初一-有理数-绝对值-练习题

合集下载

有理数-数轴-绝对值-加减法练习卷

有理数-数轴-绝对值-加减法练习卷

2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。

绝对值、有理数加减法专用习题

绝对值、有理数加减法专用习题

绝对值习题知识要点1、一个数a的绝对值就是数轴上表示这个数的点与原点之间的()。

2、正数的绝对值是(); 即如果a>0,那么|a|=()。

3、负数的绝对值是(); 即如果a<0,那么|a|=()。

4、0的绝对值是0. 如果a=0,那么|a|=()。

5、一个数的绝对值是它本身,那么这个数一定是()。

经典例题例1、表示+7的点与原点的距离是(),即+7的绝值是(),记作();表示2.8的点与原点的距离是(),即2.8的绝对值是(),记作();表示0的点与原点的距离是( ),即0的绝对值是( ),记作( );表示-5的点与原点的距离是( ),即-5的绝对值是(), 记作();例2、一个数的绝对值是它本身,那么这个数一定是__________.例3、例4、用>、<、=号填空:│-0.05│____0;│-3│____0;│0.8│____│-0.8│.例5、判断(对的打“√”,错的打“×”):(1)一个有理数的绝对值一定是正数。

( )(2)-1.4<0,则│-1.4│<0。

( )(3)│-32︱的相反数是32 ( )例6、如果| a | = 4,那么 a 等于__________.例7、绝对值小于5的整数有___个,分别是_______________.例8、字母 a 表示一个数,-a 表示什么?-a一定是负数吗?课堂练习一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( ) (A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( ) (A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.,π,-3.3的绝对值的大小关系是( )8.若|a|>-a,则()(A)a>0(B)a<0(C)a<-1(D)1<a二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且,若x为整数,则x=_________________;(10)若|x|=-x,且,则x=_________________。

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。

初一有理数绝对值题50道

初一有理数绝对值题50道

初一有理数绝对值题50道一、基础巩固1、绝对值等于 5 的数是()A 5B -5C 5 或-5D 02、绝对值小于 4 的整数有()A 3 个B 5 个C 7 个D 9 个3、若|x|=3,则 x=()A 3B -3C 3 或-3D 04、计算:| 7 |=()A -7B 7C 1/7D 1/75、若|a|= a,则 a 是()A 正数B 负数C 非正数D 非负数6、绝对值最小的数是()A 1B 0C -1D 不存在7、若|x 2|=0,则 x=()A 2B -2C 0D ±28、若|x + 3|=5,则 x=()A 2 或-8B -2 或 8C 2 或 8D -2 或-89、下列说法正确的是()A | 5 |= 5B | 06 |= 06C | 1/3 |= 1/3D | 8 |=810、比较大小:| 3 |()| 4 |A >B <C =D 无法比较二、能力提升11、若|a|=5,|b|=3,且 a>b,则 a + b 的值为()A 8B 2C 8 或 2D ±8 或 ±212、已知|x|=4,|y|=1/2,且 xy<0,则 x/y 的值为()A -8B 8C 1/8D 1/813、若|x 1| +|y + 2| = 0,则 x + y 的值为()A -1B 1C -3D 314、当 a<0 时,化简|a 1| |a 2| =()A -1B 1C 2a 3D 3 2a15、若 0<x<1,则 x,1/x,x²的大小关系是()A x<x²<1/xB x²<x<1/xC 1/x<x<x²D 1/x<x²<x16、有理数 a,b 在数轴上的位置如图所示,则|a b| =()(数轴略)A a bB b aC a + bD a b17、若|x + 1| +|x 2| = 5,则 x 的值为()A 3B -2C 3 或-2D 不存在18、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,求|a + b|/m cd + m 的值。

七年级(上)数学有理数加减法绝对值练习题(附答案)

七年级(上)数学有理数加减法绝对值练习题(附答案)

七年级(上)数学有理数加减法绝对值练习题一、单选题1.计算74-+的结果是( )A .3B .-3C .11D .-112.比1小3的数是( )A.1-B.2-C.3-D.2 3.十堰冬季里某一天的气温为32-℃~℃,则这一天的温差是( )A.1℃B.1-℃C.5℃D.6-℃4.数轴上的点A 表示的数是2-,将点A 向左移动3个单位,终点表示的数是( )A.1B.2-C.5D.5-二、解答题5.老李上周五以收盘价每股8元买入某公司股票10000股,下表为本周内每日该股票的涨跌情况(单位:元):(2)本周内该股票的最高收盘价出现在星期几?是多少元?(3)已知老李买进股票时要付成交额1‰的手续费,卖出时还需要付成交额的1‰的印花税和1‰的手续费.如果老李在星期五收盘前将该股票全部卖出,则他的收益情况如何?6.若42a b ==,,且a b <,求a b -的值. 7.阅读下面的解题过程,并用解题过程中的解题方法解决问题.示例:计算:523112936342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解:原式:5231(1)(2)9(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 5231[(1)(2)9(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦534⎛⎫=+- ⎪⎝⎭74= 以上解题方法叫做拆项法.请你利用拆项法计算52153201920201403963264⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 8.计算题(1)()()43772743+-++-(2)()()()340328-++-+-(3)()()()72372217------(4)()()237636105-----9.基础计算(1)()()107-++;(2)()()4539-+-(3)()()37---(4)()3327--10.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米)251,103256-+-+---+,,,,,,请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?11.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776-=-;7676-=-;6767--=+根据上面的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题. (1)721-=; (2)10.82-+=; (3)771718-=; (4)111111520162016221008-+--+ 12.下表给出了某班6名同学身高情况(单位:cm).(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?13.计算:18133⎛⎫-- ⎪⎝⎭三、填空题14.如图是某市连续5天的天气情况,最大的日温差是________℃.15.计算()24---的结果是______.16.数轴上表示1-的点,先向右移动6个单位长度,再向左移动9个单位长度,则此时这个点表示的数是________17.已知m 是4的相反数,n 比m 的相反数小2,则m n -等于_______. 18.若130x y -++=,则x y -=__________.19.计算:21--= ________.参考答案1.答案:B解析:2.答案:B解析:3.答案:C解析:4.答案:D解析:5.答案:(1)涨了0.1元;(2)星期二,8.25元;(3)他的收益为1756元.解析:6.答案:-2或-6.解析:7.答案:3712-解析:8.答案:(1)-50;(2)-3;(3)-30;(4)168;解析:9.答案:(1)-3;(2)-84;(3)4;(4)60.解析:10.答案:(1)小王在下午出车的出发地的南面,距下午出车的出发地8千米;(2)盈利,盈利了46.8元.解析:11.答案:(1)217-;(2)10.82-;(3)771718-;(4)15.解析:12.答案:(1)169,164,171,0,+5;(2)8cm;(3)168cm.解析:13.答案:2解析:14.答案:10 解析:15.答案:2 解析:16.答案:4-解析:17.答案:6-解析:18.答案:4 解析:19.答案:1 解析:。

七年级数学上册有理数、数轴、绝对值专项练习

七年级数学上册有理数、数轴、绝对值专项练习

七年级数学上册有理数、数轴、绝对值专项练习2. 正确理解非负和非正,非正包括 ,非负包括 。

例1. (有理数的分类)把下列各数进行合理的分类:3,-2,3.5,-23,0,-3.14,-10%正数:﹛ …﹜; 负数:﹛ …﹜; 整数:﹛ …﹜; 有理数:﹛ …﹜. 【练习】1. 判断下列说法是否正确:(1)一个有理数不是整数就是分数; (2)一个有理数不是正数就是负数; (3)一个整数不是正整数就是负整数; (4)一个分数不是正分数就是负分数. 2. 下列说法正确的是( ) 有理数有理数A. 正数和负数统称有理数B. 一个数不是正数就是负数C. 整数是自然数D. 是自然数的数必是整数3. 把下列各数填在相应的大括号内:61,-0.1,-789,25,0,-20,-3.14,-590,7正整数:{…};正有理数:{…};负有理数:{…};负整数:{…};自然数:{…};正分数:{…};负分数:{…}.例2.(数轴上的点)利用数轴求下列点所表示的数.(1)一个点从原点开始,先向左移2个单位,再向右移3个单位,到达终点所表示的数为_________.(2)一个点从-2开始,先向左移3个单位,再向左移4个单位,到达终点所表示的数为________.(3)一只蝈蝈在数轴上跳动,先从点A处向左跳3个单位到点B,然后由点B向右跳4个单位到点C,若点C所表示的数为-1,则点A所表示的数为________.(4)一只小鸟落在数轴上,先向右跳2个单位,再向左跳3个单位,终点所表示的数为0,则小鸟的初始位置点A所表示的数是_________.例3.(数轴的双向性)在数轴上,与表示数﹣3的点的距离为四个单位长度的点所表示的数是________ 【练习】1. 点A 在数轴上距原点3个单位长度,将A 向右移动4个单位长度,再向左移动7个单位长度,此时A 所表示的数是__________。

2. 已知A 和B 都在同一条数轴上,点A 表示-2,又知点B 和点A 相距5个单位长度,则点B 表示的数一定是( )。

初一有理数绝对值练习题

初一有理数绝对值练习题

初一有理数 绝对值 练习题、选择题1.-3 对值是()(A) 3 (IB) -3 <C) 13(D> -13 2絶対值等于其相反数的数一定是A.负数C.负数或零 10、 a I = —a^a —定是(A.正数B.负数11.下列说祛正确的是C )两个有理数不相等,那么这関*个数的绝对值也一定不相等 任何一个数的相反数与这个数一定不相等 两个有理数的绝对值相等,那么这两个有理数不相等 B.正数 D ・正数或零3” 若|x|+x=O, A. 负数 B ・ 则掘一定是 ()0 C.非正数D.非负数 Tf+11的相反数是(5 5 C. 75、 Ax 6. 绝对值S 小的有理数的倒数是(1 B. -1 C. 0D,不存在 在有理数屮,絶对值等于它木身的数有(D 、无数多个7. A. I —31的相反数是(3 B> -3 C 、 D 、一8、 A. C.下列数屮,互為相反数的是<I m 31 和=3 |=9| 和 9 B 、 D> 1= 2一51 和一(—2.5 )|7| 和 7 9. A. C. 下列说法错误的是C ) 一个正数的絶对值一定是正数 任何数的绝对値都不是负数 B. 一个赁数的絶对值一定是正数 D.任何数的絶对值一定是正数A. B. C. C.非正数 D.非负数两个数的絶对值相等.且符号相反P那么这两个数是互为相反数口12> 一|a| 二-3.2,则玄是(二.填空题13.绝对值小于3的所有整数有M-数轴上表示1和V 的两点zm 的距离是: lb 吗出绝对值大于2」而不大于5的所有整数_一个正数增大时,它的绝对值,一个负数苗大时P 它的絶对值 •(填增大或减小) Ia-2| + |b-3|+|c-4| =0,!4( a+2b+3c=i x] =1 —3| ,)4( x= t 若I a I =5,WiJ a=解答题20如果|a|=4. |b|=3,且am 求弘b 的值’21 CD 对于式子凶科3, r 況等于什么值时,有員小值7晟小值是多少? (2)对于式子2Txb 为K 等于什么值时,有垠大值7晟大值是多少22s 已知||a|=3, |b|=5, a 与 b 异号,求|a-b| 的值口A, 3.2 B. 一32C. 3.2D.以上都不对16. 17、 絶对值等于它木身的有理数是,绝对價等于它的相反数的数是 18. 29. 12的相反数与一7的绝对值的和是23 若lal=3,lbl=2Jcl=l,K a<b<c,求a+b+c 的値24已知|ab-2|与|b」|互为相反数,试求代数式1 /ab+1/(a+1 )(b+1}+1/(a+2)(b+2)+.,+1/(a+2009)(b+2009)25启tolal=5, lbl=2,且la-bl=b<a,求a 和b 的值?26,已知I 罠| =2003,|y|=2002,且買AO, y<0,求x*y 的值口27$和b是有理数,已如1剖=玄lal=b,且laZbl,把七按从小到大的顺序排列?28.已知I x+y+31 =0,求I x竹I的值B29. tt S|0.25|«|+8B|«| -40|23.(6分)有理»驛』沁在数轴上的位》如图所示■试化简下式: |ii+c| —lc™26| + la+2ft|.,21(3分)已知5为fflSSu』互为因散’耐的绝对值为X试求卅-皿町+旦到的饥tn24. (g 分)若 5 + 1)H + (2h-4f +=0*试求+ ic + or的值.2二巳知』=1 = "2」F+炉= 9 = i%/X 护*4P+2' + 計=36乂^玄3叹4^1+++I 如*2“ «】}瞎想并填空:V+ 2$ +护 + …+ 5—1 尸+ ,p = ±x4d)计算tP+P+少+ …+ 9 少 + 100»。

有理数、数轴、相反数、绝对值练习卷

有理数、数轴、相反数、绝对值练习卷

有理数【2 】.数轴.相反数.绝对值检测卷班级:___________姓名:____________一.填空题1.假如向南走5 km记为-5 km,那么向北走10 km记为____2.大于-5.1的所有负整数为__________________.3.珠穆朗玛峰凌驾海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.4.原点表示的数是_______,原点右边的数是________,左边的数是________.5.绝对值是2的数有_____个,它们是_________,绝对值是110的数有_____个,它们是________,0的绝对值记作:_____=_____,-100的绝对值是_____,记作:_____=_____.6.一个数与它的相反数之和等于_____.7._______的倒数是它本身,_______的绝对值是它本身.8.-|-67|=_______,-(-110)=_______,-|+13|=_______,-(+25)=_______,+|-12|=_______,9.若|-x|=|12|,则x=_______.10.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.11.比较大小:(1)-35___|-12| (2)|-15|___0(3)|-65|___|-43| (4)-97___-6512.距原点3个单位长度的数是___________二.断定题1.-13的相反数是3. ()2.划定了正偏向的直线叫数轴. ()3.数轴上表示数0的点叫做原点.()4.假如A.B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()5.若两个数的绝对值相等,则这两个数也相等. ()6.一个有理数的绝对值不小于它自身7.-a的绝对值等于a8.一个数的绝对值是它的相反数,则这个数必定是负数. ( )9.若-a是负数,则a是正数. ()10.正整数聚集与负整数集归并在一路是整数聚集.()三.选择题1.|x|=2,则这个数是()A.2B.2和-2C.-2D.以上都错2.|12a|=-12a,则a必定是()A.负数B.正数C.非正数D.非负数3.假如一个数的绝对值等于这个数的相反数,那么这个数是()A.正数B.负数C.正数.零D.负数.零4.每个有理数都可以用数轴上的以下哪项来表示()A.一个点B.线C.单位D.长度5.下列图形中不是数轴的是()6.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分离是-213与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来7.下列各数中,大于-12小于12的负数是()A.-23B.-13 C.13 D.08.负数是指()A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数9.关于零的论述错误的是()A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数10.下面是关于0的一些说法,个中准确说法的个数是()①0既不是正数也不是负数;②0是最小的天然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.311.下面准确的是()A.数轴是一条划定了原点,正偏向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴上的点可以表示随意率性有理数D.原点在数轴的正中央12.关于相反数的论述错误的是()A.两数之和为0,则这两个数为相反数B.假如两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,必定互为相反数D.零的相反数为零13.若数轴上A.B两点所对应的有理数分离为a.b,且b在a的右边,则a-b的成果必定()A.大于零B.小于零C.等于零D.无法肯定14.假如点A .B .C .D 所对应的数为a .b .c .d ,则a .b .c .d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a15.0,12,-15,-8,+10,+19,+3,-3.4中整数的个数是()A.6B.5C.4D.3四.解答题1.某气象预告显示,我国五个地区的最高气温第二天比第一世界降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温. 2.在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,52,-43.下图是一个长方体纸盒的睁开图,请把-5,3,5,-1,-3,1分离填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.4.出租车司机李师傅一世界午的营运满是在器械走向的萧绍路长进行的,假如划定向东行驶为正,他这世界午行车的里程(单位:千米)是: +8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)若把李师傅下昼动身地记为0,他将最后一名乘客送抵目标地时,李师傅距下昼动身地有多远?(2)假如汽车耗油量为0.41升/千米,那么这世界午汽车共耗油若干升?5.(1)已知ab>0,试求ab ab b b aa ||||||++的值. (2)若|x -2|+|y +3|+|z -5|=0,盘算:①x ,y ,z 的值.②求|x |+|y |+|z |的值.。

苏科版数学七年级上册第二章有理数绝对值(习题)

苏科版数学七年级上册第二章有理数绝对值(习题)

1.2.4 绝对值【夯实基础】1. 下列说法错误的是 ( )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数2.绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零3.已知点M ,N ,P ,Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A. MB. NC. PD. Q4.-8的绝对值是 ,记做 .5.绝对值等于5的数有 .6.________________的绝对值是2004,0的绝对值是 .7. 如果x <y <0, 那么|x | |y |.8.有理数a ,b 在数轴上的位置如图所示,则a b , ︱a ︱ ︱b ︱.9.|x |<π,则整数x =__________________________ .10.若|x |=|y |,且x =−3,则y =________.11.计算:(1)|−313|÷|−114|×|−12| (2)|−6|×(56−|−12|+|13|)12.某司机在东西路上开车接送乘客,他早晨从A地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞):+10 ,—5,—15 ,+ 30 ,—20 ,—16 ,+ 14. 若该车每百公里耗油3 L ,则这车今天共耗油多少升?13.某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数,检查结果(单位:L)如下:(1)哪几瓶是合乎要求的(即在误差范围内)?(2)哪一瓶的净含量最接近规定的净含量?【能力提升】14.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于本身的数一定是非负数A 3B 2C 1D 015.如果a=−,则a的取值范围是()2−a2A.a>O B.a≥O C.a≤O D.a<O16.已知|x|−|y|=2,且y=−4,则x=________________.17.若|−x|=−(−8),则x=____________,若|−x|=|−2|,则x=____________.【思维挑战】18.(1)式子|m−3|+6的值随m的变化而变化,当m为何值时,|m−3|+6有最小值?最小值是多少?(2)当a为何值时,式子8−|2a−3|有最大值,最大值是多少?。

有理数(二)—-绝对值专题训练

有理数(二)—-绝对值专题训练

A. 两个数的绝对值相等, 则这两个数一定相等 一 B 不 相等 的两 个数 的绝 对值 也不 相等 .
C 相 等 的两个 数 的绝对 值也 相等 .
D. 个数互 为相 反数 . 两 则这两 个数 一定 不相等 7 下 列 说法 正确 的是 ( . ) .

4 下 列语 句正 确 的说法 个数 为 ( .
—, — — —— —— — — — . —— —— — — —— 一 — . —— —— — — —— —. — —— —— — — —— —— —. —— —— —— — . — . —— — — … —— —~ — — — — 一 — — —— —— — — —— —- — — — — —— — — — — —— — — ~ —— — — — — —— … ——
① 绝对 值等 于 0的数 为 0 ; ② 绝对值 等 于 2的数 为 2 ;
绝 对值 等 于 一 3的数 为 一 ; 3

④ 绝 对值 为 4的数 是一 对 相 反数 , 它们 是
+ 4和 一 . 4 ‘
A 0是最 小 的有理 数 .
B 在 所 有 的 负 数 中 , 1最 小 . 一
A.一 3 B. 3
) .
C一 . 3或 3
D 以上都 不对 .
3 一个数的绝对值是正数 . . 这个数一定是 ( A 正数 . C 任何 数 . B 非 零数 . D 以上 都不对 .
) .
) .
第 5题 图
6 下列 说法 正确 的是 ( .
) .

已知 两个 篮 球 ,超 过 规定 的重 量 记 为 正 数 , 足 规定 的重 量记 为 负数 , 选 一个 不 为

人教版 七年级数学上册 第1章 有理数之绝对值专题练习(包含答案)

人教版 七年级数学上册 第1章 有理数之绝对值专题练习(包含答案)

人教版 七年级数学上册 第1章 有理数之绝对值专题练习(含答案)【例1】(1)求下列各式的值 ①8 ②2- ③0 ④122- ⑤45-- ⑥ a - ⑦|-a 2-1| 【答案】8,2,0,52,45,(0)0(0)(0)a a a a a a >⎧⎪-==⎨⎪-<⎩;a 2+1 (2)111111252324232524----- 【答案】0绝对值的性质【例2】(1)若2x =,3y =,x >0,则x y +的值为( )A .5B .5-1或C .5或1D .以上都不对(2)若2x =,3y =,则x y +的值为( )A .5B .5-C .5或1D .以上都不对【答案】C ;C (3)已知:2x =,1y =,且0xy <,则-x y 的值等于 .【答案】-3或3(4)对于1m -,下列结论正确的是 ( )A .1||m m -≥B .1||m m -≤C .1||1m m --≥D .1||1m m --≤【答案】C(5)填空:若a b a b +=+,则a ,b 满足的关系 ;若a b a b -=-,则a ,b 满足的关系 .【答案】0ab ≥;0ab ≥且a b ≥.【例3】(1)若410x y -++=,求xy 的值;【答案】-4(2)已知|3﹣2a |+|b +13|=0,求a ,b 的值. 【解答】a =32 ,b =﹣13 .(3)若3410x y -++=,求y x 的值; 【答案】14-【拓】若3592102a b c ++-++=,则(2)b a c +=__________. 【答案】174【例4】(1)当x 取何值时,+3x 有最小值?这个最小值是________(2)当x 取何值时,2+3x 有最小值?这个最小值是________(3)当x 取何值时,2-3x 有最小值?这个最小值是________(4)1352x -+有最 值,最值是 .(5)2x -+有最 值,最值是(6)2a b -的最小值是 ,当取到最小值时,a 与b 的关系为 .(7)24m n -+的最小值是 ,当取到最小值时,m 与n 的关系为 .【答案】(1)30x =-时,最小值为(2) 30x =-时,最小值为(3) 1.50x =时,最小值为(4)5小,(5)大,0(6)最小值为0;b=2a(7)最小值4,n=2m【拓】设m 、n 是有理数,则6m n -++有最 值,最值是【拓·答案】大,6【例5】(1)若0a <,则2018a-12|a|等于( )A .-2030aB .2030aC .2006aD .-2006a(2)若0m <,0mn <,则2-6n m m n -+--的值是( )A .4B .4-C .224n m -+D .无法确定(3)若24-<a <,化简|2a ||4-a |=++________.【答案】B ;A ;6(4)若0a b +<,则13________a b a b +----=.【答案】-2(5)①当2x ≤时,2x -= .②当1x ≤时,21x --= . ③若0a <,a a --= .④已知15x ≤<,化简15x x -+-.【答案】2-x ;1-x ;-2a ;4【例6】(1)有理数a b ,在数轴上的位置如图所示,化简代数式a b a -+的结果是( ) A .2a b + B .2aC .aD .b(2)如图,a 、b 、c 在数轴上的位置如图所示,化简a b a c c b +-+--=_________【答案】D ;0(3)若a b c ,,三个数在数轴上的对应点为A B C ,,,其位置如下图所示(其中OA OB =)○1把a b c a b c ---,,,,,按照从小到大的顺序排列:______ ○2化简1a c b c a b +--++-=______.. 【答案】○1b a c c a b =-<<-<=-;○21已知3x <-,化简321x +-+.【答案】3x <-时,-x ;-3≤x <-1时,x +6;-1≤x <1时,4-x ;x ≥1时,x +2演练1(1)|a |+a =2a ,则a 是( )A .0B .负数C .非负数D .正数【答案】C .(2)下面关于绝对值的说法正确的是( )A .一个数的绝对值一定是正数B .一个数的相反数的绝对值一定是正数C .一个数的绝对值的相反数一定是负数D .一个数的绝对值一定是非负数【答案】D .b a 0a bc 0c b a C BA O演练2(1)若|a ﹣3|=2,则a +3的值为( )A .5B .8C .5或1D .8或4【答案】D .(2)绝对值小于π的非负整数的个数是( )A .7个B .3个C .4个D .6个【答案】C .演练3 计算192124843⎛⎫-+---⨯- ⎪⎝⎭【答案】11演练4a b ,所表示的有理数如图所示,化简()2a b a b b a +----.【答案】-2b演练5化简|1﹣a |+|2a +1|+|a |,其中a <﹣2.【答案】解:∵a <﹣2,∴|1﹣a |+|2a +1|+|a |,=1﹣a ﹣(2a +1)﹣a ,=1﹣a ﹣2a ﹣1﹣a ,=﹣4a .a b 0。

七年级数学上--绝对值练习及提高习题

七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│= ,│-32│= 。

2、+│+5│= ,+│-5│= ,-│+5│= ,-│-5│= 。

3、│0│= ,+│-0│= ,-│0│= 。

4、绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 。

5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。

6、绝对值小于3.1的所有非负整数为 。

7、绝对值大于23小于83的整数为 。

8、计算2005(2004|20052004|)-+-的结果是 。

9、当x= 时,式子||52x -的值为零。

10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++= 。

11、已知||||2x y +=,且,x y 为整数,则||x y +的值为 。

12、若|8||5|0a b -+-=,则a b -的值是 。

13、若|3|a -与|26|b -互为相反数,则2a b +的值是 。

14、若||3x =,||2y =,且x y >,求x y +的值是 。

15、如图,化简:2|2||2|a b +-+-= 。

16、已知|(2)||3|||0x y z +-+++=,则x y z ++= 。

17、如图, 则||||||||a b a b b a --++-= 。

18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为 。

19、若||5a =,2b =-,且0ab >,则a b += 。

20、若0ab <,求||||||a b ab a b ab ++的值为 。

21、绝对值不大于2005的所有整数的和是 ,积是 。

22、若2|3|(2)0m n -++=,则2m n +的值为 。

23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是 。

24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+= .25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+ 36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =±40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|= 42.(1)若|a+2|+|b-1|=0,则a= b= ;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个 C .22个 D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

初一数学绝对值经典练习题

初一数学绝对值经典练习题

初一数学绝对值经典练习题绝对值经典练习1、 判断题:⑴ 、|-a|=|a|. ⑵ 、-|0|=0. ⑶ 、|-312|=-312. ⑷ 、-(-5)›-|-5|.⑸ 、如果a=4,那么|a|=4. ⑹ 、如果|a|=4,那么a=4.⑺ 、任何一个有理数的绝对值都是正数. ⑻ 、绝对值小于3的整数有2, 1, 0. ⑼ 、-a 一定小于0. ⑽ 、如果|a|=|b|,那么a=b. ⑾ 、绝对值等于本身的数是正数. ⑿ 、只有1的倒数等于它本身. ⒀ 、若|-X|=5,则X=-5.⒁ 、数轴上原点两旁的点所表示的两个数是互为相反数. ⒂ 、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、 填空题:⑴ 、当a_____0时,-a ›0; ⑵ 、当a_____0时,1a ‹0; ⑶ 、当a_____0时,-1a ›0; ⑷ 、当a_____0时,|a|›0;C.a〮b=-1D.a〮b=1或a〮b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a=1bB.|a|=|b|C.a=-bD.a≤0时,b≤0⑸、如果a<0,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|›|b| B.|a|‹|b| C.|a|=|b| D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数 B.两个符号不同的数叫互为相反数C.|-(+x)|=x D.-|-2|=-2⑻、绝对值最小的整数是_______A.-1 B.1 C.0 D.不存在⑼、下列比较大小正确的是_______A.−56<−45B.-(-21)‹+(-21)C.-|-1012|›823D.-|-723|=-(-723)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____ A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴ 、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|×(+5) D 、15÷|-3|5、填表a 13−1212 -a -5 7 +14-(0.1) |a|126、比较下列各组数的大小:⑴ 、-3与-12; ⑵、-0.5与|-2.5|; ⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、 5, 0, |-3|, -3, |- 13|, -(-8), -[−(−8)]; ⑵ 、 123, -512, 0, -614;⑶ 、|-5|, -6, -(-5), -(-10), -|-10|⑷ (|∆|+|∆|)×(-O)=-10,求O、∆,其中O 和∆表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812); ⑵、|-572|与50% ⑶、-π与-3.14 ⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√ ⑵、√ ⑶、× ⑷、√ ⑸、√ ⑹、× ⑺、× ⑻、× ⑼、× ⑽、× ⑾、× ⑿、× ⒀、× ⒁、× ⒂、×2.⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾‹ ⑿3或1 ⒀≧0 ⒁1 ⒂-a 、b ⒃223 −38 223 ⒄19 -9 ⒅±0.04 ⒆= ⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷5 5 a 5 0 -7 - 14 0.1 -a -130 12 -12 |a|135712140.16.⑴‹ ⑵‹ ⑶› ⑷›7.⑴[−(−8)]‹-3‹0‹|- 13|‹|-3|‹5‹-(-8); ⑵-614‹-512‹0‹123;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5, 5, 1或1, 1, 5或-1, -1, 5或-5, -5, 1 8.⑴› ⑵‹ ⑶‹ ⑷›。

有理数、相反数、绝对值练习

有理数、相反数、绝对值练习

有理数复习(1)1、海拔高度是+561米表示__________________,海拔高度是—189米表示_____________2、味精袋上标有“300±5克”字样,+5表示__________________,—5表示_____________ 还说明这袋味精的质量应该是____~____3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___地,最低处为____地,最高处与最低处相差_________4、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_ ______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________5、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________6、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为__ _7、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________8、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。

则点P表示的数是______,P点与M点距离是________9、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______10、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________11、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______12、如果一个数的相反数小于它本身,则这个数为________数13、a+3与—1互为相反数,则a=________14、a—1的相反数是__________,n+1的相反数是_________,—a+b—c的相反数是________15、_____的相反数是它本身,_____的绝对值是它本身,____的倒数是它本身,______的绝对值是它的相反数。

初一有理数,绝对值,相反数经典例题

初一有理数,绝对值,相反数经典例题

正负数有理数-、知识清单(一) 正数1、正数:大于0的数叫做正数。

(二) 负数1、负数:在正数前面加上一个“一”号,这样的数叫做负数2、0既不是正数也不是负数。

3、正数和负数的意义表示向东走 80m,那么-60m 表示:(三)有理数1、有理数的分类有理数,零正有理数V正整数整数彳零正分数负整数分数正分数 负有理数负分数负分数二、经典归纳考点一正负数的区分 【例1】例题1、读出下列各数,并指出其中哪些是正数,哪些是负数, 哪些是正整数, 些是负分数: -1,2.5, 4,0,-3.14,120,-1.732,--,8,-1,- 1-, 3 7-3.5,102.3,5-,0, 1, 23正数: 负数: 正整数: 负分数:【变式1-1】变式练习1-1、把下列各数填到相应的集合中。

负整数集 正分数集 非负数集 自然数集5 12 5, , 0, 0.56, -3, -25.8 , ,—0.0001 , 2, — 6007 5在同一个问题中,分别用正数与负数表示的量具有的意义。

如:如果 80mr 正整数【变式2-2】下列说法中正确的是( C. 一个数不是正数就是负数考点二正数与负数的意义【例1】一个物体可以左右移动,设向右为正:(1) __________________________________________ 向左移动 13m 应记作: (2) __________________________________________ “ +10m ” 表示: ; (3) _______________________________________ 没有移动表示: ;【例3】在一条东西向的跑道上, 小亮先向东走了 8米,记作“ £米”,又向西走了 10米, 此时他的位置可记作()【变式1-3】下列各组量中,互为相反意义的量是( )C .在银行存款500元,一年后得到利息8.3元考点三有理数的分类【例1】例题3、将下列数按照要求填入相应的横线上:1 2 1315, -丄,-5, — ,, 0.1 , -5.32 , -80,123,2.3339158'正整数: _________________________________整数彳零有理数{ [负整数: __________________________________【例2】下列关于有理数的说法,正确的有: _______________________(1) 0是最小的有理数; (2) 没有最大的有理数;(3) 正整数和负整数统称为整数; (4) 0既不是正数也不是负数; (5) 非负数一定是正数;【变式2-1】下列说法中,错误的有()A.整数又叫自然数B. 0 是整数 D. 0不是自然数B. -2 米C. -10 米D . -18米A .上升-5米与下降5米B .增产10吨粮食与减产-10吨粮食D .向东走26米和向西走 20米分数■='正分数:___________________________________i负分数: ___________________________________2、 一袋大米的包装袋上标示的重量是( 30 ±).2) kg ,由此可知符合标示重量的一袋大米的重量在 ________ k g 至 _______ kg 之间。

初一有理数-绝对值-相反数经典例题

初一有理数-绝对值-相反数经典例题

正负数有理数【例1】例题1、读出下列各数,并指出其中哪些是正数,哪些是负数,哪些是正整数,哪些是负分数:1-,2.5,43+,0,-3.14,120, 1.732-,27-,8,-1,-311,-3.5,102.3,-35,0,1,2正数:_____________ 负数:______正整数:______________ 负分数:__________ 【变式1-1】变式练习1-1、把下列各数填到相应的集合中。

5,57-,0,56.0,3-,25.8-,12,0001.-,2+,600-【变式2-2】下列说法中正确的是()A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数【例1】一个物体可以左右移动,设向右为正:(1)向左移动13m应记作:;(2)“+10m”表示:______________;(3)没有移动表示:_________________________;【例3】在一条东西向的跑道上,小亮先向东走了8米,记作“8+米”,又向西走了10米,此时他的位置可记作()A.2+米B.2-米C.10-米D.18-米【变式1-3】下列各组量中,互为相反意义的量是()A.上升-5米与下降5米B.增产10吨粮食与减产-10吨粮食C.在银行存款500元,一年后得到利息8.3元D.向东走26米和向西走20米【例1】例题3、将下列数按照要求填入相应的横线上:15,19-,5-,215,138-,0.1, 5.32-,80-,123,2.333⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧___________________________:___________________________:___________________________:___________________________负分数正分数分数负整数零正整数:整数有理数【例2】下列关于有理数的说法,正确的有:___________________负整数集正分数集非负数集自然数集(1)0是最小的有理数;(2)没有最大的有理数;(3)正整数和负整数统称为整数;(4)0既不是正数也不是负数;(5)非负数一定是正数;【变式2-1】下列说法中,错误的有()①427是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤-1是最小的负整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一有理数绝对值练习题
、选择题
1.-3的绝对值是(>
(A) 3 (B) -3 <C>13
2.
絶对值等于其相反数的数一定是A.负数 正数 C.员数或零 D.正数或零3 A
|x|+x=O, HMx-定是() A •负数B ・0C.非正数D.非负数
4、— | —6+1丨的相反数是( )
A.5B 、一 5 C. 7D,-7
6.在有理数屮,絶对值等于它木身的数有( )
1 0A | a | = — —定是( 11 •下列说法正确的是(
) A. 陶个有理数不相等•那么这関个数的绝対值也一宦不相等
B. 任何一个数的相反数与这个数一定不相等
6两个有理数的绝对值相等,那么这两个有理数不相等
D*两个数的絶对值相等,且符号相反庁那么这脚个数是互为相反数. (D)-13 5、
() A. 1 B.-1 C. 0 绝对値最小的有理数的倒数是
D.不存在 A. 1个 B. 2个 S3个 0•无数多个 7、卜3|的相反数是(
A 、3 —3 C 、 D 、
&下列等数屮,互為相反数的是(
) A. | - 3| 和_3
C. |-9 | 和 9
|-25| 和一(一 2 — 5) D> |7| 和 7 玄下列说法错淇的是( ) X 一
个正数的绝对值一定是正数 C.仟
何数的绝对值都不是負数 B,—个负数的絶对值一定是正数 D.任何数的绝对值一宦是正数
A.正数 B •负数 C.非正数
D.非负数
12>-|a|=-3.2,则玄是()
6以上都不对
A. 3.2 B、・3.2 C. 3.2
二、埴空题
V
13•绝对值小于3的所有整数有
14•数轴上表示1 fll A3的两点Z间的距离是:
15吗岀绝对值大于21而不大于5的所有整数一
一个正数增大时,它的绝对值,一个负数石大时•它的絶对值・(填増大或减小)
16s |a-2|+|b-3| + |c-4|= 0「则a+2b+3c=
17•絶对值等于它木身的有理数是・絶对值等于它的相反数的数是1乩|x| = I—3|,则p若丨日则4
29. 12的相反数与一7的绝对值的和是
三.解答题
20 iu JR|a|=4, |b|=3,且Ab,求/ b 的低
21 (1)对于式于|X|+13,T沈等于什么值时,有昼小值?摄小值是多步?
(2)对于式子2-|x|•巧X等于什么值时,有晟大值7虽大值是多少
2"已知|a|=3, |b|二5•日与b异号,求|a・b|的值.
23 若lal=3,lbl=2Jcl=l,且a<b<c,求a+b+c 的值
24已知|ab-2$|bv1|互为相反数,试求代数式
1/ab+1/(a+1)(b+1)+V(a+2)(b+2)+.,+1/(a+2009)(b+2009)
25•已知lal=5, lbl=2,且la-bl=b-a,求a 和b 的值?
26、已知|x|=2003* |y|=2002t且買A(h y<0,求x+y 的值。

27. a Wb是有理数,已知lai • a • lakb但lalZbb把a.b A-a.-b按从小到大的顺序排列?
28.已ill | x+y+31 =0,求 | x 竹 | 的值'
29. A S|025|M|+8.B|*|40]
23.(6分)有理数a.b. c在数轴上的位骨如图所示,试化简下式:
[住+讨上- ”261+ [盘+2占|・
曲亠
b aQ
互为眉數川的蹩对值为1 -试求m-nwz+ !-^AL的值23. (MM
nt
24. (8分)若(°+ 1 ) 2+ 么?・4y + k + A=0.试朮砧+ be +如的值.
2
25.巳知r5 = 1 = txitX2h

卩+容=9二厶X晋X3U
4
P 4-21 + 31 = 36=-YX3l X4(;
卩十少+3、+4-=100=-rX4*X5' ( “疥想并填空:
4
计算*
P+护+炉+・+9少+100»。

相关文档
最新文档