小学六年级奥数 第20周 面积计算

合集下载

小学六年级奥数练习-举一反三A版练习题

小学六年级奥数练习-举一反三A版练习题

达标测试卷(一)第1周~第5周(定义新运算、简便运算)(本卷满分100分,建议测试时间80分钟)1.(10分)规定②=1*2*3,③=2*3*4,④=3*4*5……如果⑦-⑥=6A,那么A等于多少?2.(10分)规定a*b=(a+b)(a-b),求49*9等于多少?3.(10分)设A,B是两个数,规定A*B= ,求5*10等于多少?4.(10分)规定a b=3a-4b,求(157)10等于多少?5.(10分)设a b=2ab,已知(3x)2=96,求x的值?6.(10分)对两个整数a和b定义新运算“#”;a#b=,求2#6+3#9.7.(40分)下列各题怎样算简便就怎样算。

(1)8.75-8.57+(11.25-1.43)(2)0.999*0.7+0.111*3.7(3)875*0.25+8.75*76-8.75(4)72*1.09+2.4*67.3 (5)4123+3412+2341+1234(6)999*375+6375(7)*2000(8)1/2+1/4+1/8+…+1/128(9)(10)1/99+2/99+3/99+…+98/99是达标测试卷(二)第6周~第8周(转化单位“1”)(本卷满分100分,建议测试时间80分钟)1.(8分)一本书第一次看了全书的0.6,第二次看了第一次的0.6,两次一共看了多少?2.(8分)已知a=3/4b,c=2/3a,b-c=16,求a=()。

3.(8分)甲、乙、丙三位同学手机画片,甲的张数占三人总数的1/6,丙的张数是甲的3/2,乙比丙多30多张,三人一共有多少张画片?4.(8分)水果店有275千克苹果,梨的质量是苹果和橘子的8/21,橘子的质量是梨和苹果总质量的10/19,梨和橘子的质量分别是多少?5.(8分)六年级学生分成甲、乙两组,如果从甲组调14人到乙组,则甲组的人数是乙组的3/5,如果从乙组调12人到甲组,则乙组人数是甲组的3/5,甲、乙两组原来分别有多少人?6.(8分)弟弟有51快糖,哥哥有21块糖,两人每天分别吃一块糖,多少天以后哥哥的块数是弟弟糖的块数的1/3?7.(8分)百货商场进了一批童装,按进价的50%作为利润来定价,当售出这批童装的80%以后,决定降价出售,按照定价的60%出售,这批服装全部售完后实际获利百分之几?8.(8分)阅览室里看书的同学中,男生人数占女生人数的1/2,若走出16位女生,走进16位男生,女生人数是男生的1/2,现在男、女生各有几人?9.(8分)王明参加班干部竞选,需要超过3/4的选票才能当选,在计算了总选票的1/3后,他得到的选票已达到当选票数的3/5,他还要得到剩下选票的几分之几才能当选?10.(8分)某公司女职员比总人数的3/5少18人,男职员人数是女职员的5/3,这个公司一共有职员多少人?11.(10分)有两筐苹果,一筐苹果的个数是甲筐的2/5,从甲筐取出10个苹果放入乙筐后,乙筐苹果的个数是甲筐的3/4,甲、乙两筐一共有多少苹果?12.(10分)有两根彩带,一根长8米,另一根长4米,从两根彩带上剪去同样长的一段后,短彩带剩下的长度是长彩带剩下长度的1/3,两根彩带各剪去多少米?达标测试卷(三)第9周~第11周(设数法解题、假设法解题)(本卷满分100分,建议测试时间80分钟)1.(8分)一次数学竞赛,某班全班平均分为80分,其中4/5的人及格,及格的同学平均分为88分,那么不及格的同学平均分是多少分?2.(8分)王叔叔翻越一座山,他上山的速度是每分钟100米,下山的速度是每分钟150米。

小学奥数六年级举一反三16-20

小学奥数六年级举一反三16-20

第十六周用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

例题1。

一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。

所以1÷【115-(730-115×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。

练习11、师、徒二人合做一批零件,12天可以完成。

师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。

如果这批零件由师傅单独做,多少天可以完成?2、某项工程,甲、乙合做1天完成全部工程的524。

如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。

甲、乙两队单独完成这项工程各需多少天?3、甲、乙两队合做,20天可完成一项工程。

先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。

甲、乙两队独做各需几天完成?一项工程,甲队独做12天可以完成。

甲队先做了3天,再由乙队做2天,则能完成这项工程的12。

现在甲、乙两队合做若干天后,再由乙队单独做。

做完后发现两段所用时间相等。

求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12-112×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。

最新2017小学六年级全学年上下册奥数举一反三经典课件

最新2017小学六年级全学年上下册奥数举一反三经典课件
2021/4/5
【练习1】1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是甲数的几分之几? 2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2,两次共截去全长的几分之几? 3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。他醒来时,发现剩下的路程是他睡 着前所行路程的1/4。想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?
2021/4/5
【练习5】
2021/4/5
2021/4/5
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算, 这种思考方法在四则运算中用处很大。
2021/4/5
【例题1】 计算:1234+2341+3412+4123 【思路导航】 注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分,可作如下解答:
原 式 = 1 × 1111 + 2 × 1111 + 3 × 1111 + 4 × 1111 = ( 1 + 2 + 3 + 4 ) × 1111 = 1 0 × 1111 =11110
2021/4/5
【练习1】 1.23456+34562+45623+56234+62345 2.45678+56784+67845+78456+84567 3.124.68+324.68+524.68+724.68+924.68
2021/4/5
2021/4/5
根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运 算化繁为简,化难为易。

六年级奥数面积练习题

六年级奥数面积练习题

六年级奥数面积练习题题一:一块正方形的花布边长是3cm,小明用这个花布做了一个正方形桌布,桌布的边长是多少厘米?解答:一个正方形的面积等于边长的平方。

花布的边长为3cm,所以面积为3cm × 3cm = 9cm²。

小明用花布做的桌布也是一个正方形,所以桌布的面积也是9cm²。

根据正方形面积的计算公式,可以得到桌布的边长等于根号下面积,即边长等于√9cm² = 3cm。

题二:一个长方形花坛的长度是6m,宽度是4m,小红在花坛的周边铺上小石子,需要多少个小石子?解答:一个长方形的面积等于长度乘以宽度。

花坛的长度为6m,宽度为4m,所以面积为6m × 4m = 24m²。

小红需要铺满花坛的周边,也就是花坛的周长。

长方形的周长等于两倍的长度加两倍的宽度。

花坛的周长为2 × 6m + 2 × 4m = 12m + 8m = 20m。

小石子的数量要与花坛的周长相等,所以小红需要20个小石子来铺满花坛的周边。

题三:一个直角三角形的两条直角边分别是5cm和12cm,求这个直角三角形的面积。

解答:一个直角三角形的面积等于两条直角边的乘积除以2。

直角三角形的两条直角边分别为5cm和12cm,所以面积为5cm × 12cm ÷ 2 =60cm²。

题四:一个边长为3cm的正方形,围绕它画了一个边长为2cm的边框,求边框的面积。

解答:一个正方形的边框就是在正方形的外部画了一个边长相等的正方形。

原正方形的边长为3cm,边框的边长为2cm,即边框在原正方形的基础上每边扩展1cm。

所以边框的边长为3cm+2cm+2cm=7cm。

边框的面积等于边长的平方,即7cm × 7cm = 49cm²。

题五:一个半径为5cm的圆,求这个圆的面积。

解答:一个圆的面积等于π乘以半径的平方。

圆的半径为5cm,所以面积为π × 5cm × 5cm。

小学六年级奥数练习(举一反三李济元A版练习)

小学六年级奥数练习(举一反三李济元A版练习)

达标测试卷(一)第1周~第5周(定义新运算、简便运算)(本卷满分100分,建议测试时间80分钟)1.(10分)规定②=1*2*3,③=2*3*4,④=3*4*5……如果⑦-⑥=6A,那么A等于多少?2.(10分)规定a*b=(a+b)(a-b),求49*9等于多少?3.(10分)设A,B是两个数,规定A*B= ,求5*10等于多少?4.(10分)规定a b=3a-4b,求(157)10等于多少?5.(10分)设a b=2ab,已知(3x)2=96,求x的值?6.(10分)对两个整数a和b定义新运算“#”;a#b=,求2#6+3#9.7.(40分)下列各题怎样算简便就怎样算。

(1)8.75-8.57+(11.25-1.43)(2)0.999*0.7+0.111*3.7(3)875*0.25+8.75*76-8.75 (4)72*1.09+2.4*67.3 (5)4123+3412+2341+1234 (6)999*375+6375(7)*2000(8)1/2+1/4+1/8+…+1/128(9)(10)1/99+2/99+3/99+…+98/99是达标测试卷(二)第6周~第8周(转化单位“1”)(本卷满分100分,建议测试时间80分钟)1.(8分)一本书第一次看了全书的0.6,第二次看了第一次的0.6,两次一共看了多少?2.(8分)已知a=3/4b,c=2/3a,b-c=16,求a=()。

3.(8分)甲、乙、丙三位同学手机画片,甲的张数占三人总数的1/6,丙的张数是甲的3/2,乙比丙多30多张,三人一共有多少张画片?4.(8分)水果店有275千克苹果,梨的质量是苹果和橘子的8/21,橘子的质量是梨和苹果总质量的10/19,梨和橘子的质量分别是多少?5.(8分)六年级学生分成甲、乙两组,如果从甲组调14人到乙组,则甲组的人数是乙组的3/5,如果从乙组调12人到甲组,则乙组人数是甲组的3/5,甲、乙两组原来分别有多少人?6.(8分)弟弟有51快糖,哥哥有21块糖,两人每天分别吃一块糖,多少天以后哥哥的块数是弟弟糖的块数的1/3?7.(8分)百货商场进了一批童装,按进价的50%作为利润来定价,当售出这批童装的80%以后,决定降价出售,按照定价的60%出售,这批服装全部售完后实际获利百分之几?8.(8分)阅览室里看书的同学中,男生人数占女生人数的1/2,若走出16位女生,走进16位男生,女生人数是男生的1/2,现在男、女生各有几人?9.(8分)王明参加班干部竞选,需要超过3/4的选票才能当选,在计算了总选票的1/3后,他得到的选票已达到当选票数的3/5,他还要得到剩下选票的几分之几才能当选?10.(8分)某公司女职员比总人数的3/5少18人,男职员人数是女职员的5/3,这个公司一共有职员多少人?11.(10分)有两筐苹果,一筐苹果的个数是甲筐的2/5,从甲筐取出10个苹果放入乙筐后,乙筐苹果的个数是甲筐的3/4,甲、乙两筐一共有多少苹果?12.(10分)有两根彩带,一根长8米,另一根长4米,从两根彩带上剪去同样长的一段后,短彩带剩下的长度是长彩带剩下长度的1/3,两根彩带各剪去多少米?达标测试卷(三)第9周~第11周(设数法解题、假设法解题)(本卷满分100分,建议测试时间80分钟)1.(8分)一次数学竞赛,某班全班平均分为80分,其中4/5的人及格,及格的同学平均分为88分,那么不及格的同学平均分是多少分?2.(8分)王叔叔翻越一座山,他上山的速度是每分钟100米,下山的速度是每分钟150米。

小学数学 六年级奥数举一反三 教师教案 全20-40周

小学数学 六年级奥数举一反三 教师教案 全20-40周
同步教材免费视频
第23周 周期工程问题 疯狂操练二
【例题2】
【思路导航】
【练习2】
第23周 周期工程问题 疯狂操练三
【例题3】 一批零件,如果第一天甲做,第二天乙做,这样交替轮流做, 恰好用整数天数完成。如果第一天乙做,第二天甲做,这样交替轮流做, 做到上次轮流完成时所用的天数后,还剩60个不能完成。已知甲、乙工 作效率的比是5:3。甲、乙每天各做多少个?
【例题 1 】修一条路,甲队每天修 8小时, 5天完成;乙队每 天修10小时,6天完成。两队合作,每天工作6小时,几天可 以完成? 【思路导航】
【练习1】
1、 修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5 天可以完成。现在让甲、乙两队合修,要求2天完成,每天应修几小时?
2、 一项工作,甲组3人8天能完成,乙组4人7天也能完成。现在由甲组2 人和乙组7人合作,多少天可以完成?
【例题4】甲、乙两人合作加工一批零件,8天可以完成。中途甲因事
停工3天,因此,两人共用了10天才完成。如果由甲单独加工这批零件, 需要多少天才能完成?
【思路导航】
【练习4】 1、 甲、乙两人合作某项工程需要12天。在合作中,甲因输请假5天, 因此共用15天才完工。如果全部工程由甲单独去干,需要多少天才能完 成?
第25周 最大最小问题 疯狂操练四
【例题 4 】三个连续自然数,后面两个数的积与前面两个数 的积之差是114。这三个数中最小的是多少? 【思路导航】 因为:最大数×中间数-最小数×中间数= 114,即:(最 大数-最小数)×中间数=114 而三个连续自然数中,最大数-最小数= 2 ,因此,中间数 是114÷2=57,最小数是57-1=56
例题1思路导航同步教材免费视频练习1第21周抓不变量解题疯狂操练二例题2思路导航第21周抓不变量解题疯狂操练二练习2第21周抓不变量解题疯狂操练三例题3思路导航练习3第21周抓不变量解题疯狂操练四例题4思路导航练习4第21周抓不变量解题疯狂操练五例题5思路导航练习5六年级数学举一反三有些工程题中工作效率工作时间和工作总量三者之间的数量关系很不明显这时我们就可以考虑运用一些特殊的思路如综合转化整体思考等方法来解题

六年级上册奥数题圆的面积

六年级上册奥数题圆的面积

小学六年级奥数教材课程圆的周长和面积一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。

画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等。

通过圆心,并且两端在圆上的线段叫做直径。

在同一个圆中,所有的直径都相等,且等于半径的2倍。

圆心决定圆的位置,半径决定圆的大小。

任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫圆周率。

如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径,π表示圆周率,就有C dπ=或2C r。

π是一个无限不循环小数,π=3.14159265358979323846…。

圆的周长:C=2πr 或C=πd,圆的面积:S=πr 2。

圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过对图形的割补、旋转、平移、等积变形等方法加以解决。

需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。

(本讲π均取 3.14)例1、上海外滩海关大钟钟面的直径是5.8米,钟面的面积是多少平方米?时针长2.7米,时针绕一圈时针尖端走过途径的长度是多少米?(得数保留一位小数)分析与解法:钟面的直径是5.8米这个条件是直接的,时针长指的是半径。

解:钟面的面积是:3.14×(5.8×2)2≈26.4(平方米)。

时针绕一圈时针尖端走过途径的长度是:2×3.14×2.7≈17.0(米)。

例2、如图所示,试比较大圆的面积与阴影部分的面积、大圆的周长与阴影部分的周长。

图图(1)分析与解法:本题有两问,一是比较阴影部分面积与大圆的面积;二是比较阴影部分周长与大圆的周长。

为了考虑问题方便,我们把图经过割补成图(1),在图(1)中更容易看出大圆与小圆阴影部分的关系。

学习目标总结重点AOB解:先比较大圆面积与阴影部分的面积。

设大圆半径为r,则小圆半径为r,大圆面积为S 1=πr 2。

小学圆的面积奥数题100道及答案(完整版)

小学圆的面积奥数题100道及答案(完整版)

小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。

答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。

答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。

答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。

六年级奥数-面积计算

六年级奥数-面积计算

面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

例题1。

已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。

由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。

因为BD=23 BC ,所以S △BDF =2S △DCF 。

又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。

因此,S △ABC =5 S △DCF 。

由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。

求阴影部分的面积。

3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。

求三角形ABC 的面积。

AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。

两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。

六年级奥数-椭圆部分面积

六年级奥数-椭圆部分面积

六年级奥数-椭圆部分面积
引言
本文档将介绍六年级奥数中椭圆部分面积的相关知识和计算方法。

椭圆的定义
椭圆是平面上一条固定点到平面上任意一点的距离之和等于常数的点的轨迹。

椭圆由两个焦点(F1和F2)和一条连接它们的直线(主轴)组成。

主轴的两端点称为椭圆的顶点。

椭圆的中点称为椭圆的中心。

椭圆的部分面积
椭圆的部分面积是指在椭圆内部取一段弧所围成的面积。

分别用S表示椭圆的面积,S1表示扇形面积,S2表示三角形面积,则椭圆的部分面积等于S1减去S2。

椭圆部分面积的计算公式
假设椭圆的长轴为a,短轴为b,椭圆的角度为θ(θ范围在0至360度),则椭圆部分面积的计算公式为:
S = π * a * b * θ / 360 - 1/2 * a * b * sin(θ)
实例演示
例如,给定一个椭圆,其长轴为10,短轴为6,所需计算的部分面积的角度为60度。

代入公式,可得:
S = π * 10 * 6 * 60 / 360 - 1/2 * 10 * 6 * sin(60) = 15π - 60√3
结论
本文档介绍了六年级奥数中椭圆部分面积的定义和计算方法。

通过使用相关公式和实例演示,可以有效地计算椭圆的部分面积。

参考资料
无。

小学数学 六年级奥数举一反三 教师教案 全20-40周

小学数学 六年级奥数举一反三 教师教案 全20-40周

3 、一项工程,甲工程队单独做完要 150 天,乙工程队单独做完需 180天。 两队合作时,甲队做5天,休息2天,乙队做6天,休息1天。完成这项工 程要多少天?
同步教材免费视频
【例题5】
第23周 周期工程问题 疯狂操练五
【思路导航】
【练习5】
六年级 数学 举一反三
【例题1】 【思路导航】
【练习1】
【练习1】1、有数字1,2,3,4,5,6共可组成多少个没有重复数字
的四位奇数?
2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不 同的减法算式?
3、由数字1,2,3,4,5,6,7,8,可组成多少个:
①三位数②三位偶数;③没有重复数字的三位偶数;④百位是8的没有重 复数字的三位数;⑤百位是8的 没有重复数字的三位偶数。
②可组成多少个没有重复数字的三位数? 【思路导航】 在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都 可以分三个步骤来完成。 ①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0, 故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原 理共可组成3×4×4=48个不相等的三位数。 ②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法, 十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可 组成3×3×2=18个没有重复数字的三位数。
答:最小数是56。
【练习4】
第25周 最大最小问题 疯狂操练五
【例题 5 】三个数字能组成 6个不同的三位数。这 6 个三位数 的和是2886。求所有这样的6个三位数中的最小的三位数。 【思路导航】 因为三个数字分别在百位、十位、个位各出现了 2 次。所以, 2886÷222能得到三个数字的和。 设三个数字为a、b、c,那么6个不同的三位数的和为

六年级奥数第18. 面积计算(一)

六年级奥数第18. 面积计算(一)

第18讲面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2BC,3求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。

由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。

因为BD=2BC,所以S△BDF=2S△DCF。

又因为AE=ED,3所以S△ABF=S△BDF=2S△DCF。

因此,S△ABC=5 S△DCF。

由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。

求阴影部分的面积。

2.如图所示,AE=ED,DC=1BD,S△ABC=21平方厘米。

求阴影部分的3面积。

3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。

求三角形ABC的面积。

【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。

所以△AOD的面积为6÷2=3。

六年级上册奥数试题-第20讲:组合图形的计算_全国通用(含答案)

六年级上册奥数试题-第20讲:组合图形的计算_全国通用(含答案)

第20讲组合图形的计算知识网络组合图形是由一些基本图形如长方形、正方形、三角形、平行四边形、梯形、圆和扇形等组合而成的图形。

在本讲中,主要介绍长方形、正方形、三角形、平行四边形和梯形组合而成的图形。

组合图形的计算,指的是与组合图形的面积、周长等有关的问题的计算。

对五种基本图形,首先要熟记它们面积的基本公式:。

重点·难点组合图形的计算是以上述几种基本图形为基础的。

这几种基本图形的一些酝酿性质的恰当运用是本讲的重点。

这些基本性质包括:等底等高的两个三角形面积相等;等底的两个三角形面积比等于高之比;等高的两个三角形面积比等于底之比。

这三条性质都是三角形的性质,它们同样适用于平行四边形和长方形。

学法指导在求组合图形的面积时,可用一些比较常用的方法,如:直接法、相加法和相减法、翻转法、等积移位法、重叠法。

最终的目的是将这些图形转化成我们熟悉的简单规则图形的和或差。

同时,也可以构造图形,利用面积的关系来解一些代数题,如关于线段成比例等问题。

经典例题[例1]有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米,那么小正方形的面积是多少平方厘米?思路剖析先求出边长再求面积是一般解法,我们可以利用割补拼凑的方法利用图像来比较直观地求解本题。

解答如图1所示,将两个正方形的一个顶点对齐,将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形。

由于两个正方形的周长相差20厘米,从而它们的每边相差,即图2中长方形的宽是5厘米。

又因为长方形的面积是两个正方形的面积之差,即为55平方厘米,从而长方形的长为55÷5=11厘米。

由图中可知,长方形的长是直角梯形的上底和下底的和;长方形的宽是直角梯形的上底和下底的差,从而小正方形的长为(11-5)÷2=3(厘米)。

所以小正方形的面积为3×3=9(平方厘米)。

[例2]如图3所示,将△ABC的各边都延长1倍到,得到一个新的,如果△ABC的面积为10,求△的面积。

周长和面积奥数题

周长和面积奥数题

周长和面积奥数题一、周长相关奥数题1. 一个长方形的长是12厘米,宽是8厘米,如果把这个长方形的长增加3厘米,宽不变,那么它的周长增加了多少厘米呢?这题可有趣啦。

我们先得知道长方形周长的计算公式是(长 + 宽)×2。

原来长方形的长是12厘米,宽是8厘米,那原来的周长就是(12 + 8)×2 = 40厘米。

长增加3厘米后就变成15厘米啦,此时的周长就是(15 + 8)×2 = 46厘米。

那周长增加了多少呢?46 - 40 = 6厘米。

所以呀,这题的答案就是6厘米。

2. 有一个正方形花坛,边长为15米。

现在要在花坛四周铺一条宽1米的石子路,求这条石子路的周长是多少米呢?嘿嘿,这题有点小挑战呢。

我们可以把铺了石子路后的大正方形边长算出来,原来花坛边长15米,两边都加1米宽的石子路,那大正方形边长就是15 + 1 + 1 = 17米。

根据正方形周长公式,周长就是17×4 = 68米。

3. 一个等腰三角形的腰长为10厘米,底边长为12厘米,把这个等腰三角形的三条边都增加2厘米,那么它的周长增加了多少厘米呢?等腰三角形的周长就是三条边相加嘛。

原来的周长是10 + 10 + 12 = 32厘米。

三条边都增加2厘米后,腰长变成12厘米,底边长变成14厘米,新的周长就是12 + 12 + 14 = 38厘米。

那周长增加了38 - 32 = 6厘米。

二、面积相关奥数题1. 一个长方形的长是15厘米,宽是10厘米,如果长减少3厘米,宽增加3厘米,这个长方形的面积是增加了还是减少了?增加或者减少了多少平方厘米呢?我们先算出原来长方形的面积是15×10 = 150平方厘米。

长减少3厘米后是12厘米,宽增加3厘米后是13厘米,新的面积就是12×13 = 156平方厘米。

156 - 150 = 6平方厘米,所以面积是增加了,增加了6平方厘米。

2. 有一个平行四边形,底是12厘米,高是8厘米,如果底增加3厘米,高不变,面积增加了多少平方厘米呢?平行四边形面积公式是底×高。

最新小学奥数 多边形的面积

最新小学奥数 多边形的面积

小学奥数多边形的面积我们已经学习过三角形、正方形、长方形、平行四边形、梯形以及圆、扇形等基本图形的面积计算,图形及计算公式如下:正方形面积=边长×边长=a2,长方形面积=长×宽=ab,平行四边形面积=底×高=ah,圆面积=半径×半径×π=πr2,扇形面积=半径×半径×π×圆心角的度数÷360°在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。

在本讲和后面的两讲中,我们将学习如何计算它们的面积。

例1小两个正方形组成下图所示的组合图形。

已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。

分析与解:组合图形的周长并不等于两个正方形的周长之和,因为CG部分重合了。

用组合图形的周长减去DG,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(52-4)÷3=16(厘米)。

又由两个正方形的边长之差是4厘米,可求出大正方形边长=(16+4)÷2=10(厘米),小正方形边长=(16-4)÷2=6(厘米)。

两个正方形的面积之和减去三角形ABD与三角形BEF的面积,就得到阴影部分的面积。

102+62-(10×10÷2)-(10+6)×6÷2=38(厘米2)。

例2如左下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。

分析与证明:这道题两个平行四边形的关系不太明了,似乎无从下手。

我们添加一条辅助线,即连结CE(见右上图),这时通过三角形DCE,就把两个平行四边形联系起来了。

在平行四边形ABCD中,三角形DCE 的底是DC,高与平行四边形ABCD边DC上的高相等,所以平行四边形ABCD的面积是三角形DCE的两倍;同理,在平行四边形DEFG中,三角形DCE的底是DE,高与平行四边形DEFG边DE上的高相等,所以平行四边形DEFG的面积也是三角形DCE的两倍。

(最新)六年级奥数分册第20周 面积计算

(最新)六年级奥数分册第20周  面积计算

第二十周 面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

有些图形可以根据“容斥问题“的原理来解答。

在圆的半径r 用小学知识无法求出时,可以把“r 2”整体地代入面积公式求面积。

例题1。

如图20-1所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米【3.14×102×14-10×(10÷2)】×2=107(平方厘米) 答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。

把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×12 -(20÷2)2×12=107(平方厘米) 答:阴影部分的面积是107平方厘米。

练习11、 如图20-4所示,求阴影部分的面积(单位:厘米)2、 如图20-5所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘20-120-2米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。

求红蓝两张三角形纸片面积之和是多少?例题2。

如图20-6所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a )的面积,再用大扇形的面积减去空白部分(a )的面积。

如图20-7所示。

3.14×62×14 -(6×4-3.14×42×14)=16.82(平方厘米) 解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。

六年级奥数表面积和体积计算题

六年级奥数表面积和体积计算题

表面积与体积练习和答案专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。

从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力.因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算.在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点.(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。

反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。

(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来.若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。

例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?【思路导航】这是一道开放题,方法有多种:1)沿一条棱挖,剩下部分的表面积为592平方厘米。

2)在某个面挖,剩下部分的表面积为632平方厘米。

3)挖通某两个对面,剩下部分的表面积为672平方厘米。

练习1.1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米?2。

在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化?例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。

【思路导航】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。

练习2:1、用棱长是1厘米的立方体拼成图27-6所示的立体图形.求这个立体图形的表面积。

2、一堆积木(如图27—7所示),是由16块棱长是2厘米的小正方体堆成的。

六年级奥数分册:第20周 面积计算

六年级奥数分册:第20周  面积计算

第二十周 面積計算(三)專題簡析:對於一些比較複雜的組合圖形,有時直接分解有一定的困難,這時,可以通過把其中的部分圖形進行平移、翻折或旋轉,化難為易。

有些圖形可以根據“容斥問題“的原理來解答。

在圓的半徑r 用小學知識無法求出時,可以把“r 2”整體地代入面積公式求面積。

例題1。

如圖20-1所示,求圖中陰影部分的面積。

【思路導航】解法一:陰影部分的一半,可以看做是扇形中減去一個等腰直角三角形(如圖20-2),等腰直角三角形的斜邊等於圓的半徑,20-145○1020-2斜邊上的高等於斜邊的一半,圓的半徑為20÷2=10釐米【3.14×102×14 -10×(10÷2)】×2=107(平方釐米)答:陰影部分的面積是107平方釐米。

解法二:以等腰三角形底的中點為中心點。

把圖的右半部分向下旋轉90度後,陰影部分的面積就變為從半徑為10釐米的半圓面積中,減去兩直角邊為10釐米的等腰直角三角形的面積所得的差。

(20÷2)2×12 -(20÷2)2×12 =107(平方釐米)答:陰影部分的面積是107平方釐米。

練習145○20-31、 如圖20-4所示,求陰影部分的面積(單位:釐米)2、 如圖20-5所示,用一張斜邊為29釐米的紅色直角三角形紙片,一張斜邊為49釐米的藍色直角三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形。

求紅藍兩張三角形紙片面積之和是多少?例題2。

如圖20-6所示,求圖中陰影部分的面積(單位:釐米)。

20-445○6BAD 20-54929496 4 減去20-7【思路導航】解法一:先用長方形的面積減去小扇形的面積,得空白部分(a )的面積,再用大扇形的面積減去空白部分(a )的面積。

如圖20-7所示。

3.14×62×14 -(6×4-3.14×42×14 )=16.82(平方釐米)解法二:把陰影部分看作(1)和(2)兩部分如圖20-8所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十周 面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

有些图形可以根据“容斥问题“的原理来解答。

在圆的半径r 用小学知识无法求出时,可以把“r 2”整体地代入面积公式求面积。

例题1。

如图20-1所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米【3.14×102×14-10×(10÷2)】×2=107(平方厘米) 答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。

把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×12 -(20÷2)2×12=107(平方厘米) 答:阴影部分的面积是107平方厘米。

练习11、 如图20-4所示,求阴影部分的面积(单位:厘米)2、 如图20-5所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。

求红蓝20-120-2两张三角形纸片面积之和是多少?例题2。

如图20-6所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a )的面积,再用大扇形的面积减去空白部分(a )的面积。

如图20-7所示。

3.14×62×14 -(6×4-3.14×42×14)=16.82(平方厘米) 解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。

把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

3.14×42×14 +3.14×62×14-4×6=16.28(平方厘米) 答:阴影部分的面积是16.82平方厘米。

练习220-4 6 B A D 20-5 49 29 29 49 20-6 64 减去20-7 20-8加 减 B C 20-9B 20-101、 如图20-9所示,△ABC 是等腰直角三角形,求阴影部分的面积(单位:厘米)。

2、 如图20-10所示,三角形ABC 是直角三角形,AC 长4厘米,BC 长2厘米。

以AC 、BC为直径画半圆,两个半圆的交点在AB 边上。

求图中阴影部分的面积。

3、 如图20-11所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。

求图中阴影部分的面积。

例题3。

在图20-12中,正方形的边长是10厘米,求图中阴影部分的面积。

【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图20-13所示),再用正方形的面积减去全部空白部分。

空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)阴影部分的面积:10×10-21.5×2=57(平方厘米)解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图20-14所示),而8个扇形的面积又正好等于两个整圆的面积。

(10÷2)2×3.14×2-10×10=57(平方厘米)答:阴影部分的面积是57平方厘米。

练习3求下面各图形中阴影部分的面积(单位:厘米)。

例题4。

在正方形ABCD 中,AC =6厘米。

求阴影部分的面积。

【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。

但我们可以看出,AC 是等腰直角三角形ACD 的斜边。

根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图20-18所示),我们可以求出等腰直角20-12 20-13 20-14 20-1520-16 10 20-1720-18C三角形ACD 的面积,进而求出正方形ABCD 的面积,即扇形半径的平方。

这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)答:阴影部分的面积是3.87平方厘米。

练习41、 如图20-19、20-20所示,图形中正方形的面积都是50平方厘米,分别求出每个图形中阴影部分的面积。

2、 如图20-21所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。

求图形中阴影部分的面积(试一试,你能想出几种办法)。

例题5。

在图20-22的扇形中,正方形的面积是30平方厘米。

求阴影部分的面积。

【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。

可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。

我们以扇形的半径为边长做一个新的正方形(如图20-23所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。

这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

3.14×(30×2)×14-30=17.1(平方厘米) 答:阴影部分的面积是17.1平方厘米。

练习51、 如图20-24所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

2、 如图20-25所示,O 是小圆的圆心,CO 垂直于AB,三角形ABC 的面积是45平方厘米,求阴影部分的面积。

3、 如图20-26所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

20-19 20-20 20-21 20-2220-2420-2520-26答案:练11、 如图答20-1所示,因三角形BCD 中BC 边上高等于BC 的一半,所以阴影部分的面积是:62×3.14×45360 -6×(6÷2)×12=5.13平方厘米 2、 如图答20-2所示,将红色直角三角形纸片旋转900,红色和蓝色的两个直角三角形就拼成了一个直角边分别是49厘米和29厘米的直角三角形,因此,所求的面积为:49×29×12=710.5平方厘米 练21、 如图答20-3所示,可以看做两个半圆重叠在一起,从中减去一个三角形的面积就得到阴影部分的面积。

(2÷2)2×3.14×12 ×2-2×2×12=1.14平方厘米 2、 思路与第一题相同(4÷2)2×3.14×12 +(2÷2)2×3.14×12 -4×2×12=3.85平方厘米 3、 如图答20-4所示,用大小两个扇形面积和减去一个平行四边形的面积,即得到阴影部分的一半,因此阴影部分的面积是:【(82+62)×3.14×60360 -8×5.2】×2=21715平方厘米 练31、 如图答20-5所示,阴影部分的面积等于四个半圆的面积减去一个正方形的面积,即:(10÷2)2×3.14×12×4-10×10=57平方厘米 2、 如图答20-6所示,阴影部分的面积等于半圆与扇形面积的和,减去一个三角形的面积,即:102×3.14×45360 +(10÷2)2×3.14×12 -10×10× 12=28.5平方厘米 3、 如图答20-7所示,整个图形的面积等于两个半圆的面积加上一个三角形的面积,用整个图形的面积减去一个最大半圆的面积就等于阴影部分的面积,即:(4÷2)2×3.14×12 +(3÷2)2×3.14×12 +4×3×12 -(5÷2)2×3.14×12=6平方厘米 练41、 (1)因为圆的半径的平方等于正方形面积的14,所以阴影部分的面积是 (50÷4)×3.14=39.25平方厘米(2)因为扇形半径的平方等于正方形的面积,所以,阴影部分的面积是50-50×3.14×14=1075平方厘米 2、 提示:仔细阅读例4,仿照例4先求扇形半径的平方,然后设法求出阴影部分的面积。

10×(10÷2)×3.14×14×2-10×(10÷2)=28.5平方厘米 练51、 如图答20-8所示,连结AC 可以看出平行四边形面积的一半等于圆半径的平方,所以,阴影部分的面积是100÷2×3.14×14 -100×14=14.25平方厘米 2、 如图答20-9所示,(1)因为三角形ABC 的面积等于小圆半径的平方,所以小圆的面积的一半是45×3.14×12=70.65平方厘米 (2)因为大圆半径的平方等于三角形ABC 面积的2倍,所以大圆的面积的14是45×2×3.14×14=70.65平方厘米 (3)弓形AB 的面积是70.65-45=25.65平方厘米(4)阴影部分的面积是70.65-25.65=45平方厘米3、 如图答20-10所示,(1)半圆半径的平方是62.8×2+3.14=40平方厘米(2)三角形AOB 的面积是40÷2=20平方厘米(3)阴影部分所在圆的半径的平方是40×2=80平方厘米(4)阴影部分的面积是80×3.14×45360-20=11.4平方厘米。

相关文档
最新文档