六年级奥数专题讲义:不定方程与整数分拆

合集下载

六年级奥数第28讲:不定方程

六年级奥数第28讲:不定方程

简单的不定方程所谓有定方程,是指未知数的个数多于方程个数的方程(组)。

解不定方程的方法是:(1)根据整除知识,缩小未知数的取值范围,然后试算求解。

(2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。

(3)求出一个未知数用另一个未知数表示的式子,然后试算求解。

(4)直接根据方程确定未知数的取值范围,通过试算求解。

例1、马小富在甲公司打工,几个月后又在乙公司兼职。

甲公每月付给他薪金470元,乙公司每月付给他薪金350元。

年终,马小富从两家公司共获薪金7 620元。

问他在甲公司打工多少个月,在乙公司兼职多少个月。

做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。

那么,全部C商品至少价值多少元?最多价值多少元?例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗?例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人?做一做:一群猴子采摘水蜜桃。

猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。

问:在这个猴群中,共有大猴子多少只?例4、小明用5天时间看完一本200页的故事书。

已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?做一做:有一堆围棋子,白子颗数是黑子颗数的3倍。

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。

有三个未知数,就需要有三个方程。

当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。

不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。

而在小学阶段打下扎实的基础,无疑很重要。

不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。

不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。

这种情况也不排除它的取值不止一种。

不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。

解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。

【例1】★求方程2725=+y x 的正整数解。

【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆整数分拆内容概述:1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大。

也就是把整数分拆成两个相等或者相差1的两个整数。

2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np+r,则分成r个(p+1),(n-r)个P。

3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大。

4.把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数。

如果仅大于1,则除去2,再把最大的那个数加1。

5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。

即当有m个奇约数表示的乘积,则有奇约数个奇约数。

6.共轭分拆.我们通过下面一个例子来说明共轭分拆:如:10=4+2+2+1+1,我们画出示意图,我们将其翻转(将图左上到右下的对角线翻转即得到):,可以对应的写成5+3+l+1,也是等于10,即是10的另一种分拆方式。

我们把这两种有关联的分拆方式称为互为共轭分拆。

典型例题:1.写出13=1+3+4+5的共轭分拆。

【分析与解】画出示意图,翻转得到,对应写为4+3+3+2+1=13,即为13=1+3+4+5的共轭分拆。

2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等。

则该电视连续剧最多可以播出几天?【分析与解】由于希望播出的天数尽可能地多,若要满足每天播出的集数互不相等的条件下,每天播出的集数应尽可能地少。

选择从1开始若干连续整数的和与30最接近(小于30)的情况为1+2+3+4+5+6+7=28,现在就可以播出7天,还剩下2集,由于已经有2集这种情况,就是把2集分配到7天当中又没有引起与其他的几天里播出的集数相同.于是只能选择从后加.即把30表示成:30=1+2+3+4+5+6+9或30=1+2+3+4+5+7+8即最多可以播出7天。

(整理)六年级05讲 不定方程与整数分拆答案

(整理)六年级05讲 不定方程与整数分拆答案

A1.7x+4y=34A2.3x+5y=19A3.8x+5y=75A4.6x+7y=90A5.4x+9y=64A6.2x+5y=26A7.240x+150y=108024x+15y=108A8. 750x+420y=435075x+42y=435A9.170x+340y=282017x+34y=282 A10.320x+560y=232032x+56y=232B1.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?B2.小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.求小华比小强多买铅笔多少支?B3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?B4.有43位同学,他们身上带的钱从8分到5角,钱数都各不相同,每个同学都把身上带的全部钱各自买了画片。

画片只有两种:3分一张和5分一张.每人都尽量多买5分一张的画片.问他们所买的3分画片的总数是多少张?B5。

小萌在邮局寄了3种信,平信每封8分,航..................................空信每封1角,挂号信每封2角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?B6.马小富在甲公司打工,几个月后又在乙公司兼职,甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终,马小富从两家公司共获薪金7620元.问他在甲公司打工多少个月?在乙公司兼职多少个月? B7.有三堆砝码,第一堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克,现在要取出最少个数的砝码,使它们的总重量为130克,那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?B8.一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2.,蓝球上标有数从3,小明从布袋 中摸出10个球,它们上面所标数字的和等于21,问小明摸出的球中红球最多不超过多少个? B9.某乡水电站发电了,电费规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算).问甲、乙两家各交了多少电费?B10.有纸币60张,其中1分、l 角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元? C1.设A 和B 都是自然数,并且满足11A+3B =3317,那么,A 十B 等于多少?C2.在分母小于15的最简分数中,比52大,并且最接近52的是哪一个?C3.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?.................C4.在一次植树活动中,两个小组植树总数相同,均为一百多棵,已知两组人数不等,第一组有1人植了6棵,其他人每人植了13棵.第二组有1人植了5棵,其他人每人都植了10棵.问这两个小组共有多少人?C5.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有31的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?C6.哥德巴赫猜想是说:“每个大于2的偶数都可以表示成两个质数之和.”试将168表示成两个两位质数的和,并且其中的一个数的个位数字是1. C7.篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,求其中排球的个数.C8.(1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,那么这个最大质数是多少? (2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?C9.某居民要装修房屋,买来长0.7米和0.8米的两种木条各若干根. 如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:0.7+0.7=1.4米,0.7 +0.8=1.5 米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?C10.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成的1分到1元之间的币值有多少种?C11.小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完,那么红笔的单价是多少元?C12.一个自行车选手在相距950千米的甲、乙两地之间训练,从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息地点与去时的一个休息地点相同,问这个休息地点距甲地多少千米?.................。

小学数学六年级奥数精讲整数分拆

小学数学六年级奥数精讲整数分拆

小学数学六年级奥数精讲整数分拆1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大.也就是把整数分拆成两个相等或者相差1的两个整数.2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np+r,则分成r个(p+1),(n-r)个P.3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大.4.把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数.如果仅大于1,则除去2,再把最大的那个数加1.5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法.即当有m个奇约数表示的乘积,则有奇约数2m-1个奇约数.6.共轭分拆.我们通过下面一个例子来说明共轭分拆:如:10=4+2+2+1+1,我们画出示意图,我们将其翻转(将图左上到右下的对角线翻转即得到):,可以对应的写成5+3+l+1,也是等于10,即是10的另一种分拆方式.我们把这两种有关联的分拆方式称为互为共轭分拆.1.写出13=1+3+4+5的共轭分拆.【分析与解】画出示意图,翻转得到,对应写为4+3+3+2+1=13,即为13=1+3+4+5的共轭分拆.2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等.则该电视连续剧最多可以播出几天?【分析与解】由于希望播出的天数尽可能地多,若要满足每天播出的集数互不相等的条件下,每天播出的集数应尽可能地少.选择从1开始若干连续整数的和与30最接近(小于30)的情况为1+2+3+4+5+6+7=28,现在就可以播出7天,还剩下2集,由于已经有2集这种情况,就是把2集分配到7天当中又没有引起与其他的几天里播出的集数相同.于是只能选择从后加.即把30表示成:30=1+2+3+4+5+6+9或30=1+2+3+4+5+7+8即最多可以播出7天.3.若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。

10不定方程与整数分拆

10不定方程与整数分拆

不定方程与整数分拆求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题.补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考《思维导引详解》五年级[第15讲余数问题].解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解.本讲讲解顺序:③⇒包括1、2、3题⇒④⇒②⇒①包括4、5题⇒③⇒包括6、7题,其中③④步骤中加入百鸡问题.复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程.整数分拆问题:11、12、13、14、15.1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?2.设A和B都是自然数,并且满足1711333A B+=,那么A+B等于多少?3.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?4.有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?5.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?6.一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?7.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?8.有三堆砝码,第一堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克.现在要取出最少个数的砝码,使它们的总重量为130克.那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?9.哥德巴赫猜想是说:“每个大于2的偶数都可以表示成两个质数之和.”试将168表示成两个两位质数的和,并且其中的一个数的个位数字是1.10.(1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,那么这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?11.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成的1分到1元之间的币值有多少种?12.小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?。

不定方程及整数解

不定方程及整数解

我们曾经学过一元一次方程,例如个或更多个,就变成为二元一次方程或多元一次方程,0⎩0⎩满足上式的整数解.这表明,满足方程的整数解有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 为相应的为负(正)数.这个结论可以通过把这组解直接代入已知方程进行证明.由这个定理,只要能够观察出二元一次方程的一组整数解,就可以得到它的全部整数解.例如,方程4521x y +=的一组解为41x y =⎧⎨=⎩,则此方程的所有整数解可表示为:4514x ky k =+⎧⎨=-⎩.板块一 不定方程的整数解中考要求不定方程及整数解【巩固】求3710725x y+=的整数解.【巩固】求方程的整数解:⑴721571x y+=;⑵103905x y-=.【例2】求719213x y+=的所有正整数解.【巩固】求方程5322x y+=的所有正整数解.【巩固】求62290x y+=的非负整数解.【例3】求23734x y z++=的整数解.【巩固】求92451000x y z+-=的整数解.【例4】求方程组5795235736x y zx y z++=⎧⎨++=⎩的正整数解.【例5】求不定方程2()7x y xy+=+的整数解. 【例6】求方程22x y x xy y+=-+的整数解.【例7】 第35届美国中学数学竞赛题)满足联立方程4423ab bc ac bc +=⎧⎨+=⎩ 的正整数(,,)a b c 的组数是( ).(A )0 (B )1 (C )2 (D )3 (E )4【例8】 (第33届美国数学竞赛题)满足方程223x y x +=的正整数对(,)x y 的个数是( ).(A )0 (B )1(C )2(D )无限个(E )上述结论都不对【例9】 求不定方程()2mn nr mr m n r ++=++的正整数解(),,m n r 的组数.【例10】 求方程2245169x xy y -+=的整数解.【例11】 (原民主德国1982年中学生竞赛题)已知两个自然数b 和c 及素数a 满足方程222a b c +=.证明:这时有a b <及1b c +=.板块二 证明不定方程无整数解【例12】 下列不定方程(组)中,没有整数解的是( )A.3150x y +=B.9111x y -=C.23423x y y z -=⎧⎨+=⎩D.231223x y z x y z ++=⎧⎨-+=⎩【例13】证明方程22x y-=无整数解.257【例14】(第14届美国数学邀请赛题)不存在整数,x y使方程22+-=成立。

小学奥数 整数分拆与不定方程

小学奥数 整数分拆与不定方程

整数分拆与不定方程【内容概述】整数分拆:就是把一个自然数表示为若干个自然数的和的形式,每一种表示方法,及时自然数的一个分拆。

不定方程:含有未知数的等式叫做方程,对一个方程而言,若未知数的个数超过一个,统称为不定方程。

整数的分拆:例1 电视台要播出一部30集的电视连续剧,若要每天安排的集数互不相等,则该电视连续剧最多可以播出几天?例2 把12分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?例3 试把1999分拆成8个自然数之和,使其乘积最大。

例4 把14分拆成若干个自然数之和,再求出这些数的积,要使得到的积最大,应该把14如何分拆?这个最大的乘积应该是多少?例5 将35拆成若干个互不相等的自然数之和,且使这些自然数的乘积最大,该乘积是多少?例6 396拆成若干个连续自然数和的形式,试问有多少种不同的方法?例7 用6米长的篱笆材料在围墙角修建如下图的鸡圈,问鸡圈的长和宽分别是多少时(包括正方形),鸡圈的面积最大?例8 用6米长的篱笆材料靠墙修建如下图的鸡圈,问鸡圈的长和宽分别是多少时(包括正方形),鸡圈的面积最大?不定方程:例1 已知61375=+y x ,请你写出一组整数解。

例2 已知21346=+y x ,请你写出一组整数解。

例3 已知5494563=+y x ,请你写出一组整数解。

例4 求解不定方程5494563=+y x 的解(至少5组)。

运用:例5 中华牌2B 铅笔7角钱一支,2H 铅笔3角钱一支。

高莎莎用5元钱恰好可以买两种铅笔共多少支?例6 庙里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,一天里共吃了722个馒头。

问:庙里至少有多少个和尚?练习:1.将2006分拆成8个自然数和的形式,使其乘积最大。

2.将1976分拆成若干个正整数之和,再将其相乘,试求所有这种乘积中的最大值。

3.将16分拆成若干个整数和的形式,再将其相乘,试求所有这种乘积中的最大值。

六年级数学专题讲义整数的分拆

六年级数学专题讲义整数的分拆

整数的分拆1、整数的分拆:把一个整数n 表示为若干个自然数之和的形式,这通常叫整数n 的分拆。

即12m n n n n =+++ (121m n n n ≥≥≥≥)。

对被加项和项数m 加以一些限制条件,就得到某种特殊类型的分拆。

自然数的分拆是古老而又十分有趣的问题,著名的歌德巴赫猜想实际上是一个分拆问题。

其相关结论如下:(1)一般的,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大,也就是把整数分拆成两个相等或者相差为1的两个整数。

(2)一般的,把自然数m 分成n 个自然数的和,使其乘积最大,则先把m 进行对n 的带余除法,表示成m=np+r ,则分成r 个(p+1),(n-r )个p 。

(3)把自然数S (S>1)分拆成若干个自然数的和(没有给定是几个),则分成的数当中最多有两个2,其他的都是3,这样他们的乘积最大。

(4)把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+r (r ≤n )的形式,再把r 一轮一轮的从后往前每个加1即可。

(5)若自然数N 有k 个大于1的奇约数,则N 共有k 种表示为两个或两个以上连续自然数之和的方法。

〖经典例题〗例1、将2006分拆成8个自然数的和的形式,使其乘积最大?【分析】要使8个自然数的乘积最大,必须使这8个数中的任意两个数相等或相差1.因为2006÷8=250……6,所以2006=250×8+6,6不能单独存在,所以将6分成6个1,并从后往前加在6个自然数中,2006=250+250+251+251+251+251+251+251。

例2、把60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是几?【分析】因为60÷10=6,可以初步判定尽可能小的最大的质数应从能否为7考虑。

60=7×8+2+2.所以最大的数最小是7.〖方法总结〗本题用到了结论(2),将2006写成8×p+r 的形式,然后余下6,因此有6个251和2个250.当有些特殊要求时,如例2,我们先估算出大致范围,然后再利用结论求解。

第7部分不定方程及整数解

第7部分不定方程及整数解

7不定方程及整数解形如(,,a,b 0)ax by c a b c +=均为常数,均不为的不定方程叫做二元一次方程,它是研究其他不定方程的基础。

常用的结论:如果00x=x y y ⎧⎨=⎩是二元一次方程ax by c +=(a 的绝对值与b 的绝对值互质)的一组整数解,那么00x x bt y y at =-⎧⎨=+⎩(t 是任意整数)是ax by c +=的一切整数解,为原方程的通解,而00x=x y y ⎧⎨=⎩为原方程的一组特解。

例1. 是否存在整数k ,是的关于x 的方程(5)615k x x -+=-在整数范围内有解,并求出各个解。

答案:1,51,55,15,1k x k x k x k x ==-=-===-=-= 例2. 求方程4598x y +=的所有正整数解。

答案:27121722;;;;18141062x x x x x y y y y y =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩例3. 求不定方程2()7x y xy +=+的整数解。

答案:1513;;;3151x x x x y y y y =-===⎧⎧⎧⎧⎨⎨⎨⎨====-⎩⎩⎩⎩例4. 某工程队有两个组共76人,当第一组调6人到第二组以后,第一组人数比第二组人数的k 倍(k 为大于1的整数)少16人,那么原来第一组有多少人?(第14届迎春杯) 解析:设原来第一组x 人,第二组y 人,依题意可得766(6)16x y x k y +=⎧⎨-=+-⎩化简整理得9261y k=-++ 因为k 为大于1的整数,且1k +是92的约数,保证9201k + ,则14k +=可得17,59y x == 例5. 已知m 是整数,且方程组436626x y x my -=⎧⎨+=⎩有整数解,则m 的取值为_____。

解析:解方程组得393293429m x m y m +⎧=⎪⎪+⎨⎪=⎪+⎩因为方程组的解是整数,所以29m +是34的约数,显然29m +是奇数,所以291,17m +=±± 所以4,5,4,13m =---分别代入验证,可知x 的值也都是整数。

(完整版)小学奥数09数的拆分

(完整版)小学奥数09数的拆分

1。

7数的拆分1.7.1整数的拆分整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。

整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。

在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。

例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。

我们知道,1+2+3+4+5+6+7=28。

如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出.由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。

例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以.所以最多可以播7天。

例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。

问:有多少种不同支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。

因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币.当使用3枚5分币时,5×3=15,23—15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。

当使用4枚5分币时,5×4=20,23—20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。

总共有5种不同的支付方法。

例3 把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23 =2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。

六年级奥数之不定方程与整数分拆

六年级奥数之不定方程与整数分拆

不定方程与整数分拆1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?2.设A 和B 都是自然数,并且满足1711333A B +=,那么A+B 等于多少?3.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?4.有纸币60张,其中1分、l 角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?5.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?6.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?7.一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?8.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?9.有三堆砝码,第一堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克.现在要取出最少个数的砝码,使它们的总重量为130克.那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?10.5种商品的价格如表8—1,其中的单位是元.现用60元钱恰好买了10件商品,那么有多少种不同的选购方式?11.有43位同学,他们身上带的钱从8分到5角,钱数都各不相同.每个同学都把身上带的全部钱各自买了画片.画片只有两种:3分一张和5分一张.每11人都尽量多买5分一张的画片.问他们所买的3分画片的总数是多少张?12.哥德巴赫猜想是说:“每个大于2的偶数都可以表示成两个质数之和.”试将168表示成两个两位质数的和,并且其中的一个数的个位数字是1.13.(1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,那么这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?14.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成的1分到1元之间的币值有多少种?15.小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?16.庙里有若干个大和尚和若干个小和尚,已知每7个大和尚每天共吃41个馒头,每29个小和尚每天共吃11个馒头.平均每个和尚每天恰好吃1个馒头,问:庙里至少有多少个和尚.17.小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.早晨见面,小花狗叫两声,波斯猫叫一声;晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们叫声统计了15天,它们并不是,每天早晚都见面,在这15天内它们共叫61声.问:波斯猫至少叫了多少声?18.《张邱建算经》百鸡问题:今有百钱,鸡翁直钱五,鸡母直钱三,鸡雏三直一,百钱买百鸡,问鸡翁、母、雏各几何?。

六年级05讲 不定方程与整数分拆答案

六年级05讲 不定方程与整数分拆答案

A1.7x+4y=34A2.3x+5y=19A3.8x+5y=75A4.6x+7y=90A5.4x+9y=64A6.2x+5y=26A7.240x+150y=108024x+15y=108A8. 750x+420y=435075x+42y=435A9.170x+340y=282017x+34y=282A10.320x+560y=2320 32x+56y=232B1.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?B2.小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.求小华比小强多买铅笔多少支?B3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?B4.有43位同学,他们身上带的钱从8分到5角,钱数都各不相同,每个同学都把身上带的全部钱各自买了画片。

画片只有两种:3分一张和5分一张.每人都尽量多买5分一张的画片. 问他们所买的3分画片的总数是多少张?2B5。

小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封2角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?B6.马小富在甲公司打工,几个月后又在乙公司兼职,甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终,马小富从两家公司共获薪金7620元.问他在甲公司打工多少个月?在乙公司兼职多少个月?B7.有三堆砝码,第一堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克,现在要取出最少个数的砝码,使它们的总重量为130克,那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?B8.一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2.,蓝球上标有数从3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,问小明摸出的球中红球最多不超过多少个?B9.某乡水电站发电了,电费规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算).问甲、乙两家各交了多少电费?B10.有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?C1.设A和B都是自然数,并且满足11A+3B=3317,那么,A十B等于多少?C2.在分母小于15的最简分数中,比52大,并且最接近52的是哪一个?C3.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?C4.在一次植树活动中,两个小组植树总数相同,均为一百多棵,已知两组人数不等,第一组有1人植了6棵,其他人每人植了13棵.第二组有1人植了5棵,其他人每人都植了10棵.问这两个小组共有多少人?C5.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有31的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?C6.哥德巴赫猜想是说:“每个大于2的偶数都可以表示成两个质数之和.”试将168表示成两个两位质数的和,并且其中的一个数的个位数字是1. C7.篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,求其中排球的个数.C8.(1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,那么这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?C9.某居民要装修房屋,买来长0.7米和0.8米的两种木条各若干根. 如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:0.7+0.7=1.4米,0.7 +0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?C10.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成的1分到1元之间的币值有多少种?用完,那么红笔的单价是多少元?C12.一个自行车选手在相距950千米的甲、乙两地之间训练,从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息地点与去时的一个休息地点相同,问这个休息地点距甲地多少千米?4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数专题讲义:不定方程与整数分拆求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题.补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考《思维导引详解》五年级[第15讲 余数问题].解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解.本讲讲解顺序:③⇒包括1、2、3题⇒④⇒②⇒①包括4、5题⇒③⇒包括6、7题,其中③④步骤中加入百鸡问题.复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程.整数分拆问题:11、12、13、14、15.1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?【分析与解】 设这个两位数为ab ,则数字和为a b +,这个数可以表达为10a b +,有()()104a b a b +÷+=即1044a b a b +=+,亦即2b a =.注意到a 和b 都是0到9的整数,且a 不能为0,因此a 只能为1、2、3或4,相应地b 的取值为2、4、6、8.综上分析,满足题目条件的两位数共有4个,它们是12、24、36和48.2.设A 和B 都是自然数,并且满足1711333A B +=,那么A+B 等于多少?【分析与解】 将等式两边通分,有3A+llB=17,显然有B=l,A=2时满足,此时A+B=2+1=3.3.甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?【分析与解】设购买甲级铅笔x支,乙级铅笔y支.有7x+3y=50,这个不定方程的解法有多种,在这里我们推荐下面这种利用余数的性质来求解的方法:将系数与常数对3取模(系数7,3中,3最小):得x=2(mod 3),所以x可以取2,此时y取12;x还可以取2+3=5,此时y取5;即212xy=⎧⎨=⎩、55xy=⎧⎨=⎩,对应x y+为14、10所以张明用5角钱恰好可以买这两种不同的铅笔共14支或10支.4.有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?【分析与解】设1分、1角、1元和10元纸币分别有a张、b张、c张和d张, 列方程如下:由()()601101001000100002a b c da b c d+++=⎧⎪⎨+++=⎪⎩(2)(1)得9999999940b c d++=③注意到③式左边是9的倍数,而右边不是9的倍数,因此无整数解,即这些纸币的总面值不能恰好为100元.5.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?【分析与解】 24厘米与36厘米都是12的倍数,所以截成若干根这两种型号的短管,截去的总长度必是12的倍数,但374被12除余2,所以截完以后必有剩余.剩余管料长不小于2厘米. 另一方面,374=27×12+4×12+2,而36÷12=3,24÷12=2,有3×9+2×2=31.即可截成9根36厘米的短管与2根24厘米的短管,剩余2厘米.因此剩余部分的管子最少是2厘米.6.某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【分析与解】设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女职工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩. 但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名7.一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【分析与解】设0.7米,0.8米两种木条分别x,y根,则0.7x+0.8y=3.43.6,…即7x+8y=34,36,37,38,39将系数,常数对7取模,有y≡6,l,2,3,4(mod 7),于是y最小分别取6,1,2,3,4.但是当y取6时,8×6=48超过34,x无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.8.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?【分析与解】显然,为了使3种信的总和最少,那么小萌应该尽量寄最贵的挂号信,然后是航空信,最后才是平信.但是挂号信、航空信的邮费都是整数角不会产生几分.所以,2分,10n+2分应该为平信的邮费,n最小取3,才是8的倍数,所以平信至少要寄4封,此时剩下的邮费为122-32=90,所以再寄4封挂号信,航空信1封即可.于是,小萌寄的这3种信的总和最少是4+1+4=9封.9.有三堆砝码,第一堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克.现在要取出最少个数的砝码,使它们的总重量为130克.那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?【分析与解】为了使选取的砝码最少,应尽可能的取7克的砝码.130÷7:18……4,所以3克、5克的砝码应组合为4克,或4+7k克重.设3克的砝码x个,5克的砝码y个,则3547+=+.x y k当k=0时,有354+=,无自然数解;x y当k=1时,有3511+=,有x=2,y=1,此时7克的砝码取17个,所以共x y需2+1+17=21个砝码,有3克、5克和7克的砝码各2、1、17个.当k>1时,7克的砝码取得较少,而3、5克的砝码却取得较多,不是最少的取砝码情形.所以共需2+1+17=20个砝码,有3克、5克和7克的砝码各2、1、17个.10.5种商品的价格如表8—1,其中的单位是元.现用60元钱恰好买了10件商品,那么有多少种不同的选购方式?【分析与解】设B、C、D、E、A商品依次买了b、c、d、e、(10-b-c-d-e)件,则有()----++++=60.2.910 4.77.210.614.9b c d e b c d e+++=310,显然e只能取0,1,2.184377120b c d eⅠ有184377b c d++=310,其中d可取0,1,2,3,4.(1)当d=0时,有1843+=310,将系数,常数对6取模得:b cc≡4(mod 6),于是c最小取4,那么有18b=310-43×4=138,b不为自然数.所以d=0时。

不满足;(2)有1843+=233,将系数,常数对6取模得:b cc≡5(mod 6),于是最小,那么有18b=233-43×5=18,;(3)有1843+=156,将系数,常数对6取模得:b cc≡O(mod 6),于是c最小取0,那么有18b=156,b不为自然数,所以d=2时,不满足;(4)有1843+=79,将系数、常数对6取模得:b cc≡1(mod 6),于是最小那么有18b=79—43=36.(5)当d=4时,有1843+=2,显然不满足.b cⅡ有184377++=190,其中d可以取0、1、2.b c d(1)有1843b c+=190,将系数、常数对6取模有:c≡4(mod 6),于是最小那么有18b=190-43×4=18,(2)当d=1时,有1843b c+=113,将系数、常数对6取模有:c≡5(mod 6),于是c最小取5,即18b+215=113,显然d=1时,不满足;(3)有1843b c+=36,显然有时Ⅲ有184377b c d++=70,d只能取0,有1843+=70,将系数、常数对6取模有:b cc≡4(rood 6),于是c最小取4,那么有18b+172=70,显然不满足最后可得到如下表的满足情况:共有4种不同的选购方法.11.有43位同学,他们身上带的钱从8分到5角,钱数都各不相同.每个同学都把身上带的全部钱各自买了画片.画片只有两种:3分一张和5分一张.每11人都尽量多买5分一张的画片.问他们所买的3分画片的总数是多少张?【分析与解】 钱数除以5余0,1,2,3,4的人,分别买0,2,4,1,3张3分的画片.因此,可将钱数8分至5角2分这45种分为9组,每连续5个在一组,每组买3分画片0+2+4+1+3=10张,9组共买10×9=90张,去掉5角1分钱中买的2张3分画片,5角2分中买的4张3分画片,43个人买的3分画片的总数是90-2-4=84张.12.哥德巴赫猜想是说:“每个大于2的偶数都可以表示成两个质数之和.”试将168表示成两个两位质数的和,并且其中的一个数的个位数字是1.【分析与解】 个位数字是1的两位质数有11,31,41,61,71.其中168-11=157,168-31=137,168-41=127,168-61=107,都不是两位数,只有168-71=97是两位数,而且是质数,所以168=71+97是惟一解.13.(1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,那么这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,那么这个最大的质数是多少?【分析与解】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50.所以,其中一定可以有某几个质数相等.欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31.又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50.所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7.60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.14.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成的1分到1元之间的币值有多少种?【分析与解】 注意到所有38枚硬币的总币值恰好是100分(即1元),于是除了50分和100分外,其他98种币值就可以两两配对了,即(1,99);(2,98);(3,97);(4,96);…;(49,51);每一对币值中有一个可用若干个贰分和伍分硬币构成,则另一个也一定可以,显然50分和100分的币值是可以组成的,因此只需要讨论币值为1分,2分,3分,…,48分和49分这49种情况.1分和3分的币值显然不能构成.2分,4分,6分,…,46分,48分等2;4种偶数币值的都可以用若干个贰分硬币构成.5分,7分,9分,…,47分,49分等23种奇数币值的只须分别在4分,6分,8分,…46分、48分的构成方法上,用一枚伍分硬币去换两枚贰分硬币即可,譬如,37分币值的,由于36分币值可用18枚贰分硬币构成,用一枚伍分硬币换下两枚贰分硬币,剩下的币值即为37分.综合以上分析,不能用30个贰分和8个伍分硬币构成的1分到1元之间的币值只有四种,即1分,3分,97分,99分.15.小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【分析与解】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.1.庙里有若干个大和尚和若干个小和尚,已知每7个大和尚每天共吃41个馒头,每29个小和尚每天共吃11个馒头.平均每个和尚每天恰好吃1个馒头,问:庙里至少有多少个和尚.2.小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.早晨见面,小花狗叫两声,波斯猫叫一声;晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们叫声统计了15天,它们并不是,每天早晚都见面,在这15天内它们共叫61声.问:波斯猫至少叫了多少声?3.《张邱建算经》百鸡问题:今有百钱,鸡翁直钱五,鸡母直钱三,鸡雏三直一,百钱买百鸡,问鸡翁、母、雏各几何?。

相关文档
最新文档