质数与合数练习奥数讲座
【七年级奥数】第21讲 质数和合数(例题练习)
第21讲质数和合数——例题一、第21讲质数和合数1.四个数,一个是最小的奇质数,一个是偶质数,一个是小于30的最大质数,另一个是大于70的最小质数.求它们的和.【答案】解:最小的奇质数是3,唯一的一个偶质数是2,小于30的最大质数是29,大于70的最小质数是71.因此,它们的和为3+2+29+71=105.【解析】【分析】在解有关质数的问题时,知道一些小常识是有用的,如1既非质数又非合数,2是唯一的偶质数,也是最小的质数,3是最小的奇质数等.另外,200以内的质数共有25个,它们为:2、3、5、7、I1、13、17、19、23、29、31、37、41、43、47,53、59、61、67、71、73,791 83、89、97。
2.有7个不同的质数,它们的和是60.其中最小的是多少?【答案】解:若7个不同的质数都是奇质数,则它们的和必为奇数,不可能等于60,所以这7个不同的质数中有偶数,而我们知道2是唯一的偶质数,所以这7个质数中必有2;2又是所有质数中最小的,所以这7个质数中最小的质数就是2.【解析】【分析】本题利用了2是唯一的偶质数和最小的质数这一特性.不难得出这7个质数是2、3、5、7、11、13、19.3.若n为正整数,n+3与n+7都是质数.求n除以3所得的余数.【答案】解:我们知道n除以3所得的余数只可能为0、1、2三种;若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3.又3≠n+3,故n+3不是质数,与题设矛盾.若余数为2,即n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7;n+7不是质数,与题设矛盾.所以,n除以3所得的余数只能为1.【解析】【分析】一个整数除以m后,余数可能为0,1,…,m-1,共m种.将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数,另一类是除以2余数为1的整数,即奇数.同样,对m=3时,就可将整数分为三类.即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是数论中的一种重要思想方法,有着广泛的应用.4.设n1与n2是任意两个大于3的质数,N1=n12−1 , N2=n22−1 ,N1与N2的最大公约数至少为多少?【答案】解:∵n1是大于3的质数,∴n1不是3的倍数,n1 =3k+1或3k+2,在n1 =3k+1时,n1 -1=3k是3的倍数;在n1 =3k+2时,n1 +1=3k+3是3的倍数;无论哪种情况,N1=n1−1=(n1+1)(n1−1) 都是3的倍数.又∵n1是奇数,∴n1=4k+1或4k+3.在n1=4k+1时,n1+1=4k+2是2的倍数,n1-1=4k是4的倍数,所以N1是8的倍数.在n1=4k+3时,同理可得N1是8的倍数.由于3与8互质,故24|N1.同理,24|N2.另外,取n1 =5,则N1=24.综上所述,N1与N2的最大公约数至少为24.【解析】【分析】从上例中,我们可以得到两个重要结论:(1)若n不是3的倍数,则n2除以3,余数为1.(2)若n是奇数,则n2除以8,余数为1.5.有人说:“任何七个连续的整数中一定有质数”.对吗?【答案】解:不对.如90、91、92、93、94、95、96这七个连续整数全部是合数,没有质数.【解析】【分析】合数:因数除了1和它本身之外还有其他因数的数;质数:因数只有1和它本身的数.由此分析即可.6.设自然数n1>n2 ,且有n12−n22=79 ,试求n1与n2的值.【答案】解:依题可得:n12−n22=(n1+n2)(n1−n2)=79 ,∵整数n1>n2,∴n1+n2与n1−n2 都是正整数,又∵79是一个质数,由质数的性质,及n1+n2 > n1-n2得:,解得:.【解析】【分析】质数:因数只有1和它本身的数,根据质数的性质列出二元一次方程组,解之即可.7.n是不小于40的偶数.试证明:n总可以表示成两个奇合数的和.【答案】证明:因为n是偶数,所以,n的个位数字必为0、2、4、6、8中的某一个.( 1 )若n的个位数字为0,则n=15+5k(k≥5为奇数).( 2 )若n的个位数字为2,则n=27+5k(k≥3为奇数).( 3 )若n的个位数字为4,则n=9+5k(k≥7为奇数).( 4 )若n的个位数字为6,则n=21+5k(k≥5为奇数).( 5 )若n的个位数字为8,则n=33+5k(k≥3为奇数).综上所述,不小于40的任一偶数,都可以表示成两个奇合数之和.【解析】【分析】奇合数:指不能被2整除的合数;即除了偶合数之外的其余合数都是奇合数.根据偶数定义可知n的个位数字必为0、2、4、6、8中的某一个,分情况讨论,即可得证.8.证明有无穷多个n,使多项式n2+3n+7( 1 )表示合数;( 2 )是11的倍数.【答案】证明:只需证(2)当n=11k+1(k≥1)时,多项式n2+3n+7=(11k+1)2+3(11k+1)+7=11(11k2+5k+1).∴是11的倍数.∵11k2+5k+1>1,∴这时n2+3n+7是合数.【解析】【分析】令n=11k+1(k≥1),代入多项式,计算、化简得n=11(11k2+5k+1),从而可得式11的倍数,由11k2+5k+1>1,可得n是表示合数.。
第03讲 质数合数(学生版)-四升五暑期数学奥数培优讲义
一、质数与合数(五上)1、质数与合数的概念质数:除了1和它本身外,没有其他因数的数.合数:除了1和它本身,还有其他因数的数.质因数:每个合数都可以写成几个质数相乘的形式,这几个质数都叫做这个合数的质因数.分解质因数:把一个合数写成若干质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.互质数:除了1以外没有其他公因数的两个数叫做互质数.2、质数的特点(1)100以内的质数(25个)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97(2)质数的特点A .有且只有一个偶质数;B .除了2和5,其余质数的末尾只能是1、3、7、9;C .质数中仅有一个数是2、3、5、7、……的倍数.3、质数的应用(1)平方判断法:判断m 是否为质数,首先寻找到不大于m 的最大平方数,然后用1至n 中的所有质数依次去除m ,如果都不能整除,则m 是质数;否则其为合数.(2)分解质因数的常见方法:短除法,分拆相乘(3)平方数性质:分解质因数后,质因数的个数为偶数个;约数个数为奇数个;约数不是成对出现的;个位数字为0、1、4、5、6、9.一、 质数合数1、下面是主试委员会这第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;第3讲 质数与合数 四升五 暑期知识点课堂例题杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.将诗中56个字,从第一行左边第一个字逐字编为1~56号,再将号码中的质数由小到大找出来,将它们对应的汉字依次排成一行,组成一句话,请写出这句话._______________________________________________________________2、设x是正数,x<>表示不超过x的质数的个数,如 5.13<>=,即不超过5.1的质数有3个,那么<<>+<>+<>×<>×<>>的值是__________.19934183、(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出.(2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出.(3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.4、已知P,Q都是质数,并且11932003×=().P Q×−×=,则P QA.1919B.679C.655D.3985、有些三位数,它的各位数字的乘积是质数,这样的三位数最大的为A,最小的为B.则A B−=__________.二、分解质因数6、请把下面的数分解质因数:(1)360;(2)539;(3)373;(4)12660.7、请把下面的数分解质因数:(1)999;(2)10101.8、甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数的和是().A.57B.60C.63D.699、三个自然数的乘积为84,其中两个数的和正好等于第三个数.则这三个数是___________________.10、三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?11、自然数a乘以2376,正好是自然数b的平方.求a的最小值.12、360与一个三位数的乘积是完全平方数,这个三位数最小是__________.三、末尾0的问题13、如图,把13,12,15,25,20这5个数依次排列.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个0?14、算式62417514095×××的计算结果的末尾有多少个连续的0?15、算式123100计算结果的末尾有__________个连续的0.××××1、一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.2、三个互不相同的质数相加,和为52,这三个质数可能是多少?3、(龙校五年级春季)若两个质数的差是95,那么它们的积是多少?4、请把下面的数分解质因数:(1)360;(2)539;(3)373;(4)12660.5、大明的钱数比二明多9元,两人的钱数都是整数元,且他们钱数的积是580,两人的钱数之和是________元.(改自2012年7月29日真题)6、(2009年101中分班)四个连续奇数的乘积是229425,那么这4个奇数的和是( )随堂练习A .86B .88C .90D .927、(2010年四中入学)从1到30这30个连续自然数连乘积的末尾共有________个连续的数码0.1、(2013年首师附入学)若a 是质数,b 是合数,那么下面一定是合数的是( ).A .2a b ++B .()2a b +×C .()2a b +÷D .()2a b −÷2、自然数49,87,101,103,121中,有__________个质数.3、(2013年101中分班)有一个质数是两位数,这两位上的数字相差6,则这个两位数的质数是.4、(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?课后作业5、三个互不相同的质数相加,和为30,这三个质数的乘积最大是__________.6、三个连续自然数的乘积为336,则这三个数的和为__________.7、(2013年首师附入学)大明的钱数比二明多9元,两人的钱数都是整数元,且他们钱数的积是580,两人的钱数之和是________元.××□要使这个连乘积的最后3个数字都是0,方框最小应该填()8、5560A.10B.20C.30D.259、算式12335的计算结果的末尾有__________个连续的0.××××10、(2011年首师附入学)如12345120……的积的××××××××××=,积的尾部有一个零,计算1234540尾部有___________个连续的零.。
第三讲 整除、质数与合数 精英班 教师版(带完整答案)_5年级奥数讲义与课件
nm…d 000 第三讲整除、质数与合数1.整除问题(1)用位值的知识证明常用的特殊自然数的整除特征1)2 系列:能被 2 和 5 整除的数要看个位,能被 4 和 25 整除的要看末两位,能被 8 和 125 整除的要看末三位。
请大家想想为什么?我们以被8整除看末三位为例证明以上两个系列的性质,假设一个多位数为是nm…dcba则还可以表示为:nm…dcba =nm…d 000 +cba =nm…d ⨯1000 +cba ,由于8 1000 所以8 ,因此只要cba 能被8 整除该数就一定能被8 整除。
2)3 系列:能被 3 和 9 整除只需看各位数字之和能否被 3 和 9 整除,为什么?我们以三位数abc 为例来证明被 9 整除只需看各位数字之和这一性质,如:abc = 100a +10b +c =(99a + 9b)+(a +b +c)显然(99a + 9b)是 9 的倍数,因此只要(a +b +c)即各个数位数字之和能被 9 整除那么这三位数abc 就能被 9 整除,反之亦然。
推广到任意位数的自然数,该证明方法仍然成立,请大家自己尝试一下。
3)7,11,13 系列:被7、11、13 整除的判别方法:看多位数的末三位和前面部分之差能否被7、11、13整除。
为什么呢?仔细观察我们会发现7×11×13=1001,比1000大1,由此可以有如下证明:假设一个多位数为是nm…dcba ,有:nm…dcba =nm…d000 +cba =nm…d⨯1000 +cba=nm…d ⨯1001-nm…d +cba =nm…d ⨯1001-(nm…d -cba ),由于 1001 是 7、11、13的倍数,故只要(nm…d -cba)能被7、11、13 整除即可。
4)特别的,我们还有另外一种判别能否被11 整除的性质,就是看奇数位数字之和与偶数为数字之和能否被11 整除,这个定理也是可以证明的,我们以简单的三位数abc 来说明:abc =100a +10b +c = 99a +11b +a -b +c =(99a +11b)+(a +c -b)显然(99a +11b)是 11的倍数,因此只要(a +c -b)即各个数位数字之和能被 9 整除那么这三位数abc 就能被 9 整知识说明除,反之亦然。
数学奥赛辅导 第一讲 奇数、偶数、质数、合数
数学奥赛辅导第一讲奇数、偶数、质数、合数知识、方法、技能Ⅰ.整数的奇偶性将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m(m∈Z),任一奇数可表为2m+1或2m -1的形式.奇、偶数具有如下性质:(1)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(2)奇数的平方都可表为8m+1形式,偶数的平方都可表为8m 或8m+4的形式(m∈Z).(3)任何一个正整数n,都可以写成l的形式,其中m为非n m2负整数,l为奇数.这些性质既简单又明显,然而它却能解决数学竞赛中一些难题.Ⅱ.质数与合数、算术基本定理大于1的整数按它具有因数的情况又可分为质数与合数两类.一个大于1的整数,如果除了1和它自身以外没有其他正因子,则称此数为质数或素数,否则,称为合数.显然,1既不是质数也不是合数;2是最小的且是惟一的偶质数.定理:(正整数的惟一分解定理,又叫算术基本定理)任何大于1的整数A 都可以分解成质数的乘积,若不计这些质数的次序,则这种质因子分解表示式是惟一的,进而A 可以写成标准分解式:n a n a a p p p A 2121⋅= (*).其中i n p p p p ,21<<< 为质数,i α为非负整数,i =1,2,…,n .【略证】由于A 为一有限正整数,显然A 经过有限次分解可分解成若干个质数的乘积,把相同的质因子归类整理可得如(*)的形式(严格论证可由归纳法证明).余下只需证惟一性.设另有j m n q q q q q q q A m,,212121<<<⋅= 其中βββ为质数,i β为非负整数,j=1,2,…,m .由于任何一i p 必为j q 中之一,而任一j q 也必居i p 中之一,故n=m .又因),,2,1(,,2121n i q p q q q p p p i i n n ==<<<<<则有,再者,若对某个i ,i i βα≠(不妨设i i βα>),用i i p β除等式n n n a n a a p p p p p p βββ 21122121⋅=两端得:.11111111n i i n i i n i i n i p p p p p p p ββββεβαα +-+--⋅=此式显然不成立(因左端是i p 的倍数,而右端不是).故i i βα=对一切i =1,2,…,n 均成立.惟一性得证.推论:(合数的因子个数计算公式)若nn p p p A ααα 2121=为标准分解式,则A 的所有因子(包括1和A 本身)的个数等于).1()1)(1(21+++n ααα(简记为∏=+ni i 1)1(α)这是因为,乘积2222212111()1()1(21nn p p p p p p p p ++++++⋅++++ αα )nn p α++ 的每一项都是A 的一个因子,故共有∏=+ni i 1)1(α个. 定理:质数的个数是无穷的.【证明】假定质数的个数只有有限多个,,,21n p p p 考察整数.121+=n p p p a 由于1>a 且又不能被),,2,1(n i p i =除尽,于是由算术基本定理知,a 必能写成一些质数的乘积,而这些质数必异于),,2,1(n i p i =,这与假定矛盾.故质数有无穷多个.赛题精讲例1.设正整数d 不等于2,5,13.证明在集合{2,5,13,d }中可以找到两个元素a ,b ,使得a b -1不是完全平方数. (第27届IMO 试题)【解】由于2×5-1=32,2×13-1=52,5×13-1=82,因此,只需证明2d -1,5d -1,13d -1中至少有一个不是完全平方数. 用反证法,假设它们都是完全平方数,令2d -1=x 2 ①5d -1=y 2 ②13d -1=z 2 ③x,y,z ∈N *由①知,x 是奇数,设x =2k -1,于是2d -1=(2k -1)2,即d =2k 2-2k+1,这说明d 也是奇数.因此,再由②,③知,y,z 均是偶数.设y=2m ,z =2n ,代入③、④,相减,除以4得,2d =n 2-m 2=(n+m)(n -m),从而n 2-m 2为偶数,n ,m 必同是偶数,于是m+n 与m -n 都是偶数,这样2d 就是4的倍数,即d 为偶数,这与上述d 为奇数矛盾.故命题得证.例2.设a 、b 、c 、d 为奇数,bc ad d c b a =<<<<并且,0,证明:如果a +d =2k ,b+c=2m ,k,m为整数,那么a =1. (第25届IMO 试题)【证明】首先易证:.22m k >从而add a d a c b a d m k 4)()(,(22+-=+->->于是因为 22)(4)(c b bc c b +=+->.再由,222,2,22a b a b b c a d bc ad k m m k -=⋅-⋅-=-==可得 因而))(()2(2a b a b a b m k m -+=⋅-- ①显然,a b a b -+,为偶数,a b m k --2为奇数,并且a b a b -+和只能一个为4n 型偶数,一个为4n+2型偶数(否则它们的差应为4的倍数,然而它们的差等于2a 不是4的倍数),因此,如果设f e a b m k ⋅=--2,其中e,f 为奇数,那么由①式及a b a b -+,的特性就有(Ⅰ)⎩⎨⎧=-=+-.2,21f a b e a b m 或(Ⅱ)⎩⎨⎧=-=+-.2,21e a b f a b m 由f a b a b a b efm k 222≤-<-≤-=- 得e=1, 从而.2a b f m k --=于是(Ⅰ)或(Ⅱ)分别变为⎪⎩⎪⎨⎧-=-=+--)2(2,21a b a b a b m k m 或⎪⎩⎪⎨⎧=--=+--12),2(2m m k a b a b a b 解之,得1122-+-=⋅m m k a .因a 为奇数,故只能a =1.例3.设n a a a ,,,21 是一组数,它们中的每一个都取1或-1,而且a 1a 2a 3a 4+a 2a 3a 4a 5+…+a n a 1a 2a 3=0,证明:n 必须是4的倍数. (第26届IMO 预选题)【证明】由于每个i a 均为1和-1,从而题中所给的等式中每一项321+++i i i i a a a a 也只取1或-1,而这样的n 项之和等于0,则取1或-1的个数必相等,因而n 必须是偶数,设n=2m.再进一步考察已知等式左端n 项之乘积=(n a a a 21)4=1,这说明,这n项中取-1的项(共m 项)也一定是偶数,即m=2k ,从而n 是4的倍数.例4.如n 是不小于3的自然数,以)(n f 表示不是n 的因数的最小自然数[例如)(n f =5].如果)(n f ≥3,又可作))((n f f .类似地,如果))((n f f ≥3,又可作)))(((n f f f 等等.如果2)))(((= n f f f f ,就把k 叫做n 的“长度”.如果用n l 表示n 的长度,试对任意的自然数n (n ≥3),求n l ,并证明你的结论.(第3届全国中学生数学冬令营试题)【解】令m t n m ,2=为非负整数,t 为奇数. 当m=0时,2)()(==t f n f ,因而l n =1;当0≠m 时,设u 是不能整除奇数t 的最小奇数,记).(t g u =(1)若.2,2))((,)(,2)(1===<+n m l n f f u n f t g 所以则(2)若.3,2)3()))(((,3)2())((,2)(,2)(111======>+++n m m m l f n f f f f n f f n f t g 所以则故⎪⎩⎪⎨⎧>>==+.,2);)((2)(,,0,2,3;,11其他情形如上且为奇数当为奇数时当t g t g t m t n n l m m n例5.设n 是正整数,k 是不小于2的整数.试证:k n 可表示成n 个相继奇数的和.【证明】对k 用数学归纳法.当k=2时,因),12(312-+++=n n 命题在立.假设k=m 时成立,即,)12()3()1(2n na n a a a n m +=-++++++= (a 为某非负数) 则,)()(2221n n n na n n n na n n n m m +-+=+=⋅=+若记n n na b -+=2(显然b 为非负偶数),于是1),12()3()1(21+=-++++++=+=+m k n b b b n nb n m 即 时,命题成立,故命题得证.例6.在平面上任画一条所有顶点都是格点的闭折线,并且各节的长相等.能使这闭折线的节数为奇数?证明你的结论. (莫斯科数学竞赛试题)【解】令符合题设条件的闭折线为A 1A 2…A n A 1,则所有顶点i A 的坐标(i i y x ,)符合).,,2,1(,n i Z y x i i =∈并且C n i C Y X i i ,,2,1(22 ==+为一固定的正整数),其中),,,,,2,1(,111111y y x x n i y y Y x x X n n i i i i i i ===-=-=++++ 则由已知有∑==n i i X1,0 ① ∑==n i i Y1,0 ②2222222121n n Y X Y X Y X +==+=+ ③不妨设i i Y X 和中至少有一个为奇数(因为设m t X i m i ,2=是指数最小的,t i 为奇数,用2m 除所有的数后,其商仍满足①、②、③式),于是它们的平方和C 只能为4k+1或4k+2.当C=4k+2时,由③知,所有数对i i Y X 与都必须是奇数,因此,根据①、②式知,n 必为偶数.当C=4k+1时,由③知,所有数对i i Y X 与都必一奇一偶,而由①知,X i 中为奇数的有偶数个(设为2u ),余下的n -2u 个为偶数(与之对应的Y i 必为奇数),再由②知,这种奇数的Y i 也应有偶数个(设为u n 22-=ν),故)(2ν+=u n =偶数. 综上所述,不能作出满足题设条件而有奇数个节的闭折线.例7.求出最小正整数n ,使其恰有144个不同的正因数,且其中有10个连续整数.(第26届IMO 预选题)【解】根据题目要求,n 是10个连续整数积的倍数,因而必然能被2,3,…,10整数.由于8=23,9=32,10=2×5,故其标准分解式中,至少含有23·32·5·7的因式,因此,若设 ,11753254321 ααααα⋅⋅⋅⋅=n 则.1,1,2,34321≥≥≥≥αααα由,144)1)(1)(1)(1(4321=++++ αααα而,482234)1)(1)(1)(1(4321=⋅⋅⋅≥++++αααα故最多还有一个,2),5(0≤≥>j j j αα且为使n 最小,自然宜取.025≥≥α由)0(144)1)(1)(1)(1()0(144)1)(1)(1)(1)(1(54321554321时或时==++++≠=+++++ααααααααααα,考虑144的可能分解,并比较相应n 的大小,可知合乎要求的(最小),2,521==αα,1543===ααα故所求的.11088011753225=⋅⋅⋅⋅=n下面讲一个在指定集合内的“合数”的问题.这种合数与通常的合数有区别,题中的“素元素”是指在该集合内的素数,也与通常的素数有区别.例8.设n>2为给定的正整数,{}.,1*N k kn V n ∈+=试证:存在一数,n V r ∈这个数可用不只一种方式表示成数集V n 中素元素的乘积. (第19届IMO 试题)【证明】由于V n 中的数都不小于),2(1>+n n 因而n V n n n n ∈-⋅---)12()1(,)12(,)1(22.显然)12()1(,)1(2-⋅--n n n 是V n 中的素元素.又若(2n -1)2不是V n 中素元素,则有,)12()1()1(,12-=+⋅+≥≥n bn an b a 使由此有,44b a abn n ++=-于是,31≤≤ab 从而b=1,a =1;b=1,a =2,b=1,a =3,对此就有,8,28,2=n 故n=8.这说明 ,当2)12(,8-≠n n 时就是V n 中素元素. 当)]12)(1[()12()1(,.)12()1(,82222--=--=∈--=≠n n n n r V r n n r n n 且显然令时)].12)(1[(--n n 当n=8时,有1089=136×8+1=9×121=33×33,而9,121,33∈V 8.综上知,命题得证.例9.已知n ≥2,求证:如果n k k ++2对于整数k (30n k ≤≤)是质数,则n k k ++2对于所有整数)20(-≤≤n k k 都是质数.(第28届(1987)国际数学奥林匹克试题6)【证】设m 是使n k k ++2为合数的最小正整数.若n m m p n m n ++-≤<2,23是令的最小质因子,则n m m p ++≤2. (1)若m ≥p ,则p|(m -p)2+(m -p)+n. 又(m -p)2+(m -p)+n ≥n >p ,这与m 是使n k k ++2为合数的最小正整数矛盾.(2)若m ≤p -1,则n m p m p n m p m p +---=+--+--))(1()1()1(2被p 整除,且.)1()1(2p n n m p m p >≥+--+--因为n m p m p +--+--)1()1(2为合数,所以.12,1+≥≥--m p m m p 由 ,122n m m p m ++≤≤+ 即 ,01332≤-++n m m 由此得363123n n m <-+-≤ 与已知矛盾.所以,对所有的n k k n k n ++-≤<2,23为质数.。
小升初奥数知识点讲解 质数与合数
【小升初奥数知识点讲解】质数与合数
质数与合数
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1<A2<A3<……<AN。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
</A2<A3<……<AN。
1。
五年级数学质数合数、分解质因数专项题奥数难题课件
• 例4:三个不同的质数相加,和为40,这三个质数的乘积可能是多 少?请全部写出来。
• 40=2+38 38=7+31=19+19
• 19和19相同,不成立
• 40=2+7+31 • • 2×7×31=434
• 练习
• 1.三个不同的质数相加和为28,这三个质数可能是多少?请全 部写出来。
• 2.三个不同质数相加和为52,这三个质数的乘积可能是多少? 请全部写出来。
质数合数、分解质因数
五年级
• 例1:在三张卡片上分别写上1、3、5,如果随意从其中至少取出 一张组成一个数,其中有几个质数?将它们写出来。
可以抽取的卡片有一张、两张或三张 所以组成的数有: 一位数:1,3,5 两位数:13,15,31,35,51,53 三位数:135,153,315,351,513,531
去掉1和所有合数
质数有:3, 5,13, 31, 53
• 练习
• 1.从1、4、7这3个数字中选出1个、2个、3个,按任意次序排列, 可得到不同的一位数、两位数、三位数,将其中的质数都写出来。
• 2.三张卡片上分别写上1、2、3,从中任意抽出一张、两张或三张, 分别组成一位数、两位数、三位数,其中哪些是质数?哪些是合 数?
总结
• 1.分解质因数:短除法、试除法。 • 2.拆数:解质因数。
第一步:
2 100 2 50 5 25
5
• 第二步: 100=2×2×5×5
119÷7=17 119=7×17
• 练习 • 1.把60分解质因数。 • 2.把221分解质因数。
• 例3:如果两个质数的和是26,这两个质数的乘积可能是多少?请 全部写出来。
第二讲 质数与合数 竞赛班 (带完整答案)_5年级奥数讲义与课件
第二讲质数与合数知识说明1.质数与合数:一个数除了1 和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1 和它本身,还有别的约数,这个数叫做合数。
要特别记住:0 和 1 不是质数,也不是合数。
常用的100 以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25 个;除了2 其余的质数都是奇数;除了2 和5,其余的质数个位数字只能是1,3,7 或9。
考点:(1)值得注意的是很多题都会以质数2 的特殊性为考点,例如:两个质数之和为39,求这两个质数的乘积。
分析:因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是 2,另一个是 37,乘积为 74。
我们要善于抓住此类题的突破口。
(2)除了2 和5,其余质数个位数字只能是1,3,7 或9。
这也是很多题解题思路,需要大家注意2.质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1 的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如:30=2×3×5。
其中2、3、5 叫做30 的质因数。
又如12=2×2×3=22 ×3,2、3 都叫做12 的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式。
分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。
例如:三个连续自然数的乘积是 210,求这三个数.分析:210 分解质因数:210=2×3×5×7,可知这三个数是5、6 和7。
3.判断一个数是否为质数的方法:根据定义如果能够找到一个小于P 的质数p(均为整数),使得p能够整除P,那么P 就不是质数,所以我们只要拿所有小于P 的质数去除P 就可以了;但是这样的计算量很大,对于不太大的P,我们可以先找一个大于且接近P 的平方数K 2 ,再列出所有不大于K 的质数,用这些质数去除P,如没有能够除尽的那么P 就为质数。
奥数讲义数论专题:3 质数与合数
华杯赛数论专题:3 质数与合数基础知识:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.1不是质数也不是合数,2是唯一的偶质数,3是最小的奇质数.除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7,9.2.判断一个数是否为质数的方法根据定义如果能够找到一个小于P的质数q(均为整数),使得q能够整除P ,那么P就不是质数,所以我们只要拿所有小于P的质数去除P就可以了;但这样的计算量很大,对于不太大的P ,可以先找一个大于且接近P的平方数,再列出所有不大于K的质数,用这些质数去除P ,如果没有能除尽的,那么P就为质数.3.唯一分解定理每个大于1的自然数均可以分解为有限个素数的乘积,并且具有唯一(不计次序变化)的素数分解形式.例题例1.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有几个?【答案】23,37,53,73.【解答】首先,个位数字不能是0,2,4,6,8,5,十位数字只能是3,7,所以满足要求的两位数有四个:23,37 ,53 ,73.例2.把质数373拆开(不改变各数字间的顺序),所有的可能只有3,7,37,73这四个数,它们都是质数. 请找出所有具有这种性质的两位和两位以上的质数.【答案】23,37,53,73,373【解答】用排除法,在所找的数中,各个数位上都不能出现0,1,4,6,8和9,否则拆成一位数时将出现这六个数,都不是质数. 另外除首位外,各位数字都不能出现2和5. 因此,可采用的数字只有3,7,2,5,其中2,5只能出现在首位,并且同一个数字不能连续出现.经检验,满足题意的数只有五个:23,37,53,73和373.例3.老师想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是几?【答案】167、257、347、527或617中间的任意一个【解答】因为是质数,所以个位数不可能为偶数0,2 ,4 ,6 ,8. 也不可能是奇数5.如果末位数字是3或9,那么数字和将是3或9的两倍,因而能被它们整除,就不是质数了.所以个位数只能是 7.这个三位数可以是167、257、347、527或617中间的任意一个.例4.连续的九个自然数中至多有几个质数?为什么?【答案】4个【解答】如果连续的9个自然数在1到20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7).如果这连续的9个数中最小的不小于3,那么其中的偶数显然为合数,而其中的奇数的个数最多有5个.这5个奇数中必定有一个个位数是5,因而该数为合数.这样,至多另外4个奇数都是质数.综上,连续9个数中最多有4个质数.例5.三个质数的乘积恰好等于它们和的11倍,求这三个质数.【答案】2,11,13或3,7,11【解答】设三个不同质数是a、b、c因为,所以a、b、c中,必定有一个质数是11,不妨设a=11,则故可得<I>b</I>=2,c=13,或<I>b</I>=3,c=7,所以三个质数是2,11,13或3,7,11.例6.质数A、B、C、D满足A+B=C,A+C=D,那么A×C+B×D是 .【答案】31【解答】如果A、B都是奇数,则C=A+B是大于2的偶数,不可能是质数,所以A、B有一个是偶数.同理A、C也有一个是偶数,因此只能是A=2.那么B+2=C,C+2=D,即B、C、D是三个连续奇数,必定有一个是3的倍数,那么只能是B=3,C=5,D=7.因此A×C+B×D=2×5+3×7=31.例7. 将135拆成4个互不相同的质数之和,使得其中两个质数的个位数字分别为1和7. 请写出两种满足要求拆分的方法:135=________=________.【答案】135=2+5+31+97=2+5+61+67【解答】四个质数不可能同为奇数,至少有一个偶质数,即为2,因此个位数字为1、2、7,所以第四个数字的个位数字是5且是质数,只能是5,所以原题变为把128拆成个位数字为1和7的两个质数之和,128=31+97=61+67,所以135=2+5+31+97=2+5+61+67.例8.已知两个质数与一个合数的和是293,乘积是10336,那么这三个数中最大的是.【答案】272【解答】因为,其中三个数分别为2、19、272满足要求,故最大的数是 272.例9.请在下列算式中的每个方框内填入一个质数数字,使得等式成立,共有______种.□□+□=□□×□-□=□□-□□=□□÷□+□【答案】4种【解答】第一个算式:32+7或37+2第二个算式:22×2-5或23×2-7第三个算式:72-33第四个算式:72÷2+3例10.4个一位数的乘积是360,并且其中只有一个合数,那么在这4个数字所能组成的四位数中,最大的是多少?【答案】8533【解答】将360分解质因数得,它是6个质因数的乘积.因为题述的四个数中只有一个合数,所以该合数必至少为个质因数之积.而只有3个2相乘才小于10,所以这四个数为3、3、5、8,所能组成的最大四位数是8533.例11.把下面八个数分成两组,使这两组数的乘积相等.14、55、21、30、75、39、143、169【答案】(55、30、169、21);(143、75、14、39)【解答】先把每个数都分解质因数如下:14=2×7 21=3×7 30=2×3×5 39=3×13 55=5×11 75=3×5×5 143=11×13 169=13×13,观察因子得到分组为:(55、30、169、21);(143、75、14、39).例12.5个连续质数的乘积是一个形如□△□□△□的六位数,其中□和△各代表一个数字,那么这个六位数是多少?【答案】323323【解答】因为□△□□△□=□△□×1001=□△□×7×11×13,又□△□为两个质数的乘积,所以□△□=17×19=323,故六位数为323323.例13.幼儿园王老师带216元去买皮球,预计正好花光. 可实际上所购皮球价格比预计的便宜2元,个数比原计划的多9个,仍然恰好花光。
五年级上奥数第3讲 质数与合数
五秋第3讲质数与合数一、教学目标一、质数与合数①质数:除了能被1和它本身整除,而不能被其它数整除的数叫质数。
②合数:除了能被1和它本身整除,还能被其它数整除的数叫合数。
③特殊:1既不是质数也不是合数。
④最小的合数是4,最小的质数是2,且2是惟一的偶质数。
二、质数与合数判别方法试除法:用所有比它小的质数从小到大依次去除一个数,如果能够整除,那么这个数一定是合数。
如果不能整除,那么这个数一定是质数(适用于较小质数的判别)。
三、100以内质数表(共25个)四、分解质因数把一个合数用质数相乘的形式表示出来,叫做分解质因数。
(例如:72 =2×2×2×3×3二、例题精选【例1】判断下列数哪些是质数,哪些是合数:101,181,111,113,119,123【巩固1】判断下列数哪些是质数,哪些是合数:131,139,143,181,193,201【例2】三个相邻的自然数的乘积是3360,这三个自然数分别是多少?【巩固2】如果一个长方形的面积是1122平方厘米,且长比宽只多了1厘米,你能求出这个长方形的长与宽吗?【例3】把21、30、65、126、143、169、275这七个数分成两组,使两组内数的乘积相等。
【巩固3】把6、13、18、20、27、65这六个数分成两组,使两组内数的乘积相等。
【例4】要使975×935×972×()的乘积的最后四位数字为0,在括号里最小可以填数字是多少?⨯⨯⨯积的末尾有多少个零?【巩固4】4892538435【例5】一个整数a与1080的乘积是一个完全平方数,求a的最小值和这个平方数。
【例6】10500的因数有多少个?四、回家作业【作业1】把下列各数分解质因数:360 10145865【作业2】五个相邻的自然数之积是55440,求这五个相邻的自然数。
【作业3】要使135×115×35×()的乘积的最后三位数字为0,在括号里最小可以填数字是多少?【作业4】自然数a乘以338,恰好是自然数b的平方,求a的最小值以及b。
【七年级奥数】第21讲 质数和合数(例题练习)
第21讲质数和合数——练习题一、第21讲质数和合数(练习题部分)1.三个正整数,一个是最小的奇质数,一个是最小的奇合数,另一个既不是质数,也不是合数.求这三个数的积.2.三个数,一个是偶质数,一个是大于50的最小的质数,一个是100以内最大的质数.求这三个数的和.3.两个质数的和是49.求这两个质数的积.4.设p1与p2是两个大于2的质数.证明p1 + p2是一个合数.5.p是质数,p2+3也是质数.求证:p3+3是质数.6.若p与p+2都是质数,求p除以3所得的余数.(p>3).7.若自然数n1>n2且n12−n22−2n1−2n2=19 ,求n1与n2的值.8.有四个不同质因数的正整数,最小是多少?9.求2000的所有不同质因数的和.10.试证明:形如111111+9×10k(k是非负整数)的正整数必为合数.11.若n是正整数,n+3与n+7都是质数,求n除以6所得的余数.12.n是自然数,试证明10|n5-n.13.证明有无穷多个n,使n2+n+41( 1 )表示合数;( 2 )为43的倍数.14.试证明:自然数中有无穷多个质数.15. 9个连续的自然数,都大于80.其中最多有多少个质数?答案解析部分一、第21讲质数和合数(练习题部分)1.【答案】解:依题可得:最小的奇质数为3,最小的奇合数是9,既不是质数,也不是合数是1,∴这三个数的积是:1×3×9=27.【解析】【分析】奇质数:既是奇数又是合数的数;奇合数:不能被2整除的合数;根据定义分别写出这三个整数,计算即可.2.【答案】解:依题可得:偶质数是2,大于50的最小质数是:53,100以内最大的质数是97,∴这三个数的和为2+53+97=152.【解析】【分析】质数:因数只有1和它本身的数,根据题意写出满足的条件的三个数,计算即可.3.【答案】解:依题可得:49=2+47,∴2×47=94.∴这两个质数的积为94.【解析】【分析】根据质数定义结合已知条件可得这两个数,列式计算即可.4.【答案】证明:∵p1与p2是两个大于2的质数,∴p1、p2都是奇数,∴p1 + p2是偶数,且大于2 ,∴p1 + p2是大于2的偶数,即为合数.【解析】【分析】根据题意可知p1、p2都是奇数,由奇+奇=偶即可得证.5.【答案】证明:∵p是质数,当p>2时,∴p2+3被4整除,又∵p2+3也是质数,与已知矛盾,∴必有p=2,∴p3+3=11,是质数.【解析】【分析】由于2是最小的质数,先假设当p>2时得出p2+3被4整除,此时与已知条件矛盾,故p=2时,代入即可得证.6.【答案】解:∵p是质数,∴①p=3k时,∵p>3且是质数,∴不存在这样的p;②p=3k+1时,∴p+2=3k+1+2=3(k+1),此时与p+2为质数矛盾;③p=3k+2时,∴p+2=3k+2+2=3(k+1)+1,符合题意;∴p除以3所得的余数为2.【解析】【分析】根据题意分情况讨论:①p=3k时,②p=3k+1时,③p=3k+2时,再根据p+2为质数解答即可.7.【答案】解:∵n12−n22−2n1−2n2=19 ,∴(n1+n2)(n1-n2)-2(n1+n2)=19,即(n1+n2)(n1-n2 -2)=19,又∵19是质数,n1+n2>n1-n2,∴,解得:.【解析】【分析】先将原多项式分解因式,再由19是质数,根据质数性质列出方程,解之即可. 8.【答案】解:根据质因数的定义可得最小的四个质数分别为:2,3,5,7;依题可得:2×3×5×7=210.∴有四个不同质因数的最小正整数为210.【解析】【分析】质数:因数只有1和它本身的数,根据质数定义可得最小的四个质数,计算即可.9.【答案】解:∵2000=24×53,∴2000的所有不同质因数的和为:2+5=7.【解析】【分析】先将2000写成几个质因数积的形式,再找出不同的质因数,相加即可.10.【答案】解:111111+9×10k=3×37037+3×3×10k=3×(37037+3×10k),∴这个数除了1和它本身之外,还有因数3,∴形如111111+9×10k(k是非负整数)的正整数必为合数.【解析】【分析】先将原式分解成3×(37037+3×10k),由此可看出除了因数1和它本身之外,还有3这个因数,根据合数定义即可得证.11.【答案】解:依题可得:①n=6k时,∴n+3=6k+3=3(2k+1),与n+3为质数矛盾;②n=6k+1时,∴n+3=6k+1+3=2(3k+2),与n+3为质数矛盾;③n=6k+2时,∴n+7=6k+2+7=3(2k+3),与n+7为质数矛盾;④n=6k+3时,∴n+3=6k+3+3=6(k+1),与n+3为质数矛盾;⑤n=6k+4时,∴n+3=6k+4+3=6(k+1)+1,为质数;∴n+7=6k+4+7=6(k+2)-1,为质数;⑥n=6k+5时,∴n+7=6k+5+7=3(2k+4),与n+7为质数矛盾;∴n除以6所得的余数为4.【解析】【分析】根据题意分情况讨论:①n=6k时,②n=6k+1时,③n=6k+2时,④n=6k+3时,⑤n=6k+4时,⑥n=6k+5时,将n的值分别代入n+3或n+7,验证是否为质数,逐一分析即可.12.【答案】证明:∵n5-n=n(n4-1)=n(n+1)(n-1)(n2+1),开始讨论:要使n5-n被10整除,只要该式能够同时被2、5整除即可;∵该式中因式n(n+1)是连续的两个自然数,一定有一个是偶数,∴该式可以被2整除;下面讨论能否被5整除.不妨设:①n=5k,显然原式能被5整除;②n=5k+1时,则n-1=5k,显然原式能被5整除;③n=5k+2时,则n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1),∴能被5整除,显然原式能被5整除;④n=5k+3时,则n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2),∴能被5整除,显然原式能被5整除;⑤n=5k+4时,则n+1能被5整除;综上所述:无论n为何值,原式能被5整除.∴10|n5-n【解析】【分析】先将代数式分解因式,即n5-n=n(n+1)(n-1)(n2+1),原题等价于要使n5-n被10整除,只要该式能够同时被2、5整除即可;因为因式中n(n+1)是连续的两个自然数,一定有一个是偶数,从而可得该式可以被2整除;再来讨论能否被5整除,根据被5整除的余数分成5种情况:①n=5k,②n=5k+1,③n=5k+2,④n=5k+3,⑤n=5k+4,分析计算即可得证.13.【答案】证明:当n=43k+1(k≥1)时,∴n2+n+41=(43k+1)2+(43k+1)+41,=43(43k2+3k+1).∴是43的倍数.∵43k2+3k+1>1,∴这时n2+n+41是合数.【解析】【分析】令n=43k+1(k≥1),代入多项式,计算、化简得n=43(43k2+3k+1),从而可得式43的倍数,由43k2+3k+1>1,可得n是表示合数.14.【答案】证明:假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1显然N除以2、3、5、……、p都不能整除,有余数1;∴N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;∴不存在最大的质数,假设不成立,∴自然数中有无穷多个质数.【解析】【分析】此题用反证法来证明,假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1,根据整除的性质分析,可知N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;从而可得假设不成立,原命题成立.15.【答案】解:∵9个连续的自然数,∴末尾数字可能是0—9,①当末尾是0,2,4,6,8的数一定能被2整除;②当末尾是5的数一定能被5整除;∴只有末尾是1,3,7,9的数可能是质数;∴至少有4个偶数,5个连续的奇数,∵大于80的质数必为奇数(偶质数只有一个2),又∵每连续三个自然数中一定有一个是3的倍数,∴质数只可能在这5个连续的奇数中,∴质数个数不能超过4,即9个连续的自然数,都大于80.其中最多有4个质数.【解析】【分析】根据题意大于80的9个连续的自然数中末尾数字可能是0—9;根据被2或5整除的数的特性可知只有末尾是1,3,7,9的数可能是质数;即至少有4个偶数,5个连续的奇数,再根据情况分析即可得出答案.。
奥数质数合数分解质因素讲义及答案
数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。
(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。
)(3)合数:含有三个或三个以上因数的自然数。
(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。
例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。
解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。
任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。
例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。
五年级奥数第3讲 质数与合数
知识精讲
严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其他 注意,1既不是质数也不是合数。
质数说:1 不是我这儿 的!
合数说:1也 不是我这儿 的!
我们先来看一下关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位 两位质数。
(填写在横线上)
知识精讲
相信对100以内的质数较熟悉的同学做上面的题目会很轻松,质 数是我们后面学习的基础,因此同学们一定要牢牢记住常见的质数, 请同学们在下面的横线上写出100以内的所有质数.
27
33
37
53
57
73
77
所以:只有23、37、53、73这4个
例题二: (1)如果两个不同质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出。 (2)如果两个不同质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出。 (3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出。 【分析】对于第1小题依次枚举即可,可知这两个不同的质数一定都是奇数,那么后两小题 奇数吗?
这样连起来就是: 少年朋友亲切联欢一九九七相聚中山。
质数表是关键
练习一: 自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然
这实际 的质数
练习一:
解析:
N
( 都是一位数的质数!) (2、3、5、7)
知道N的数位上的数只能是2、3、 能是3和7。 依次枚举即可:
23
知识精讲
同学们还可以这样做,从大到小,写出100以内的质数。如果你能一个不少的写出来, 内的质数确实掌握得很牢固了,当然同学们写出的,这些质数只是质数大军中的冰山一角, 有无穷多个质数,比如接着100的就有四个质数,101,103,107,109.
小学奥数:质数与合数(二).专项练习及答案解析
5-3-2.质数与合数(二).题库 教师版 page 1 of1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。
模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。
21.五年级奥数第21讲——质数与合数
学生课程讲义只有1和本身两个因数的数称为质数,又叫素数。
除了0和1以外所有的自然数分为两类:一类是质数,如:2,3,5,7……;一类是合数,如:4,6,8,9……。
在自然数中质数与合数都是有无穷多个,在小学阶段,质数就是我们学习的重要内容之一,如:分节质因数,互质数,求最大公因数,最小公倍数等都对质数有所应用。
同时质数在中小学课内外的数学学习中也扮演着重要的角色。
【例1】七个连续的质数,从大到小排列为:a,b,c,d,e,f,g,已知他们的和是偶数,那么c=( )。
随堂练习1设有三个不相同的质数,它们的和是40,这三个质数是()。
【例2】是否存在两个质数,它们的和等于11 (1)(20个1)随堂练习2在3141,31415,314159,3141592,31415926, 31415927这六个数中,有且仅有一个质数,它是()【例3】将37拆成若干个不同的质数的和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的最小乘积是多少?随堂练习3一个质数的3倍与另一个质数的2倍之和等于2000,那么这两个质数的和是()。
【例4】用0-9这十个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是()。
随堂练习4正方体纸盒的每个面上都写着一个自然数,并且相对两个面所写的两数之和都相等,若18对面所写的是质数a;14对面所写的是质数b,35对面所写的是质数c,试求a+b+c的值。
【例5】三个质数倒数和是那么这三个质数和是()。
随堂练习5三个质数倒数和是这三个质数和是()。
——梦想从这里起飞【例6】已知三个合数A,B,C两两互质,且A×B×C=1001×28×11,那么A+B+C的最小值为()。
随堂练习6已知三个合数A,B,C两两互质,且A×B×C=11011×28,那么A+B+C的最大值是()练习题:1.两个质数的和是2001,这两个质数的乘积是()。
质数合数专题讲座
质数合数专题讲座知识要点:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例1 三个连续自然数的乘积是210,求这三个数。
解答:∵210=2×3×5×7∴可知这三个数是5、6和7。
例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解答:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。
∵17×23=391>11×29=319>3×37=111。
∴所求的最大值是391。
答:这两个质数的最大乘积是391。
例3 自然数123456789是质数,还是合数?为什么?解答:123456789是合数。
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。
例4 连续九个自然数中至多有几个质数?为什么?解答:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解答:∵5=5,6=2×3,7=7,14=2×7,15=3×5,这些数中质因数2、3、5、7各有2个,所以如把14(2×7)放在第一组,那么7和6(2×3)只能放在第二组,继而15(3×5)只能放在第一组,则5必须放在第二组。
奥数讲座:质数合数
质数合数分解质因数一、质数与合数的概念自然数可以按约数(即因数)的个数进行分类:①质数:只能被1和自身整除的自然数叫质数,即质数只有两个约数(即因数):1和它本身。
如2、3、5等②合数:除了能被1和自身整除外,还有能被其他整数整除的自然数叫合数,即,合数的约数(即因数)多于2个,除了1和它本身外,还有别的约数(即因数)。
如4、6、8等等③1 1不是质数也不是合数。
既不是质数也不是合数的自然数只有1注意:1不能质数也不是合数2是最小的质数,也是质数中唯一的偶数4是最小的合数100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97。
二、质数与合数的应用例1.3个质数的和是80,这3个质数的积最大是多少?解析:由于3个数的和是偶数,所以这3个数中必有一个是偶数,在质数中只有2是偶数,所以3个数中一定有2。
另两个质数的和是78,要使乘积最大,这两个质数应该相差尽可能小,显然,和是78的两个质数,41和37的差最小,即这两个数的积是最大。
2×37×41=3034这3个质数乘积最大是3034。
例2.一个两位质数,将它的十位数字与个位数字对调后,仍是一个两位质数,我们称这样的两位质数为“无暇质数”,则所有“无暇质数”之和等于多少?解析:设“无暇质数”为ab,那么ba也是质数因此,a、b无为奇数,容易检验,“无暇质数”分别是11、13、17、31、37、71、73、79、97共9个所以,它们的和=11+13+17+31+37+71+73+79+97=429例3.正方体纸盒的每个面上都写有一个自然数,并且相对两个面所写的两数之和都相等。
若18对面所写的质数是a,14对面所写的质数是b,35对面所写的质数是c,那么a+b+c=?解析:由题意可知18+a=14+b=35+c,要想等式成立,a、b、c 的奇偶性应分别为奇、奇、偶或偶、偶、奇。
小学奥数数论讲义 8-质数、合数与两大约数定理强化篇
质数、合数与两大约数定理1.质数、合数⑴除了2其余的质数都是奇数;⑵除了2和5,其余的质数个位数字只能是1,3,7或9;⑶如何判断一个数是否是质数?⑷常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个。
2.数字拆分—分解质因式相关名词:质因数、互质数、分解质因数例如:三个连续自然数的乘积是210,求这三个数。
210=2⨯3⨯5⨯7可知这三个数是5、6和7。
分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。
3.约数个数定理唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积例如:12=2⨯2⨯3=22⨯3约数个数定理:约数个数:(2+1)⨯(1+1)=6所有约数的和:(20+21+22)⨯(30+31)【例 1】两个质数之和为39,求这两个质数的乘积是多少?【巩固1】(2004年希望杯第二届五年级一试第8题,5分)a,b,c,d都是质数,并且a+b=33,b+c= 44,c+d=66,那么cd=。
【巩固2】7个连续质数从大到小排列是a、b、c、d、e、f、g。
已知它们的和是偶数,那么d是多少?【例 2】(2008年101中学考题)将200分拆成10个质数之和,要求其中最大的质数尽可能的小,那么此时这个最大的质数是,如要求最大的质数尽可能的大,那么此时这个最大的质数为。
【巩固】(2010年迎春杯六年级初试试题)用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是。
【例 3】下图为一个长方体,它的正面和上面的面积之和为209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?例3图【巩固】一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?【例 4】数160的约数个数是多少?它们的积呢?【巩固】筐里有300个桃子,如果不是一次全部拿出,也不一个一个地拿,要求每次的个数同样多,拿到最后正好不多不少,问共有多少种不同的拿法?【例 5】求在1到100中,恰好有10个约数的所有自然数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数:质数与合数(B)
年级班姓名得分
一、填空题
1. 在1~100里最小的质数与最大的质数的和是_____.
2. 小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一
个是合数.这四个数是____、____、____和____.
3. 把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.
4. 有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.
5. 两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.
6. 如果两个数之和是64,两数的积可以整除4875,那么这两数之差是
_____.
7. 某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.
8. 有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数
____________;第二组数是____________.
9. 有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.
10. 主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
”他站起来,走到窗前,看了看楼下的孩子说:“有两个很小的孩子,我知道他们的年龄了。
”主人家的楼号是_____ ,孩子的年龄是_____.
二、解答题
11.甲、乙、丙三位同学讨论关于两个质数之和的问题。
甲说:“两个质数之和一定是质数”.乙说:“两个质数之和一定不是质数”.丙说:“两个质数之和不一定是质数”.他们当中,谁说得对?
12. 下面有3,从中抽出一张、二张、三张,按任意次
.把所得数中的质数写出来.
13. 在100以内与77互质的所有奇数之和是多少?
14. 在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.
———————————————答案——————————————————————
答案:
1. 99
100,98是偶数,99是3倍数,从而知97是1~100中最大的质数,又最小的质数是2,所以最小的质数与最大的质数的和是99.
2. 3,3,5,8
根据这四个数中只有一个是合数,可知其他三个数是质数,将360分解质因数得:360=2⨯2⨯2⨯5⨯3⨯3
所以,这四个数是3,3,5和8.
3. 1992
依题意,将232323分解质因数得
232323=23⨯10101
=23⨯3⨯7⨯13⨯37
从而,全部不同质因数之和
AB=23+3+7+13+37=83
所以,A⨯B⨯AB=8⨯3⨯83=1992.
4. 36岁
根据三个学生的年龄乘积是1620的条件,先把1620分解质因数,然后再根据他们的年龄一个比一个大3岁的条件进行组合.
1620=2⨯2⨯3⨯3⨯3⨯3⨯5
=9⨯12⨯15
所以,他们年龄的和是9+12+15=36(岁)
5. 83,24
先把1992分解质因数,再根据两个数的和是107进行组合
1992=2⨯2⨯2⨯3⨯83
=24⨯83
24+83=107
所以,这两个数分别是83和24.
6. 14
根据两数之积能整除4875,把4875分解质因数,再根据两数之和为64进行组合.
4875=3⨯5⨯5⨯5⨯13
=(3⨯13)⨯(5⨯5)⨯5
=(39⨯25)⨯5
由此推得这两数为39和25.它们的差是39-25=14.
7. 15
解法一
因为相同两数相加之和为原数的2倍,相减之差为零,相乘之积为原数乘以原数,相除之商为1.所以原数的2倍加上原数乘以原数应是256-1=255.把255分解质因数得:
255=3⨯5⨯17
=3⨯5⨯(15+2)
=15⨯2+15⨯15
所以,这个数是15.
解法二
依题意,原数的2倍+0+原数⨯原数+1=256,即
原数的2倍+原数⨯原数=256-1
原数的2倍+原数⨯原数=255
把255分解质因数得
255=3⨯5⨯17
=15⨯(15+2)
=15⨯2+15⨯15
所以,这个数是15.
8. 21、22、65、76、153;34、39、44、45、133.
先把10个数分别分解质因数,然后根据两组中所包含质因数必须相等把这10个数分成两组:
21=3⨯7 22=2⨯11
34=2⨯17 39=3⨯13
44=2⨯2⨯11 45=3⨯3⨯5
65=5⨯13 76=2⨯2⨯19
133=7⨯19 153=3⨯3⨯17
由此可见,这10个数中质因数共有6个2,6个3,2个5,2个7,2个11,2个13,2个17,2个19.所以,每组数中应包含3个2,3个3,5、7、11、13、17和19各一个.于是,可以这样分组:
第一组数是:21、22、65、76、153;
第二组数是:34、39、44、45、133.
[注]若将分为两组拓广分为三组,则得到一个类似的问题(1990年宁波市江北区小学五年级数学竞赛试题):
把20,26,33,35,39,42,44,55,91等九个数分成三组,使每组的数的乘积相等.
答案是如下分法即可:
第一组:20,33,91;
第二组:44,35,39;
第三组:26,42,55.
9. 12
设这样的两位数的十位数字为A,个位数字为B,由题意依据数的组成知识,可知100A+B能被10A+B整除.
因为100A+B=90A+(10A+B),由数的整除性质可知90A能被10A+B整除.这样只要把90A分解组合,就可以推出符合条件的两位数.
2
10. 14;3岁,3岁,8岁
因为三个孩子年龄的积是72,所以,我们把72分解为三个因数(不一定是质因数)的积,因为小孩的年龄一般是指不超过15岁,所以所有不同的乘积式是
72=1⨯6⨯12=1⨯8⨯9
=2⨯3⨯12=2⨯4⨯9
=2⨯6⨯6=3⨯3⨯8
=3⨯4⨯6
三个因数的和分别为:19、18、17、15、14、14、13.其中只有两个和是相等的,都等于14.14就是主人家的楼号.如果楼号不是14,客人马上可以作出判断.反之客人无法作出判断,说明楼号正是14.亦即三个孩子年龄的和为14.此时三个孩子的年龄有两种可能:2岁、6岁、6岁;或3岁、3岁、8岁.当他看到有两个孩子很小时,就可以断定这三个孩子的年龄分别是3岁、3岁、8岁.主人家的楼号是14号.
11. 因为两个质数之和可能是质数如2+3=5,也可能是合数如3+5=8,因此甲和乙的说法是错误的,只有丙说得对.
12. 从三张卡片中任抽一张,有三种可能,即一位数有三个,分别为1、2、3,其中只有2、3是质数.
从三张卡片中任抽二张,组成的两位数共六个.但个位数字是2的两位数和个位与十位上数字之和是3的倍数的两位数,都不是质数.所以,两位数的质数只有13,23,31.
因为1+2+3=6,6能被3整除,所以由1、2、3按任意次序排起来所得的三位数,都不是质数.
故满足要求的质数有2、3、13、23、31这五个.
[注]这里采用边列举、边排除的策略求解.在抽二张卡片时,也可将得到六个两位数全部列举出来:12,13,21,23,31,32.再将三个合数12,21,32排除即可.
13. 100以内所有奇数之和是
1+3+5+…+99=2500,
从中减去100以内奇数中7的倍数与11的倍数之和
7⨯(1+3+...+13)+11⨯(1+3+ (9)
=618,
最后再加上一个7⨯11=77(因为上面减去了两次77),所以最终答数为 2500-618+77=1959.
[注]上面解题过程中100以内奇数里减去两个不同质数7与11的倍数,再加上一个公倍数7⨯11,这里限定在100以内,如果不是100以内,而是1000以内或更大的数时,减去的倍数就更多些而返回加上的公倍数有7⨯11的1倍,3倍,…也更多些,这实质上是“包含与排除”的思路.
14. 依题意知,每射一箭的环数,只能是下列11个数中的一个
0,1,2,3,4,5,6,7,8,9,10.
而甲、乙5箭总环数的积1764≠0,这说明在甲、乙5箭得到的环数里没有0
和10.
而1764=1⨯2⨯2⨯3⨯3⨯7⨯7是由5箭的环数乘出来的,于是推知每人有两箭中的环数都是7,从而可知另外3箭的环数是5个数
1,2,2,3,3
经过适当的分组之后相乘而得到的,可能的情形有5种:
(1)1,4,9;
(2)1,6,6;
(3)2,2,9;
(4)2,3,6;
(5)3,3,4.
因此,两人5箭的环数有5种可能:
7,7,1,4,9和是28;
7,7,1,6,6和是27;
7,7,2,2,9和是27;
7,7,2,3,6和是25;
7,7,3,3,4和是24。
∵甲、乙的总环数相差4,甲的总环数少.
∴甲的总环数是24,乙的总环数是28.。