1.1-1.3半导体材料解析

合集下载

第一章 半导体物理基础解析

第一章 半导体物理基础解析
• 态密度
– 在能带中,能量E附近单位能量间隔内的量子 态数
g(E) dZ/dE
在量子力学中,微观粒子的运动状态称为量子态
费米-狄拉克统计分布规律
• 温度为T(绝对温度)的热平衡态下,半导体中电子占据能量为E
的量子态的几率是
f (E)
1
exp( E EF ) 1
kT
– k是玻尔兹曼常数,EF是一个与掺杂有关的常数,称为费米能级。 – 当E-EF>>kT时,f(E)=0,说明高于EF几个kT以上的能级都是空的;而当E-EF<<kT
• 平均自由时间愈长,或者说单位时间内遭受散射的次数愈少, 载流子的迁 移率愈高;电子和空穴的迁移率是不同的,因为它们的平均自由时间和有 效质量不同。
Hall效应
• 当有一方向与电流垂直的磁场作用于一有限半导体时, 则在半导体的两侧产生一横向电势差,其方向同时垂直 于电流和磁场,这种现象称为半导体的Hall效应。
简化能带图
1.3 半导体中的载流子
• 导带中的电子和价带中的空穴统称为载流子, 是在电场作用下能作定向运动的带电粒子。
满带
E
当电子从原来状态转移 到另一状态时,另一电子 必作相反的转移。没有额 外的定向运动。满带中电 子不能形成电流。
半(不)满带
E
半满带的电子可在外 场作用下跃迁到高一 级的能级形成电流。
能带结构:
(“施主能级”)
空带 施主能级 施主能级与上
空带下能级的
Eg
能级间隔称“
ED 施主杂质电离
满带
能”( ED )
导电机制:
空带
Eg
满带
施主能级
这种杂质可提 供导电电子故
ED 称为施主杂质

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

半导体材料的分类_及其各自的性能汇总

半导体材料的分类_及其各自的性能汇总

其中晶态半导体又可以分为单晶半导体和多晶半导体。

上述材料中,锗(Ge)、硅(Si)、砷化镓(GaAs)都是单晶,是由均一的晶粒有序堆积组成;而多晶则是由很多小晶粒杂乱地堆积而成。

对于非晶态半导体,有非晶态硅、非晶态锗等,它们没有规则的外形,也没有固定熔点,内部结构不存在长程有序,只是在若干原子间距内的较小范围内存在结构上的有序排列,称作短程有序。

另外,在实际应用中,根据半导体材料中是否含有杂质,又可以将半导体材料分为本征半导体和杂质半导体。

在下面的章节中将会介绍,杂质的存在将对材料的性能产生很大的影响。

二. 半导体材料的结构及其性能1.几种半导体材料的结构1.1金刚石结构型材料Si、Ge等Ⅳ族元素有4个未配对的价电子,每个原子只能与周围4个原子共价键合,使每个原子的最外层都成为8个电子的闭合壳层,因此共价晶体的配位数(即晶体中一个原子最近邻的原子数)只能是 4。

方向性是指原子间形成共价键时,电子云的重叠在空间一定方向上具有最高密度,这个方向就是共价键方向。

共价键方向是四面体对称的,即共价键是从正四面体中心原子出发指向它的四个顶角原子,共价键之间的夹角为109°28′,这种正四面体称为共价四面体,见图 1.2。

图中原子间的二条连线表示共有一对价电子,二条线的方向表示共价键方向。

共价四面体中如果把原子粗略看成圆球并且最近邻的原子彼此相切,圆球半径就称为共价四面体半径。

单纯依靠图1.2那样的一个四面体还不能表示出各个四面体之间的相互关系,为充分展示共价晶体的结构特点,图1.3(a)画出了由四个共价四面体所组成的一个Si、Ge晶体结构的晶胞,统称为金刚石结构晶胞,整个Si、Ge晶体就是由这样的晶胞周期性重复排列而成。

它是一个正立方体,立方体的八个顶角和六个面心各有一个原子,内部四条空间对角线上距顶角原子1/4对角线长度处各有一个原子,金刚石结构晶胞中共有8个原子。

金刚石结构晶胞也可以看作是两个面心立方沿空间对角线相互平移 1/4 对角线长度套构而成的。

第一章半导体器件的特性讲解

第一章半导体器件的特性讲解
第一章 半导体器件的 特性
主要内容及要求
1.1 半导体的导电特性 1.2 PN结 1.3 二极管 1.4 双极型晶体管(BJT) 1.5 场效应管(FET)
基础,必须掌握: 基本概念,原理, 特征曲线、参数, 应用等。
了解原理,掌握特 征曲线、参数。
1.1 半导体的导电特性
半导体材料:
物质根据其导电能力(电阻率)的不同,可划分 导体、绝缘体和半导体。 -4 导 体:ρ<10 Ω·cm 9 绝缘体:ρ>10 Ω·cm 半导体:导电性能介于导体和绝缘体之间。 典型的元素半导体有硅Si和锗Ge ,此外,还有 化合物半导体砷化镓GaAs等。
1.5 场效应管
二、工作原理
VDS=0时, VGS 对沟道的控制作用
当VGS<0时, PN结反偏,| VGS | 耗尽层加厚沟道变窄。 VGS继续 减小,沟道继续变窄,当沟道夹断时, 对应的栅源电压VGS称为夹断电压VP ( 或VGS(off) )。 对于N沟道的JFET,VP <0。 若在漏源极间加上适当电压,沟道中有 电流ID流过。 VGS=0时,ID较大; VGS=VGS(off)时,ID近似为零, 这时管子截止。
1.5 场效应管
特点:
利用输入回路的电场效应控制输出回路的电流;仅靠半导体 中的多数载流子导电(单极型晶体管);输入阻抗高 (107~1012),噪声低,热稳定性好,抗辐射能力强,功 耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图
N沟道管符号
P沟道管符号
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
生成类型:合金型和平面型
要实现电流放大作用,要求: 发射区掺杂浓度高; 基区薄且掺杂浓度低; 集电结面积大。

半导体器件的基础知识

半导体器件的基础知识

向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。

常用半导体器件

常用半导体器件

流的限流电阻!
稳压二极管的应用
稳压二极管技术数据为:稳压值UZ=10V,Izmax=12mA, Izmin=2mA,负载电阻RL=2k,输入电压ui=12V,限流电阻 R=200 ,求iZ。
若负载电阻变化范围为1.5 k -- 4 k ,是否还能稳 压?
i
iL
R ui DZ
iz UZ RL uO
i
工作原理: 无光照时,与普通二极管一样。
有光照时,分布在第三、四象限。
三、变容二极管 四、隧道二极管 五、肖特基二极管
• 作业 • 1.3 1.4 1.6 1.7
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
PN结的伏安特性
i = f (u )之间的关系曲线。
i/ mA
60
40
正向特性
20
–50 –25
反 向
0 0.5 1.0 u / V 击穿电–压0.002

U(BR–) 0.004

图 1.1.8 PN结的伏安特性
反向击穿 齐纳击穿 雪崩击穿
四、PN结的电容效应
当PN上的电压发生变化时,PN 结中储存的电荷量 将随之发生变化,使PN结具有电容效应。
ui和uo的波形如图所示
u o /V
10
t
O
讨论:解决两个问题
• 如何判断二极管的工作状态? • 什么情况下应选用二极管的什么等效电路?
对V和Ui二极管的模 型有什么不同与uD可比,则需图解: ID 实测特性
Q
uD=V-iR
UD
五、稳压二极管
限流电阻

精品文档-模拟电子技术(江晓安)(第三版)-第1章

精品文档-模拟电子技术(江晓安)(第三版)-第1章

第一章 半导体器件
图 1 – 5 P型半导体的共价键结构
第一章 半导体器件
1.2PN 结
1.2.1 异型半导体接触现象 在P型和N型半导体的交界面两侧, 由于电子和空穴的
浓度相差悬殊, 因而将产生扩散运动。 电子由N区向P区扩 散; 空穴由P区向N区扩散。 由于它们均是带电粒子(离 子), 因而电子由N区向P区扩散的同时, 在交界面N区剩下 不能移动(不参与导电)的带正电的杂质离子; 空穴由P区向 N区扩散的同时, 在交界面P区剩下不能移动(不参与导电) 的带负电的杂质离子, 于是形成了空间电荷区。 在P区和N 区的交界处形成了电场(称为自建场)。 在此电场 作用下, 载流子将作漂移运, 其运动方向正好与扩散运动方 向相反, 阻止扩散运动。 电荷扩散得越多, 电场越强, 因而 漂移运动越强, 对扩散的阻力越大。 当达到平衡时, 扩散运 动的作用与漂移运动的作用相等, 通过界面的载流子总数为 0, 即PN结的电流为0。 此时在PN区交界处形成一个缺 少载流子的高阻区, 我们称为阻挡层(又称为耗尽层)。 上述 过程如图1-6(a)、 (b)所示。
所谓“齐纳”击穿, 是指当PN结两边掺入高浓度的杂 质时, 其阻挡层宽度很小, 即使外加反向电压不太高(一般为 几伏), 在PN结内就可形成很强的电场(可达2×106 V/cm), 将共价键的价电子直接拉出来, 产生电子-空穴对, 使反向电 流急剧增加, 出现击穿现象。
第一章 半导体器件
对硅材料的PN结, 击穿电压UB大于7V时通常是 雪崩击穿, 小于4V时通常是齐纳击穿;UB在4V和7V之间 时两种击穿均有。由于击穿破坏了PN结的单向导电特性, 因而一般使用时应避免出现击穿现象。
CT
dQ dU
S W
第一章 半导体器件

gan半导体材料解理

gan半导体材料解理

温馨小提示:本文主要介绍的是关于gan半导体材料解理的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇gan半导体材料解理能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

gan半导体材料解理(大纲)一、GAN半导体材料简介1.1GAN半导体的发展历程1.2GAN半导体的结构与性质1.3GAN半导体的应用领域二、GAN半导体材料的制备方法2.1外延生长技术2.1.1MOCVD2.1.2HVPE2.1.3MBE2.2晶体生长技术2.2.1分子束外延(MBE)2.2.2金属有机化学气相沉积(MOCVD)2.2.3金属有机分子束外延(MOMBE)2.3脉冲激光沉积(PLD)三、GAN半导体材料的解理技术3.1解理原理3.2解理方法3.2.1机械解理3.2.2激光解理3.2.3化学解理3.2.4电解理3.3解理工艺参数优化四、GAN半导体材料解理后的性能分析4.1解理面的形貌与质量4.2解理面的电学性能4.3解理面的光学性能4.4解理面对器件性能的影响五、GAN半导体材料在解理技术中的应用案例5.1高效LED器件5.2功率电子器件5.3射频器件5.4激光器六、未来发展方向与挑战6.1提高解理效率与质量6.2降低解理成本6.3新型解理技术的研发6.4GAN半导体材料在新兴领域的应用探索一、GAN半导体材料简介1.1 GAN半导体的发展历程GAN半导体,即氮化镓(Gallium Nitride)半导体,是一种宽禁带半导体材料。

最新半导体材料硅的基本性质

最新半导体材料硅的基本性质

半导体材料硅的基本性质半导体材料硅的基本性质一.半导体材料1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:图1 典型绝缘体、半导体及导体的电导率范围1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:元素半导体:由一种材料形成的半导体物质,如硅和锗。

化合物半导体:由两种或两种以上元素形成的物质。

1)二元化合物GaAs —砷化镓SiC —碳化硅2)三元化合物As —砷化镓铝AlGa11AlInAs —砷化铟铝111.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。

非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。

1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。

如磷、砷就是硅的施主。

受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。

如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。

由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。

如图1.1所示。

掺入受主的半导体称为P型半导体,如掺硼的硅。

由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。

如图1.1所示。

二.硅的基本性质1.1 硅的基本物理化学性质硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

表1 硅的物理化学性质(300K)1.2 硅的电学性质硅的电学性质有两大特点:一、导电性介于半导体和绝缘体之间,其电阻率约在10-4~1010Ω·cm二、导电率和导电类型对杂质和外界因素(光热,磁等)高度敏感。

1.1半导体材料

1.1半导体材料

1.1半导体材料半导体是导电性能介于金属和绝缘体之间的一种材料。

半导体基本上可分为两类:位于元素周期表Ⅳ族的元素半导体材料和化合物半导体材料。

大部分化合物半导体材料是Ⅲ族和V 族元素化合形成的。

表1.1是元素周期表的一部分,包含了最常见的半导体元素。

表1.2给出了—些半导体材料(半导体也可以通过Ⅱ族和Ⅵ族元素化合得到,但本文基本上不涉及)。

由一种元素组成的半导体称为元素半导体,如Si 和Ge 。

硅是集成电路中最常用的半导体材料,而且应用越来越广泛。

双元素化合物半导体,比如GaAs 或GaP ,是由Ⅲ族和V 族元素化合而成的。

GaAs 是其中应用最广泛的一种化合物半导体。

它良好的光学性能使其在光学器件中广泛应用,同时也应用在需要高速器件的特殊场合。

我们也可以制造三元素化合物半导体,例如1x x Al Ga As ,其中的下标x 是低原子序数元素的组分。

甚至还可形成更复杂的半导体,这为选择材料属性提供了灵活性。

表1.1 部分元素周期表表1.2 半导体材料GaP 磷化镓GaAs 砷化镓InP 磷化铟1.2 固体类型无定型、多晶和单晶是固体的三种基本类型。

每种类型的特征是用材料中有序化区域的大小加以判定的。

有序化区域是指原子或者分子有规则或周期性几何排列的空间范畴。

无定型材料只在几个原子或分子的尺度内有序。

多晶材料则在许多个原子或分子的尺度上有序,这些有序化区域称为单晶区域,彼此有不同的大小和方向。

单晶区域称为晶粒,它们由晶界将彼此分离。

单晶材料则在整体范围内都有很高的几何周期性。

单晶材料的优点在于其电学特性通常比非单晶材料的好,这是因为晶界会导致电学特性的衰退。

图1.1是无定型、多晶和单晶材料的二维示意图。

1.3空间晶格我们主要关注的是原子排列具有几何周期性的单晶材料。

一个典型单元或原子团在三维的每一个方向上按某种间隔规则重复排列就形成了单晶。

晶体中这种原子的周期性排列称为晶格。

1.3.1 原胞和晶胞我们用称为格点的点来描述某种特殊的原子排列。

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

第一章 半导体材料绪论

第一章 半导体材料绪论
《半导体材料》
李斌斌 南京航空航天大学
《半导体材料》教材

教材: 《半导体材料》,邓志杰等编,化学工业出版社 参考书目: 1. 《半导体材料》杨树人 等编,科学出版社
2. 《半导体物理学》刘思科等编,国防工业出版社

讲课内容





第一章 绪论 第二章 半导体材料的基本性质 第三章 元素半导体材料 第四章 化合物半导体材料 第五章 固溶体半导体材料 第六章 非晶、有机和微结构半导体材料 第七章 半导体器件基础 第八章 半导体电子材料 第九章 半导体光电子材料 第十章 其他半导体材料 第十二章 半导体材料的制备
光生伏特效应是半导体材料的特有性质 之四
照片

光生伏特效应
1.1.6 半导体的特有性质-霍尔效应

1879年,霍尔(E.H. Hall) 在研究通有电流的导 体在磁场中受力,发现在垂直于磁场和电流 的方向上产生了电动势,这个电磁效应称为 “霍尔效应”。 “霍尔效应”就是为纪念霍尔而命名的。 利用“霍尔效应”可以测量半导体材料的载 流子浓度、迁移率、电阻率、霍尔系数等重 要参数。 霍尔效应是半导体材料的特有性质之五
第一章 绪论

1.1 半导体材料的发展简史
1.2 半导体材料的发展趋势 1.3 半导体材料的分类


1.1.1 首次报道半导体

伏特 A. Volta (1745~1827),意大利物理学家 国际单位制中,电压的单位伏即为纪念他而命 名。 1800年,他发明了世界上第一个伏特电池, 这是最早的直流电源。从此,人类对电的研 究从静电发展到流动电,开拓了电学的研究 领域。 他利用静电计对不同材料接地放电,区分了 金属,绝缘体和导电性能介于它们之间的 “半导体”。 他在给伦敦皇家学会的一篇论文中首先使用 了“Semiconductor”(半导体)一词。

半导体材料的基本性质

半导体材料的基本性质

半导体材料硅的基本性质一.半导体材料1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:图1 典型绝缘体、半导体及导体的电导率范围1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:元素半导体:由一种材料形成的半导体物质,如硅和锗。

化合物半导体:由两种或两种以上元素形成的物质。

1)二元化合物GaAs —砷化镓SiC —碳化硅2)三元化合物As —砷化镓铝AlGa11AlInAs —砷化铟铝111.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。

非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。

1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。

如磷、砷就是硅的施主。

受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。

如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。

由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。

如图1.1所示。

掺入受主的半导体称为P型半导体,如掺硼的硅。

由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。

如图1.1所示。

二.硅的基本性质1.1 硅的基本物理化学性质硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

表1 硅的物理化学性质(300K)1.2 硅的电学性质硅的电学性质有两大特点:一、导电性介于半导体和绝缘体之间,其电阻率约在10-4~1010Ω·cm二、导电率和导电类型对杂质和外界因素(光热,磁等)高度敏感。

半导体材料基础基本特性

半导体材料基础基本特性
无机半导体:元素、化合物
有机半导体
按构造分:
晶体:单晶体、多晶体 非晶、无定形
1. 无机半导体晶体材料(组分)
无机半导体晶体材料包括元素、化合物及固溶体半导体。 (1) 元素半导体晶体
熔点太高、 不易制成单晶
C B
稀少
Te Sn
低温某种固相
P
Si
Ge
Se
元素 半导体
As
I S Sb
不稳定,易挥发
(2)化合物半导体及固溶体半导体
三、半导体旳发展
1874年 F.Braun 金属-半导体接触
1879年Hall效应
K.Beadeker半导
体中有两种不同

类型旳电荷

期 1870
1930
1948年 Shockley ,Bardeen,
Brattain 锗晶体管 (transistor)
点接触式旳
1940
1950
氧化铜、硒 整流器、曝光计
能量还是约等于Eg。
——推论:除竖直跃迁,还存在另一类跃迁过
程:由价带顶向具有不同k值旳导带底旳跃迁。
E f = Ei E p 电子旳动量变化很大。而光子旳动量很小,
k ' = k q 故必须吸收或发射声子才干满足准动量守恒.
除了吸收光子之外还要吸收或发射声于旳跃迁,称为间接跃 迁或非竖直跃迁。相应旳材料称为间接能隙半导体材料。
电阻率:
R
绝缘体
导体: ρ<10-4Ωcm 如:ρCu=10-6Ωcm
半导体:10-3Ωcm<ρ<108Ωcm 如:ρGe=0.2Ωcm
绝缘体:ρ>108Ωcm
半导体
负旳温度系数 T
电阻温度系数图

半导体中的参数adi-概述说明以及解释

半导体中的参数adi-概述说明以及解释

半导体中的参数adi-概述说明以及解释1.引言1.1 概述概述部分主要介绍半导体以及本篇文章的主要内容和目的。

半导体作为一种重要的材料,具有特殊的电学和光学性能,在现代科技中扮演着至关重要的角色。

本篇文章旨在探讨半导体中的参数ADi(参数名称),它们在半导体器件中的作用,以及影响这些参数的因素。

半导体是一种介于导体和绝缘体之间的材料,具有在特定条件下能够传导电流的特性。

半导体材料的导电性可以通过控制其掺杂(杂质的引入)和应力等方式来调节。

在半导体器件中,参数ADi(参数名称)在调控和控制电子流动、电荷传递、电压响应等方面起着至关重要的作用。

本文将着重介绍半导体中的一些重要参数,包括(具体列举参数名称),并探讨它们的物理意义和数值计算方法。

同时,本文还将分析影响这些参数的因素,例如温度、晶体结构、杂质掺杂等,并讨论它们对半导体性能的影响。

通过深入了解和研究半导体中的参数ADi,我们可以更好地理解半导体器件的工作原理和性能优化的方法。

这对于改进半导体器件的性能、提高能源效率、推动电子技术的发展具有重要意义。

在总结半导体中的参数ADi的同时,我们还将探讨这些参数对半导体器件性能的影响。

同时,文章还将展望未来半导体技术的发展趋势,以期为读者提供对未来半导体研究和应用的启发和指导。

通过本文的阐述,读者将深入了解半导体中参数ADi的重要性和作用,为进一步研究和开发半导体器件提供基础和指导,并为相关领域的研究者和从业者提供参考和启示。

1.2文章结构本文分为引言、正文和结论三个部分。

下面具体介绍每个部分的内容:1. 引言部分包括以下内容:1.1 概述:介绍半导体的基本概念,对半导体的定义进行简要说明,引起读者对半导体的兴趣。

1.2 文章结构:概述本篇文章的整体结构,说明各部分的内容和顺序,使读者能够清晰地了解整篇文章的组织和脉络。

1.3 目的:明确本文的目的和意义,说明为什么要撰写这篇文章,提出读者可获得的收益和启发。

半导体中高介电常数材料-概述说明以及解释

半导体中高介电常数材料-概述说明以及解释

半导体中高介电常数材料-概述说明以及解释1.引言1.1 概述半导体材料在现代电子器件和通信系统中发挥着至关重要的作用。

而其中具有高介电常数的材料更是备受关注,因为其在微电子器件、光电器件、电容器等领域具有广泛的应用前景。

高介电常数材料具有较大的介电常数,可以在电场作用下储存更多的电荷,因此在提高电容器存储能力、减小电子器件体积、提高通信系统性能等方面具有重要意义。

本文将就半导体中高介电常数材料的基本特性、特性、制备与应用等方面进行探讨,以期为读者提供一个全面了解和深入探讨该领域的参考。

"1.2 文章结构":本文将首先介绍半导体材料的基本特性,包括半导体的定义和特点,高介电常数材料的重要性以及主要应用领域。

接着,将深入探讨高介电常数材料的特性,包括介电常数的概念和意义、常见的高介电常数材料以及它们的物理性质与电子结构。

然后,将详细介绍高介电常数材料的制备方法与工艺,以及它们在各个应用领域的应用情况和未来发展前景。

最后,将总结全文内容并展望未来,指出可能的挑战和发展方向。

通过全面介绍半导体中高介电常数材料的相关知识和信息,希望能够帮助读者深入了解这一领域并引发更多的讨论和研究。

1.3 目的本文旨在探讨半导体中高介电常数材料的重要性和特性,着重介绍其在电子器件制备与应用领域中的潜在价值和前景。

通过深入分析高介电常数材料的物理性质和电子结构,以及制备方法与工艺,旨在为相关领域的研究人员提供理论指导和实践经验。

同时,对于该领域存在的挑战和发展方向进行探讨,为未来的研究和应用提供思路和启示。

通过本文的撰写,旨在促进半导体材料领域的学术研究和技术创新,推动高介电常数材料在电子器件领域的广泛应用。

写文章1.3 目的部分的内容2.正文2.1 半导体材料的基本特性2.1.1 半导体的定义和特点半导体是一种介于导体和绝缘体之间的材料,其电阻率介于导体和绝缘体之间。

半导体材料的电子态密度在绝缘体和金属之间,使其在特定条件下可以表现出导电或隔离的特性。

半导体材料的基本性质

半导体材料的基本性质

a) N型半导体 b)P型半导体
对于N型半导体,其少数载流子的浓度p为
ni 2 ni 2 p n ND
对于P型半导体,其少数载流子的浓度n为
ni 2 ni 2 n p NA
1.4.4 杂质半导体的费米能级及其与杂质浓 度的关系
杂质半导体费米能级位置 a)本征半导体 b)N型半导体 c)P型半导体
vn = -
mn
vp =
mp
1.6.2 迁移率μ
迁移率定义为在单位电场作用下的载流子的漂移速度。 电子的迁移率μn(单位为cm2/Vs)为
μn = qτ mn

vn = -u n E
式中,μn是一个比例常数,描述了外加电场对载流子运动影响 的程度。 迁移率与平均自由时间及有效质量有关。显然,由于电子和空 穴的运动状态不同,它们的有效质量和平均碰撞时间都是 不同的,因此半导体中的电子和空穴都有不同的迁移率。
E ' FN E ' FP np n0 p0 exp T
' ' E E 2 FN FP n i exp T
N型半导体小注入前后准费米能级偏离费米能级的程度 a)小注入前 b)小注入后
1.6载流子的漂移运动
半导体导带电子和价带空穴是可以参加导电的,它 们的导电性表现在当有外加电场作用在半导体上的 时候,导带电子和价带空穴将在电场作用下作定向 运动,传导电流,我们把该运动称为载流子的漂移 运动。
不同温度下费米分布函数随(E-EF)的变化关系
a) T=0K b)T>0K(T2>T1)
下图从左到右形象描绘出了能级分布,费米分布及 本征半导体与空穴在能带中的分布情况.
a)能级分布图 b) 费米分布曲线 c) 电子与空穴的分布d) 载流子浓度

硅的截止波长

硅的截止波长

硅的截止波长
截止波长是指光在传播过程中,光功率下降到某一数值时所对应的波长。

硅的截止波长与其禁带宽度有关,禁带宽度会随温度变化而变化,一般在1.1-1.3V之间。

硅作为间接带隙的半导体材料,难以实现受激光子辐射,因此实现低能耗、低阈值的硅基片上激光光源,往往需要考虑多种材料的异质集成。

同时,硅单晶具有良好的晶格对称性,其线性电光效应为零,不利于线性、低能耗的片上信号调制和信息加载。

硅基光电子技术在解决传统微电子学所面临信息拥堵问题方面具有显著优势,但在低能耗和大规模集成方面仍面临一定的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜(Cu)
金(Au) 银(Ag)
金刚石结构
由两个面心立方结构 沿空间对角线错开四 分之一的空间对角线 长度相互嵌套而成。
硅(Si) 锗(Ge)
大量的硅(Si)、锗 (Ge)原子靠共价键 结合组合成晶体,每 个原子周围都有四个 最邻近的原子,组成 正四面体结构, 。这 四个原子分别处在正 四面体的四个顶角上, 任一顶角上的原子各 贡献一个价电子和中 心原子的四个价电子 分别组成电子对,作 为两个原子所共有的 价电子对。
闪锌矿结构
砷化镓(GaAs)
磷化镓(GaP) 硫化锌(ZnS)
硫化镉(CdS)
例1-2
硅(Si)在300K时的晶格常数为5.43Å。请计算出每立方厘米体 积中硅原子数及常温下的硅原子密度。(硅的摩尔质量为 28.09g/mol)

晶体的各向异性
沿晶格的不同方向,原子排列的周期 性和疏密程度不尽相同,由此导致晶体在 不同方向的物理特性也不同 。
光照与半导体
光照对半导体材料的导电能力也有很大的影响。 例如,硫化镉(CdS)薄膜的暗电阻为几十兆欧, 然而受光照后,电阻降为几十千欧,阻值在受光照以 后改变了几百倍。 光敏电阻 成为自动化控制中的一个重要元件。
其他因素与半导体
除温度、杂质、光照外,电场、磁场及其他 外界因素(如外应力)的作用也会影响半导体材 料的导电能力。
1.1.3 半导体的晶体结构
晶体结构是指原子在三维空间中周期性排列着的单晶体。 晶胞:单晶体结构可以用任意一个最基本的单元所代表, 称这个最基本的单元叫晶胞。 晶格:单晶体是由晶胞在三维空间周期性重复排列而成, 整个晶体就像网格一样,称为晶格。 格点与点阵,组成晶体的原子重心所在的位置称为格点, 格点的总体称点阵。
杂质与半导体
杂质对半导体材料导电能力的影响非常大。 例如,纯净硅在室温下的电阻率为2.14×107Ω·m, 若掺入百分之一的杂质(如磷原子),其电阻就会 降至20Ω·m。 虽然此时硅的纯度仍旧很高,但电阻率却降至 原来的一百万分之一左右,绝大多数半导体器件都 利用了半导体的这一特性。(杂质敏感性)
晶体的各向异性具体表现在晶体不同 方向上的弹性膜量、硬度、热膨胀系数、 导热性、电阻率、电位移矢量、电极化强 度、磁化率和折射率等都是不同的。
在ACC’A’平面 内有六个原子, 在ADD’A’平面 内有五个原子, 且这两个平面 内原子的间距 不同。
晶面指数(密勒指数)
常用密勒指数来标志晶向的不同取向。 密勒指数是这样得到的: (1)确定某平面在直角坐标系三个轴上的截点,并 以晶格常数为单位测得相应的截距; (2)取截距的倒数,然后约简为三个没有公约数的 整数,即将其化简成最简单的整数比; (3)将此结果以“(hkl)”表示,即为此平面的密 勒指数。
在20世纪50年代初期,锗曾经是最主要 的半导体材料,但自60年代初期以来,硅已 取而代之成为半导体制造的主要材料。

(Si)
现今我们使用硅的主要原因,是因为硅 器件工艺的突破,硅平面工艺中,二氧化硅 的运用在其中起着决定性的作用,经济上的 考虑也是原因之一,可用于制造器件等级的 硅材料,远比其他半导体材料价格低廉,在 二氧化硅及硅酸盐中硅的含量占地球的25%, 仅次于氧。 到目前为止,硅可以说是元素周期表中 被研究最多且技术最成熟的半导体元素。
如图,晶面ACC’A’在 坐标轴上的 截距为1,1,∞, 其倒数为1,1,0, 此平面用密勒指数表示 为(110), 晶面ABB’A’用密勒指 数表示为( );
例1-3
1.1.5 半导体材料简介
元素半导体 化合物半导体
硅(Si) 锗(Ge)
Ⅲ族元素[如铝(Al)、镓 (Ga)、铟(In)]和Ⅴ族元 素[如磷(P)、砷(As)、 锑(Sb)]合成的Ⅲ-Ⅴ族 化合物都是半导体材料
第1章 半导体材料的基本性质
1.1 半导体与基本晶体结构
1.1.1 半导体
电阻率介于导体和绝缘体之间 。导体(电阻率小于10-8Ω·m), 绝缘体(电阻率大于106Ω·m)。 自然界中存在的固体材料,按其结构形式不同,可以分为晶 体(如石英、金刚石、硫酸铜等)和非晶体(玻璃、松香、沥青等)。 晶体
E1
原子核
E2 E3
能级
电子受到原子核和其 他电子的共同作用。
轨道 电子云在空间分布几率最 大值,即轨道上,电子出现的几 率最大。
晶体中的电子
制造半导体器件所用的材 料大多是单晶体。 单晶体是由原子按一定周 期重复排列而成,且排列 相当紧密,相邻原子间距 只有零点几个纳米的数量 级。 当原子间距很小时,原子间的电子轨道将相遇而交叠,晶体中每个原子 的电子同时受到多个原子核和电子(包括这个原子的电子和其他原子的 电子)作用。 电子不仅可以围绕自身原子核旋转限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。
五种常见的晶格结构
●简单立方结构 ●体心立方结构
●面心立方结构
●金刚石结构
●闪锌矿结构
金刚石结构的晶胞与平面示意图
a)金刚石型结构的晶胞 b)硅晶体的平面结构示意图
晶体的原子按一 定规律在空间周 期性排列,形成 格点,成为晶格。
体心立方结构
钠(Na) 钼(Mo)
钨(W)
面心立方结构
铝(Al)
半导体
1.1.2 半导体材料的基本特性 温度与半导体 半导体的电导率随温度升高而迅速增加。 金属电阻率的温度系数是正的(即电阻率随温 度升高而增加,且增加得很慢); 半导体材料电阻率的温度系数都是负的(即温 度升高电阻率减小,电导率增加,且增加得很快)。
热敏电阻 对温度敏感,体积又小,热惯性也小, 寿命又长,因此在无线电技术、远距离控制与测量、 自动化等许多方面都有广泛的应用价值。
1.2半导体的能带
1.2.1 孤立原子中电子能级
孤立氢原子中电子能量公式: m0 是自由电子的 惯性质量;q为电 子电荷;ε0 为真空 介电常数;h为普 朗克常数;n为量 子数取正整数。根 据上式可得氢原子 能级图。
1.2 半导体中的电子状态和能带 单个原子的电子
电子 -
静电引力(库仑力),使电子只 能在围绕原子核的轨道上运动。 量子力学 虽然在空间的所有范 围内都有电子出现的几率,但对 单个原子中的电子而言,其几率 的最大值则局限在离原子核中心 很小的范围内(玻尔半径数量 级)。
相关文档
最新文档