高一必修五余弦定理(一)

合集下载

高中数学必修五:2.1 余弦定理

高中数学必修五:2.1 余弦定理

• •

三、知识应用 例1: 有三个小村庄A,B,C,已知村庄A,B之间相隔 12千米 , 村庄B,C之间相隔 13.5千米 ,而且测得 ABC= ,求村庄 A与 80 村庄C之间的距离。 分析:实际问题抽象出数学问题: 已知两边及其夹角求第三边 的问题,可以直接应用余弦定理。

• 解:由余弦定理得, AC 2 AB2 BC 2 2 AB BC cos ABC
2 6 14
=

1 2

0

C 180
C 120


所以

(2)由(1)知该三角形为钝角三角形。
• 点评:熟练应用余弦定理及其变式解决判断三角形形状的问题 • 例3.在△ABC中,bcosA=acosB,试判断三角形的形状. • 分析:此题既可以用余弦定理解决,也可以用正弦定理解决 • 解法一:利用余弦定理将角化为边.
解法二:利用正弦定理将边转化为角. ∵bcosA=acosB 又b=2RsinB,a=2RsinA ∴2RsinBcosA=2RsinAcosB ∴sinAcosB-cosAsinB=0 ∴sin(A-B)=0 ∵0<A,B<π,∴-π<A-B<π ∴A-B=0, 即A=B故此三角形是等腰三角形. 点评:此题既应用三角函数又深化对正弦定理、余弦定理的理解

二、 [探索研究] 1、 在△ABC中,已知AB=c,CA=b, AB与AC 的夹角为∠A, 求边a 2 BC BC a
A c b
= AC AB = ( )( AC AB ) = AC 2 AC AB cos A AB
2
B
C
2

a
2
b c 2bc cos A

高中数学必修5第一章《余弦定理》教案

高中数学必修5第一章《余弦定理》教案

课题: §1.1.2余弦定理(第1课时)授课教师:惠来第二中学陈金利教材:人教A版必修5第一章第一节一、教学目标1.知识与技能(1)能选用适当的方法证明余弦定理(主要是向量法);(2)能从余弦定理得到它的推论;(3)能利用余弦定理及推论解三角形(两类).2.过程与方法(1)经历利用向量的方法证明余弦定理的过程,体会向量与三角之间的关系;(2)培养学生在方程思想指导下处理解三角形问题的运算能力.3.情感态度与价值观(1)通过余弦定理与勾股定理的对比,体会特殊与一般的关系.(2)通过三角函数、余弦定理、向量的数量积等知识间的关系,理解事物之间的普遍联系与辩证统一.二、教学重点、难点重点:余弦定理及推论证明和其基本应用;难点:余弦定理证明的方法的选用以及必要性的体会.三、教学方法和手段教学方法:启发式教学(讲练相结合)教学手段:运用多媒体进行教学四、教学过程1.情景设置:隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A,量出A到山脚B、C的距离,再利用经纬仪测出A对山脚BC(即线段BC)的张角,最后通过计算求出山脚的长度BC.2.讲授新课[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因∠C 、∠B 均未知,所以较难求边a .提问:我们可以从哪些角度来研究这个问题,得到一个关系式或计算公式?(老师引导学生从向量法及三角法得出关系式)引导学生用向量方法来研究这个问题,由于涉及边长问题,从而可以考虑用向量来研究这个问题.如图1.1-3,设=,=,=,那么-=,则)()(b a b a c c -⋅-=⋅= ⋅-⋅+⋅=2C ab b a cos 222-+=从而 C ab b a c cos 2222-+= (图1.1-3)同理可证 A bc c b acos 2222-+= B ac c a b cos 2222-+= 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即A bc c b acos 2222-+= B ac c a bcos 2222-+= C ab b a c cos 2222-+= 引导学生解决情景问题:若测得:AB =1千米,AC = 千米,∠060=A ,求山脚BC 的长度 .解: 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:23A AC AB AC AB BC cos |||2||||222⋅⋅-+=47212312)23(122=⨯⨯⨯-+=27=∴BC222cos 2+-=b c a A bc222cos 2+-=a c b B ac 222cos 2+-=b a c C ba[理解定理] 从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC ∆中,090=c ,则0cos =c ,这时222b a c +=由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.[例题分析]例1.在△ABC 中,已知 ,求角A 、B 、C.例2.在△ABC 中,已知 ,求b 及A.例3.在△ABC 中, ,那么A 是( )A 、钝角B 、直角C 、锐角D 、不能确定提出问题:若222c b a +<呢?由学生回答,老师再进行总结.总结:设a 是最长的边,则 △ ABC 是钝角三角形 △ABC 是锐角三角形 △ABC 是直角角三角形例4.在三角形ABC 中,已知1413cos ,8,7===c b a ,求最大角的余弦值. [课堂练习](1)在ABC ∆中,已知4:3:2sin :sin :sin=C B A求 C cos 的值.13,2,6+===c b a OB c a 45,26,32=+==222cb a +>222c b a +>⇔222c b a +<⇔222c b a +=⇔(2)已知13,34,7===c b a ,求最小的内角.(3)在ABC ∆中,若bc c b a++=222,求角A3.课堂小结: (1)余弦定理适用于任何三角形(2)余弦定理的作用:a 、已知三边,求三个角b 、已知两边及这两边的夹角,求第三边,进而可求出其它两个角c 、判断三角形的形状(3)由余弦定理可知:4.课后作业(1)课后阅读:课本第8页[探究与发现](2)课时作业:第10页[习题1.1]A 组第3(1),4(1)题。

高一数学必修5课件:1.1.1 余弦定理

高一数学必修5课件:1.1.1 余弦定理
4
第十三页,编辑于星期日:二十二点 十九分。
例题讲解
例4 已知△ABC的周长为20,A=30°, a=7,求这个三角形的面积. 30(2 3)
第十四页,编辑于星期日:二十二点 十九分。
例题讲解
例5 在△ABC中,角A、B、C的对边分
别为a 、b 、c,若AB∙AC=BA∙BC=1.
(1)求证:A=B;
新知探究
2.在△ABC中,若已知边a,b和它们的
夹角C,求第三条边c.
A
方法一:从向量的角度考虑
bb
c
AB CB CA
C
a
B
c2 a2 b2 2ab cosC
第六页,编辑于星期日:二十二点 十九分。
新知探究
在△ABC中,若已知边a,b和它们的夹
角C,求第三条边c.
方法二:从解析几何的角度考虑
y
A A(bcosC,bsinC)
例题讲解
例1. 在△ABC中,已知b= c2m, c= 3 cm,A=75°,解三角形.
第十一页,编辑于星期日:二十二点 十九分。
例题讲解
例2. 在△ABC中,已知a= 2 6 , b= 2 3 ,c= 6 2 ,解三角形.
第十二页,编辑于星期日:二十二点 十九分。
例题讲解
例3 在△ABC中,已知a= 3 ,b= 7 , B=30°,求边长c的值.
课堂小结
2.余弦定理及其推论共有六个基本公 式,应用时要注意适当选取,有时可 结合正弦定理求解.
作业:学海第2课时
第十七页,编辑于星期日:二十二点 十九分。
第八页,编辑于星期日:二十二点 十九分。
形成结论
余弦定理的推论:
cos A cos B

必修五第1章1.1.2余弦定理

必修五第1章1.1.2余弦定理

教 师 备 课 资 源
菜单
新课标 ·数学 必修5







分 析
●教学建议
法 技

教 学
余弦定理是初中“勾股定理”内容的直接延拓,是解三角 当


案 形这一章知识的一个重要定理,揭示了任意三角形边角之间的 双



关系,是解三角形的重要工具,余弦定理与平面几何知识、向
达 标

前 自
量、三角形有着密切的联系.因此,做好“余弦定理”的教学, 课
课 堂
A→B?


【提示】


A→B=C→B-C→A=a-b.
教 师 备 课 资 源
菜单
新课标 ·数学 必修5

学 教
3.在问题 2 的前提下,如何用向量的数量积表示 AB 边的
思 想


分 长?

法 技


【提示】 |c|2=c·c


方 案
=(a-b)·(a-b)
堂 双



=|a|2-2a·b+|b|2






学 方
1.掌握余弦定理及其推论.(重点)
当 堂


设 计
2.掌握正、余弦定理的综合应用.(难点) 课标解读
基 达 标
课 前
3.能应用余弦定理判断三角形的形状.(易


错点)
课 时




课 堂 互 动 探 究
教 师 备 课 资 源

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

(人教版)数学必修五:1《正弦定理和余弦定理(1)》ppt课件 公开课精品课件

(人教版)数学必修五:1《正弦定理和余弦定理(1)》ppt课件  公开课精品课件

2
3+1 4.
根据正弦定理,得 a=cssiinnCA=2ssiinn7650°°
= 22×3+23 1= 6( 3-1), 4
b=cssiinnCB=2ssiinn7455°°= 22×3+221=2( 3-1). 4
[方法总结] (1)已知任意两角和一边,解三角形的步骤: ①由三角形内角和定理求出第三个角; ②由正弦定理公式的变形,求另外的两边. (2)注意事项: 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
正弦定理的向量法证明: 证明:(向量法) 当△ABC 是锐角三角形时,如图(1)所示, 过点 A 作单位 向量 i 垂直于 AB,因为A→C=A→B+B→C,所以 i·A→C=i·A→B+i·B→C, 所以 b·cos(90°-A)=c·cos90°+a·cos(90°-B),即 bsinA=asinB, 得sianA=sibnB.同理可得sianA=sincC,所以sianA=sibnB=sincC.
1.任意三角形的内角和为________;三条边满足:两边之 和________第三边,两边之差________第三边,并且大边对 ________,小边对________.
2.直角三角形的三边长a,b,c(斜边)满足________定 理,即________.
[答案] 1.180° 大于 小于 大角 小角 2.勾股 a2 +b2=c2
运用正弦定理求有关三角形的面积问题
已知在△ABC 中,c=2 2,a>b,C=π4,tanA·tanB =6,试求三角形的面积.
[分析] 本题可先求 tanA,tanB 的值,由此求出 sinA 及 sinB, 再利用正弦定理求出 a,b 及三角形的面积.

高中数学人教A版必修五教案:1.1.2余弦定理(一)

高中数学人教A版必修五教案:1.1.2余弦定理(一)

1.1.2余弦定理(一)(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用。

(三)教学设想复习旧知运用正弦定理能解怎样的三角形?①已知三角形的任意两角及其一边,②已知三角形的任意两边与其中一边的对角,[创设情景]问题1:如果已知三角形的两边及其夹角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形。

从量化的角度来看,如何从已知的两边和它们的夹角求三角形的另一边和两个角?问题2:如何从已知两边和它们的夹角求三角形的另一边?即:如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c ?[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设C B a =u u r r ,C A b =u u r r ,A B c =u u r r ,那么c a b =-r r rcr ()()222 2 2c c c a b a b a a b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅r r r r r r r r r r r r r r r r r 从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+- 2222cos b a c ac B=+-余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

高中数学必修5 第1章 解三角形 学生版 第4课时——余弦定理(1)(教师版)

高中数学必修5  第1章  解三角形  学生版  第4课时——余弦定理(1)(教师版)

听课随笔1.2 余弦定理 第1课时知识网络三角形中的向量关系→余弦定理学习要求1. 掌握余弦定理及其证明;2. 体会向量的工具性;3. 能初步运用余弦定理解斜三角形.【课堂互动】自学评价1.余弦定理:(1)A cos bc 2c b a 222⋅-+=,______________________,______________________.(2) 变形:bc2a c b A cos 222-+=,___________________,___________________ .2.利用余弦定理,可以解决以下两类解斜三角形的问题: (1)_______________________________; (2)_______________________________.【精典范例】【例1】在ABC ∆中,(1)已知3b =,1c =,060A =,求a ; (2)已知4a =,5b =,6=c ,求A (精确到00.1).【解】点评: 利用余弦定理,可以解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.【例2】,A B 两地之间隔着一个水塘,现选择另一点C ,测182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ).【解】【例3】用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<. 【证】点评:余弦定理可以看做是勾股定理的推广.追踪训练一1.在△ABC中,(1)已知A=60°,b=4,c=7, 求a ;(2)已知a =7,b=5,c=3,求A.2.若三条线段的长为5,6,7,则用这三条线段( ) A.能组成直角三角形听课随笔B.能组成锐角三角形 C.能组成钝角三角形 D.不能组成三角形 3.在△ABC中,已知222c ab b a =++,试求∠C的大小.4.两游艇自某地同时出发,一艇以10km/h的速度向正北行驶,另一艇以7km/h的速度向北偏东45°的方向行驶,问:经过40min,两艇相距多远?【选修延伸】【例4】在△ABC 中,BC =a ,AC =b ,且a ,b 是方程02322=+-x x 的两根,()1cos 2=+B A 。

高中数学必修五 第一章余弦定理

高中数学必修五 第一章余弦定理

【例】在△ABC中,a、b、c分别为内角A、B、C的对边,
求证:a2 b2
c2
sin A B
. sin C
【规范解答】由余弦定理得a2=b2+c2-2bccosA,
b2=a2+c2-2accosB,
∴a2-b2=b2-a2-2bccosA+2accosB.
整理得:a2 b2
c2
a cos B bcos A, c
【解析】∵c4-2(a2+b2)c2+a4+a2b2+b4=0,
∴[c2-(a2+b2)]2-a2b2=0,∴c2-(a2+b2)=±ab,
cos C a2 b2 ∴cC2=1210°或60°.
2ab
2
角形中最大内角,
由余弦定理
∴C=120°. cos C a2 b2 c2 1,
2ab
2
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
正弦定理和余弦定理揭示的都是三角形的边角关系,要解 三角形,必须已知三角形的一边的长,对于两个定理,根据实 际情况可以选择性地运用,也可以综合运用,要注意以下关系 式的运用:
【例3】在△ABC中,若sinA-2sinBcosC=0,试判断△ABC的 形状.
【规范解答】方法一:∵sinA-2sinBcosC=0,∴由正弦定
理知a=2bcosC,再由余弦定理得 a a2 b2 c2 ,
2b
2ab
∴b2=c2,b=c,.故△ABC为等腰三角形.
方法二:由sinA=sin(B+C),∴有sinBcosC+cosBsinC2sinBcosC=0,即sinCcosB-cosCsinB=0,sin(CB)=0,∴C-B=0,即C=B.故△ABC为等腰三角形.

人教版必修五1.1.1正弦、余弦定理课件

人教版必修五1.1.1正弦、余弦定理课件

B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)若A,B,C是⊿ABC的三个内角,则
sinA+sinB__>__sinC.
(3)在ABC中,C 2B,则sin 3B 等于(B) sin B
A.b/a
B.a/b
C.a/c
D.c/a
正弦定理、余弦定理
正弦定理、余弦定理
例题讲授
例1,在ABC中,已知A 32.0, B 81.8, a 42.9cm,解三角形 解:根据三角形内角和定理, C 180 ( A B) 180 (32.0 81.8 ) 66.2 根据正弦定理,b asin B 42.9sin 81.8 80.1(cm)
c a sin C 20sin 24 13(cm). sin A sin 40
正弦定理、余弦定理
例题讲授
例3 在 ABC 中,B 45,C 60,a 2( 3 1) ,求
ABC的面积S.
解: A 180 (B C ) 75
A
∴由正弦定理得 b a sin B 2(
3
1)(
练习:
(1)在 ABC 中,一定成立的等式是( C )
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在 ABC中,若
a cos
A
b cos B
c cos C
,则 ABC 是(
D)
2
2
2
A.等腰三角形
B.等腰直角三角形
sin A sin 32.0 根据正弦定理,c asin C 42.9sin 66.2 74.1(cm)

人教B版高中数学必修五第一章余弦定理(一).docx

人教B版高中数学必修五第一章余弦定理(一).docx

高中数学学习材料鼎尚图文*整理制作1.1.2 余弦定理(一) 课时目标 1.熟记余弦定理及其推论.2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的______等于其他两边的______的和减去这两边与它们的____的余弦的积的______.即a 2=______________,b 2=__________________,c 2=_______.2.余弦定理的推论cos A =______________________;cos B =______________________;cos C =______.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =______;(2)若c 2=a 2+b 2-ab ,则C =______;(3)若c 2=a 2+b 2+2ab ,则C =______.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A. 3 B .3C. 5 D .52.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6C.π4D.π123.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .44.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.235.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120°二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________.8.△ABC 中,已知a =2,b =4,C =60°,则A =________.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数;(2)求AB 的长;(3)求△ABC 的面积.能力提升 13.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角,解三角形.(2)已知三边求三角形的任意一角.2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(一)答案知识梳理1.平方 平方 夹角 两倍 b 2+c 2-2bc cos A a 2+c 2-2ac cos B a 2+b 2-2ab cos C 2.b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab3.(1)90° (2)60° (3)135°作业设计1.A2.B [∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+32-1322×7×43=32. ∴C =π6.] 3.C [b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.]4.B [∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.] 5.B [∵sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =b c =b 2+c 2-a 22bc a 2+b 2=c 2, 符合勾股定理.故△ABC 为直角三角形.]6.B [∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .]7.120°8.30°解析 ∵c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60°=12,∴c =2 3.由正弦定理a sin A =c sin C 得,sin A =12. ∵a <c ,∴A <60°,A =30°.9.120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.-2 3解析 S △ABC =12ac sin B =3, ∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.11.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49, ∴x =7.所以所求中线长为7.12.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2. ∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 13. 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22, ∴sin C =22. ∴AD =AC ·sin C = 3.14.解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab, 代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0, 通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.。

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。

高中数学必修五1.1.2余弦定理(共2个课时)

高中数学必修五1.1.2余弦定理(共2个课时)

C.无实数根
D.有两个相等的实数根
(b2 c2 a2 )2 4b2c2
(2bccos A)2 4b2c2 4b2c2 (cos2 A 1)
cos A(1,1),cos2 A 1, 0.
余弦定理进行边角互化 判断三角形的形状
(3)P10B 2.若a cos A bcos B,判断ABC的形状. (4)若c a cos B (2a b)cos A,判断ABC的形状.
即a2 c2 b2 2bccos A
同理可证b2 a2 c2 2ac cos B c2 a2 b2 2abcosC
余弦定理P6
三角形中任何一边的平方等于其它两边的平方和减去 这两边与它们的夹角余弦的积的两倍。
a2 b2 c2 2bccosA b2 a2 c2 2accosB c2 a2 b2 2abcosC
运用: 知两边及其夹角,求第三边。
推论:cos A b2 c2 a2 cos B a2 c2 b2
2bc
2ac
cos C a2 b2 c2 2ab
运用: 知三边(或其比例),求三个角。
勾股定理指出了直角三角形三边的平方关系,余弦 定理指出了一般三角形三边的关系,两者之间有联 系吗?
(3)若a cos B a cosC b c,判断ABC的形状. 正弦定理进行边角互化判断三角形的形状
[例3]ABC的三边长分别为4,6,8, 判断其形状.
解析: 设a 4,b 6,c 8.
则cosC a2 b2 c2 16 36 64 0
2ab
48
C是钝角,ABC是钝角三角形.
10
25 10
由正弦定理得 a 5 , 解得a 4或5. sin A sin B
解 :由余弦定理得c2 a2 b2 2abcosC,

高中数学北师大版必修五《余弦定理1》课件

高中数学北师大版必修五《余弦定理1》课件

计算题:
1.在△ABC中,若CB=7,AC=8, AB=9,求AB边的中线长。
2.在△ABC中,已知b=4,c= 15 , C=60°,
求边a.
已知两边及一边的对角时,我们知
道可用正弦定理来解三角形,想一想 能不能用余弦定理来解这个三角形?
如:已知b=4,c= ,C=60°求边a.
北师大版 高中数学
例1:在ABC中, 已知a=7,b=5,c=3, (1)求B.
(2)求SABC
(3)判断ABC为锐角三角形,直角三角 形,还是钝角三角形?
例 2:在ABC中,
已知a= 2 3 ,c= 6 2 ,B= 45,求b和A.
练习1: ΔABC三个顶点坐标为 A(6,5),B(-2,8), C(4,1),求A.
练习2:在ABC中,已知a,b,c成等差数列.
求证:
0B
3
练习3:在△ABC中,若CB=7,AC=8,AB=9,
求AB边的中线长。
例3:在△ABC中,已知b=4,c= 15, C=60°, 求边a.
作业:
1、在△ABC中,若CB=7,AC=8,AB=9,求 AB边的中线长。
2、在△ABC中, 求证:c=acosB+bcosA
北师大版 高中数学
余弦定理
1. 说出正弦定理的内容,它的作用是什么?
正弦定理: 在一个三角形中,各边和它所对角的正弦值 的比相等. 即:
a b c 2R sin A sin B sin C
(1)已知两角和任一边,求其它两边和一角; (2)已知两边和其中一边的对角,求另一边的对角,进而可求出其他的边和角.Fra bibliotek谢谢大家
定理: 三角形任何一边的平方等于其他两边平方

人教A版高中数学必修五课件1.1.2余弦定理(1).pptx

人教A版高中数学必修五课件1.1.2余弦定理(1).pptx

②已知三边,求三个角.
思考:余弦定理的使用范围是什么?
若三角形ABC为直角三角形, 则余弦定理的表达式有怎样的变化?
△ABC是直角角三角形 a 2 b 2 c 2
思考:若三角形ABC为锐(钝)角三角形时,
有类似的结论吗?
△ABC是锐角三角形 a 2 b 2 c 2
△ABC是钝角三角形 a 2 b 2 c 2
a2 c2 b2 cos B
2ac cos C a 2 b 2 c 2
2ab
应用:已知三条边求角度.
问隧题道:工程设计,经常要测算山脚的长度,工程
技术人员先在地面上选一适当的位置A,量出A到山
脚B、C的距离,再利用经纬仪测出A对山脚BC(即
线段BC的张角),最后通过计算求出山脚的长度BC。
三角形任一边的平方等于其他两边平方的 和减去这两边与它们夹角的余弦的积的两倍.
a 2 b2 c 2 2bc cos A
b2 a 2 c 2 2ac cos B
c 2 a 2 b2 2ab cos C
应用:已知两边和一个夹角,求第三边.
由余弦定理变型得:
cos A b 2 c 2 a 2 2bc
(2)解:
cos
A
b2
c2 2bc
a2
=
1 2
cos B
a2
c2 2ac
b2
=
2 2
A= 600 ,B= 450
则 C=1800 A B 750
课后作业
《启迪》1.1.2
空白演示
在此输入您的封面副标题
1.1.2余弦定理(1)
知识回顾
A
正弦定理: a b c 2R
sin A sin B sinC

新课标高中数学人教A版必修五全册课件1.1.2余弦定理(一)

新课标高中数学人教A版必修五全册课件1.1.2余弦定理(一)
你还有其它方法证明余弦定理吗? 两点间距离公式,三角形方法.
思考2:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
这个式子中有几个量?从方程的角 度看已知其中三个量,可以求出第四个 量,能否由三边求出一角?
推论:
A
已知a, b和∠C,求边c? b
c
C
aB
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍. 即:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
1.1.2余弦定理(一)
复习引入
运用正弦定理能解怎样的三角形?
A C
B
复习引入
运用正弦定理能解怎样的三角形?
①已知三角形的任意两角及其一边;
②已知三角形的任意两边A 与其中一边
的对角.
C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三
A
角形是大小、形状完全确定的三角形. C
思考1:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
你还有其它方法证明余弦定理吗?
思考1:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
c
C
aB
探索探究
联系已经学过的知识和方法,可用 什么途径来解决这个问题?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2+ 6 ,
3.求三角形面积
ABC中,A 30o , c 3, a 1, 求三角形面积.
4.在△ABC中,判定△ABC的形状. (1)cosA∶cosB = b∶a ,(2) a=bcosC
作业:△ABC中,D在边BC上,且BD=2,DC=1, ∠B=60o,∠ADC=150o,求AC的长 。
2 2 2
C b
A c
a
B
余弦定理好处: 不用判断解个数 与勾股定理联系?P6
在ABC中,
2 2
b c a cos A 2bc
2
b2 c 2 a 2 A为 角 直 ; 2 2 2 b c a A为 角 锐 ; 2 2 2 b c a A为 角 钝
在△ABC中,若a=5、b=7、c=9,判断 △ABC是锐角三角形还是钝角三角形.
D
a
c=?
B
c a b 2ab cos C
2 2
探究:如图,在△ABC中,BC=a,AC=b,边BC与AC的 夹角为C,试求AB边的长c.
如图所示建立直角坐标系,点A,B的坐标分别是 什么? 根据两点间的距离公式可得什么结论?
y A b x C a
A(bcosC,bsinC)
B
B(a,0)
2 2 | AB | | CB CA |
C a
2 2 CB CA 2CB CA b 2 2 | CB | | CA | 2 | CB || CA | cos C
结合正弦定理,
c = a + b - 2ab cosC 可作什么变形?
2 2 2
sin C = sin A + sin B - 2 sin A sin B cosC
2
2
2
1、在△ABC中,已知a= 解三角形(保留根号).
2+ 6 cm,B=45o, 3,c = 2
2、在△ABC中,已知a=2 3,b= 2 2 c= 解三角形(保留根号)。
b2 c 2 a 2 87.82 161.72 134.62 cos A 0.5543 2bc 2 87.8 161.7
∴A≈56°20′
c 2 a 2 b 2 134.62 161.72 87.82 cos B 0.8398 2ca 2 134.6 161.7
c = a + b - 2ab cosC
2
2
2
C
c a b 2ab cos C
2 2 2
同理可得a b c 2bc cos A
2 2 2
b
a
b2 a 2 c 2 2ac cos B
A
c=?
B
余弦定理: 三角形任何一边的平方等于其他两边的平方和 减去这两边与它们夹角的余弦的积的两倍,即
b2 c 2 a 2 cos A 2 2 2 2bc a b c 2bc cos A a 2 c 2 b2 2 2 2 b a c 2ac cos B cos B 2ac c 2 a 2 b 2 2ab cos C a 2 b2 c 2 cos C 2ab
7 8 c 2 8 c cos 60
2 2 2

整理得 c 8c 15 0
2
解方程思想
解得 c 3或c 5
练习:已知在△ABC中,a=1,b= 7 ,B=60o,求c. c=3
解题小结: 在解三角形时,需由已知条件的不同,合理选用 正、余弦定理求解,一般应注意以下四种情况: (1)知两角及一边 先求第三角,再用正弦定理求另外两边. (2)知两边及其中一边的对角: ①先用正弦定理求剩下两角,再求第三边; ②先用余弦定理求第三边,再求剩下两角. (3)知两边及其夹角 先用余弦定理求第三边,再求剩下两角. (4)知三边 用余弦定理求三个角. 特别地,第二种情况还需知道如何判断解的个数.
∴B≈32°53′
C 180 ( A B) 180 (56 20 32 53 ) 90 47
' '
'
利用余弦定理,可以解决以下两类解三角形的问题:
(1)已知两边及其夹角,求其它的边和角; (2)已知三边,求三个角. 练习:在△ABC中
(1)已知b=8,c=3,A=60o,求a; 7
解的情况
一解 无解 无解 一解 两解 一解 A
a
b
A a
b
bsinA
三、掌握“边角互化”的解题思想
相关知识复习: 1.向量的数量积: a b a b cos 2.勾股定理:a2+b2=c2. 用向量方法证明: 好处:不用做辅助线
A c b
C
a
B
问题: (1)已知A,B,b,求a 用正弦定理 (2)已知A,a,b,求B,C 用正弦定理 (3)已知a,b,C两边一夹角源自C abA
c=?
B
确定三角形方法? ASA, AAS, SAS, SSS
探究:如图,在△ABC中,BC=a,AC=b,边BC与AC的 夹角为C,试求AB边的长c. 思路1:依条件可知,| CB | a ,| CA | b, AB CB CA
∴a≈41(cm)
故由正弦定理可得
c sin A 34 sin 41 34 0.656 sin C 0.5440. a 41 41 ∵c<a,故C是锐角
∴利用计算器可求得 C≈33° ∴B=180o-(A+C)=180o-(41o+33o)=106°
例2、在△ABC中,已知a=134.6cm,b=87.8cm, c=161.7cm,解三角形(角度精确到1′)。 解:
A
B
D
C
作业:△ABC中,D在边BC上,且BD=2,DC=1, ∠B=60o,∠ADC=150o,求AC的长 。
解:∵∠B=60o,∠ADC=150o A ∴∠BDA=30o,∠BAD=90o,
∵BD=2
B ∴AB=2sin30o=1,AD=2sin60o= 3
D
C
AC AD2 DC 2 2 AD DC cos ADC
复习 一、正弦定理可解决两类三角问题: 1、知两角及一边,求其它的边和角; 2、知两边及其中一边的对角,求其它的边和角.
注意:第二种类型的问题可能有一解、两解、无解三种情况.
二、已知两边及其中一边对角的三角形的解的情况:
A的范围
A为钝角或直角 a,b关系 a>b a≤b a<bsinA A为锐角 a=bsinA bsinA<a<b a≥b
3 1 2 3 1 cos150
7

(2)已知a= 3 3 ,c=2,B=150o,求b; 7 (3)已知a=2,b= 2 ,c= 3 1,求A. 45o
余 弦 定 理
三角形任何一边的平方等于其他两边平方的和 减去这两边与它们夹角的余弦的积的两倍。
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2
c a b 2ab cos C
2
A
c=?
B
c a 2 b2 2ab cos C
探究:如图,在△ABC中,BC=a,AC=b,边BC与AC的 夹角为C,试求AB边的长c. 思路2:作AD⊥BC于D ∵在Rt△ADC中,CD=bcosC C ∴BD=a-bcosC 又∵AD=bsinC b ∴在Rt△ADB中, c2=(bsinC)2+(a-bcosC)2 =b2sin2C+a2-2abcosC+b2cos2C A =a2+b2-2abcosC
用法:知两边及其夹角求 三角形的第三条边. 用法:知三边求三角形 的三个角.
例1、在△ABC中,已知b=60cm,c=34cm,A=41o, 解该三角形(角度精确到1°,边长精确到1cm). 解:∵a² +c² =b² -2bccosA
=60² -2×60×34×cos41o≈1676.82 +34²
算最大角的余弦值 学案P38达标2
在三角形的六个基本元素中,已知哪三 个元素可以解三角形? ASA,AAS,SAS,SSS 针对上述类型,分别用哪个定理求解为宜? 已知一边两角:正弦定理; 已知两边及对角:正弦定理; 已知两边及夹角:余弦定理;
已知三边:余弦定理.
例3、已知在△ABC中,a=8,b=7,B=60o,求c. 解:由余弦定理得 b2 a 2 c 2 2ac cos B
相关文档
最新文档