圆的性质综合练习
初中数学《九上》第二十四章 圆-圆的有关性质 考试练习题
初中数学《九上》第二十四章圆-圆的有关性质考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、如图,A,B,C是⊙O上的三个点,若∠B=32° ,则∠AOC=()A .64°B .58°C .68°D .55°知识点:圆的有关性质【答案】A【分析】利用圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.即可解答.【详解】解:,故选:A .【点睛】本题考查了圆周角定理,理解定理是解题关键.2、在中,为直径,为上一点.(Ⅰ )如图① ,过点作的切线,与的延长线相交于点,若,求的大小;(Ⅱ )如图② ,为优弧上一点,且的延长线经过的中点,连接与相交于点,若,求的大小.知识点:圆的有关性质【答案】(Ⅰ )26° ;(Ⅱ )69° .【分析】(Ⅰ )连接 OC ,如图① ,根据切线的性质得∠OCP=90° ,再根据等腰三角形的性质得到∠OCA=∠CAB=32° ,则利用三角形外角性质可计算出∠POC ,然后利用互余计算∠P 的度数;(Ⅱ )如图② ,根据垂径定理的推论,由点 E 为 AC 的中点得到OD⊥AC ,则利用三角形外角性质得∠AOD=∠CAB+∠OEA=106° ,再根据圆周角定理得到,然后利用三角形外角性质可计算出∠DPA 的度数.【详解】(Ⅰ )连接,如图① ,为切线,,,,,,;(Ⅱ )如图② ,点为的中点,,,,,.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.3、在平面直角坐标系中,已知点A(2 , 0 ),点B(0 ,).点O(0 , 0 ).△AOB绕着点O顺时针旋转,得到△A ‘OB ‘ ,点A、B旋转后的对应点为A ‘ 、B ‘ ,记旋转角为α .(Ⅰ )如图 1 ,若α =30° ,求点B ‘ 的坐标;(Ⅱ )如图 2 ,若0° <α <90° ,设直线AA ‘ 和直线BB ‘ 交于点P,求证:AA ‘⊥BB ‘ ;(Ⅲ )在(Ⅱ )中的条件下,若0° <α <360° ,点C(﹣2 , 0 ).求线段CP长度的取值范围.(直接写出结果即可)知识点:圆的有关性质【答案】(Ⅰ )(,3 );(Ⅱ )证明见解析;(Ⅲ ) 2-2≤CP ≤2+2 .【分析】(Ⅰ )设A ‘B ‘ 与x轴交于点H,依据旋转的性质得出BO ∥A ‘B ‘ ,即可得到OH=OB ‘ =,B ‘H=3 ,进而得出点B ‘ 的坐标为(,3 );(Ⅱ )依据旋转的性质可得∠BOB ‘ =∠AOA ‘ =α ,OB=OB ‘ ,OA=OA ‘ ,即可得出∠OBB ‘ =∠OA ‘A=(180° ﹣α ),再根据∠BOA ‘ =90°+α ,四边形OBPA ‘ 的内角和为360° ,即可得到∠BPA ‘ =90° ,即AA ‘⊥BB ‘ ;(Ⅲ )作AB的中点M(1 ,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2 为半径的圆,进而利用两点之间的距离解答.【详解】解:(Ⅰ )如图 1 ,设A ‘B ‘ 与x轴交于点H,∵OA=2 ,OB=2,∠AOB=90° ,∴AB =4 ,∴∠ABO=∠B ‘ =30° ,∵∠BOB ‘ =α =30° ,∴BO∥A ‘B ‘ ,∵OB ‘ =OB=2,∴OH=OB ‘ =,B ‘H==3 ,∴ 点B ‘ 的坐标为(,3 );(Ⅱ )∵∠BOB ‘ =∠AOA ‘ =α ,OB=OB ‘ ,OA=OA ‘ ,∴∠OBB ‘ =∠OA ‘A=(180° ﹣α ),∵∠BOA ‘ =90°+α ,四边形OBPA ‘ 的内角和为360° ,l 由同弧所对的圆周角相等和直径所对的圆周角为90° 然后根据三角形内角和即可求出的度数.【详解】∵,∴,又∵AB是直径,∴,∴.故答案为:.【点睛】此题考查了同弧所对圆周角的性质和直径所对圆周角的性质,解题的关键是熟练掌握同弧所对圆周角的性质和直径所对圆周角的性质.5、如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3 : 1 ,则圆的面积约为正方形面积的()A . 27 倍B . 14 倍C . 9 倍D . 3 倍知识点:圆的有关性质【答案】B【分析】设OB =x,则OA =3x,BC =2x,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.【详解】解:由圆和正方形的对称性,可知:OA =OD,OB =OC,∵ 圆的直径与正方形的对角线之比为 3 : 1 ,∴ 设OB =x,则OA =3x,BC =2x,∴ 圆的面积=π(3x )2 =9πx2,正方形的面积==2x2,∴9πx2 ÷2x2 =,即:圆的面积约为正方形面积的14 倍,故选B .【点睛】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.6、如图,⊙中,弦与相交于点,, 连接.求证:⑴;⑵.知l ∴△ADE≌△CBE (ASA ),∴AE=CE .【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,① 圆心角相等,② 所对的弧相等,③ 所对的弦相等,三项“ 知一推二” ,一项相等,其余二项皆相等.7、如图,⊙O 是△ABC 的外接圆,∠AOB=60° , AB=AC=2 ,则弦 BC 的长为()A .B . 3C . 2D . 4知识点:圆的有关性质【答案】C【分析】如图,首先证得OA⊥BC ;然后由圆周角定理推知∠C=30° ,通过解直角△ACD 可以求得 CD 的长度.则 BC=2CD .【详解】设AO 与 BC 交于点 D .∵∠AOB=60° ,,∴∠C=∠AOB=30° ,又∵AB=AC ,∴∴AD⊥BC ,∴BD=CD ,∴ 在直角△ACD 中, CD=AC•cos30°=2×=,∴BC=2CD=2.故选C .【点睛】本题考查了圆周角定理,也考查了解直角三角形. 题目难度不大 .8、如图,AC为⊙O的弦,点B在上,若∠CBO=58° ,∠CAO=20° ,则∠AOB的度数为___ .知识点:圆的有关性质【答案】76°【分析】如图,连接OC.根据∠AOB =2∠ACB,求出∠ACB即可解决问题.【详解】解:如图,连接OC.∵OA =OC =OB,∴∠A =∠OCA =20° ,∠B =∠OCB =58° ,∴∠ACB =∠OCB -∠OCA =58°-20°=38° ,∴∠AOB =2∠ACB =76° ,故答案为:76° .【点睛】本题考查了等腰三角形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、如图,在⊙O中,=,则下列结论中:①AB =CD;②AC =BD;③∠AOC =∠BOD;④=,正确的是______ 填序号.知识点:圆的有关性质【答案】①②③④【分析】利用同圆或等圆中弧,弦以及所对的圆心角之间的关系逐项分析即可.【详解】解:∵ 在⊙O中,=,∴AB =CD,故① 正确;∵BC为公共弧,∴=,故④ 正确;∴AC =BD,故② 正确;∴∠AOC =∠BOD,故③正确.故答案为:①②③④ .【点睛】本题考查了弧,弦、圆心角之间的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等以及推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.10、如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=55° ,则∠D的度数是___ .知识点:圆的有关性质【答案】35°【分析】根据直径所对的圆周角是直角推出∠ACB=90° ,再结合图形由直角三角形的性质得到∠B=90° ﹣∠CAB=35° ,进而根据同圆中同弧所对的圆周角相等推出∠D=∠B=35° .【详解】解:∵AB是⊙O的直径,∴∠ACB=90° ,∵∠CAB=55° ,∴∠B=90° ﹣∠CAB=35° ,∴∠D=∠B=35° .故答案为:35° .【点睛】本题主要考查了直径所对的圆周角是直角,同弧所对的圆周角相等,解题的关键在于能够熟练掌握相关知识进行求解.11、已知⊙O的半径为2 ,A为圆内一定点,AO=1 .P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120° ,则OG的最大值为___ .知识点:圆的有关性质【答案】1+【分析】如图,将线段OA绕点O顺时针旋转120° 得到线段OT,连接AT,GT,OP.则AO =OT =1 ,AT =,利用相似三角形的性质求出GT,再根据三角形的三边关系解决问题即可.【详解】解:如图,将线段OA绕点O顺时针旋转120° 得到线段OT,连接AT,GT,OP.则AO =OT =1 ,过作于∵△AOT,△APG都是顶角为120° 的等腰三角形,∴∠OAT =∠PAG =30° ,同理:∴∠OAP =∠TAG,,∴,∴△OAP ∽△Tl(1 )求证:是的切线:(2 )若,求的长.知识点:圆的有关性质【答案】(1 )见解析;(2 )【分析】(1 )连接OC,根据圆周角定理得到∠ACB =90° ,根据等量代换得到∠DCO =90° ,即可证明DC 是圆O的切线;(2 )根据已知得到OA =2DA,证明△DCO ∽△DEB,得到,可得DA =EB,即可求出DA的长.【详解】解:(1 )如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB =90° ,∵OC,OB是圆O的半径,∴OC =OB,∴∠OCB =∠ABC,又∵∠DCA =∠ABC,∴∠DCA =∠OCB,∴∠DCO =∠DCA +∠ACO =∠OCB +∠ACO =∠ACB =90° ,∴OC ⊥DC,又∵OC是圆O的半径,∴DC是圆O的切线;(2 )∵,∴,化简得OA =2DA,由(1 )知,∠DCO =90° ,∵BE ⊥DC,即∠DEB =90° ,∴∠DCO =∠DEB,∴OC ∥BE,∴△DCO ∽△DEB,∴,即,∴DA =EB,∵BE =3 ,∴DA =EB =,经检验:DA =是分式方程的解,∴DA =.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.13、如图,PA、PB分别与⊙O相切于点A、B,∠P=70° ,C为弧AB上一点,则∠ACB的度数为___ .知识点:圆的有关性质【答案】125°【分析】由切线的性质得出∠OAP =∠OBP =90° ,利用四边形内角和可求∠AOB =110° ,再利用圆周角定理可求∠ADB =55° ,再根据圆内接四边形对角互补可求∠ACl 【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA、OB,求出∠AOB .14、如图,CD为⊙O的直径,且CD ⊥ 弦AB,∠AOC=50° ,则∠B大小为___ .知识点:圆的有关性质【答案】65°【分析】本题关键是理清弧的关系,找出等弧,则可根据“ 同圆中等弧对等角” 求出∠D 的度数,即可得出结果.【详解】解:∵CD ⊥AB,∴,∴,∴∠B =90°-25°=65° ;故答案为:65° .【点睛】此题综合考查垂径定理和圆周角的求法及性质.熟练掌握圆周角定理是解决问题的关键.15、如图,BD是⊙O的直径,∠CBD =30° ,则∠A的度数为()A .30°B .45°C .60°D .75°知识点:圆的有关性质【答案】C【分析】先求出∠D的度数,再由圆周角定理即可得出结论.【详解】∵BD是⊙O的直径,∴∠BCD =90° .∵∠CBD =30° ,∴∠D =90° ﹣30°=60° ,∴∠A =∠D =60° .故选C .【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.16、如图是一位同学从照片上剪切下来的海上日出时的画面,“ 图上” 太阳与海平线交于,两点,他测得“ 图上” 圆的半径为 10 厘米,厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16 分钟,则“ 图上” 太阳升起的速度为().A . 1.0 厘米 / 分B . 0.8 厘米分C . 12 厘米 / 分D . 1.4 厘米 / 分知识点:圆的有关性质【答案】A【分析】首先过⊙O的圆心O作CD ⊥AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10 分钟,即可求得“ 图上” 太阳升起的速度.【详解】解:过⊙O的圆心O作CD ⊥AB于C,交⊙O于D,连接OA,∴AC =AB =×16=8 (厘米),在Rt △AOC中,(厘米),∴CD =OC +OD =16 (厘米),∵ 从目前太阳所处位置到太阳完全跳出海面的时间为 16 分钟,∴16÷16=1 (厘米 / 分).∴“ 图上” 太阳升起的速度为 1.0 厘米 / 分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.17、如图,四边形内接于,为直径,,连接,若,则的度数为()A .50°B .65°C .75°D .130°知识点:圆的有关性质【答案】B【分析】根据可得∠DAC =∠CAB =25° ,根据AB是直径可得∠ACB =90° ,利用三角形内角和定理即可解决问题.【详解】解:∵,∴∠DAC =∠CAB =25° ,∵AB是直径,∴∠ACB =90° ,∴∠B =90°-25°=65° ,故选B .【点睛】本题主要考查圆周角定理,解题的关键是熟练掌握圆周角定理.18、已知⊙O的半径是7 ,AB是⊙O的弦,且AB的长为7,则弦AB所对的圆周角的度数为__________ .知识点:圆的有关性质【答案】60° 或120°【分析】∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH ⊥AB于H,根据垂径定理得到AH=BH=,则利用余弦的定义可求出∠OAH=30° ,所以∠AOB=120° ,然后根据圆周角定理得到∠ACB=60° ,根据圆内接四边形的性质得到∠ADB=120° .解:∠ACB和∠ADB为弦AB所对的圆周角,连接OA、OB,如图,过O点作OH ⊥AB于H,则AH=BH=AB=,在Rt △OAH中,∵cos ∠OAH===,∴∠OAH=30° ,∵OA=OB,∴∠OBH=∠OAH=30° ,∴∠AOB=120° ,∴∠ACB=∠AOB=60° ,∵∠ADB+∠ACB=180° ,∴∠ADB=180° ﹣60° =120° ,即弦AB所对的圆周角的度数为60° 或120° .故答案为60° 或120° .【点睛】本题考查了圆周角定理:同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.19、如图,A,B,C是⊙O上的三点,若,则的度数是()A .40°B .35°C .30°D .25°知识点:圆的有关性质【答案】B【分析】根据圆周角定理即可求解.【详解】∵,∴=故选B .【点睛】此题主要考查圆内角度求解,解题的关键是熟知圆周角定理的性质.20、已知,,,,则的最大值为__ .知识点:圆的有关性质【答案】作△ABC的外接圆⊙O,取优弧BC中点为D,由,可确定点A在上运动,由AC是弦,当为直径时,最大,当AC最大时,可得,在Rt△ABC中,即可求解【详解】解:作△ABC的外接圆⊙O,取优弧BC中点为D,∵∴∠B所对的弧>∠C所对的弧,∴ 点A在上运动∵AC是弦,当为直径时,最大,∴ 当AC最大时,在Rt△ABC中,,,,,,故答案为:.【点睛】本题考查三角形外接圆,弧与圆周角关系,直径是圆中最大弦,直径所对圆周角性质,锐角三角函数,题的难度较大,通过引辅助圆画出准确图形,利用锐角三角函数求解是关键.。
圆有关的性质练习题
圆有关的性质练习题1. 设有一个圆,半径为r。
问:圆的直径是多少?圆的周长是多少?圆的面积是多少?首先,直径是连接圆上任意两点并经过圆心的线段。
所以直径的长度就是2r。
其次,周长是圆上一整圈的长度。
根据圆周率的定义,圆的周长等于直径乘以π,即2πr。
最后,圆的面积是圆内部所有点组成的区域的大小。
根据圆的面积公式,圆的面积等于半径的平方乘以π,即πr²。
2. 给定一个圆,半径为r。
在圆上取一点A,并连接该点和圆心O,得到线段AO。
问:此线段AO是否会被圆分成两等分?根据圆的性质,半径是从圆心到圆上任一点的线段。
由于AO的两端分别是圆上任意两点,所以AO也是一个半径。
所以可以得出结论:线段AO会被圆分成两等分。
3. 设有两个圆,半径分别为r₁和r₂,且r₁ > r₂。
问:这两个圆是否会相交?首先,考虑两个圆的最短距离。
通过画图可知,当两个圆的圆心之间的距离小于r₁与r₂的和时,两个圆就会相交。
其次,当两个圆的圆心之间的距离等于r₁与r₂的和时,两个圆刚好相切。
圆心之间的距离大于r₁与r₂的和时,两个圆不相交。
4. 给定一个圆和一条垂直于圆心的直线。
问:直线是否会与圆相交?设直线与圆的圆心之间的距离为d,圆的半径为r。
根据勾股定理,直线与圆相交的条件是d < r。
由此可得,当直线与圆距离小于半径时,直线与圆相交;当直线与圆距离等于半径时,直线与圆相切;当直线与圆距离大于半径时,直线与圆不相交。
5. 在一个圆中,给定两个相交的弦AB和CD。
将这两个弦的中点连接,并将这条线段继续延长,与圆相交于点E。
问:点E与圆心的连线是否会垂直于弦AB和CD?首先,我们知道圆的半径是从圆心到圆上任一点的线段,并且半径与该点所在的弦垂直。
所以点E与圆心的连线垂直于弦AB和CD。
这是因为弦的中点连线的延长与圆相交的点E,必然位于圆的半径上。
而根据圆的性质,半径与该点所在的弦垂直。
通过以上几个问题的练习,我们对圆的性质有了更深入的了解。
圆的基本性质练习(含答案)
圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。
任何一条直径所在的直线都是它的 _____ ③。
它的对称中心是_ ④ _____________________ 。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。
常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
浙教版九上数学第三章 圆的基本性质综合复习题
第三章圆的基本性质综合复习题一、选择题(本大题有10小题,每小题3分,共30分)1.在⊙O中,AB为直径,点C为圆上一点,将劣弧AC⌢沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,⊙BAC=25°,则⊙DCA的度数()A.35°B.40°C.45°D.65°(第1题)(第2题)(第3题)(第4题)2.如图,在平面直角坐标系中,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心,2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为()A.√21−6√3B.3C.√13D.√103.如图,⊙O的内接四边形ABCD中,AB=3,AD=5,⊙BAD=60°,点C为弧BD的中点,则AC 的长是()A.4√3B.8√3C.4√33D.8√334.工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊙CD、BD⊙CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm5.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,⊙O的半径为32,AC=√5,则sinB的值是()A.√52B.√53C.32D.23(第5题)(第6题)(第7题)(第8题)6.如图,已知AB为⊙O直径,弦AC,BD相交于点E,M在AE上,连结DM.AB=1,⊙DMC=⊙B,则cos⊙AED的值始终等于线段长()A.DM B.EM C.AM D.CM7.如图,AB是半圆O的直径,四边形CDMN和DEFG都是正方形,其中点C,D,E在AB上,点F,N在半圆上.若半圆O的半径为10,则正方形CDMN的面积与正方形DEFG的面积之和是()A.25B.50C.100D.1508.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=4EF=4,过C、D、F的⊙O 与边AD交于点G,则DG=()A.2B.√5C.√6D.√79.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为()A.12√3B.12√2C.12D.1010.如图,将边长为6的正六边形ABCDEF沿HG折叠,点B恰好落在边AF的中点上,延长B′C′交EF 于点M,则C′M的长为()A.1B.65C.56D.9 5(第9题)(第10题)(第11题)(第12题)二、填空题(本大题有6小题,每小题4分,共24分)11.如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH 的边长为6,则正六边形ABCDEF的边长为.12.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB=.13.如图,在平面直角坐标系中,点A(-1,0),点B(1,0),点M(3,4),以M为圆心,2为半径作⊙M.若点P是⊙M上一个动点,则PA2+PB2的最大值为(第13题)(第14题)(第15题)(第16题)14.如图,ABCD为圆O的内接四边形,且AC⊙BD,若AB=10,CD=8,则圆O的面积为. 15.如图,AB是⊙O的直径,点M是⊙O内的一定点,PQ是⊙O内过点M的一条弦,连接AM,AP,AQ,若⊙O的半径为4,AM=√5,则AP⋅AQ的最大值为.16.如图,点A,C,D,B在⊙O上,AC=BC,⊙ACB=90°.若CD=a,tan⊙CBD=13,则AD的长是.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.如图,AB是⊙O的直径,C是的中点,CE⊙AB于E,BD交CE于点F,(1)求证:CF=BF;(2)若CD=12,AC=16,求⊙O的半径和CE的长。
2018-2019学年九年级上第3章圆的基本性质综合测评卷(含答案)
第3章综合测评卷一、选择题(每题3分,共30分)1.在Rt△ABC 中,∠C=90°,AC=4cm ,BC=3cm ,D 是AB 边的中点,以点C 为圆心、2.4cm 为半径作圆,则点D 与⊙C 的位置关系是(B ).A.点D 在⊙C 上B.点D 在⊙C 外C.点D 在⊙C 内D.不能确定2.如图所示,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为(D ).A.40°B.50°C.80°D.100°(第2题) (第3题)(第4题)(第5题)3.如图所示,四边形ABCD 内接于⊙O ,AB 经过圆心,∠B=3∠BAC,则∠ADC 等于(B ).A.100°B.112.5°C.120°D.135°4.运用图形变化的方法研究下列问题:如图所示,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图中阴影部分的面积是(A ).A. 225π B.10π C.24+4π D.24+5π 5.如图所示,在⊙O 中,半径OC 垂直弦AB ,垂足为点D ,且AB=8,OC=5,则CD 的长是(C ).A.3B.2.5C.2D.16.观察下列图片及相应推理,其中正确的是(B ).A. B.C. D.7.如图所示,四边形OABC 是菱形,点B ,C 在以点O 为圆心的上,且∠1=∠2,若扇形EOF 的面积为3π,则菱形OABC 的边长为(C ).A. 23 B.2 C.3 D.4 (第7题)(第8题)(第9题)8.如图所示,正六边形硬纸片ABCDEF 在桌面上由图1的起始位置沿直线不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm ,则正六边形的中心O 运动的路程为(D ).A.πcmB.2πcmC.3πcmD.4πcm9.如图所示,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 是的中点.P是直径MN 上一动点,则PA+PB 的最小值为(A ).A. 2B.1C.2D.2210.如图1所示为一张圆形纸片,小芳对其进行了如下连续操作:将纸片左右对折,折痕为AB ,如图2所示;将纸片上下折叠,使A ,B 两点重合,折痕CD 与AB 相交于点M ,如图3所示;将纸片沿EF 折叠,使B ,M 两点重合,折痕EF 与AB 相交于点N ,如图4所示; 连结AE ,AF ,如图5所示.经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF 是菱形;③△AEF 是等边三角形;④S △AEF ∶S 圆32∶4π.以上结论正确的有(D ).A.1个B.2个C.3个D.4个(第10题)二、填空题(每题4分,共24分)11.一条弦分圆周为5∶7,这条弦所对的圆周角为 75°或105° .12.如图所示,正五边形ABCDE 内接于⊙O,P ,Q 分别是边AB ,BC 上的点,且BP=CQ ,则∠POQ= 72° .(第12题) (第13题)(第15题)13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 8 mm .14.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y=kx -3k+4与⊙O 交于B ,C 两点,则弦BC 的长的最小值为 24 .15.如图所示,在扇形AOB 中,∠AOB=90°,C 是上的一个动点(不与点A ,B 重合),OD⊥BC,OE⊥AC,垂足分别为点D ,E.若DE=1,则扇形AOB 的面积为 2 . 16.正方形和圆都是人们比较喜欢的图形,给人以美的感受.某校数学兴趣小组在学习中发现:(第16题)(1)如图1所示,研究在以AB 为直径的半圆中,裁剪出面积最大的正方形CDEF 时惊喜地发现,点C 和点F 其实分别是线段AF 和BC 的黄金分割点.如果设圆的半径为r ,此时正方形的边长a 1= 552r .(2)如图2所示,如果在半径为r 的半圆中裁剪出两个同样大小且分别面积最大的正方形的边长a 2= 22r .如图3所示,并列n 个正方形时的边长an= 2r n 241+ . (3)如图4所示,当n=9时,我们还可以在第一层的上面再裁剪出同样大小的正方形,也可以再在第二层的上面再裁剪出第三层同样大小的正方形,则最多可以裁剪到第 5 层.三、解答题(共66分)17.(6分)如图所示,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22 时,求阴影部分的面积. (第17题) (第17题答图)【答案】如答图所示,连结OC.∵在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,∴∠COD=45°.∴OD=CD =22.∴OC=()()222222+=4.∴S 阴影=S 扇形BOC -S △ODC =36045×π×42-21×(22)2=2π-4. (第18题)18.(8分)如图所示,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A ,B 两点,若△ABM 为等腰直角三角形,求点M 的坐标.【答案】(第18题答图)如答图所示,过点M 作MC⊥l 于点C.∵△MAB 是等腰直角三角形,∴MA=MB.∴∠BAM=∠ABM=45°.∵MC⊥直线l ,∴∠BAM=∠CMA=45°.∴AC=CM.在Rt△ACM 中,∵AC 2+CM 2=AM 2,∴2CM 2=4,即CM =2.在Rt△OCM 中,∠COM=30°,∴OM=2CM =22.∴M(22,0). 根据对称性,在负半轴的点M(-22,0)也满足条件.∴点M 的坐标为(22,0)或(-22,0).19.(8分)赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.若桥跨度AB 约为40m ,主拱高CD 约10m.(1)如图1所示,请通过尺规作图找到桥弧所在圆的圆心O(保留作图痕迹).(2)如图2所示,求桥弧AB 所在圆的半径R.图1图2(第19题) 图1图2(第19题答图)【答案】(1)如答图1所示.(2)如答图2所示,连结OA.由(1)中的作图可知:△AOD 为直角三角形,D 是AB 的中点.∴AD=21 AB=20(m ).∵CD=10m,∴OD=(R -10)m.在Rt△AOD 中,由勾股定理得OA 2=AD 2+OD 2,即R 2=202+(R-10)2,解得R=25.∴桥弧AB 所在圆的半径R 为25m. (第20题)20.(10分)如图所示,△ABC 是⊙O 的内接三角形,C 是上一点(不与点A ,B 重合),设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数.(2)猜想α与β之间的关系,并给予证明.【答案】 (第20题答图)(1)如答图所示,连结OB ,则OA=OB ,∴∠OBA=∠OAB=35°.∴∠AOB=110°.∴β=21∠AOB=55°. (2)α+β=90°.证明:∵OA=OB,∴∠OBA=∠OAB=α.∴∠AOB=180°-2α. ∴β=21∠AOB=90°-α.∴α+β=90°. 21.(10分)如图所示,正方形ABCD 内接于⊙O ,E 为上任意一点,连结DE ,AE. (1)求∠AED 的度数.(2)如图2所示,过点B 作BF∥DE 交⊙O 于点F ,连结AF ,AF=1,AE=4,求DE 的长.图1图2(第21题) 图1图2(第21题答图)【答案】(1)如答图1所示,连结OA ,OD.∵四边形ABCD 是正方形,∴∠AOD=90°.∴∠AED=21 ∠AOD=45°.(2)如答图2所示,连结CF ,CE ,CA ,BD ,过点D 作DH⊥AE 于点H.∵BF∥DE,∴∠FBD=∠EDB. ∵四边形ABCD 是正方形,∴AB∥CD.∴∠ABD=∠CDB.∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°.∵CD=AB ,∴△CDE ≌△ABF.∴CE=AF=1.∴AC=22CE AE =17.∴AD=22AC= 234.∵∠DHE=90°,∴∠HDE=∠HED=45°.∴DH=HE.设DH=EH=x.在Rt△ADH 中,∵AD 2=AH 2+DH 2,∴(234)2=(4-x)2+x 2,解得x=23或25.∴DE=2DH=223或225. 22.(12分)已知⊙O 中,AB=AC ,P 是∠BAC 所对弧上一动点,连结PB ,PA .(1)如图1所示,把△ABP 绕点A 逆时针旋转到△ACQ ,求证:P ,C ,Q 三点在同一条直线上.(2)如图2所示,连结PC ,若∠BAC=60°,试探究PA ,PB ,PC 之间的关系,并说明理由.(3)若∠BAC=120°,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出它们之间的数量关系,不需证明.(第22题) 图1图2(第22题答图)【答案】(1)如答图1所示,连结PC.∵把△ABP 绕点A 逆时针旋转到△ACQ,∴∠ABP=∠ACQ. ∵四边形ABPC 为⊙O 的内接四边形,∴∠ABP+∠ACP=180°.∴∠ACQ+∠ACP=180°.∴P,C ,Q 三点在同一条直线上.(2)PA=PB+PC.理由如下:如答图2所示,把△ABP 绕点A 逆时针旋转到△ACQ.∴P,C ,Q 三点在同一条直线上,∠BAP=∠CAQ,AP=AQ ,PB=CQ.∵∠BAC=60°,即∠BAP+∠PAC=60°,∴∠PAC+∠CAQ=60°,即∠PAQ=60°.∴△APQ 为等边三角形.∴PQ=PA.∴PA=PC+CQ=PC+PB.(3)(2)中的结论不成立.3PA=PB+PC.23.(12分)某班学习小组对无盖的纸杯进行制作与探究,所要制作的纸杯如图1所示,规格要求:杯口直径AB=6cm ,杯底直径CD=4cm ,杯壁母线AC=BD=6cm.请你和他们一起解决下列问题:(1)小顾同学先画出了纸杯的侧面展开示意图(如图2所示,忽略拼接部分),得到图形是圆环的一部分.①图2中的长为 6πcm ,的长为 4πcm ,ME=NF= 6cm .②要想准确画出纸杯侧面的设计图,需要确定MN 所在圆的圆心O ,如图3所示.小顾同学发现之间存在以下关系:,请你帮她证明这一结论.③根据②中的结论,求所在圆的半径r 及它所对的圆心角的度数n°.(2)小顾同学计划利用矩形、正方形纸各一张,分别按如图4、图5所示的方式剪出这个纸杯的侧面,求矩形纸片的长和宽以及正方形纸片的边长.(第23题)【答案】(1)6πcm 4πcm 6cm②设MN 所在圆的半径为r ,所对的圆心角度数为n°,则, ∴.③∵,解得r=12.∵=180r n π,∴180r n π=4π, 解得n=60.∴所在圆的半径r 为12cm ,它所对的圆心角的度数为60°.(2)如答图所示,连结EF ,延长EM ,FN 交于点O ,(第23题答图)设RS 与交于点P ,OP 交ZX 于点Q.∵∠MON=60°,∴△MON 和△EOF 是等边三角形,∴EF=12+6=18,∵OQ⊥MN,MQ=QN ,∴∠QON=30°.∴OQ=63.∴长方形的宽为(18-63)cm. 设正方形边长为x (cm ).∵EF=18,∴BE=BF=92.在Rt△AOE 中,AO 2+AE 2=OE 2,即x 2+(x-92)2=182,解得x=29 (2±6),∴正方形边长为29 (2+6)cm.。
圆的性质练习题
圆的性质练习题1. 以下哪个说法是关于圆心的?- (A) 圆心是圆的中点- (B) 圆心位于圆周上- (C) 圆心与半径相等- (D) 圆心可以位于圆外答案:(A) 圆心是圆的中点2. 在一个圆中,有两条相交的弦AB和CD,若弦AB的长度为12,弦CD的长度为16,那么弦AB的一半加上弦CD的一半等于多少?答案:弦AB的一半加上弦CD的一半等于143. 下列哪个选项不能确定一个圆?- (A) 圆心和半径- (B) 直径和半径- (C) 弦和半径- (D) 弧和半径答案:(C) 弦和半径4. 若一个圆的直径为10,那么它的半径是多少?答案:半径是55. 下列哪个说法是关于切线的?- (A) 切线与圆相切于圆的内部- (B) 切线与圆相切于圆的外部- (C) 切线与圆的切点位于圆的任意位置- (D) 切线与圆不可能相切答案:(B) 切线与圆相切于圆的外部6. 如果AB是一个圆的直径,CD是一个切线,且切点为E,那么角CED的度数是多少?答案:角CED的度数是90度7. 以下哪个选项不能作为一个圆的弧长?- (A) 3- (B) 3π- (C) π/2- (D) 2π答案:(C) π/28. 若一个圆的半径为8,那么它的周长是多少?答案:周长是16π9. 若一个圆的周长为12π,那么它的直径是多少?答案:直径是610. 以下哪个说法是关于圆的面积的?- (A) 圆的面积与周长成正比- (B) 圆的面积与半径的平方成正比- (C) 圆的面积与直径成正比- (D) 圆的面积与弧度成正比答案:(B) 圆的面积与半径的平方成正比以上是关于圆的性质的练习题,希望能帮助你巩固对圆的相关概念的理解。
请根据题目给出的选项选择正确答案,并核对答案的准确性。
圆的有关性质练习
4.如图,弦AB把圆周分成1:2的两部分, 已知⊙O半径为1,则弦长AB为 。
A
O B
⌒的中点, 5. 如图,A,B是⊙O上的两点,∠AOB=120°,C是AB 求证:四边形OACB是菱形.
6.如图,AB为⊙O的直径,过⊙O上一点C作CD⊥AB, 交⊙O于D,∠OCD的平分线交⊙O于P,当C点在上半圆 上(不包括AB两点)移动时,点P的位置是否发生改变? 请说明理由。 C
3. 四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数 比可能是( ) A. 1∶3∶2∶4 B. 7∶5∶10∶8 C. 13∶1∶5∶17 D. 1∶2∶3∶4 E D 4. 如图,∠E=30°,AB=BC=CD, 则∠ACD的度数为( ) A C A. 12.5° B. 15° O C. 20° D. 22.5°
D
C y A O j B x E
O A P C B
D
4.如图,半径为6的⊙E在平面直角坐标系中与x轴交于A,B 两点,与y轴交于C,D两点,已知C(0,3),D(0,-7), 则圆心E的坐标是 。
5.(易错)已知⊙O的直径CD=10,AB是⊙O的弦, AB⊥CD,垂足为M,且AB=8,求AC的长。
3.如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF, HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的 大小关系为 。 C
G M E H D
c
N
B O
b a
F
A
A
B
C
D
4.如图,分别以A,B为圆心,线段AB的长为半径的两个 圆相交于C,D,则∠CAD的度数为 。
5.已知:如图,在△ABC中,∠C=90°, 求证:A、B、C三点在同一个圆上.
圆的认识练习题
圆的认识练习题
圆是几何中的一个基本概念,广泛应用在数学、物理等领域。
了解和熟悉圆的性质和相关概念对于学习几何非常重要。
为此,以下是一些关于圆的认识练习题,帮助巩固和加深对圆的理解。
练习题1:基本概念
1. 圆是什么形状?
2. 圆的特点有哪些?
3. 请描述一下圆的半径和直径的关系。
4. 圆的周长公式是什么?
5. 圆的面积公式是什么?
练习题2:圆的性质
1. 判断下列说法是否正确:如果两个圆的半径相等,那么它们的面积一定相等。
2. 判断下列说法是否正确:如果两个圆的半径相等,那么它们的周长一定相等。
3. 如果一个圆的半径是3cm,那么它的直径是多少?
4. 如果一个圆的直径是8cm,那么它的半径是多少?
5. 如果一个圆的周长是12π cm,那么它的半径是多少?
6. 如果一个圆的周长是30 cm,那么它的半径是多少?
练习题3:圆和其他几何图形的关系
1. 判断下列说法是否正确:圆是正方形的一种特殊情况。
2. 判断下列说法是否正确:圆不是任何一种多边形。
练习题4:圆的应用
1. 将一个正方形分成四等分,可以得到4个什么形状的区域?
2. 请描述一下如何用圆型盖子来覆盖一个长方形饼干盒?
3. 请描述一下如何用圆来构建一个简单的钟表表盘。
练习题5:圆的建模
1. 请描述一下如何用数学表达式定义一个圆。
2. 设计一个程序,在屏幕上绘制一个圆。
通过完成上述练习题,你可以加深对圆的认识和理解。
同时,练习题也有助于培养你的解题思维和分析能力。
希望这些练习题能对你在几何学习中有所帮助!。
初中数学专题训练:圆的有关概念和性质(附参考答案)
初中数学专题训练:圆的有关概念和性质(附参考答案)1.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10 cm,AB=16 cm.若从目前太阳所处的位置到太阳完全跳出海平面的时间为16 min,则“图上”太阳升起的速度为( )A.1.0 cm/min B.0.8 cm/minC.1.2 cm/min D.1.4 cm/min2.如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC⏜的度数是( )=80°,则BDA.30°B.25°C.20°D.10°3.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O 作OF⊥AC于点F,延长FO交BE于点G.若DE=3,EG=2,则AB的长为( )A.4√3B.7C.8 D.4√54.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )C.105°D.110°5.如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为( )A.2√3B.3√2C.2√5D.√5⏜的中点.若∠BAC=35°,则∠AOB 6.如图,已知点A,B,C在⊙O上,C为AB等于( )A.140°B.120°C.110°D.70°7.如图,△ABC内接于⊙O,AD是⊙O的直径.若∠B=20°,则∠CAD的度数是( )A.60°B.65°C.70°D.75°8.如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为( )A.30°B.45°9.如图,在圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是( )A.25°B.30°C.35°D.40°10.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心,以OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°11.往水平放置的半径为13 cm 的圆柱形容器内装入一些水以后,截面图如图所示.若水面宽度AB=24 cm,则水的最大深度为( )A.5 cm B.8 cmC.10 cm D.12 cm12.如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=( )A.23°B.24° C.25°D.26°13.如图所示,在Rt△ABC中,∠ACB=90°,AC=2√3,BC=3,点P为△ABC 内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )A.3 B.3√3C.3√34D.3√3214.如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为________.15.如图所示,点A,B,C是⊙O上不同的三点,点O在△ABC的内部,连接BO,CO,并延长线段BO交线段AC于点D.若∠A=60°,∠OCD=40°,则∠ODC=______°.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=10,BE=2,则⊙O的半径OC=______.17.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB ,量得AB⏜的中心C 到AB 的距离CD =1.6 cm ,AB =6.4 cm ,很快求得圆形瓦片所在圆的半径为_____cm.18.如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_______.19.如图,在⊙O 中,两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求⊙O 的半径长; (2)点F 在CD 上,且CE =EF ,求证:AF ⊥BD .20.如图,已知AC 为⊙O 的直径,直线PA 与⊙O 相切于点A ,直线PD 经过⊙O 上的点B 且∠CBD =∠CAB ,连接OP 交AB 于点M .求证: (1)PD 是⊙O 的切线; (2)AM 2=OM ·PM .21.如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心、3为半径的⊙O与OB交于点C,过点C作CD⊥OB交AB于点D,P是边OA上的动点,则PC+PD的最小值为_______.22.如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC =∠ADB.(1)求证DB平分∠ADC,并求出∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F.若AC=AD,BF=2,求此圆的半径长.参考答案1.A 2.C 3.B 4.D 5.D 6.A7.C 8.D 9.A 10.C11.B 12.D 13.D17. 4 18.2√314.45°15.80 16.29419.(1)⊙O的半径长为3√5(2)证明略20.(1)证明略(2)证明略21.2√1022.(1)证明略∠BAD=90°(2)圆的半径长为4。
专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题23圆的有关性质(共38题)一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC 的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.414.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.515.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD 为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD 为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE 的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC 为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。
九年级数学同步练习-圆的有关性质
24.1圆的有关性质1、有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是().A. 1B. 2C. 3D. 42、如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是cm.3、下列结论正确的是().A. 优弧一定大于劣弧B. 相等的圆心角所对的弧相等C. 外心到三角形各边的距离相等D. 同弧或等弧所对的圆周角相等4、下列结论正确的是().A. 经过圆心的直线是圆的对称轴B. 直径是圆的对称轴C. 与圆相交的直线是圆的对称轴D. 与直径相交的直线是圆的对称轴5、下列说法正确的是().A. 弦是直径B. 弧是半圆C. 直径是圆中最长的弦D. 半圆是圆中最长的弧6、在同圆或等圆中,下列说法错误的是().A. 相等弦所对的弧相等B. 相等弦所对的圆心角相等C. 相等圆心角所对的弧相等D. 相等圆心角所对的弦相等7、半径为9cm的圆中,长为12πcm的一条弧所对的圆心角的度数为.8、如图,⊙O中,如果∠AOB=2∠COD,那么().A. AB=2CDB. AB<DCC. AB<2DCD. AB>2DC9、如图,AB,CD是⊙O的直径,AE⌢=BD⌢,若∠AOE=32°,则∠COE的度数是().A. 32°B. 60°C. 68°D. 64°10、下列命题中正确的是().A. 弦是圆上任意两点之间的部分B. 半径是弦C. 直径是最长的弦D. 弧是半圆,半圆是弧11、已知⊙O的半径为5cm,则圆中最长的弦长为cm.12、以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;其中正确的个数是().A. 4B. 3C. 2D. 113、下列说法中,不正确的是().A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧14、下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有().A. 1个B. 2个C. 3个D. 4个15、下列说法中,正确的是().A. 相等的圆心角所对的弦相等B. 圆心角的度数等于它所对弧的度数C. 相等的弦所对的弧相等D. 相等的圆心角所对的弧相等16、下列说法中正确的是().A. 长度相等的两条弧相等B. 相等的圆心角所对的弧相等C. 相等的弦所对的弧相等D. 相等的弧所对的圆心角相等17、下面四个图中的角,为圆心角的是().A.B.C.D.18、已知,如图,∠AOB=∠COD,下列结论不一定成立的是().A. AB=CDB. AB⌢=CD⌢C. △AOB≌△CODD. △AOB、△COD都是等边三角形1 、【答案】 B;【解析】①确定一个圆的条件是确定圆心与半径,故此说法错误;②直径是弦,直径是圆内最长的弦,故此说法正确;③只有过圆心的弦才是直径,故此说法错误;④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,故此说法正确.故错误的说法是①③,共2个.故选B.2 、【答案】4;【解析】∵AB=2cm,∴圆的直径是4cm.故答案为:4.3 、【答案】 D;【解析】 A选项 : 必须在同圆或等圆中,优弧一定大于劣弧,故本选项说法错误.B选项 : 必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误.C选项 : 外心到三角形各顶点的距离相等,故本选项说法错误.D选项 : 同弧或等弧所对的圆周角相等,故本选项说法正确.4 、【答案】 A;【解析】A.对称轴是直线且过圆心,故A正确;B.直径是线段,故B错误;C.不符合圆的对称轴性,故C错误;D.没有说过圆心,故D错误.故选A.5 、【答案】 C;【解析】 A选项 : 直径是弦,但弦不一定是直径,故A错误;B选项 : 半圆是弧,但弧不一定是半圆,故B错误;C选项 : 直径是圆中最长的弦,故C正确;D选项 : 半圆是小于优弧而大于劣弧的弧,故D错误;6 、【答案】 A;【解析】A、相等弦所对的弧不一定相等,故本选项错误;B、相等弦所对的圆心角相等,故本选项正确;C、相等圆心角所对的弧相等,故本选项正确;D、相等圆心角所对的弦相等,故本选项正确.7 、【答案】240°;【解析】设圆心角的度数为n,=12π,则nπ×9180解得n=240,所以所求圆心角为240°.8 、【答案】 C;【解析】如图,过点O作OE⊥AB交⊙O于点E,连接AE、BE,∠AOB,∴∠AOE=∠BOE=12∠AOB,又∵∠COD=12∴∠AOE=∠BOE=∠COD,∴CD=AE=BE,∵在△ABE中,AE+BE>AB,∴2CD>AB.故选C.9 、【答案】 D;【解析】∵AE⌢=BD⌢,∴∠BOD=∠AOE=32°,又∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.10 、【答案】 C;【解析】 A选项 : 弧是圆上任意两点之间的部分,弦是圆上任意两点的连线,故A错误;B选项 : 半径不是弦,故B错误;C选项 : 直径是最长的弦,故C正确;D选项 : 半圆是弧,弧不一定是半圆,故D错误.11 、【答案】10;【解析】∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.12 、【答案】 D;【解析】①直径相等的圆是等圆,符合等圆的性质,故本小题正确;②长度相等弧不一定重合,因此不一定是等弧,故本小题错误;③在同圆或等圆中,相等的弦所对的弧也相等,故本小题错误;④圆的对称轴是直径所在的直线,故本小题错误;所以D选项是正确的.13 、【答案】 D;【解析】 A选项 : 直径是最长的弦,正确;B选项 : 同圆中,所有的半径都相等,正确;C选项 : 圆既是轴对称图形,也是中心对称图形,正确;D选项 : 只有在同圆和等圆中,长度相等的弧是等弧,错误.14 、【答案】 A;【解析】①同圆或等圆中长度相等的弧是等弧,所以本选项说法错误,不符合题意;②同圆或等圆中相等的圆心角所对的弧相等,所以本选项说法错误,不符合题意;③同圆或等圆中劣弧一定比优弧短,所以本选项说法错误,不符合题意;④直径是圆中最长的弦,本选项说法正确,符合题意;故选A.15 、【答案】 B;【解析】A.必须在“同圆或等圆”中.C.相等的弦所对的弧有优弧、劣弧之分.D.必须在“同圆或等圆”中.16 、【答案】 D;【解析】 A、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;B、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、在同圆或等圆中,相等的弦所对的优弧或劣弧相等,故本选项错误;D、相等的弧所对的圆心角相等,正确,故选D.17 、【答案】 D;【解析】圆心角的顶点必须在圆心上,∴选项A,B,C均不正确,故选D.18 、【答案】 D;【解析】∵∠AOB=∠COD,∴AB=CD,AB⌢=CD⌢,∵OA=OB=OC=OD,∴△AOB≌△COD,∴A、B、C成立,D不一定成立,故选:D.。
圆的两个重要性质综合练习
初三数学通用版圆的两个重要性质综合练习(答题时间:60分钟)一、选择题1. AB 、CD 分别是两个圆中的弦,如果AB =CD ,那么AB CD ⋂⋂与的关系是( )A. AB CD ⋂<⋂B. AB CD ⋂=⋂C. AB CD ⋂>⋂D. 不能确定2. 如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,垂足为C 。
若OC =3,则弦AB 的长为( )A. 4B. 6C. 8D. 10 3. 半径为6的⊙O 内一点D 到O 的距离为3,则过D 点的最短弦长为( )A. 33B.3C. 63D. 无最短弦4. ⊙O 的半径为6,弦长为一元二次方程x x 2560--=的一根,则弦心距及弦所对的圆心角为( )A.3和30°B.3和60°C. 33和30°D .33和60°二、填空题1. 已知:如图,⊙O 的直径AB =15,弦CD ⊥AB 于点E ,BE =3,则CD 的长为______________。
2. 已知:CD 为⊙O 的直径,弦AB 交CD 于E ,AE =BE ,AB =6,CE =1,则⊙O 的半径长为_________。
3. 如图,在⊙O 中,如果AB AC ⋂=⋂2,那么AB_________2AC 。
(填“>”、“=”或“<”)4. 如图,将⊙O 沿着弦AB 翻折,劣弧恰好经过圆心O ,若⊙O 的半径为4,则弦AB 的长度等于___________。
三、解答题1. 已知:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,试比较AC 与BD 长度的大小,并说明理由。
2. 已知:如图,△ABC 是等边三角形,BC 是⊙O 的直径,AB 、AC 边分别交⊙O 于D 、E两点.求证:BD DE EC ⋂=⋂=⋂3. 如图,在⊙O 中,P 是弦AB 上一点,AB =10cm ,PB =4cm ,OP =2.5cm ,求⊙O 的周长。
圆的基本性质经典题库
第三章圆的基本性质第一节圆第1课时[基础训练]1.下列结论正确的是( )A.弦是直径 B.弧是半圆 C.半圆是弧 D.过圆心的线段是直径2.两圆的圆心都是O,半径分别是r1, r2 ( r l < r2 ) , 若r l <OP<r2、则点P在( )A.大圆外 B.小圆内 C.大圆内,小圆外 D.无法确定3.若OP的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与OP的位置关系是( )A.在⊙P内 B.在⊙P内上 C.在⊙P外 D.无法确定4. 已知⊙O的半径长6cm,P为线段O A的中点,若点P在⊙O上,则OA的长是( )A.等于6cm B.等于12cm C.小于6cm D .大于12cm5.圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 .6.在Rt△ABC中,∠C=900, CD⊥AB, AB=2, BC=3,若以C为圆心,以2为半径作⊙C,则点A在⊙C ,点 B 在⊙C ,点D在⊙C .7.一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________.8.如图,AB, CD为⊙O的两条直径,E, F 分别为OA, OB的中点,求证:四边形CEDF是平行四边形.[综合提高]1. ⊙0的半径为13cm,圆心O到直线l的距离d=OD=5cm.在直线l上有三点P,Q,R,且PD = 12cm , QD<12cm, RD>12cm,则点P在,点Q在,点R在 .2.在以AB=5cm为直径的圆上,到直线AB的距离为2.5cm的点有( )A.无数个个 C. 2个 D. 4个3. AB为⊙0的直径,C为⊙O上一点,过C作CD⊥AB于点D,延长CD至E,使DE=CD,那么点E的位置( )A.在⊙0 内 B.在⊙0上 C.在⊙0外 D.不能确定4. 在⊙0中,半径为6,圆心O在坐标原点上,点P的坐标为(3,5),则点P与⊙0的位置关系是( )A.点P在⊙0内 B.点P在⊙0上 C.点P在⊙0外 D.不能确定5.如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,BC=a,EF=b, NH=C,则下列各式中正确的是( )>b>c =b=c >a>b >c>a6.在平面直角坐标系内,以原点O为圆心、5为半径作O,已知A、B、C).试判断A、B、三点的坐标分别为A(3,4),B(-3,-3),C(4,10C三点与O的位置关系.7.⊙0的半径为2,点P到圆心的距离OP=m, 且m使关于二的方程2x2-22x+m-1=0有实根,试确定点P的位置.[拓展延伸]如图,点P的坐标为(4,0), p的半径为5,且p与x轴交于点A,B,与y轴交于点 C,D, 试求出点A , B,C,D的坐标.第2课时[基础训练]1.判断正误.(1)三点确定一个圆. ( )(2)已知圆心和半径可以确定一个圆. ( )(3)已知圆心和圆上一点可以确定一个圆. ( )(4) 已知半径和圆上一点可以确定一个圆. ( )(5)已知半径和圆上两点可以确定一个圆. ( )2.下列说法正确的是( )A.一个点可以确定一条直线 B.两个点可以确定两条直线C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆3. 直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( ).2 C4. 下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆D.任何一个四边形都有一个外接圆5. 下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.[综合提高]三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在______________.2.如果以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆,若这个四边形四条边的中点都在这个圆上,那么这个四边形是 ( ) A .矩形 B .正方形 C .等腰梯形 D .菱形3. 下列命题正确的个数有( )① 矩形的四个顶点在同一个圆上; ② 梯形的四个顶点在同一个圆上; ③ 菱形的四边中点在同一个圆上; ④ 平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 4.在Rt △ABC 中,AB=6 , BC=8,那么这个三角形的外接圆直径是( ) A. 5 .10 C 或 4 D. 10或8 5.已知等腰三角形ABC 中,AB=AC ,O 是ABC ∆的外接圆,若 O 的半径是4,120BOC ∠=,求AB 的长.6.如图所示,平原上有三个村庄A 、B 、C ,现计划打一口水井p ,使水井到三个村庄的距离相等。
圆的性质与圆周率综合练习题
圆的性质与圆周率综合练习题一、选择题1. 已知圆的半径为5cm,求其直径的长度是多少?A. 5cmB. 10cmC. 15cmD. 20cm2. 若圆的半径为r,那么该圆的面积是多少?A. πrB. 2πrC. πr²D. 2πr²3. 已知圆的半径为6cm,求其周长的长度是多少?A. 6cmB. 12cmC. 18cmD. 36cm4. 圆的面积公式是什么?A. πrB. 2πrC. πr²D. 2πr²5. 若圆的直径为8cm,那么其半径的长度是多少?A. 4cmB. 8cmC. 12cmD. 16cm二、填空题1. 半径为10cm的圆的面积是_________平方厘米。
2. 半径为3cm的圆的周长是_________厘米。
3. 圆的直径是半径的_________倍。
4. 圆的周长等于_________长度的一半。
5. 圆周率的近似值为_________。
三、解答题1. 计算半径为7cm的圆的面积和周长。
解:圆的面积公式为πr²,代入半径7cm,得到:面积= π × 7² = 49π 平方厘米圆的周长公式为2πr,代入半径7cm,得到:周长= 2π × 7 = 14π 厘米2. 若圆的面积为154π平方厘米,求其半径和周长的长度。
解:已知面积= 154π,根据面积公式πr²,得到:154π = πr²r² = 154r ≈ √154r ≈ 12.4圆的周长公式为2πr,代入半径12.4cm,得到:周长≈ 2π × 12.4 ≈ 24.8π 厘米综上,半径约为12.4cm,周长约为24.8π厘米。
3. 若圆的半径为r cm,求其直径、面积和周长与半径的关系。
解:直径 = 2r cm面积= πr² 平方厘米周长= 2πr 厘米可以看出,直径是半径的两倍,面积是半径的平方倍,周长是半径的两倍π倍。
初三圆的基本性质练习题
初三圆的基本性质练习题1. 判断题1) 四分之一圆的圆心角为90度。
2) 每个半圆的弧长是直径的一半。
3) 在同一圆上,弧长相等的弧对应的圆心角相等。
4) 在同一圆上,圆心角相等的弧的弧长相等。
5) 半径相等的两个圆,面积相等。
2. 选择题1) 半径为r的圆,其面积S等于下面哪个式子?a) S = πrb) S = 2πrc) S = πr^2d) S = 2πr^22) 如果圆的直径是8cm,那么该圆的半径是多少?a) 2cmb) 4cmc) 6cmd) 8cm3) 半径为3cm的圆,它的周长等于多少?a) πcmb) 3πcmc) 6πcmd) 9πcm4) 一个扇形的圆心角是120度,如果圆的半径为5cm,那么该扇形的弧长是多少?a) 2.5cmb) 5cmc) 10cmd) 20cm3. 计算题1) 半径为6cm的圆,计算其面积和周长。
2) 直径为12cm的圆,计算其面积和周长。
3) 圆的周长为20πcm,计算其半径和面积。
4) 一个扇形的圆心角是60度,半径为8cm,计算其弧长和面积。
5) 两个圆的面积分别为36πcm^2和64πcm^2,它们的半径分别是多少?4. 应用题1) 一个半径为10cm的圆中,切一个等边三角形,求三角形的边长。
2) 一个半径为r的圆中,切一个等边三角形,求三角形的边长与r的关系。
3) 一个直径为20cm的圆,在圆的外部连接两个相切的切线,连接切线的两个端点和圆心构成一个直角三角形,请计算该三角形的斜边长。
4) 一个半径为5cm的圆上,取一点O,并连接O与圆的两个切点A和B,形成一条弦AB。
设弧OA所对的圆心角为α,则弦AB的长度与圆心角α之间有什么关系?5) 在平面直角坐标系中,一个圆心位于原点O,半径为r的圆与x轴和y轴相交于四个点A、B、C、D,求证:四边形ABCD是一个正方形。
以上就是初三圆的基本性质练习题的内容,希望能够帮助你巩固和提高对圆的基本性质的理解和应用。
浙教版数学九年级上册圆的基本性质综合测试题
1 圆的基本性质综合测试题
满分150分,考试时间120分钟
一、选择题(本题有10小题,每小题4分,共40分)
1.⊙O 的半径为5㎝,点A 到圆心O 的距离OA=3㎝,则点A 与圆O 的位置关系为()
A.点A 在圆上
B.点A 在圆内
C.点A 在圆外
D.无法确定
2.在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦
AB 所对圆心角的大小为()
A .30°
B .45°
C .60°
D .90°
3.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心
O ,点P 是优弧?AMB 上一点,则
∠APB 的度数为
A .45°
B .30°
C .75°
D .60°4.下列说法中,正确的是(
)
A .三点确定一个圆
B .一组对边平行,另一组对边相等的四边形是平行四边形
C .对角线互相垂直的四边形是菱形
D .对角线互相垂直平分且相等的四边形是正方形
5.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为(
)
A.68°
B.88°
C.90°
D.112°6.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于(
)A .34B .36C .32D .8。
与圆有关的性质练习题
圆的练习题一1、半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23R C .3R D .23R2.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为( )A .23B .3C .5D .253.已知:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )A .4cmB .5cmC .42cmD .23cm3.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B .5:2C .5:2D .5:44、在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )A .42B .82C .24D .165、下列命题中,正确的有( ) A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 6.下列说法中,正确的是( ) A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等7.⊙O 中,M 为的中点,则下列结论正确的是( ). A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定8、如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( )A .正方形 B.长方形C .菱形D .以上答案都不对9、如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm .10.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径 OA =10 m ,高度CD 为_ ____m .11、如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________12. ⊙O 的半径是3cm ,P 是⊙O 内一点,PO=1cm ,则点P 到⊙O 上各点的最小距离是 .13. 一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm .14. 若圆的半径为2cm ,圆中的一条弦长23cm ,则此弦中点到此弦所对弧的中点的距离为 .15. AB 为圆O 的直径,弦CD ⊥AB 于E ,且CD=6cm ,OE=4cm ,则AB= . 16.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短的弦长是 ,最长的弦长是 .17.如图,弦DC 、FE 的延长线交于⊙O 外一点P ,直线PAB 经过圆心O ,请你根据现有圆形,添加一个适当的条件: ,使∠1=∠2.18.已知:⊙O 半径为6cm ,弦AB 与直径CD 垂直,且将CD 分成1∶3两部分,求:弦AB 的长.第8题第9题第10题19. 如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?20、已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.21、如图所示,以ABCD的顶点A为圆心,AB为半径作圆,作AD,BC于E,F,•延长BA交⊙O于G,求证:GE=EF22、 如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.23.⊙O 的直径为50cm ,弦AB ∥CD ,且AB=40cm ,CD=48cm ,求弦AB 和CD 之间的距离.24、 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
高中数学圆的性质练习题
高中数学圆的性质练习题1. 已知圆O的半径为r,圆心角为θ(弧度制),求圆弧的长度s。
解答:根据圆心角的定义,圆心角θ所对的弧长s与圆半径r之间的关系为s = rθ。
2. 已知圆ABCD是正方形ABCD的外接圆,若正方形的边长为a,求圆的半径R。
解答:正方形的对角线等于边长的根号2倍,即对角线DC =a√2。
圆的半径等于对角线的一半,即R = DC / 2 = (a√2) / 2 = a√2 / 2。
3. 已知圆O的半径r,圆心角为θ(弧度制),求扇形的面积S。
解答:扇形的面积与圆心角θ以及圆半径r之间的关系为S = (1/2) * r^2 * θ。
4. 已知平行直线l1与圆O相交于A、B两点,若A、B两点到圆心的距离分别为d1、d2,求AB的长度。
解答:根据线段AB与平行直线l1的性质,可知d1 = d2,即线段AB为等长线段。
5. 已知圆O的半径r,垂直于半径的连线上任意一点P到圆心的距离为d,求弦的长度。
解答:根据垂直于半径的性质,可知弦的长度等于两倍的d,即弦的长度为2d。
6. 已知圆A和圆B相切于点T,且圆A的半径为r1,圆B的半径为r2,求点T到圆心之间的距离。
解答:根据相切的性质,可知点T到圆心之间的距离等于两个圆的半径之差的绝对值,即|T圆心A| = |r1 - r2|。
7. 已知圆C的半径为r,切线与半径之间的夹角为θ,求切线的长度。
解答:根据圆的切线与半径的性质,可知切线的长度等于半径的乘积与夹角θ的余弦值的商,即切线的长度为r / cos(θ)。
8. 已知圆O的半径r,圆心角为θ(弧度制),求弓形的面积S。
解答:弓形的面积与圆心角θ以及圆半径r之间的关系为S = (1/2) * r^2 * (θ - sinθ)。
以上是关于高中数学圆的性质练习题的文档,共包括8道题目及解答。
希望对你的学习有所帮助!。
圆的组成和性质的练习题
圆的组成和性质的练习题一、选择题1. 在平面直角坐标系中,圆的标准方程是()。
A. (xa)² + (yb)² = r²B. x² + y² = r²C. (xa)² (yb)² = r²D. x² y² = r²2. 下列关于圆的周长的公式,正确的是()。
A. C = 2πr²B. C = πr²C. C = 2πrD. C = πrA. 所有直径都相等B. 所有半径都相等C. 所有弦都相等D. 所有切线长度相等二、填空题1. 圆的半径是3cm,则其直径是____cm。
2. 圆的周长是18.84cm,则其半径是____cm。
3. 若圆的面积是28.26cm²,则其半径是____cm。
三、判断题1. 圆的直径是半径的两倍。
()2. 任意两个圆的半径相等,则这两个圆的面积相等。
()3. 圆的周长与半径成正比。
()四、解答题1. 已知圆的直径为10cm,求该圆的周长和面积。
2. 在平面直角坐标系中,已知圆心坐标为(3, 4),半径为5cm,求该圆的方程。
3. 两个圆的半径分别为3cm和5cm,求这两个圆的面积之和。
4. 一个圆的周长是31.4cm,求该圆的半径和面积。
5. 在直角三角形中,已知斜边长度为10cm,一条直角边长度为6cm,求斜边上的高,并说明为什么这个高是圆的半径。
五、应用题1. 一个圆形花坛的直径是8米,要在花坛周围铺设一条宽2米的石子路,求石子路的面积。
2. 两个同心圆,大圆的半径是10厘米,小圆的半径是6厘米。
求两个圆之间的圆环面积。
3. 一辆自行车轮胎的直径是70厘米,自行车每分钟转100圈,求自行车每分钟行驶的距离。
4. 在一个半径为5米的游泳池边缘,每隔1米放置一个救生圈,求至少需要多少个救生圈。
5. 一个钟表的分针长度为10厘米,求分针转动一周时针尖端所走过的路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的基本知识1、相关概念:圆、圆心、半径、弦、直径、弧、半圆、等圆、等弧。
2、垂径定理:①:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
②:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
还可以表述为:如果一条直线满足:(1)过圆心;(2)垂直于弦;(3)平分弦;(4)平分优弧;(5)平分劣弧中的任意两个,就可推出其它三个。
3、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
还可以表述为:在同圆或等圆中,如果两个圆心角,两条弧,两条弦,或两条弦的弦心距中有一组量相等,那么所对应的其余各组量分别相等。
4、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。
5、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6、圆内接四边形的对角互补。
7、点和圆的位置关系:点P在圆外<=>d>r点P在圆上<=>d=r点P在圆内<=>d<r8、不在同一直线上的三个点确定一个圆。
9、三角形外接圆圆心是三角形的三边垂直平分线的交点,叫做外心。
10、三角形内切圆圆心是三角形的三条角平分线的交点,叫做内心。
11、直线和圆的位置关系:直线l和圆相离<=>d>r直线l和圆相切<=>d=r直线l和圆相交<=>d<r12、经过半径的外端并且垂直于这条半径的直线是圆的切线。
13、圆的切线垂直于过切点的半径。
14、证明一条直线是圆的切线的方法:(1)切点确定,证明直线垂直于半径;(2)切点不确定,证明圆心到直线的距离等于半径。
15、切线长定理:从圆外一点可以引圆的两条切线,他们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
16、弧长公式:L=n πR/180 (n 为弧所对圆心角)17、扇形面积公式:S 扇形=n πR 2/36018、圆锥侧面积公式:S 侧面积=πRL (L 为母线长)二、圆的基本解题思路:1、角度问题:a.通过弧来找角b.一个等腰、两个全等、三个直角c.弦切角等于弦所对圆周角(βθ=)2.证明两弧相等或两弦相等:a.圆周角或圆心角相等b.两弦相等/两弧相等c.垂径定理,即弦心距相等3、求弦长:a.垂径定理b.弦与直径构成的直角三角形c.弦与两半径构成的特殊三角形4、证明一条直线是圆的切线的方法:a.切点确定时,证明直线垂直于半径b.切点不确定,证明圆心到直线的距离等于半径圆中辅助线的做法圆是初中重点内容,是中考必考内容.关于圆的大部分题目,常需作辅助线来求解.现对圆中辅助线的作法归纳总结如下:1、有关弦的问题,常做其弦心距,构造直角三角形如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8 cm,AG=1 cm,DE=2 cm,则EF=______cm.2、有关直径问题,常做直径所对的圆周角如图,在△ABC中,∠C=90°,以BC上一点0为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BN=⋅AB⋅BMBC(2)如果CM是⊙0的切线,N为OC的中点,当AC=3时,求AB的值.3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系如图,AB、AC分别是⊙0的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙0于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P.(1)若PC=PF,求证:AB⊥ED.(2)点D在劣弧的什么位置时,才能使AD2=DE·DF,为什么?4、两圆相切,常做过切点的公切线或连心线,充分利用连心线必过切点等定理如图,⊙02与半圆O l内切于点C,与半圆的直径AB切于D,若AB=6,⊙02的半径为1,则∠ABC的度数为______.圆中的数学思想方法数学思想和方法是数学的血液和精髓,是解决数学问题的有力武器,是数学的灵魂.因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高数学思维水平,提高数学能力,运用数学知识解决实际问题的有力保证,因此,我们在学习中必须重视数学思想在解题中的应用.一、数形结合思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合.通过对图形的认识,数形结合的转化,可培养同学们思维的灵活性、形象性,使问题化难为易,化抽象为具体.例1MN是半圆直径,点A是的一个三等分点,点B是的中点,P是直径MN上的一动点,⊙0的半径是1,求AP+BP的最小值.二、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知.例2 如图,以0⊙的直径BC为一边作等边△ABC,AB、AC交⊙0于D、E两点,试说明BD=DE=EC.在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量.三、分类思想所谓分类思想,就是当被研究的问题包含多种可能情况,不能一概而论时,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论.分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.例3 ⊙0的直径AB=2 cm,过点A的两条弦AC=2cm,AD=3cm,求∠CAD所夹的圆内部分的面积.在圆中有许多分类讨论的题目,希望同学们做题时,要全面、缜密,杜绝“会而不对,对而不全”的现象.四、方程思想通过对问题的观察、分析、判断,将问题化归为方程问题,利用方程的性质和实际问题与方程的互相转化达到解决问题的目的.例4如图,AB是⊙0的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC是⊙O的切线,若OE:EA=1:2,PA=6,求⊙0的半径.五、函数思想例5如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C 重合),设PC=x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.例6如图,从⊙0外一点A作⊙0的切线AB、AC,切点分别为B、C,且⊙0直径BD=6,连结CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.提升练习1、如图,直线PB切⊙O于点B,PO交⊙O于点C,若PB=,PC=2,则∠BAC为()A.20°B.30°C.40°D.60°2、如图,⊙O1与⊙O2相交于A,B两点,直线PQ与⊙O1相切于点P,与⊙O2相切于点Q,AB的延长线交PQ于C,连接PA,PB.下列结论:①PC=CQ;②;③∠PBC=∠APC.其中错误的结论有()A.3个B.2个C.1个D.0个3、如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为.4、如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.5、如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于E,以AE为直径作⊙O.(1)求证:点D在⊙O上;(2)求证:BC是⊙O的切线;(3)若AC=6,BC=8,求△BDE的面积.6、已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.7、已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.8、如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB 上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.9、已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.(1)求证:AC丄BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.课后作业1、如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.2、如图,四边形ABCD的对角线CA平分∠BCD且AD=AB,AE⊥CB于E,点O为四边形ABCD的外接圆的圆心,下列结论:(1)OA⊥DB;(2)CD+CB=2CE;(3)∠CBA﹣∠DAC=∠ACB;(4)若∠DAB=90°,则CD+CB=CA.其中正确的结论是()A.(1)(3)(4) B.(1)(2)(4) C.(2)(3)(4) D.(1)(2)(3)3、如图,分别是正方形、正五边形和正六边形,(1)试分别计算这三种正多边形的相邻两条对角线的夹角的度数;(2)探究正n边形相邻两条对角线的夹角满足的规律.。