,则∠C 的度数为()A.42°B.45°C.46°D.48°【变式3-1】(2023•重庆)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为()A.30°B.40°C.50°D.60°【变式3-2】(2023•浙江二模)如图,AC与⊙O相切于点A,B为⊙O上一点,BC经过圆心O,若∠B=25°,则∠C的大小等于()A.20°B.40°C.25°D.50°【变式3-3】(2023•泰安三模)如图,AB是⊙O的直径,C、D是⊙O上的点,∠E=40°,过点C作⊙O的切线交AB的延长线于点E,则∠CDB等于()A.25°B.30°C.35°D.40°【题型3切线的判定】【典例4】(2023•东莞市校级模拟)如图,∠AOB=60°,以OB为半径的⊙O 交OA于点C,且OC=CA,求证:AB是⊙O的切线.【变式4-1】(新疆期末)如图,在Rt△ABC中,∠BAC=90°以AB为直径的⊙O与BC相交于点E.在AC上取一点D,使得DE=AD.求证:DE是⊙O的切线.【变式4-2】(昭通期末)如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD =8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【变式4-3】(大名县期末)如图,AB是⊙O的直径,点F在⊙O上,∠BAF的平分线AE交⊙O于点E,过点E作ED⊥AF,交AF的延长线于点D,延长DE、AB相交于点C.求证:CD是⊙O的切线.【题型4 切线的性质与判定的综合运用】【典例5】(2023•牧野区校级三模)如图,四边形ABCD内接于⊙O,BD是⊙O 的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【变式5-1】(2023•广西)如图,PO平分∠APD,P A与⊙O相切于点A,延长AO交PD于点C,过点O作OB⊥PD,垂足为B.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为4,OC=5,求P A的长.【变式5-2】(2023•金寨县校级模拟)如图,AB是⊙O的直径,CD=CB,AC,BD相交于点E,过点C作CF∥BD,CF与AB的延长线相交于点F,连接AD.(1)求证:CF是⊙O的切线;(2)若AB=10,BC=6,求AD的长.【变式5-3】(2023•德庆县二模)如图,Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的圆交边AC于点D,交边AB于点E,且BC=BE.(1)求证:AB是⊙O的切线.(2)若AE=24,BE=15,求⊙O的半径.【题型5 利用切线长定理的性质求线段长度或周长】【典例6】(2022秋•金东区期末)如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7B.8C.9D.16【变式6-1】(2022秋•凤台县期末)如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.12cm B.7cmC.6cm D.随直线MN的变化而变化【变式6-2】(2022秋•林州市期中)如图,P A,PB分别切⊙O于点A,B,CD 切⊙O于点E,且分别交P A,PB于点C,D,若P A=6,则△PCD的周长为()A.5B.7C.12D.10【变式6-3】2022秋•潮州期末)如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=8,则△PCD 的周长为()A.8B.12C.16D.20【题型6 三角形的内切圆与内心】【典例7-1】(2023•炎陵县模拟)如图,已知圆O是△ABC的内切圆,且∠A =70°,则∠BOC的度数是()A.140°B.135°C.125°D.110°【典例7-2】(2023•泗阳县一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形,勾(短直角边)长为八步,股(长直角边)长为十五步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径长是()A.3步B.5步C.6步D.8步【变式7-1】(2023•娄底一模)如图,△ABC的内切圆圆O与AB,BC,CA分别相切于点D,E,F,若∠DEF=53°,则∠A的度数是()A.36°B.53°C.74°D.128°【变式7-2】(2022秋•丰宁县校级期末)如图,△ABC,AC=3,BC=4,∠C =90°,⊙O为△ABC的内切圆,与三边的切点分别为D、E、F,则⊙O的面积为()(结果保留π)A.πB.2πC.3πD.4π【变式7-3】(2022秋•南开区校级期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=10,CA=8,则⊙O的半径是()A.1B.C.2D.21.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为()A.25°B.35°C.40°D.45°2.(2023•重庆)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为()A.30°B.40°C.50°D.60°3.(2022•河池)如图,AB是⊙O的直径,P A与⊙O相切于点A,∠ABC=25°,OC的延长线交P A于点P,则∠P的度数是()A.25°B.35°C.40°D.50°4.(2023•滨州)如图,P A,PB分别与⊙O相切于A,B两点,且∠APB=56°,若点C是⊙O上异于点A,B的一点,则∠ACB的大小为.5.(2023•岳阳)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.以点C为圆心,r为半径作圆,当所作的圆与斜边AB所在的直线相切时,r的值为.6.(2023•浙江)如图,点A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,点D在上.已知∠A=50°,则∠D的度数是.7.(2023•金华)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=,求弦CD的长.8.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.9.(2022•郴州)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC 交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.1.(2022秋•江夏区校级期末)已知⊙O的半径等于5,圆心O到直线l的距离为4,那么直线l与⊙O的公共点的个数是()A.0B.1C.2D.无法确定2.(2022秋•广阳区校级期末)如图,在△ABC中,AB=AC=5,BC=8,以A 为圆心作一个半径为3的圆,下列结论中正确的是()A.点B在⊙A内B.直线BC与⊙A相离C.点C在⊙A上D.直线BC与⊙A相切3.(2023•绿园区校级模拟)将一个含有30°的直角三角板按如图所示的位置摆放,一个顶点O与⊙O的圆心重合,一条直角边AB与⊙O相切,切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B,使点O′落在⊙O上,边A′B交线段AO于点C.则∠OCB为()A.60°B.65°C.85°D.90°4.(2023•船营区一模)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC,则∠P的度数是()A.15°B.20°C.30°D.45°5.(2023•越秀区校级二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC =8,则△ABC的内切圆的半径r是()A.2B.3C.4D.无法判断6.(2022秋•聊城期末)如图,△ABC中,∠A=80°,点O是△ABC的内心,则∠BOC的度数为()A.100°B.160°C.80°D.130°7.(2023•婺城区模拟)如图,△ABC是一张周长为18cm的三角形纸片,BC =5cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.13cm B.8cmC.6.5cm D.随直线MN的变化而变化8.(2022秋•南沙区校级期末)如图,四边形ABCD是⊙O的外切四边形,且AB=8,CD=15,则四边形ABCD的周长为.9.(2022•南安市一模)如图,P A、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于.10.(2022秋•越秀区校级期末)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.求证:DE是⊙O的切线.11.(2022秋•魏都区校级期末)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC边于点D,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.求证:EF是⊙O的切线.12.(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在AC上取一点D,使得DE=AD,(1)求证:DE是⊙O的切线.(2)当BC=10,AD=4时,求⊙O的半径.13.(2023•零陵区模拟)如图,在△ABC中,∠C=90°,点E在AC边上,BE平分∠ABC,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=2,AE=4,求⊙O的半径长.14.(2023•新抚区模拟)如图,AC为⊙O的直径,CB是⊙O的切线,CB>AC,D为AB的中点,E在BC上,CE<BE,连接DE,DE=BC.(1)求证:DE为⊙O的切线;(2)若CE=2,EB=8,求⊙O的半径.。

直线与圆的位置关系(3)切线的性质

直线与圆的位置关系(3)切线的性质

(2) ∠P=20°,则∠ACB=__3_5_°___
A
(3)探究: ∠P与∠ACB之间的
数量关系?
pB
A
o
B
OC
试一试:
1.如图,PA、PB是⊙O的切线,切 点分别为A、B,点C是⊙O优弧上一 点,若∠APB=40°,求∠ACB度数.
变式:若C为 ⊙O上一点, 求∠ACB度数.
P
A
C O
B
2.已知:AB是⊙O直径,AP是⊙O切线, 切点为A,PB交⊙O于点C,若点D是AP 中点,则直线CD是⊙O的切线吗?为 什么?
B
C
O
A
D
P
小结:
圆的切线垂直于经过切点的半径. 常见的辅助线是见切点连半径,得垂直.
直线与圆的位置关系(3)
——切线的性质
回 顾 判断直线与圆相切有哪些方法?
判定切线的方法: 1. 与圆有唯一公共点的直线是圆的切线。
2.与圆心的距离等于半径的直线是圆的切线
3.经过半径的外端并且垂直于这条半径的直
线是圆的切线.
探究: 如图,直线l与⊙O相切于点A,OA是 过切点的半径,直线l与半径OA是否 垂直?为什么?
归纳:切线的性质: 圆的切线垂直于经过 切点的半径 ∵l是⊙O的切线 ∴l⊥OA
O
A
l
练习: 1.如图,OA是⊙O的 半径,AC是⊙O的切 线,OA=3,AC=4,则 OC=__5____.
2.如图,以点O为圆心 的两个同心圆中,大 圆的弦AB切小圆于点 P,AP=2,则 AB=__4___.
O
A
C
Oห้องสมุดไป่ตู้A PB
3.如图,已知:PC切⊙O于点C, ∠A=35°,则∠P=__2_0_°_.

2020学年高中数学第二讲直线与圆的位置关系知识归纳与达标验收创新应用教学案新人教A版选修4_1

2020学年高中数学第二讲直线与圆的位置关系知识归纳与达标验收创新应用教学案新人教A版选修4_1

第二讲 直线与圆的位置关系[对应学生用书P35]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等.1.(湖南高考)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设AO ,BC 的交点为D ,由已知可得D 为BC 的中点,则在直角三角形ABD 中,AD =AB 2-BD 2=1,设圆的半径为r ,延长AO 交圆O 于点E ,由圆的相交弦定理可知BD ·CD =AD ·DE ,即(2)2=2r-1,解得r =32. 答案:322.(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD的延长线交⊙O 于点E .证明:(1)BE =EC ;(2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知PA =PD ,故∠PAD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠PAD =∠BAD +∠PAB ,∠DCA =∠PAB ,所以∠DAC =∠BAD ,从而BE =EC .因此BE =EC .(2)由切割线定理得PA 2=PB ·PC .因为PA =PD =DC ,所以DC =2PB ,BD =PB .由相交弦定理得AD ·DE =BD ·DC ,所以AD ·DE =2PB 2.3.(新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC FA =DC EA, 故△CDB ∽△AEF ,所以∠DBC =∠EFA .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EFA =∠CFE =90°.所以∠CBA = 90°,因此CA 是△ABC 外接圆的直径.(2)连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE .由BD =BE ,有CE =DC .又BC 2=DB ·BA =2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12. [对应学生用书P35]圆内接四边形的判定与性质 接四边形的判定和性质.[例1] 已知四边形ABCD 为平行四边形,过点A 和点B 的圆与AD 、BC 分别交于E 、F .求证:C 、D 、E 、F 四点共圆.[证明] 连接EF ,因为四边形ABCD 为平行四边形,所以∠B +∠C =180°.因为四边形ABFE 内接于圆,所以∠B +∠AEF =180°.所以∠AEF =∠C .所以C 、D 、E 、F 四点共圆.[例2] 如图,ABCD 是⊙O 的内接四边形,延长BC 到E ,已知∠BCD ∶∠ECD =3∶2,那么∠BOD 等于( )A .120°B .136°C .144°D .150°[解析] 由圆内接四边形性质知∠A =∠DCE ,而∠BCD ∶∠ECD =3∶2,且∠BCD +∠ECD =180°,∠ECD =72°.又由圆周角定理知∠BOD =2∠A =144°.[答案] C 直线与圆相切要,结合此知识点所设计的有关切线的判定与性质、弦切角的性质等问题是高考选做题热点之一,解题时要特别注意.[例3] 如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,点P 是圆外一点,PA 切⊙O 于点A ,且PA =PB .(1)求证:PB 是⊙O 的切线;(2)已知PA =3,BC =1,求⊙O 的半径.[解] (1)证明:如图,连接OB .∵OA =OB ,∴∠OAB =∠OBA .∵PA =PB ,∴∠PAB =∠PBA .∴∠OAB +∠PAB =∠OBA +∠PBA ,即∠PAO =∠PBO .又∵PA 是⊙O 的切线,∴∠PAO =90°.∴∠PBO =90°.∴OB ⊥PB .又OB 是⊙O 半径,∴PB 是⊙O 的切线.(2)连接OP ,交AB 于点D .如图.∵PA =PB ,∴点P 在线段AB 的垂直平分线上. ∵OA =OB ,∴点O 在线段AB 的垂直平分线上.∴OP 垂直平分线段AB . ∴∠PAO =∠PDA =90°.又∵∠APO =∠OPA ,∴△APO ∽△DPA .∴AP DP =PO PA .∴AP 2=PO ·DP .又∵OD =12BC =12,∴PO (PO -OD )=AP 2.即PO 2-12PO =(3)2,解得PO =2.在Rt △APO 中,OA =PO 2-PA 2=1,即⊙O 的半径为1.与圆有关的比例线段圆的切线、到一些比例式、乘积式,在解题中,多联系这些知识,能够计算或证明角、线段的有关结论.[例4] 如图,A,B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解] 设CB=AD=x,则由割线定理得:CA·CD=CB·CE,即4(4+x)=x(x+10),化简得x2+6x-16=0,解得x=2或x=-8(舍去),即CD=6,CE=12.连接AB,因为CA为小圆的直径,所以∠CBA=90°,即∠ABE=90°,则由圆的内接四边形对角互补,得∠D=90°,则CD2+DE2=CE2,所以62+DE2=122,所以DE=6 3.[例5] △ABC中,AB=AC,以AB为直径作圆,交BC于D,O是圆心,DM是⊙O的切线交AC于M(如图).求证:DC2=AC·CM.[证明] 连接AD、OD.∵AB是直径,∴AD⊥BC.∵OA=OD,∴∠BAD=∠ODA.又AB=AC,AD⊥BC,∴∠BAD=∠CAD.则∠CAD=∠ODA,OD∥AC.∵DM是⊙O切线,∴OD⊥DM.则DM⊥AC,DC2=AC·CM.[对应学生用书P43](时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆内接四边形的4个角中,如果没有直角,那么一定有( )A .2个锐角和2个钝角B .1个锐角和3个钝角C .1个钝角和3个锐角D .都是锐角或都是钝角解析:由于圆内接四边形的对角互补,圆内接四边形的4个角中若没有直角,则必有2个锐角和2个钝角.答案:A2.如图,在⊙O 中,弦AB 长等于半径,E 为BA 延长线上一点,∠DAE=80°,则∠ACD 的度数是( )A .60°B .50°C .45°D .30° 解析:∠BCD =∠DAE =80°,在Rt △ABC 中,∠B =90°,AB =12AC , ∴∠ACB =30°.∴∠ACD =80°-30°=50°.答案:B3.如图所示,在半径为2 cm 的⊙O 内有长为2 3 cm 的弦AB .则此弦所对的圆心角∠AOB 为( )A .60°B .90°C .120°D .150° 解析:作OC ⊥AB 于C ,则BC =3,在Rt △BOC 中cos ∠B =BO OB =32. ∴∠B =30°.∴∠BOC =60°.∴∠AOB =120°.答案:C4.如图,已知⊙O 的半径为5,两弦AB 、CD 相交于AB 的中点E ,且AB =8,CE ∶ED =4∶9,则圆心到弦CD 的距离为( ) A.2143B.289C.273D.809 解析:过O 作OH ⊥CD ,连接OD ,则DH =12CD , 由相交弦定理知,AE ·BE =CE ·DE .设CE =4x ,则DE =9x ,∴4×4=4x ×9x ,解得x =23, ∴OH =OD 2-DH 2=52-1332=2143. 答案:A5.如图,PA 切⊙O 于A ,PBC 是⊙O 的割线,且PB =BC ,PA =32,那么BC 的长为( ) A. 3B .2 3C .3D .3 3解析:根据切割线定理PA 2=PB ·PC , 所以(32)2=2PB 2.所以PB =3=BC .答案:C6.两个同心圆的半径分别为3 cm 和6 cm ,作大圆的弦MN =6 3 cm ,则MN 与小圆的位置关系是( )A .相切B .相交C .相离D .不确定 解析:作OA ⊥MN 于A .连接OM .则MA =12MN =3 3. 在Rt △OMA 中, OA =OM 2-AM 2=3(cm).∴MN 与小圆相切.答案:A7.如图,PAB ,PDC 是⊙O 的割线,连接AD ,BC ,若PD ∶PB =1∶4,AD =2,则BC 的长是( )A .4B .5C .6D .8解析:由四边形ABCD 为⊙O 的内接四边形可得∠PAD =∠C ,∠PDA =∠B .∴△PAD ∽△PCB .∴PD PB =AD CB =14. 又AD =2,∴BC =8.答案:D8.已知⊙O 的两条弦AB ,CD 交于点P ,若PA =8 cm ,PB =18 cm ,则CD 的长的最小值为( )A .25 cmB .24 cmC .20 cmD .12 cm解析:设CD =a cm ,CD 被P 分成的两段中一段长x cm ,另一段长为(a -x ) cm.则x (a -x )=8×18,即8×18≤(x +a -x 2)2=14a 2. 所以a 2≥576=242,即a ≥24.当且仅当x =a -x ,即x =12a =12时等号成立. 所以CD 的长的最小值为24 cm.答案:B9.如图,点C 在以AB 为直径的半圆上,连接AC 、BC ,AB =10,tan∠BAC =34,则阴影部分的面积为( ) A.252π B.252π-24 C .24D.252π+24 解析:∵AB 为直径,∴∠ACB =90°,∵tan ∠BAC =34, ∴sin ∠BAC =35. 又∵sin ∠BAC =BC AB,AB =10,∴BC =35×10=6. AC =43×BC =43×6=8,∴S 阴影=S 半圆-S △ABC =12×π×52-12×8×6 =252π-24. 答案:B10.在Rt △ABC 中,∠ACB =90°,以A 为圆心、AC 为半径的圆交AB 于F ,交BA 的延长线于E ,CD ⊥AB 于D ,给出四个等式:①BC 2=BF ·BA ;②CD 2=AD ·AB ;③CD 2=DF ·DE ;④BF ·BE =BD ·BA .其中能够成立的有( )A .0个B .2个C .3个D .4个 解析:①②不正确,由相交弦定理知③正确,又由BC 2=BE ·BF ,BC 2=BD ·BA ,得BE ·BF =BD ·BA ,故④正确.答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填写在题中的横线上)11.四边形ABCD 内接于⊙O ,若∠BOD =120°,OB =1,则∠BAD =________,∠BCD =________,BCD 的长=________.解析:∠BAD =∠12BOD =60°, ∠BCD =180°-∠BAD =120°,由圆的半径OB =1,∠BOD =2π3, ∴BCD 的长为2π3. 答案:60° 120° 2π3 12.(陕西高考)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.解析:由相交弦定理可知ED 2=AE ·EB =1×5=5,又易知△EBD 与△FED 相似,得DF ·DB =ED 2=5.答案:513.如图,⊙O 为△ABC 的内切圆,AC ,BC ,AB 分别与⊙O 切于点D ,E ,F ,∠C =90°,AD =3,⊙O 的半径为2,则BC =________.解析:如图所示,分别连接OD ,OE ,OF .∵OE =OD ,CD =CE ,OE ⊥BC ,OD ⊥AC ,∴四边形OECD 是正方形.设BF =x ,则BE =x .∵AD =AF =3,CD =CE =2,∴(2+x )2+25=(x +3)2,解得x =10,∴BC=12.答案:1214.如图,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交AB的延长线于E,若EA=1,ED=2,则BC=________.解析:∵CE为⊙O的切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,得EB=4,又∵CB、CD均为⊙O的切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理得EB2+BC2=EC2.∴42+x2=(x+2)2,得x=3,∴BC=3.答案:3三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:(1)l是⊙O的切线;(2)PB平分∠ABD.证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.16.(本小题满分12分)(2012·辽宁高考)如图,⊙O和⊙O′相交于A,B两点,过A 作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E.证明:(1)AC·BD=AD·AB;(2)AC=AE.证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD ,即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD ,又∠ADE =∠BDA ,得△EAD ∽△ABD .从而AE AB =AD BD,即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .17.(本小题满分12分)如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A ,E ,F ,M 四点共圆;(2)证明:AC 2+BF ·BM =AB 2.证明:(1)连接AM ,则∠AMB =90°.∵AB ⊥CD ,∴∠AEF =90°.∴∠AMB +∠AEF =180°,即A ,E ,F ,M 四点共圆.(2)连接CB ,由A ,E ,F ,M 四点共圆,得BF ·BM =BE ·BA .在Rt △ACB 中,BC 2=BE ·BA ,AC 2+CB 2=AB 2,∴AC 2+BF ·BM =AB 2.18.(辽宁高考)(本小题满分14分)如图,EP 交圆于E ,C 两点,PD切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .由于AF ⊥EP ,所以∠PFA =90°,于是∠BDA =90°.故AB 是直径.文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节圆的切线的性质及判定定理
课前导引
情景导入
圆的切线与圆只有一个交点,即切点,而过该交点只有一条半径、切线、切点、半径,它们之间构成了微妙、和谐而完美的关系,是实践应用的理论基础.
知识预览
1.切线的性质定理:圆的切线垂直于经过切点的半径.
推论1:经过圆心且垂直于切线的直线必经过切点.
推论2:经过切点且垂直于切线的直线必经过圆心.
说明:在上述定理及推论中,描述了三个结论:①垂直于切线;②经过切点;③经过圆心.我们可以理解为:每一个结论的成立都以另外两个为条件.
2.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
说明:该定理题设有两个条件,经过半径外端并且垂直于这条半径,因此证明时,“知外端,连圆心,证垂直”“不知外端过圆心作垂线,证半径”是两种常用作法.
1。

相关文档
最新文档