2018春九年级数学下册 第1章 二次函数 1.1 二次函数作业课件 (新版)湘教版
2018年秋九年级数学上册第1章二次函数专题训练二次函数表达式的三种常见求解方法(新版)浙教版
二次函数表达式的三种常见求解方法►方法一已知图象上任意三点,通常设一般式1.已知二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,则这个二次函数的表达式是( )A.y=-10x2+x B.y=-10x2+19xC.y=10x2+x D.y=-x2+10x2.已知抛物线y=ax2+bx+c经过点(1,0),(-1,-6),(2,6),则该抛物线与y 轴交点的纵坐标为________.3.如图1-ZT-1所示,二次函数y=ax2+bx+c的图象经过A,B,C三点.(1)观察图象,写出A,B,C三点的坐标,并求出抛物线的函数表达式;(2)求此抛物线的顶点坐标和对称轴.图1-ZT-14.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E,以点O为原点建立如图1-ZT-2所示的平面直角坐标系,设此抛物线的函数表达式为y=ax2+bx+0.9.(1)求该抛物线的函数表达式;(2)如果小明站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小明的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象写出t的取值范围.图1-ZT-2►方法二已知二次函数图象的顶点和图象上另外一点,通常设顶点式5.已知抛物线y=ax2+bx+c的顶点坐标是(-1,3),且过点(0,5),那么该抛物线的函数表达式为( )A.y=-2x2+4x+5 B.y=2x2+4x+5C.y=-2x2+4x-1 D.y=2x2+4x+36.已知抛物线经过点(3,0),(2,-3),并以直线x=0为对称轴,则该抛物线的函数表达式为_____________________.图1-ZT-37.如图1-ZT-3所示,直线y=-x+2与x轴交于点A,与y轴交于点B.若抛物线y =ax2+bx+c以A为顶点,且经过点B,则这条抛物线的函数表达式为____________.。
2019-2020【提分必做】九年级数学下册 第一章 1.2 二次函数的图象与性质练习 (新版)湘教版
1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质基础题知识点1 二次函数y=ax2(a>0)的图象1.下列各点在二次函数y=4x2图象上的点是(C)A.(2,2) B.(4,1)C.(1,4) D.(-1,-4)2.二次函数y=3x2的图象是(B)A BC D3.(教材P6例1变式)画二次函数y=2x2的图象.解:列表:描点、连线,图象如图所示.知识点2 二次函数y=ax2(a>0)的性质4.二次函数y=x2的图象的开口方向是(A)A.向上B.向下C .向左D .向右5.对于函数y =13x 2,下列结论正确的是(D)A .当x 取任何实数时,y 的值总是正数B .y 的值随x 的增大而增大C .y 的值随x 的增大而减小D .图象关于y 轴对称6.(教材P7练习T2变式)在同一平面直角坐标系中,作出y =x 2、y =2x 2、y =12x 2的图象,它们的共同特点是(D)A .都是关于x 轴对称,抛物线开口向上B .都是关于原点对称,顶点都是原点C .都是关于y 轴对称,抛物线开口向下D .都是关于y 轴对称,顶点都是原点7.二次函数y =25x 2的图象开口向上,对称轴是y 轴,顶点坐标是(0,0).8.(2018·广州)已知二次函数y =x 2,当x >0时,y 随x 的增大而增大.(填“增大”或“减小”) 9.画二次函数y =32x 2的图象,并回答下列问题:(1)当x =6时,函数值y 是多少? (2)当y =6时,x 的值是多少?(3)当x 取何值时,y 有最小值,最小值是多少? (4)当x>0时,y 随x 的增大怎样变化?当x<0时呢? 解:如图:(1)当x =6时,y =32×62=54.(2)当y =6时,32x 2=6,解得x =±2.(3)当x =0时,y 有最小值,最小值是0.(4)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.易错点求区间内最值时忽视对称轴位置10.当-1≤x≤2时,二次函数y=x2的最大值是4,最小值是0.中档题11.已知二次函数y=mx(m2+1)的图象经过第一、二象限,则m=(A)A.1 B.-1C.±1 D.212.已知点A(-3,y1),B(-1,y2),C(2,y3)在二次函数y=2x2的图象上,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y3<y113.如图所示,在同一平面直角坐标系中,作出①y=3x2;②y=23x2;③y=43x2的图象,则从里到外的二次函数的图象对应的函数依次是(B)A.①②③ B.①③②C.②③① D.②①③14.函数y=mx2的图象如图所示,则m>0;在对称轴左侧,y随x的增大而减小;在对称轴右侧,y 随x的增大而增大;顶点坐标是(0,0),是抛物线的最低点;函数在x=0时,有最小值,为0.15.已知函数y=(m+2)xm2+m-4是关于x的二次函数.(1)求满足条件的m值;(2)m为何值时,二次函数的图象有最低点?求出这个最低点,这时当x为何值时,y随x的增大而增大?解:(1)m=2或m=-3.(2)当m=2时,二次函数的图象有最低点,这个最低点为(0,0),且当x>0时,y随x的增大而增大.16.已知正方形的周长为C cm,面积为S cm2,请写出S与C之间的函数关系式,并画出这个函数的图象.解:由题意,得S=116C2(C>0).列表:描点、连线,图象如图所示.综合题17.已知点A(2,a)在二次函数y=x2的图象上.(1)求点A的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在,写出点P坐标;若不存在,请说明理由.解:(1)∵点A(2,a)在二次函数y=x2的图象上,∴a=22=4.∴点A的坐标为(2,4).(2)分下列3种情况:①当OA=OP时,点P的坐标:P1(-25,0),P2(25,0);②当OA=AP,点P的坐标:(4,0);③当OP=AP时,如图,过点A作AE⊥x轴于点E.在△AEP′中,AE2+P′E2=AP′2,设AP′=x,则42+(x-2)2=x2.解得x=5.∴点P的坐标为(5,0).综上所述,使△OAP是等腰三角形的点P坐标为(-25,0),(25,0),(4,0),(5,0).第2课时 二次函数y =ax 2(a <0)的图象与性质基础题知识点1 二次函数y =ax 2(a <0)的图象 1.如图所示的图象对应的函数表达式可能是(B)A .y =13x 2B .y =-13x 2C .y =3xD .y =-3x2.函数y =-2x 2,当x >0时图象位于(D) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(教材P9例2变式)画二次函数y =-x 2的图象. 解:列表:描点、连线,如图所示:知识点2 二次函数y =ax 2(a <0)的性质 4.抛物线y =-3x 2的顶点坐标是(D) A .(-3,0)B .(-2,0)C .(-1,0)D .(0,0)5.二次函数y =-115x 2的最大值是(D)A .x =-115B .x =0C .y =-115D .y =06.若函数y =-4x 2的函数值y 随x 的增大而减少,则自变量x 的取值范围是(A) A .x >0 B .x <0 C .x >4D .x <-47.抛物线y =-2x 2不具有的性质是(D) A .开口向下 B .对称轴是y 轴C .当x >0时,y 随x 的增大而减小D .对应的函数有最小值8.两条抛物线y =4x 2与y =-4x 2在同一平面直角坐标系中,下列说法不正确的是(D) A .顶点坐标相同 B .对称轴相同 C .开口方向相反 D .都有最小值9.二次函数y =(2m +1)x 2的图象开口向下,则m 的取值范围是m <-12.10.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.中档题11.下列说法错误的是(C)A .二次函数y =3x 2中,当x >0时,y 随x 的增大而增大 B .二次函数y =-6x 2中,当x =0时,y 有最大值0C .抛物线y =ax 2(a≠0)中,a 越大图象开口越小,a 越小图象开口越大 D .不论a 是正数还是负数,抛物线y =ax 2(a≠0)的顶点一定是坐标原点 12.抛物线y =2x 2,y =-2x 2,y =12x 2共有的性质是(B)A .开口向下B .对称轴是y 轴C .都有最低点D .y 随x 的增大而减小13.已知点A(-1,y 1),B(-2,y 2),C(-2,y 3)在函数y =-x 2的图象上,则y 1,y 2,y 3的大小关系是(A)A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 314.函数y =a x与y =ax 2(a≠0)在同一平面直角坐标系中的图象可能是(D)15.已知二次函数y =ax 2的图象经过点(1,-3). (1)求a 的值;(2)当x =3时,求y 的值; (3)说出此二次函数的三条性质.解:(1)∵抛物线y =ax 2经过点(1,-3), ∴a×1=-3.∴a=-3.(2)把x =3代入抛物线y =-3x 2,得 y =-3×32=-27.(3)抛物线的开口向下;坐标原点是抛物线的顶点;当x >0时,y 随着x 的增大而减小;抛物线有最高点,当x =0时,y 有最大值,是y =0等.16.已知抛物线y =kxk 2+k ,当x >0时,y 随x 的增大而减小. (1)求k 的值; (2)作出函数的图象.解:(1)∵抛物线y =kxk 2+k 中,当x >0时,y 随x 的增大而减小,∴⎩⎪⎨⎪⎧k <0,k 2+k =2.解得k =-2. ∴函数的表达式为y =-2x 2. (2)列表:描点、连线,画出函数图象如图所示.综合题17.已知二次函数y =ax 2(a≠0)与一次函数y =kx -2的图象相交于A ,B 两点,如图所示,其中A(-1,-1),求△OAB 的面积.解:∵点A(-1,-1)在抛物线y =ax 2(a≠0)上,也在直线y =kx -2上, ∴-1=a·(-1)2,-1=k·(-1)-2. 解得a =-1,k =-1.∴两函数的表达式分别为y =-x 2,y =-x -2.由⎩⎪⎨⎪⎧y =-x 2,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4.∴点B 的坐标为(2,-4).∵y=-x -2与y 轴交于点G ,则G(0,-2). ∴S △OAB =S △OAG +S △OBG =12×(1+2)×2=3.第3课时 二次函数y =a(x -h)2(a≠0)的图象与性质基础题知识点1 二次函数y =a(x -h)2(a≠0)的图象的平移1.如果将抛物线y =x 2向右平移1个单位长度,那么所得的抛物线的表达式是(C) A .y =x 2-1B .y =x 2+1 C .y =(x -1)2D .y =(x +1)22.将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是(A) A .向左平移2个单位长度 B .向右平移2个单位长度 C .向上平移2个单位长度 D .向下平移2个单位长度知识点2 画二次函数y =a(x -h)2(a≠0)的图象 3.(教材P12练习T2变式)已知二次函数y =-14(x +1)2.(1)完成下表;(2)在下面的坐标系中描点,画出该二次函数的图象.解:(1)如表. (2)如图所示.知识点3 二次函数y =a(x -h)2(a≠0)的图象与性质 4.对称轴是x =1的二次函数是(D) A .y =x 2B .y =-2x 2C .y =(x +1)2D .y =(x -1)25.在函数y =(x +1)2中,y 随x 的增大而减小,则x 的取值范围是(C)A .x >-1B .x >1C .x <-1D .x <16.在平面直角坐标系中,二次函数y =a(x -2)2(a≠0)的图象可能是(D)7.对于抛物线y =35(x +4)2,下列结论:①抛物线的开口向上;②对称轴为直线x =4;③顶点坐标为(-4,0);④x>-4时,y 随x 的增大而减小.其中正确结论的个数为(B) A .1B .2C .3D .48.(教材P12练习T1变式)(1)抛物线y =3(x -1)2的开口向上,对称轴是直线x =1,顶点坐标是(1,0);(2)抛物线y =-3(x -1)2的开口向下,对称轴是直线x =1,顶点坐标是(1,0).9.抛物线y =-(x +3)2,当x <-3时,y 随x 的增大而增大;当x >-3时,y 随x 的增大而减小. 10.如果二次函数y =a(x +3)2有最大值,那么a<0,当x =-3时,函数的最大值是0. 11.已知抛物线y =2x 2和y =2(x -1)2,请至少写出两条它们的共同特征. 解:答案不唯一,如:开口方向相同,开口大小相同,顶点均在x 轴上等.易错点 二次函数增减性相关的易错12.已知二次函数y =2(x -h)2,当x>3时,y 随x 的增大而增大,则h 的取值范围为h≤3. 中档题13.抛物线y =-3(x +1)2不经过的象限是(A) A .第一、二象限 B .第二、四象限 C .第三、四象限D .第二、三象限14.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为(B)15.(2018·潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为(B)A.3或6 B.1或6 C.1或3 D.4或616.已知A(-4,y1),B(-3,y2),C(3,y3)三点都在二次函数y=-2(x+2)2的图象上,则y1,y2,y3的大小关系为y3<y1<y2.17.某一抛物线和y=-3x2的图象形状相同,对称轴平行于y轴,并且顶点坐标是(-1,0),则此抛物线的表达式是y=-3(x+1)2.18.已知二次函数y=2(x-1)2.(1)当x=2时,函数值y是多少?(2)当y=4时,x的值是多少?(3)当x在什么范围内时,随着x值的增大,y值逐渐增大?当x在什么范围内时,随着x值的增大,y值逐渐减少?(4)这个函数有最大值还是最小值,最大值或最小值是多少?这时x的值是多少?解:(1)当x=2时,y=2×(2-1)2=2.(2)当y=4时,2(x-1)2=4,解得x=1± 2.(3)当x>1时,随着x值的增大,y值逐渐增大;当x<1时,随着x值的增大,y值逐渐减小.(4)这个函数有最小值,最小值是0,这时x=1.19.已知点P(m,a)是抛物线y=a(x-1)2上的点,且点P在第一象限内.(1)求m的值;(2)过点P作PQ∥x轴交抛物线y=a(x-1)2于点Q,若a的值为3,试求点P,点Q及原点O围成的三角形的面积.解:(1)∵点P(m,a)是抛物线y=a(x-1)2上的点,∴a=a(m-1)2.解得m=2或m=0.∵点P在第一象限内,∴m=2.(2)∵a的值为3,∴二次函数的表达式为y =3(x -1)2. ∵点P 的横坐标为2,∴点P 的纵坐标y =3(x -1)2=3. ∴点P 的坐标为(2,3).∵PQ∥x 轴交抛物线y =a(x -1)2于点Q , ∴3=3(x -1)2.解得x =2或x =0. ∴点Q 的坐标为(0,3).∴PQ=2. ∴S △PQO =12×3×2=3.综合题20.已知一条抛物线y =a(x -h)2的顶点与抛物线y =-(x -2)2的顶点相同,且与直线y =3x -13的交点A 的横坐标为3. (1)求这条抛物线的表达式;(2)把这条抛物线向右平移4个单位长度后,求所得的抛物线的表达式. 解:(1)由题意可知:A(3,-4).∵抛物线y =a(x -h)2的顶点与抛物线y =-(x -2)2的顶点相同, ∴h=2.由题意,把点A 的坐标(3,-4)代入y =a(x -2)2,得-4=a(3-2)2. ∴a=-4.∴这条抛物线的表达式为y =-4(x -2)2.(2)把抛物线y =-4(x -2)2向右平移4个单位长度后,得到的抛物线的表达式为y =-4(x -6)2.第4课时二次函数y=a(x-h)2+k(a≠0)的图象与性质基础题知识点1 二次函数y=a(x-h)2+k(a≠0)的图象的平移1.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为(A)A.y=(x+2)2-3 B.y=(x+2)2+3C.y=(x-2)2+3 D.y=(x-2)2-32.抛物线y=-3(x-2)2-3可以由抛物线y=-3x2+1平移得到,则下列平移过程正确的是(C) A.先向左平移4个单位长度,再向上平移2个单位长度B.先向左平移2个单位长度,再向下平移4个单位长度C.先向右平移2个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向上平移2个单位长度知识点2 二次函数y=a(x-h)2+k(a≠0)的图象与性质3.二次函数y=(x+2)2-1的图象大致为(D)4.(2018·岳阳)抛物线y=3(x-2)2+5的顶点坐标是(C)A.(-2,5) B.(-2,-5)C.(2,5) D.(2,-5)5.抛物线y=-(x+2)2-5的图象上有两点A(-4,y1),B(-3,y2),则y1,y2的大小关系是(C) A.y1>y2B.y1=y2C.y1<y2D.不能确定6.二次函数y=2(x-3)2-4的最小值为-4.7.写出下列抛物线的开口方向、对称轴及顶点坐标:知识点3 画二次函数y=a(x-h)2+k(a≠0)的图象8.(教材P14例4变式)画出函数y=(x-1)2-1的图象.解:列表:描点并连线:知识点4 利用顶点式求二次函数的表达式9.(教材P15练习T3变式)在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0).求该二次函数的表达式.解:∵二次函数图象的顶点为A(1,-4),∴设二次函数表达式为y=a(x-1)2-4.把点B(3,0)代入二次函数表达式,得0=4a-4,解得a=1.∴二次函数表达式为y=(x-1)2-4,即y=x2-2x-3.易错点将图象平移与坐标轴平移混淆10.在平面直角坐标系中,若抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移1个单位长度,则在新的平面直角坐标系中,抛物线的函数表达式为y=3(x+1)2-1.中档题11.二次函数的图象如图,则它的表达式正确的是(C)A.y=-(x+2)2+2B.y=-(x-2)2+2C.y=-2(x-1)2+2D.y=-2(x+1)2+212.二次函数y=a(x-m)2+n(a≠0)的图象如图所示,则一次函数y=mx+n的图象经过(B)A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限13.在同一平面直角坐标系中,如果两个二次函数y1=a(x+h1)2+k1与y2=a(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为“梦函数”,如二次函数y =(x+1)2-3与y=(x-1)2+1互为“梦函数”,请你写出二次函数y=2(x-3)2-1的一个梦函数答案不唯一,如y=2(x+3)2+2.14.已知二次函数y=2(x-3)2-8.(1)写出此函数图象的开口方向、对称轴及顶点坐标;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?(3)当x取何值时,函数有最大值或最小值?并求出这个最大值或最小值;(4)函数图象可由函数y=2x2的图象经过怎样的平移得到?解:(1)抛物线开口向上,对称轴是直线x=3,顶点坐标是(3,-8).(2)当x>3时,y随x的增大而增大;当x <3时,y 随x 的增大而减小. (3)当x =3时,y 有最小值,最小值是-8.(4)该函数图象可由y =2x 2的图象先向右平移3个单位长度,再向下平移8个单位长度得到.15.如图,已知抛物线C 1:y =a(x +2)2-5的顶点为P ,与x 轴相交于A ,B 两点(点A 在点B 的左侧),点B 的横坐标是1.(1)由图象可知,抛物线C 1的开口向上,当x >-2时,y 随x 的增大而增大; (2)求a 的值;(3)抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,抛物线C 3的顶点为M ,当点P ,M 关于点O 成中心对称时,求抛物线C 3的表达式.解:(2)∵点B 是抛物线与x 轴的交点,横坐标是1,∴点B 的坐标为(1,0). ∴当x =1时,0=a(1+2)2-5.∴a=59.(3)设抛物线C 3表达式为y =a′(x-h)2+k ,∵抛物线C 2与C 1关于x 轴对称,且C 3为C 2向右平移得到,∴a′=-59.∵点P ,M 关于点O 中心对称,且点P 的坐标为(-2,-5),∴点M 的坐标为(2,5).∴抛物线C 3的表达式为y =-59(x -2)2+5=-59x 2+209x +259.综合题16.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点. (1)求此抛物线的表达式;(2)当PA +PB 的值最小时,求点P 的坐标.解:(1)∵抛物线顶点坐标为(1,4), ∴设抛物线表达式为y =a(x -1)2+4. 由于抛物线过点B(0,3), ∴3=a(0-1)2+4. 解得a =-1. ∴抛物线的表达式为 y =-(x -1)2+4, 即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P ,连接PB. 设AE 表达式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3. 解得⎩⎪⎨⎪⎧k =7,b =-3. ∴y=7x -3. 当y =0时,x =37.∴点P 坐标为(37,0).第5课时二次函数y=ax2+bx+c(a≠0)的图象与性质基础题知识点1 用配方法将二次函数由一般式化为顶点式1.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是(B)A.y=(x+1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+42.用配方法将二次函数y=2x2-4x-3化为顶点式:y=2(x2-2x)-3=2(x2-2x+1-1)-3=2[(x-1)2-1]-3=2(x-1)2-5.知识点2 二次函数y=ax2+bx+c(a≠0)的图象与性质3.抛物线y=x2+2x+3的对称轴是(B)A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=24.二次函数y=x2+2x-3的开口方向、顶点坐标分别是(A)A.开口向上、顶点坐标为(-1,-4)B.开口向下、顶点坐标为(1,4)C.开口向上、顶点坐标为(1,4)D.开口向下、顶点坐标为(-1,-4)5.在二次函数y=x2-2x+3的图象中,若y随x的增大而增大,则x的取值范围是(D)A.x<-1 B.x>-1C.x<1 D.x>16.(2018·成都)关于二次函数y=2x2+4x-1,下列说法正确的是(D)A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-37.(教材P18练习T1变式)求下列函数图象的开口方向、对称轴及顶点坐标,并指出当x取何值时,y 的值随x 的增大而减小.(1)y =x 2-4x -3;(2)y =-3x 2-4x +2.解:(1)开口向上,对称轴:直线x =2,顶点坐标:(2,-7),当x <2时,y 的值随x 的增大而减小.(2)开口向下,对称轴:直线x =-23,顶点坐标:(-23,103),当x >-23时,y 的值随x 的增大而减小.8.二次函数y =x 2+bx +3的图象经过点(3,0).(1)求b 的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给的坐标系中画出二次函数y =x 2+bx +3的图象.解:(1)将(3,0)代入函数表达式,得9+3b +3=0.解得b =-4.(2)∵y=x 2-4x +3=(x -2)2-1,∴顶点坐标是(2,-1),对称轴为直线x =2.(3)如图所示.知识点3 二次函数y =ax 2+bx +c(a≠0)的最值9.(教材P17例6变式)求下列函数的最大(小)值:(1)y =2x 2-4x +1;(2)y =-x 2+3x -1. 解:(1)y =2x 2-4x +1=2(x -1)2-1,∴当x =1时,函数有最小值-1.(2)y =-x 2+3x -1=-(x 2-3x)-1=-(x -32)2+54,∴当x =32时,函数有最大值54.中档题10.将抛物线y =x 2-4x -4向左平移3个单位长度,再向上平移5个单位长度,得到抛物线的函数表达式为(D)A .y =(x +1)2-13B .y =(x -5)2-3C .y =(x -5)2-13D .y =(x +1)2-311.点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是(D)A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 312.小韵从如图的二次函数y =ax 2+bx +c 图象中,观察得到下面四条信息:①a>0;②c<0;③函数的最小值为-3;④对称轴是直线x =2.你认为其中正确的个数是(B)A .4B .3C .2D .113.(2018·黄冈)当a≤x≤a+1时,函数y =x 2-2x +1的最小值为1,则a 的值为(D)A .-1B .2C .0或2D .-1或2 14.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y =a 1x 2+b 1x +c 1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0;②a-b +c <0;③阴影部分的面积为4;④若c =-1,则b 2=4a.15.已知二次函数y =-12x 2-x +32. (1)画出这个函数的图象;(2)根据图象,写出当y <0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位长度,请写出平移后图象所对应的函数表达式. 解:(1)如图所示.(2)当y <0时,x 的取值范围是x <-3或x >1.(3)平移后图象所对应的函数表达式为y =-12(x -2)2+2(或写成y =-12x 2+2x).16.已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x 轴的交点A ,B 的坐标,及△ABC 的面积.解:(1)y =x 2-4x +3=(x -2)2-1.∴函数的顶点C 的坐标为(2,-1).∴当x≤2时,y 随x 的增大而减小;当x>2时,y 随x 的增大而增大.(2)令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3.∴当点A 在点B 左侧时,A(1,0),B(3,0);当点A 在点B 右侧时,A(3,0),B(1,0).∴AB=||1-3=2.过点C 作CD⊥x 轴于D ,S △ABC =12AB·CD=12×2×1=1.综合题17.如果二次函数的二次项系数为1,则此二次函数可表示为y =x 2+px +q ,我们称[p ,q]为此函数的特征数,如函数y =x 2+2x +3的特征数是[2,3].(1)若一个函数的特征数是[-2,1],求此函数的顶点坐标;(2)探究下列问题:①若一个函数的特征数是[4,-1],将此函数图象先向右平移1个单位长度,再向上平移1个单位长度,求得到的图象对应函数的特征数;②若一个函数的特征数是[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?解:(1)∵一个函数的特征数是[-2,1],∴该函数的表达式为y =x 2-2x +1.∵y=x 2-2x +1=(x -1)2,∴此函数的顶点坐标是(1,0).(2)①∵一个函数的特征数是[4,-1],∴该函数的表达式为y =x 2+4x -1,配方成顶点式为y =(x +2)2-5.∴将抛物线y =(x +2)2-5先向右平移1个单位长度,再向上平移1个单位长度得到抛物线的函数表达式为y =(x +2-1)2-5+1,即y =(x +1)2-4,即y =x 2+2x -3.∴得到的图象对应函数的特征数为[2,-3].②∵一个函数的特征数是[2,3],∴y=x 2+2x +3=(x +1)2+2.∵一个函数的特征数是[3,4],∴y=x 2+3x +4=(x +32)2+74=(x +1+12)2+2-14.∴将抛物线y =x 2+2x +3先向左平移12个单位长度,再向下平移14个单位长度即可得到抛物线y =x 2+3x +4,其特征数为[3,4].。
浙教版数学九年级上册第1章《1.2 二次函数的图象(3)》课件
(3)顶点坐标是
b 2a
,
4ac 4a
b2
y
a
x
b 2a
2
4ac 4a
b2
(4)当a>0时,抛物线的开口向上,顶点是抛物线上的最低点.
当a<0时,抛物线的开口向下,顶点是抛物线上的最高点.
例题探究
【例1】求抛物线 y 1 x2 3x 5 的对称轴和顶点坐标.
2
2
解: a 1 , b 3, c 5 ,
复习回顾
【复习2】填空. 若把二次函数 y=a(x+m)2+k(a≠0)的图象先向左平移 2 个单 位,再向上平移 4 个单位,得到二次函数 y=-1(x+1)2-1 的图 象,则 a=___-__12_____,m=___-__1_____,k=_2___-__5____.
新知探究
【探究1】你能求出抛物线 y 2x2 4x 5 的顶点坐标和对称轴吗?
【例4】将函数y=ax2+bx+c的图象先向右平移2个单位,再向上平 移3个单位后得到的表达式为y=2x2-x+3,求a+b+c的值.
解:∵二次函数
y=2x 2-x +3
可化为
y=2
x-1 4
2+23, 8
∴由题意可得原二次函数的表达式为 y=2 x-14+2 2+23-3, 8
整理得 y=2x2+7x+6,
∴a=2,b=7,c=6.
∴a+b+c=2+7+6=15.
学以致用
【1】将抛物线y=x2-4x+5先向上平移3个单位,再向左平移2个单
位后得到的抛物线的顶点坐标是( A )
A.(0,4) B.(5,-1) C.(4,4) D.(-1,-1)
学以致用
【2】一次函数 y=ax+b 和反比例函数 y=c在同一平面直角坐标系中的 x
九下第1章二次函数专题强化训练二二次函数与几何图形的综合习题新版湘教版
直线AC的函数表达式为y=kx+h(k≠0),将
A(0,4),C(5,0)的坐标代入y=kx+h,
1
2
3
4
5
6
7
8
9
= ,
=- ,
得ቊ
解得൝
所以直线AC的函数表
+ = ,
= .
达式为y=- x+4.由题意可知点P的横坐标为3,当x=
3时,y=- ×3+4= .所以当△PAB的周长最小时,点
坐标;若不存在,请说明理由.
解:(3)存在.点G的坐标为(-2,5)或(4,5)
或(2,-3).
1
2
3
4
5
6
7
8
9
如图,已知二次函数y=-x2+bx+c的图象交x轴于点A(-
1,0),B(2,0),交y轴于点C,连接BC,P是二次函数图象
上一点.
1
2
3
4
5
6
7
8
9
(1)求这个二次函数的表达式;
解:(1)将点A(-1,0),B(2,0)的坐标代入y
( x)2,
解得x=1(负值已舍去),所以OB=1.所以点B的坐标为(1,
0),OA=4,所以点A的坐标为(-4,0),所以此抛物线的
-+
对称轴为直线x=
=- .
1
2
3
4
5
6
7
8
9
4.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,
与x轴交于B(-2,0),C(8,0)两点,其对称轴与x轴交于
P的坐标为 ,
第1章《二次函数》(教师版)
2023-2024学年浙教版数学九年级上册易错题真题汇编(提高版)第1章《二次函数》考试时间:120分钟试卷满分:100分难度系数:0.50一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•鄞州区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A.2个B.3个C.4个D.5个解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵x=0时,y>0,对称轴是直线x=1,∴当x=2时,y>0,∴4a+2b+c>0,③正确;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确.故选:C.2.(2分)(2022秋•滨江区期末)将抛物线y=﹣x2向右平移2个单位,再向上平移2个单位,则所得的抛物线的函数表达式为()A.y=﹣(x+2)2B.y=﹣(x+2)2+2C.y=﹣(x﹣2)2+2D.y=﹣(x﹣2)2解:将抛物线y=﹣x2向右平移2个单位,再向上平移2个单位,则所得的抛物线的函数表达式为y=﹣(x﹣2)2+2.故选:C.3.(2分)(2022秋•滨江区期末)已知二次函数y=(m﹣2)x2(m为实数,且m≠2),当x≤0时,y随x 增大而减小,则实数m的取值范围是()A.m<0B.m>2C.m>0D.m<2解:当x≤0时,y随x的增大而减小,∴抛物线开口向上,∴m﹣2>0,∴m>2,故选:B.4.(2分)(2023•拱墅区校级模拟)已知二次函数y=x2+2cx+c的图象经过点A(a,c),B(b,c),且满足0<a+b<2.当﹣1≤x≤1时,该函数的最大值m和最小值n之间满足的关系式是()A.n=﹣3m﹣4B.m=﹣3n﹣4C.n=m﹣m2D.m=n2+n解:∵二次函数y=﹣x2+2cx+c的图象与x轴交于A(a,c),B(b,c)两点,∴图象开口向下,对称轴为直线,∵0<a+b<2,∴0<c<1,∴当﹣1≤x≤1时,函数的最大值是x=c时所对应的函数值,函数的最小值是x=﹣1时所对应的函数值,∴m=﹣c2+2c2+c=c2+c,n=﹣1﹣2c+c=﹣c﹣1,∴m=n2+n故选:D.5.(2分)(2023•鹿城区校级二模)二次函数y=x2﹣4x+n与x轴只有一个交点.若关于x的方程x2﹣4x+n =t(t为实数),在0<x<5范围内有解.则t的取值范围是()A.0≤t<4B.0≤t<9C.4<t<9D.t≥0解:∵二次函数y=x2﹣4x+n与x轴只有一个交点.∴(﹣4)2﹣4×1×n=0,解得n=4,∴二次函数y=x2﹣4x+4=(x﹣2)2,∴该函数的对称轴为直线x=2,图象开口向上,顶点坐标为(2,0),∴当x=5时,y=9,当x=0时,y=4,∵关于x的方程x2﹣4x+n=t(t为实数),在0<x<5范围内有解.∴0≤t<9,故选:B.6.(2分)(2023•杭州模拟)如图,是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点在点(2,0)和(3,0)之间,对称轴是直线x=1.对于下列说法:①ab<0;②3a+c>0;③2a+b=0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确结论为()A.2个B.3个C.4个D.5个解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b =﹣2a ,∵当x =﹣1时,y =a ﹣b +c <0,∴a ﹣(﹣2a )+c =3a +c <0,故错误;④根据图示知,当x =1时,有最大值;当m ≠1时,有am 2+bm +c <a +b +c ,所以a +b ≥m (am +b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选:B .7.(2分)(2023•瓯海区四模)已知两点A (﹣2,y 1),B (4,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点C (x 0,y 0)是该抛物线的顶点,若y 0≤y 1<y 2,则x 0的取值范围是()A.x 0≤﹣2B.x 0<1C.﹣2<x 0<1D.﹣2<x 0<4解:∵点A (﹣2,y 1),B (4,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点C (x 0,y 0)是该抛物线的顶点,∴若y 2>y 1≥y 0,则此函数开口向上,有最小值,∴=1<x 0≤3或x 0≥3,解得:x 0<1,故选:B .8.(2分)(2023•舟山三模)已知函数y =x 2﹣4ax +5(a 为常数),当x ≥4时,y 随x 的增大而增大P (x 1,y 1),Q (x 2,y 2)是该函数图象上的两点,对任意的2a ﹣1≤x 1≤5和2a ﹣1≤x 2≤5,y 1,y 2总满足,则实数a 的取值范围是()A.﹣1≤a ≤2B.1≤a ≤2C.2≤a ≤3D.2≤a ≤4解:由题意可得,抛物线开口向上,∵当x ≥4时,y 随x 的增大而增大,∴对称轴x =2a ≤4,即a ≤2;又5﹣2a ≥1,2a ﹣(2a ﹣1)=1,得x =2a 时,y min =5﹣4a 2,x =5时,y max =30﹣20a ,∴30﹣20a ﹣(5﹣4a 2)≤5+4a 2,解得,a ≥1,∴1≤a ≤2.故选:B .9.(2分)(2023•南湖区二模)已知二次函数y =x 2﹣2mx +m 2+2m ﹣4,下列说法中正确的个数是()①当m =0时,此抛物线图象关于y 轴对称;②若点A (m ﹣2,y 1),点B (m +1,y 2)在此函数图象上,则y 1<y 2;③若此抛物线与直线y =x ﹣4有且只有一个交点,则;④无论m 为何值,此抛物线的顶点到直线y =2x 的距离都等于.A.1B.2C.3D.4解:①当m =0时,y =x 2﹣4,∴抛物线的对称轴为y 轴,∴此抛物线图象关于y 轴对称;∴①正确;②∵y =x 2﹣2mx +m 2+2m ﹣4,∴抛物线开口向上,对称轴为直线x ==m ,∵点A (m ﹣2,y 1),点B (m +1,y 2)在此函数图象上,且m ﹣(m ﹣2)>m +1﹣m ,∴y 1>y 2;∴②错误;③若此抛物线与直线y =x ﹣4有且只有一个交点,则令x ﹣4=x 2﹣2mx +m 2+2m ﹣4,整理得x2﹣(2m+1)x+m2+2m=0,Δ=[﹣(2m+1)]2﹣4(m2+2m)=0,解得,∴③正确;④∵y=x2﹣2mx+m2+2m﹣4=(x﹣m)2+2m﹣4,∴顶点为(m,2m﹣4),∴抛物线的顶点在直线y=2x﹣4上,∵直线y=2x﹣4与直线y=2x平行,∴顶点到直线y=2x的距离都相等,如图,设直线y=2x﹣4交x轴于A,交y轴于B,点O到AB的距离为OD,则A(2,0),B(0,﹣4),O∴AB==2,∵S=,△AOB∴,∴OD=,∴两直线间的距离为,∴④正确.故选:C.10.(2分)(2023•慈溪市模拟)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥﹣2;②当x>0时,一定有y随x的增大而增大;③当四边形ABCD为平行四边形时.;④若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3.其中正确的是()A.①④B.②③C.①②④D.①③④解:∵点A,B的坐标分别为(﹣3,﹣2)和(1,﹣2),∴线段AB与y轴的交点坐标为(0,﹣2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≥﹣2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=﹣2,∴=﹣8,即=8,∴CD2=×8=,∵四边形ABCD为平行四边形,∴CD=AB=1﹣(﹣3)=4,∴=42=16,解得a=,故③正确;若点D的横坐标最小值为﹣5,则此时对称轴为直线x=﹣3,C点的横坐标为﹣1,则CD=4,∵抛物线形状不变,当对称轴为直线x=1时,C点的横坐标为3,∴点C的横坐标最大值为3,故④正确.综上所述,正确的结论有①③④.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•仙居县期末)如图,已知抛物线y=ax2+bx+c与直线y=kx+h相交于(﹣2,m),(2,n)两点,则不等式ax2+bx﹣h≥kx﹣c的取值范围是﹣2≤x≤2.解:∵抛物线y=ax2+bx+c与直线y=kx+h相交于(﹣2,m),(2,n)两点,∴由图可知,ax2+bx+c≥kx+h的解集为﹣2≤x≤2,∴ax2+bx﹣h≥kx﹣c的解集为﹣2≤x≤2,故答案为:﹣2≤x≤2.12.(2分)(2020秋•柯桥区期中)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)直接具有的关系为h=24t﹣4t2,则小球从飞出到落地所用的时间为6s.解:依题意,令h=0得:0=24t﹣4t2,解得t=0或t=6,小球从飞出到落地所用的时间为6﹣0=6s.13.(2分)(2019•鹿城区模拟)如图,两个完全相同的直角三角板放置在平面直角坐标系中,点A,B分别在x轴、y轴上,点C在边AB上,延长DC交y轴于点E.若点D的横坐标为5,∠OBA=30°,二次函数y=ax2+bx+c的图象经过点A,D,E,则a的值为.解:设A(m,0),在Rt△ABO中,∠OBA=30°,∴OB=m,AB=2m,又∵△ACD是与△ABO相同的三角板,∴∠ADC=30°,AC=m,CD=2m,∴C是AB的中点,又∵∠BEC=90°,∴EC=m,∴ED=m,又∵ED=5,∴m=2,∴A(2,0),E(0,),D(5,),∴,∴a=,故答案为14.(2分)(2023•湖北模拟)某民房发生火灾.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和点F的离地高度分别相同,现消防员将水流抛物线向上平移5m,再向左后退5m,恰好把水喷到F处进行灭火.解:由图可知:A(0,21.2),B(0,9.2),C(0,6.2),D(0,1.2),∵点B和点E、点C和点F的离地高度分别相同,∴E(20,9.2),设AE的直线解析式为y=kx+b,,∴,∴y=﹣x+21.2,∵A,E,F在同一直线上.∴F(25,6.2),设过D,E,F三点的抛物线为y=ax2+bx+c,∴,∴y=﹣x2+x+,水流抛物线向上平移5m,设向左退了m米,∴D(0,6.2),设平移后的抛物线为y=﹣(x+m)2+(x+m)+1.2+5,经过点F,∴m=5或m=﹣25(舍),∴向后退了5米.故答案为5.15.(2分)(2023•越城区三模)如图,点P(a,3)在抛物线C:y=﹣(x﹣6)2+4上,且在C的对称轴右侧.坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.则点P'移动的最短路程是5.解:∵y=﹣(x﹣6)2+4,∴抛物线C的顶点坐标为(6,4).∵平移胶片后,抛物线C′对应的函数为y=﹣x2+6x﹣9=﹣(x﹣3)2,∴抛物线C′的顶点坐标为(3,0).∵由平移的性质可知,抛物线C与C'顶点之间的距离等于P与P'之间的距离,∴PP'==5.故答案为:5.16.(2分)(2023春•鄞州区期末)如图,点A在二次函数y=ax2的图象上,A点坐标为(﹣1,1),连结OA,将OA绕着点O顺时针旋转60°后并延长交抛物线于点B,则点B的横坐标为2+.解:如图,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,在ON上截取OP=PB,∵点A(﹣1,1)在y=ax2的图象上,∴AM=OM=1,a=1,∴二次函数的关系式为y=x2,∠AOM=45°,∴∠AON=90°﹣45°,由旋转可知∠AOB=60°,∴∠BON=60°﹣45°=15°,∴∠POB=∠PBO=15°,∴∠NPB=30°,在Rt△PBN中,设BN=k,由于∠NPB=30°,则PB=OP=2k,PN=k,∴ON=(2+)k,∴点B(k,2k+k),∵点B在y=x2的图象上,∴k2=2k+k,∴k=2+,即点B的横坐标为2+,故答案为:2+.17.(2分)(2023•绍兴)在平面直角坐标系xOy中,一个图形上的点都在一边平行于x轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x﹣2)2(0≤x≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC.若二次函数图象的关联矩形恰好也是矩形OABC,则b=或﹣.解:由y=(x﹣2)2(0≤x≤3),当x=0时,y=4,∴C(0,4),∵A(3,0),四边形ABCO是矩形,①当抛物线经过O、B时,将点O(0,0),B(3,4)代入y=x2+bx+c(0≤x≤3)得,解得b=;②当抛物线经过A、C时,将点A(3,0),C(0,4)代入y=x2+bx+c(0≤x≤3)得,解得b=﹣,综上所述,b=或b=﹣,故答案为:或﹣,18.(2分)(2022秋•上城区月考)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1).其中正确的是②③⑤(填序号).解:由于抛物线的开口向下,因此a<0,由于抛物线的对称轴是直线x=1>0,所以a、b异号,而a<0,所以b>0,由于抛物线与y轴的交点在y轴的正半轴,因此c>0,所以abc<0,因此①不正确;由图象可知,当x=﹣1时,y=a﹣b+c<0,即b﹣a>c,因此②正确;由抛物线的对称性以及图象可知,当x=2时,y=4a+2b+c>0,因此③正确;因为对称轴为x=﹣=1,即2a+b=0,而当x=﹣1时,y=a﹣b+c<0,所以3a+c<0,即3a<﹣c,因此④不正确;由于抛物线的顶点坐标为(1,a+b+c),即x=1时,y的值最大,即a+b+c最大,当x=m(m≠1)时,y=am2+bm+c<a+b+c,即a+b>m(am+b)(m≠1),因此⑤正确;综上所述,正确的结论有:②③⑤,故答案为:②③⑤.19.(2分)(2020秋•吴兴区期末)如图,在平面直角坐标系中,抛物线y=(x+)2﹣4交x轴于A,B两点,交y轴于点C,点D为抛物线顶点.(1)求tan∠DAC=;(2)若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,当点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长为.解:(1)如图,过D 作DE ⊥y 轴于E ,∵抛物线y =(x +)2﹣4交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线顶点,∴D (﹣,﹣4),DE =,OE =4,令y =0得(x +)2﹣4=0,解得x 1=﹣3,x 2=,∴A (﹣3,0),B (,0),OA =3令x =0得y =﹣3,∴C (0,﹣3),OC =3,∴CE =OE ﹣OC =,∴OA =OC =3,CE =DE =,∴△AOC 和△CED 是等腰直角三角形,AC =3,DC =,∴∠ACO =∠DEC =45°,∴∠DCA =90°,∴tan∠DAC ===,故答案为:;(2)∵∠DPQ=∠DAC,DP⊥DQ,且∠DCA=90°,∴△ADC∽△PQD,∴,∵点P在线段AC上运动时,D点不变,Q点随之运动,∴P的路径(AC)与Q的路径之比等于,∵AC=3,∴Q的路径为3×=,故答案为:.20.(2分)(2022•金东区三模)一个玻璃杯竖直放置时的纵向截面如图1所示,其左右轮廓线AD,BC为同一抛物线的一部分,AB,CD都与水平地面平行,当杯子装满水后AB=4cm,CD=8cm,液体高度12cm,将杯子绕C倾斜倒出部分液体,当倾斜角∠ABE=45°时停止转动.如图2所示,此时液面宽度BE为5cm,液面BE到点C所在水平地面的距离是7cm.解:如图1,以AB的中点为原点,直线AB为x轴,线段AB的中垂线为y轴,建立平面直角坐标系,由题意得:A(﹣2,0),B(2,0),C(4,﹣12),D(﹣4,﹣12),设抛物线的解析式为:y=ax2+b,将B(2,0),C(4,﹣12),代入得:,解得:,∴y=﹣x2+4;根据题意可知,∠ABE=45°,设BE与y轴的交点坐标P,∴△OBP是等腰直角三角形,∴OB=OP=2,∴P(0,﹣2),∴直线BP的解析式为:y=x﹣2,令﹣x 2+4=x ﹣2,解得x =2(舍)或x =﹣3,∴E (﹣3,﹣5).∴BE ==5,DE =7,水面BE 到平面的距离实际就是点C 到直线BE 的距离,如图1,过点C 作BP 的垂线交BP 于点M ,过点C 作y 轴的平行线,交直线BP 于点N ,∴△MNC 是等腰直角三角形,∵C (4,﹣12),∴N (4,2).∴CN =14.过点M 作MQ ⊥CN 于点Q ,∴Q 是CN 的中点,且MQ =NQ =CQ ,∴Q (4,﹣5),∴M (﹣3,﹣5).∴CM ==7.故答案为:5;7.三.解答题(共7小题,满分60分)21.(8分)(2023•缙云县二模)二次函数y =x 2﹣bx +c 的图象经过(﹣2,y 1),(1,y 2)两点.(1)当b =1时,判断y 1与y 2的大小.(2)当y 1<y 2时,求b 的取值范围.(3)若此函数图象还经过点(m ,y 1),且1<b <2,求证:3<m <4.解:(1)当b =1时,∴,∵6+c >c ,∴y 1>y 2;(2)∵y 1=4+2b +c ,y 2=1﹣b +c ,又∵y 1<y 2,∴4+2b +c <1﹣b +c ,∴b <﹣1;(3)二次函数y =x 2﹣bx +c 的对称轴为直线,∵二次函数经过(﹣2,y 1),(m ,y 1)两点,∴=m ﹣得,即m =2+b ,∵1<b <2,∴3<m <4.22.(8分)(2023•鄞州区校级模拟)“五一”前夕,某超市销售一款商品,进价每件75元,售价每件140元,每天销售40件,每销售一件需支付给超市管理费5元.从五月一日开始,该超市对这款商品开展为期一个月的“每天降价1元”的促销活动,即从第一天(5月1日)开始每天的售价均比前一天降低1元.通过市场调查发现,该商品的日销售量y (件)与第x 天(1≤x ≤31,且x 为整数)之间存在一次函数关系,x ,y 之间的部分数值对应关系如下表:第x 天5101520日销售量y (件)50607080(1)直接写出y 与x 的函数关系式y =2x +40;(2)设第x 天的利润为W 元,试求出W 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?(3)销售20天后,由于某种原因,该商品的进价从第21天开始每件下降4元,其他条件保持不变,求超市在这一个月中,该商品的日销售利润不低于3430元的共有多少天?解:(1)观察表格可知,y 是x 的一次函数,设y =kx +b ,把(5,50),(10,60)代入得:,解得:,∴y 与x 的函数关系式y =2x +40,故答案为:y=2x+40;(2)根据题意可得,W=(140﹣x﹣75﹣5)(2x+40)=﹣2x2+80x+2400=﹣2(x﹣20)2+3200,∵﹣2<0,1≤x≤31,∴当x=20时,W有最大值为3200元;∴第20天利润最大,最大利润为3200元;(3)根据题意,当x>20时,W=[140﹣x﹣(75﹣4)﹣5](2x+40)=﹣2(x﹣22)2+3528,当W=3430时,﹣2(x﹣22)2+3528=3430,解得x=15或x=29,∵x>20,且x为整数,∴21≤x≤29时,W≥3430,即从第21天开始到第29天日销售利润不低于3430元;由(2)知,当x≤20时,日销售利润均低于3430元,∴这一个月中,超市该商品的日销售利润不低于3430元的共有9天.23.(8分)(2023•海曙区校级三模)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式;(2)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?解:(1)设每天的销售量y(件)与每件售价x(元)函数关系式为:y=kx+b,由题意可知:,解得:,∴y与x之间的函数关系式为:y=﹣5x+150;(2)w=y(x﹣8)=(﹣5x+150)(x﹣8)=﹣5x2+190x﹣1200=﹣5(x ﹣19)2+605,∵8≤x ≤15,且x 为整数,∴当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为﹣5×(15﹣19)2+605=525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.24.(8分)(2023春•金东区期末)6月是杨梅丰收季,某经销商销售杨梅的进价是每千克8元,当销售价定为每千克20元时,每天可销售100千克,商家想采用提高销量的办法来增加利润,经试销发现:这种杨梅的售价每千克降低1元,日销量增加20kg .(1)当杨梅售价每千克降低多少元时,日销售额可达3000元?(2)当杨梅售价定为多少元时,才能使商家一天的利润最大?一天的最大利润是多少元?解:(1)设当杨梅售价每千克降低x 元时,日销售额可达3000元,由题意可得:(20﹣x )(100+20x )=3000,解得x 1=5,x 2=10,答:当杨梅售价每千克降低5元或10元时,日销售额可达3000元;(2)设当杨梅售价定为m 元时,利润为w 元,由题意可得:w =(m ﹣8)[100+(20﹣m )×20]=﹣20(m ﹣16.5)2+1445,∴当m =16.5时,w 取得最大值,此时w =1445,答:当杨梅售价定为16.5元时,才能使商家一天的利润最大,一天的最大利润是1445元.25.(8分)(2023•缙云县一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A点8m处有人墙GH,且GH∥CF,人起跳后最大高度为2.2m,请探求此时足球能否越过人墙,并说明理由.解:(1)由题意得抛物线的顶点坐标为(﹣10,2.5),设抛物线的函数表达式为y=a(x+10)2+2.5,将(0,0)代入得,0=100a+2.5,解得,∴足球运动轨迹抛物线的函数表达式为;(2)足球不能进球网,理由如下:当x=﹣12时,,∵2.4>2,∴足球不能进球网.(3)足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点(0,0),∴设抛物线的函数表达式为.如图,由题意知,四边形CDEF是矩形,则CF=DE=5,在Rt△ACF中,由勾股定理得,∵足球恰好在点E处进入球网,∴抛物线经过点(﹣13,2),将(﹣13,2)代入得,,解得,∴,∵GH∥CF,∴△AGH∽△ACF,∴,即,解得,把代入得,,∵,∴足球能越过人墙.26.(10分)(2023•余姚市二模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交点C的坐标为(0,﹣3),且经过D(2,﹣3).(1)求b和c的值;(2)点P是坐标平面内的一动点,将线段AB绕点P顺时针旋转90°得A′B′,其中A、B的对应点分别是A′、B′.①当B′与D点重合时,请在图中画出线段A′B′,并直接写出点P的坐标;②当点P在线段AB上,若线段A′B′与抛物线y=x2+bx+c有公共点,请直接写出P点的横坐标m的取值范围.解:(1)把(0,﹣3)和(2,﹣3)代入y=x2+bx+c得:,解得,∴y=x2﹣2x﹣3,(2)①如图,过P点作x轴的垂线交x轴于点E,交CD于点F,则∠PEB=∠PFD=90°,EF=3,由旋转得:∠BPD =90°,PB =PD ,∴∠EPB +∠BPE =90°,∠EPB +∠FPD =90°,∴∠BPE =∠FPD ,∴△PEB ≌△DFP ,∴PF =BE ,PE =DF ,令y =0,则x 2﹣2x ﹣3=0,解得:x 1=﹣1,x 2=3∴A (﹣1,0),B (3,0)设P 点坐标为(x ,y ),则PF =BE =3﹣x ,PE =DF =2﹣x ,即EF =3﹣x +2﹣x =3,解得:x =1,∴P 点坐标为(﹣1,﹣1),②∵PB =3﹣m ,当x =m 时,y =m 2﹣2m ﹣3,由题可知:3﹣m ≥0﹣(m 2﹣2m ﹣3),即m (m ﹣3)≥0,由同号两数相乘得正可知:m ,m ﹣3同号,∴或解得:m ≤0或m ≥3,又∵﹣1≤m ≤3,∴﹣1≤m ≤0或m =3.27.(10分)(2023•杭州模拟)如图,抛物线y=﹣x2+bx+c交x轴负半轴于点A,交X轴正半轴于点B,交y轴正半轴于点C,直线BC的解析式为y=kx+3(k≠0),∠ABC=45°(1)求b、c的值;(2)点P在第一象限的抛物线上,过点P分别作x轴、y轴的平行线,交直线BC于点M、N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为抛物线的顶点,连接EC、EP、AP,AP交y轴于点D,连接DM,若∠DMB =90°,求四边形CMPE的面积.解:(1)在y=kx+3中,令x=0,则y=3,即C的坐标是(0,3),∵直角△OBC中,∠ABC=45°,∴OB=OC=3,即B的坐标是(3,0).根据题意得:,解得:;(2)二次函数的解析式是y=﹣x2+2x+3,设BC的解析式是y=mx+n,则,解得,则直线BC的解析式是y=﹣x+3,△OBC是等腰直角三角形.把x=t代入y=﹣x2+2x+3得y=﹣t2+2t+3,即P的纵坐标是﹣t2+2t+3,把x=t代入y=﹣x+3,得y=﹣t+3,即Q的纵坐标是﹣t+3.则PQ=(﹣t2+2t+3)﹣(﹣t+3)=﹣t2+3t,则d=PQ,即d=﹣t2+3t;(3)延长PM交y轴于点H,延长PN交x轴于点K.A的坐标是(﹣1,0),P的坐标是(t,﹣t2+2t+3),∵在直角△PAK中,tan∠PAK==3﹣t,在直角△AOD中,∠DAO==,∴3﹣t=,∴OD=3﹣t,∴CD=3﹣(3﹣t)=t.∵△CMD是等腰直角三角形,∴MH=CD=t.∵PH=MH+PM,∴t=t+(﹣t2+3t).∴t=或0(舍去).∴PM=﹣()2+3×=,PM=,CM=,PK=.∵二次函数的解析式是y=﹣x2+2x+3的顶点E的坐标是(1,4).∴点E到PM的距离是4﹣=,过E作EQ⊥y轴于点Q,连接EM.∵EQ=QC=1,∴△EQC和△HMC都是等腰直角三角形,∴EC=,∠ECM=90°,∴S 四边形CMPE =S △ECM +S △EMP =××+××=.。
九年级数学下册 第1章 二次函数 课题 二次函数的应用(
课题:二次函数的应用(2)——建立二次函数模型解决最大面积或最大利润问题【学习目标】1.分析题目条件,列出解析式,并根据自变量取值范围求最大面积.2.理解销售利润类二次函数解析式列法,并求出最大利润.【学习重点】根据题目条件求出自变量取值范围,并求最大面积或最大利润.【学习难点】根据条件求最大、最小值.情景导入 生成问题情景导入:1.小敏用一根长为8cm 的细铁丝围成矩形,设一边长__x__cm ,则另一边为__(4-x)__cm ,面积为__x(4-x)__cm 2,所围矩形最大面积为__4__cm 2.2.如图,已知平行四边形ABCD 的周长为8cm ,∠B =30°.若设边长AB =x cm .(1)▱ABCD 的面积y(cm 2)与x(cm )的函数关系式为__y =-12x 2+2x__,自变量x 的取值范围为__0<x<4__; (2)当x 取__2__时,y 的值最大,最大值为__2__.自学互研 生成能力知识模块一 最大面积问题阅读教材P 30~P 31,完成下列问题:1.如何利用二次函数求最大面积?答:(1)分析题中的数量关系;(2)找出等量关系,根据面积公式建立函数模型;(3)结合函数图象及性质,考虑实际问题中自变量取值范围,求出面积的最大或最小值.2.(包头中考)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__12.5__cm 2.【例1】 如图,利用一面墙(墙长不超过45m ),用80m 长的篱笆围一个矩形场地,当AD =__20__m 时,矩形场地面积最大,最大值是__800__m 2.【变例1】 如图所示,是用9m 长的塑钢制作的窗户的窗框,设窗宽为x m ,窗的面积为y m 2,用x 表示y 的函数关系式为__y =-32x 2+92x__,要使制作的窗户面积最大,那么窗户的宽是__32__m ,窗户的最大面积是__278__m 2.【变例2】 (聊城中考)已知△ABC 中,边BC 的长与BC 边上的高的和为20.(1)写出△ABC 的面积y 与BC 的长x 之间的函数关系式,并求出面积为48时BC 的长;(2)当BC 多长时,△ABC 的面积最大?最大面积是多少?解:(1)y =-12x 2+10x ,解方程48=-12x 2+10x ,得x 1=12,x 2=8. ∴△ABC 的面积为48时,BC 的长为12或8;(2)将y =-12x 2+10x 配方变形为y =-12(x -10)2+50, ∴当BC =10时,△ABC 的面积最大,最大面积为50.知识模块二 最大利润问题求最大利润问题常用公式是什么?答:利润=销售总金额-总成本=(售价-进价)×销售量-其他支出.【例2】 某单位商品利润y 元与变化的单价x 之间的关系式为:y =-5x 2+10x ,当0.5≤x≤2时,最大利润是__5元__.【变例1】 某产品每件的成本是120元,试销阶段每件产品的售价x(元)与产品的月销售量y(件)满足当x =130时,y =70;当x =150时,y =50,且y 是x 的一次函数,为获得最大销售利润,每件产品的售价应定为__160元__.【变例2】 大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)则y 与x 的函数关系式为__y =-4x +360(40≤x≤90)__;(2)设王强每月获得的利润为P(元),求P 与x 之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?解:P =(x -40)(-4x +360)=-4x 2+520x -14400(40≤x≤90),当P =2400时,-4x 2+520x -14400=2400,解得x 1=60,x 2=70,∴销售单价应定为60元或70元.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 最大面积问题知识模块二 最大利润问题检测反馈 达成目标1.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富.经调查得知,若我们把每日租金定为160元,则可客满;而租金每涨20元,就会失去3位客人.每间住了人的客房每日所需服务、维修等各项支出共计40元.要想赚最多的钱,定价应该为( C )A .160元B .240元C .360元D .450元2.如图,有长为24m 的围栏,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道栅栏的长方形鸡舍.设鸡舍的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式;(2)能围成面积比45m 2更大的鸡舍吗?如果能,请求出最大面积;如果不能,请说明理由.解:(1)S =-3x 2+24x(143≤x <8);(2)S =-3x 2+24x =-3(x -4)2+48,∵143≤x <8,当x =143时,S 最大值=1403m 2,∴能围成比45m 2更大鸡舍,最大面积为1403m 2.课后反思 查漏补缺1.收获:___________________________________________________________________2.存在困惑:_____________________________________________________________。
一次函数反比例函数及二次函数课件
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;
九年级数学下册阶段核心归类利用二次函数解实际应用问题的六种常见类型习题新版湘教版
(1)当t为何值时,△PBQ是直角三角形? 解:由题意可知,∠B=60°,BP=(3-t)cm,BQ=t cm. 若△ PBQ 是直角三角形,则∠BPQ=30°或∠BQP=30°, 于是 BQ=12BP 或 BP=12BQ,即 t=12(3-t)或 3-t=12t. 解得 t=1 或 t=2,即当 t 为 1 或 2 时,△ PBQ 是直角三 角形.
的取值范围是 h≥3.025.
3.【中考·十堰】某超市拟于中秋节前50天里销售某品牌 月饼,其进价为18元/kg,设第x天的销售价格为y(元 /kg),销售量为m(kg).该超市根据以往的销售经验得 出 以 下 的 销 售 规 律 : ① 当 1≤x≤30 时 , y = 40 ; 当 31≤x≤50时,y与x满足一次函数关系,且当x=36时,y =37;x=44时,y=33.②m与x之间的函数关系式为m =5x+50.
(2)设四边形APQC的面积为y cm2,求y关于t的函数表达 式,当t取何值时,四边形APQC的面积最小?并求出 最小面积. 解:过点 P 作 PM⊥BC 于点 M, 则易知 BM=12BP=12(3-t)cm. ∴PM= BP2-BM2= 23(3-t)cm.
∴S 四边形 APQC=S△ABC-S△PBQ=12×3×32 3-12t·23(3-t)= 43t2-343t+943,即 y= 43t2-343t+943,易知 0<t<3.
最大高度h的取值范围是多少(排球压线属于没出界)?
解:设抛物线对应的函数表达式为 y=a(x-7)2+h,将点 C(0,1.8)的坐标代入,得 49a+h=1.8,即 a=1.84-9 hx-7)2+h.
根据题意,得41(211.4(8194-.98h-)+h)+h>h2≤.04,3, 解得 h≥3.025.故排球飞行的最大高度 h
2018年秋九年级数学上册 第1章 二次函数 专题训练 二次函数y=ax2+bx+c的系数a,b,c与图象的关系 (新版
二次函数y=ax2+bx+c的系数a,b,c与图象的关系►类型之一二次函数的图象与系数a,b,c的关系1.2017·成都在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图2-ZT -1所示,下列说法正确的是( )A.abc<0,b2-4ac>0 B.abc>0,b2-4ac>0C.abc<0,b2-4ac<0 D.abc>0,b2-4ac<02-ZT-12-ZT-22.2017·广安如图2-ZT-2所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x 轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a -b=0;④c-a=3.其中正确的结论有( )A.1个B.2个C.3个D.4个3.2017·绍兴模拟如图2-ZT-3,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:①4a-2b+c<0;②2a-b<0;③a+c<1;④b2+8a>4ac.其中正确的结论有( )A.1个B.2个C.3个D.4个2-ZT-32-ZT-44.如图2-ZT-4,抛物线y=ax2+bx+c(a≠0)过点(-1,0)和点(0,-3),且顶点在第四象限,设P=a+b+c,则P的取值范围是( )A.-3<P<-1B.-6<P<0C.-3<P<0D.-6<P<-35.如图2-ZT-5,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在点(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b2<8a;④13<a<23;⑤b>c.其中含所有正确结论的选项是( )A.①③B.①③④C.②④⑤D.①③④⑤2-ZT-52-ZT-66.2017·株洲如图2-ZT-6,二次函数y=ax2+bx+c图象的对称轴在y轴的右侧,其图象与x轴交于点A(-1,0),点C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a <2;②-1<b <0;③c=-1;④当|a|=|b|时,x 2>5-1.其中正确结论的序号是________.7.如图2-ZT -7所示,二次函数y =ax 2+bx +c 的图象与x 轴交于B ,C 两点,与y 轴交于点A.(1)根据图象确定a ,b ,c 的符号;(2)如果OC =OA =13OB ,BC =4,求这个二次函数的表达式.图2-ZT -7► 类型之二 二次函数与其他函数的图象的综合8.在反比例函数y =m x中,当x >0时,y 随x 的增大而增大,则二次函数y =mx 2+mx 的图象大致是图2-ZT -8中的( )图2-ZT -89.2017·安徽已知抛物线y =ax 2+bx +c 与反比例函数y =b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y =bx +ac 的图象可能是( )图2-ZT -9图2-ZT -1010.二次函数y =ax 2+bx +c (a ≠0)的图象如图2-ZT -10,则反比例函数y =-a x与一次函数y =bx -c 在同一直角坐标系内的图象大致是( )图2-ZT -11►类型之三 二次函数的图象与方程(不等式)的关系图2-ZT -1211.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(-1,-3.2)及部分图象如图2-ZT -12所示,由图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2=( )A .-1.3B .-2.3C .-0.3D .-3.312.2017·杭州设直线x =1是函数y =ax 2+bx +c (a ,b ,c 是实数,且a <0)的图象的对称轴,则下列说法正确的是( )A .若m >1,则(m -1)a +b >0B .若m >1,则(m -1)a +b <0C .若m <1,则(m -1)a +b >0D .若m <1,则(m -1)a +b <013.如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax2+bx +c =0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若m ,n (m <n )是关于x 的方程2-(x -a )(x -b )=0的两根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b图2-ZT -1314.二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =23x 的图象如图2-ZT -13所示,则方程ax 2+(b -23)x +c =0(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定15.2017·常州已知二次函数y =ax 2+bx -3中自变量x 的部分取值和对应的函数值y 如下表:则在实数范围内能使得y -5>0成立的x 的取值范围是________.16.如图2-ZT -14,已知二次函数y 1=-x 2+134x +c 的图象与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A ,B 两点的直线为y 2=kx +b .(1)求二次函数的表达式及点B 的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围.图2-ZT-14详解详析1.B [解析] 由二次函数y=ax2+bx+c的图象开口向上,得a>0,与y轴交点在y轴的负半轴上,得c<0,对称轴在y轴的右侧,得-b2a>0,所以b<0,所以abc>0;图象与x轴有两个交点,则b2-4ac>0.综上,故选B.2.B [解析] 由图象可知,抛物线与x轴有两个交点,∴b2-4ac>0,故结论①不正确;∵抛物线的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,故结论②不正确;∵抛物线的对称轴为直线x=-b2a=-1,∴2a=b,即2a-b=0,故结论③正确;∵抛物线y=ax2+bx+c的顶点为B(-1,3),∴a-b+c=3.∵抛物线的对称轴为直线x=-1,∴2a=b,∴a-2a+c=3,即c-a=3,故结论④正确.综上所述,正确的结论有2个.故选B.3.D [解析]①由函数的图象可得:当x=-2时,y<0,即y=4a-2b+c<0,故①正确;②由函数的图象可知:抛物线开口向下,则a<0;抛物线的对称轴为直线x=-b2a>-1,得出2a-b<0,故②正确;③已知抛物线经过点(-1,2),即a-b+c=2(1),由图象知:当x=1时,y<0,即a +b+c<0(2),联立(1)(2),得a+c<1,故③正确;④因为抛物线的对称轴在直线x=1右侧,所以抛物线的顶点纵坐标应该大于2,即4ac-b24a>2,因为a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确.故选D.4.B [解析]∵抛物线y=ax2+bx+c(c≠0)过点(-1,0)和点(0,-3),∴0=a-b+c,-3=c,∴b=a-3.∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a-3-3=2a-6.∵顶点在第四象限,a>0,∴b=a-3<0,∴a<3,∴0<a <3, ∴-6<2a -6<0, 即-6<P <0. 故选B.5.D [解析]∵函数图象开口方向向上, ∴a >0.∵对称轴在原点右侧,∴ab 异号,即b <0. ∵抛物线与y 轴的交点在y 轴负半轴上, ∴c <0,∴abc >0,故①正确;∵图象与x 轴交于点A (-1,0),对称轴为直线x =1, ∴图象与x 轴的另一个交点为(3,0),∴当x =2时,y <0,即4a +2b +c <0,故②错误; ∵图象与x 轴交于点A (-1,0),∴当x =-1时,y =(-1)2a +(-1)b +c =0, ∴a -b +c =0, 即a =b -c ,c =b -a . ∵对称轴为直线x =1,∴-b2a=1,即b =-2a , ∴c =b -a =(-2a )-a =-3a ,∴4ac -b 2=4·a ·(-3a )-(-2a )2=-16a 2<0. ∵8a >0,∴4ac -b 2<8a ,故③正确;∵图象与y 轴的交点B 在点(0,-2)和(0,-1)之间,∴-2<c <-1, ∴-2<-3a <-1,∴13<a <23,故④正确;∵a >0,∴b -c >0,即b >c ,故⑤正确.6.①④ [解析] 由图象可知抛物线开口向上,则a >0,由抛物线经过点A (-1,0),B (0,-2),对称轴在y 轴的右侧可得⎩⎪⎨⎪⎧a -b +c =0,c =-2,-b 2a >0,可得a -b =2,b <0.故a =2+b <2,综合可知0<a <2;由a -b =2可得a =b +2,将其代入0<a <2中得0<b +2<2,可得-2<b <0;当|a |=|b |时,因为a >0,b <0,故有a =-b .又a -b =2,可得a =1,b =-1.故原函数为y =x 2-x -2,当y =0时,有x 2-x -2=0,解得x 1=-1,x 2=2,在这里,x 2=2>5-1.故答案为①④. 7.解:(1)∵抛物线开口向上,∴a >0. 又∵对称轴x =-b2a <0,∴a ,b 同号,即b >0. ∵抛物线与y 轴交于负半轴, ∴c <0.综上所述,a >0,b >0,c <0. (2)∵OC =OA =13OB ,BC =4,∴点A 的坐标为(0,-1),点B 的坐标为(-3,0),点C 的坐标为(1,0). 把A ,B ,C 三点的坐标分别代入二次函数y =ax 2+bx +c 中,可得⎩⎪⎨⎪⎧-1=c ,0=9a -3b +c ,0=a +b +c ,解得⎩⎪⎨⎪⎧a =13,b =23,c =-1.∴这个二次函数的表达式是y =13x 2+23x -1.8.A9.B [解析] 由公共点的横坐标为1,且在反比例函数y =b x的图象上,当x =1时,y =b ,即公共点坐标为(1,b ),又点(1,b )在抛物线y =ax 2+bx +c 上,得a +b +c =b ,a +c =0,再由a ≠0知ac <0,故一次函数y =bx +ac 的图象与y 轴的交点在负半轴上,由反比例函数y =b x的图象的一支在第一象限,知b >0,故一次函数y =bx +ac 的图象满足y 随x 的增大而增大,选项B 符合条件.故选B.10.C [解析] 观察二次函数图象可知:开口向上,a >0;对称轴在y 轴右侧,即-b2a >0,∴b <0;二次函数图象与y 轴的交点在y 轴的正半轴上,∴c >0.∵反比例函数中k =-a <0,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx -c 中,b <0,-c <0, ∴一次函数图象经过第二、三、四象限.11.D [解析] 关于x 的一元二次方程ax 2+bx +c =0的一个根是x 1=1.3,即二次函数y =ax 2+bx +c 的图象与x 轴的一个交点的坐标是(1.3,0).又知抛物线的对称轴是直线x =-1,由抛物线是轴对称图形,可得图象与x 轴的另一个交点的坐标是(-3.3,0),∴方程ax 2+bx +c =0的另一个根是x 2=-3.3.故选D.12.C [解析]∵直线x =1是函数y =ax 2+bx +c (a ,b ,c 是实数,且a <0)的图象的对称轴,∴x =-b2a =1,即2a +b =0.∵a <0,∴2a <0,∴b >0.当m <1时,(m -1)a >0,即(m -1)a +b >0.故选C.13.A14.A [解析] 设方程ax 2+(b -23)x +c =0的两根分别为x 1,x 2,则x 1+x 2=-b -23a,由函数图象易得a >0,b <0,因此-b -23a>0,即x 1+x 2>0.15.x <-2或x >411 [解析] 由表中自变量与函数值的对应关系可以知道,二次函数y =ax 2+bx -3的图象的顶点坐标为(1,-4),抛物线开口向上,当x =4时,y =5,∴使y -5>0成立的x 的取值范围是x <-2或x >4.16.解:(1)将A (4,0)代入y 1=-x 2+134x +c ,得0=-42+134×4+c ,解得c =3,∴二次函数的表达式为y 1=-x 2+134x +3.∵当x =0时,y 1=3,∴点B 的坐标为(0,3).(2)由图象知满足y 1<y 2的自变量x 的取值范围是x <0或x >4.。
配套K122018年秋九年级数学上册第1章二次函数1.2二次函数的图象第2课时二次函数y=a(x_m
[1.2 第2课时二次函数y=a(x-m)2+k(a≠0)的图象及特征]一、选择题1.抛物线y=(x-1)2-2的顶点坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(1,2)2.2017·滨州将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的函数表达式为链接学习手册例1归纳总结( )A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-53.如图K-3-1所示,在平面直角坐标系中,抛物线的函数表达式为y=-2(x-m)2-k,则下列结论正确的是( )图K-3-1A.m>0,k>0 B.m<0,k>0C.m<0,k<0 D.m>0,k<04.在下列二次函数中,其图象的对称轴为直线x=-2的是( )A.y=(x+2)2 B.y=2x2-2C.y=-2x2-2 D.y=2(x-2)25.2017·丽水将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是链接学习手册例1归纳总结( )A.向左平移1个单位 B.向右平移3个单位C .向上平移3个单位D .向下平移1个单位6.如图K -3-2,抛物线y =x 2与直线y =x 相交于点A ,沿直线y =x 平移该抛物线,使得平移后的抛物线的顶点恰好为点A ,则平移后抛物线的函数表达式是( )图K -3-2A .y =(x +1)2-1 B .y =(x +1)2+1 C .y =(x -1)2+1 D .y =(x -1)2-17.2017·盐城如图K -3-3,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )图K -3-3A .y =12(x -2)2-2B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+4二、填空题8.抛物线y =-(x -8)2+3的开口方向________,对称轴为直线________,顶点坐标为________.9.如图K -3-4,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.图K-3-410.若二次函数y=2x2的图象向左平移2个单位后,得到函数y=2(x+h)2的图象,则h=________.11.将一条抛物线向右平移1个单位,再向上平移3个单位后所得抛物线的函数表达式为y=2x2,则原抛物线的函数表达式为______________.12.2017·上海已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的表达式可以是________.(只需写一个)13.已知二次函数y=a(x-h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是________(写出一个即可).三、解答题14.已知抛物线y=(x-1)2-1.(1)求该抛物线的对称轴、顶点坐标;(2)选取适当的数据填入下表,并在图K-3-5中的直角坐标系内描点画出该抛物线.图K-3-515.二次函数图象的顶点坐标是(-2,4),与x轴的一个交点坐标是(-3,0).(1)求该二次函数的表达式;(2)根据抛物线的对称性,请直接写出抛物线与x轴的另一个交点坐标为________;(3)请你给出一种平移方案,使平移后的抛物线经过原点.16.已知一条抛物线与抛物线y=2(x-3)2+1关于x轴对称,求这条抛物线的函数表达式.17.如图K -3-6,抛物线y =a (x -1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD ∥x 轴交抛物线的对称轴于点D ,连结BD .已知点A 的坐标为(-1,0).(1)求该抛物线的函数表达式; (2)求梯形COBD 的面积.图K -3-6思维拓展如图K -3-7所示,已知直线y =-12x +2与抛物线y =a (x +2)2相交于A ,B两点,点A 在y 轴上,M 为抛物线的顶点.(1)请直接写出点A 的坐标及该抛物线的函数表达式;(2)若P 为线段AB 上一个动点(A ,B 两端点除外),连结PM ,设线段PM 的长为l ,点P 的横坐标为x ,请求出l 2与x 之间的函数表达式,并直接写出自变量x 的取值范围.图K-3-7详解详析【课时作业】 [课堂达标] 1.[答案] C 2.[答案] A3.[解析] D ∵抛物线y =-2(x -m)2-k 的顶点坐标为(m ,-k),由图可知抛物线的顶点坐标在第一象限,∴m >0,k<0.4.[解析] A 二次函数y =(x +2)2的图象的对称轴为直线x =-2,A 正确;二次函数y =2x 2-2的图象的对称轴为直线x =0,B 错误;二次函数y =-2x 2-2的图象的对称轴为直线x =0,C 错误;二次函数y =2(x -2)2的图象的对称轴为直线x =2,D 错误.5.[答案] D6.[解析] C ∵抛物线y =x 2与直线y =x 相交于点A ,∴x 2=x ,解得x 1=1,x 2=0(舍去),∴A(1,1),∴平移后抛物线的函数表达式为y =(x -1)2+1.7.[解析] D 如图,连结AB ,A ′B ′,则S 阴影=S 四边形ABB′A′.由平移可知,AA ′=BB′,AA ′∥BB ′,所以四边形ABB′A′是平行四边形.分别延长A′A,B ′B 交x 轴于点M ,N.因为A(1,m),B(4,n),所以MN =4-1=3.因为S ▱ABB′A′=AA′·MN,所以9=3AA′,解得AA′=3,即沿y 轴向上平移了3个单位,所以新图象的函数表达式为y =12(x -2)2+4.8.[答案] 向下 x =8 (8,3) 9.[答案] 直线x =2 10.[答案] 211.[答案] y =2(x +1)2-3[解析] 因为一条抛物线向右平移1个单位,再向上平移3个单位后所得抛物线的函数表达式为y =2x 2,所以将抛物线y =2x 2向左平移1个单位,向下平移3个单位即可得到原抛物线,其函数表达式为y =2(x +1)2-3.12.[答案] 答案不唯一,形如y=ax2-1(a>0)即可13.[答案] 答案不唯一,如314.解:(1)∵抛物线的函数表达式是y=(x-1)2-1,∴该抛物线的对称轴是直线x=1,顶点坐标为 (1,-1).(2)列表:15.解:(1)设二次函数的表达式为y=a(x+2)2+4.把(-3,0)代入得a+4=0,解得a=-4,所以二次函数的表达式为y=-4(x+2)2+4.(2)(-1,0)(3)答案不唯一,如向右平移3个单位或向右平移1个单位或向上平移12个单位等.16.解:∵抛物线y=2(x-3)2+1的顶点坐标是(3,1),抛物线y=2(x-3)2+1关于x轴对称的图象的顶点坐标为(3,-1),∴这条抛物线的函数表达式为y=-2(x-3)2-1.17.解:(1)将A(-1,0)代入y=a(x-1)2+4中,得0=4a+4,解得a=-1,则抛物线的函数表达式为y=-(x-1)2+4.(2)对于抛物线的函数表达式y=-(x-1)2+4,令x=0,得到y=3,即OC=3.∵抛物线的对称轴为直线x=1,∴CD=1.又∵A(-1,0),∴B(3,0),即OB =3, 则S 梯形COBD =(1+3)×32=6.[素养提升]解:(1)把x =0代入y =-12x +2,得y =2,即点A 的坐标是(0,2).把点A(0,2)代入y =a(x +2)2,得a =12,∴抛物线的函数表达式是y =12(x +2)2.(2)如图,P 为线段AB 上任意一点,连结PM ,过点P 作PD⊥x 轴于点D , 点P 的坐标是⎝ ⎛⎭⎪⎫x ,-12x +2, 则在Rt △PDM 中,PM 2=DM 2+PD 2,即l 2=(-2-x)2+⎝ ⎛⎭⎪⎫-12x +22=54x 2+2x +8,x 的取值范围是-5<x<0.。
第1章 二次函数复习
(二)二次函数图象及画法 y
2 b 4 ac b 顶点坐标 ( , ) 4a 2a
b ( , c) a
x1 O x2
c
与X轴的交点坐标
(x1,0)
(x2,0)
x 与Y轴的交点坐标及它 关于对称轴的对称点
b 4ac b 2 ( , ) 4a 2a
(0, c)
b ( , c) a
湖北鸿鹄志文化传媒有限公司——助您成功
(三)、平移,配方
1、y ax y a ( x - h )
2 向左(向右)平移 2
|m|个单位
y a ( x - h ) k |k|个单位
2
向上(向下)平移
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
y=a(x-h)2+k(a<0)
(h, k) 直线x=h 由h和k的符号确定 向下
在对称轴的左侧,y随着x的增大而 增大. 在对称轴的右侧, y随着x的 增大而减小.
当x=h时,最小值为k. 当x=h时,最大值为k.
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
(五) 函数性质:
(1)
a>0时,对称轴左侧(x<2a ) ,函数值y随x的增大而减小 ;对 b 称轴右侧(x>),函数值y随x的 2a 增大而增大 。 ,函数值y随x的增大而增大 ;对 b 称轴右侧(x>- ),函数值y随x的 2a 增大而减小 。
图 26.2.4
c>0
c<0 c=0
湖北鸿鹄志文化传媒有限公司——助您成功
(3)b的符号: 由对称轴的位置确定
2024年精品数学华师大版九年级课件全套下载
2024年精品数学华师大版九年级课件全套一、教学内容第1章:二次函数1.1 二次函数的概念与图像1.2 二次函数的性质1.3 二次函数的应用第2章:圆2.1 圆的基本概念与性质2.2 点、直线与圆的位置关系2.3 弧、弦、圆心角、圆周角二、教学目标1. 让学生掌握二次函数的概念、图像、性质,并能运用二次函数解决实际问题。
2. 培养学生运用逻辑思维和空间想象能力,理解圆的基本概念、性质及其相关问题。
3. 提高学生运用数学知识解决实际问题的能力,增强数学应用意识。
三、教学难点与重点教学难点:二次函数的性质及其应用;点、直线与圆的位置关系。
教学重点:二次函数的图像与性质;圆的基本概念、性质及其相关问题。
四、教具与学具准备教具:多媒体教学设备、PPT课件、黑板、粉笔、圆规、三角板。
学具:练习本、笔、直尺、圆规。
五、教学过程1. 引入:通过生活中的实例,如抛物线运动,引入二次函数的概念。
以平面几何图形为例,引导学生发现圆的基本性质。
2. 知识讲解:详细讲解二次函数的定义、图像、性质。
通过例题,讲解二次函数在实际问题中的应用。
介绍圆的基本概念、性质,讲解点、直线与圆的位置关系。
3. 随堂练习:让学生绘制二次函数图像,分析性质。
让学生练习求解点、直线与圆的位置关系问题。
4. 知识巩固:对学生进行提问,了解他们对知识点的掌握情况。
5. 课堂小结:六、板书设计左侧:二次函数的定义、图像、性质;圆的基本概念、性质。
右侧:例题、解题步骤、关键点。
七、作业设计1. 作业题目:求下列二次函数的顶点、开口方向、最大(小)值:y = 2x^2 4x + 3。
已知圆的半径为5,圆心坐标为(3,2),求该圆的方程。
2. 答案:顶点:(1,1),开口向上,最小值:1。
(x 3)^2 + (y + 2)^2 = 25。
八、课后反思及拓展延伸1. 反思:通过本节课的学习,了解学生对二次函数与圆的性质的掌握程度,针对学生存在的问题进行课后辅导。
人教版 九年级数学讲义 二次函数的图像与性质(含解析)
第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。
希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。
知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。
x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。
12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。
【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。
浙教版九年级数学上册全册完整精品课件
浙教版九年级数学上册全册完整精品课件一、教学内容1. 第1章:二次函数1.1 二次函数的概念与图像1.2 二次函数的性质1.3 二次函数的解析式1.4 二次函数的应用2. 第2章:一元二次方程2.1 一元二次方程的概念与解法2.2 一元二次方程的根的判别式2.3 一元二次方程的根与系数的关系2.4 一元二次方程的应用3. 第3章:圆3.1 圆的基本概念与性质3.2 直线和圆的位置关系3.3 三角形的圆心角、弧、弦的关系3.4 圆的应用4. 第4章:统计与概率4.1 数据的收集与整理4.2 频数与频率4.3 概率的基本概念4.4 统计与概率的应用二、教学目标1. 理解并掌握二次函数、一元二次方程、圆的基本概念、性质和应用。
2. 能够运用二次函数解决实际问题,提高数学思维能力。
3. 学会使用统计与概率知识分析问题,培养数据分析能力。
三、教学难点与重点1. 教学难点:二次函数的性质、一元二次方程的解法、圆的性质、统计与概率的计算。
2. 教学重点:二次函数的应用、一元二次方程的根的判别式、圆与直线的位置关系、数据的收集与整理。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:课本、练习本、圆规、三角板、计算器等。
五、教学过程1. 导入:通过实际问题引入二次函数、一元二次方程、圆等概念,激发学生学习兴趣。
2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。
3. 随堂练习:设计具有代表性的练习题,让学生巩固所学知识。
5. 课后作业:布置适量的作业,巩固所学知识。
六、板书设计1. 二次函数的图像与性质2. 一元二次方程的解法与根的判别式3. 圆的基本性质与位置关系4. 统计与概率的计算方法七、作业设计1. 作业题目:画出二次函数y=x^22x3的图像,并求出其顶点坐标。
解一元二次方程x^23x+2=0,并说明其根的情况。
证明圆的直径所对的圆周角是直角。
收集某班学生的身高数据,计算平均身高和身高的方差。
老河口市第七中学九年级数学下册第1章二次函数1.2二次函数的图象与性质第4课时二次函数y=a(x_h
第4课时二次函数y=a(x-h)2+k(a≠0)的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.45B.45+4C.12D.25+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.阶段能力测试(八)(4.6~4.8)(时间:45分钟 满分:100分)一、选择题(每小题5分,共30分)1.已知△ABC∽△DEF,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为(A)A .34B .43C .916D .1692.如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是(C)A .AE AC =12B .DE BC =12C .△ADE的周长△ABC的周长=13D .△ADE的面积△ABC的面积=13,第2题图) ,第3题图)3.如图,点E ,F 的坐标分别为E(-4,2),F(-1,-1),以原点O 为位似中心,按比例尺2∶1把△EFO 缩小,则点E 的对应点E′的坐标为(C)A .(2,1)B .(12,12) C .(2,-1)D .(2,-12)4.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF=4∶25,则DE∶EC 等于(B )A .2∶5B .2∶3C .3∶5D .3∶2,第4题图) ,第5题图)5.如图是一张等腰三角形纸片,底边长18 cm ,底边上的高长18 cm ,现沿底边依次由下往上裁剪宽度均为3 cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是(B)A .第4张B .第5张C .第6张D .第7张6.如图,在△ABC 中,D ,E 分别是AB ,BC 上的点,且DE∥AC,若S △BDE :S △CDE =1∶4,则S △BDE ∶S △ACD 等于(C)A .1∶16B .1∶18C .1∶20D .1∶24,第6题图) ,第7题图)二、填空题(每小题5分,共20分)7.如图,路灯距离地面8 m ,身高1.6 m 的小明站在距离灯的底部(点O)20 m 的A 处,则小明的影子AM 长为__5_m __.8.如果两个相似三角形的面积比为4∶9,较小三角形的周长为4,那么这两个三角形的周长和为10.9.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1∶2,∠OCD =90°,CO =CD.若B(1,0),则点C 的坐标为(1,1).,第9题图) ,第10题图)10.(2018·泰安)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为2 0003步.三、解答题(共50分)11.(10分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为点A(7,1),B(8,2),C(9,0).(1)请画出△ABC 以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求△A′B′C′与△ABC 在P 点同一侧);(2)写出△A′B′C′各顶点的坐标.解:(1)画出△A′B′C′,如图:(2)A′点的坐标为(-3,3),B ′点的坐标为(0,6),C ′点的坐标为(3,0).12.(12分)如图,已知△ABC∽△BDC,E ,F 分别为AC ,BC 的中点,已知AC =6,BC =4.2,DF =2,求BE 的长.解:∵E ,F 分别为AC ,BC 的中点,∴BE 和DF 分别是△ABC 和△BDC 的中线.又∵△ABC∽△BDC ,∴AC BC =BE DF ,∴64.2=BE 2,BE =207.13.(14分)如图,▱ABCD 中,AE ∶EB =2∶3,DE 交AC 于点F. (1)求证:△AEF∽△CDF;(2)求△AEF 与△CDF 周长之比;(3)如果△CDF 的面积为20 cm 2,求△AEF 的面积.解:(1)证明:∵四边形ABCD 是平行四边形, ∴DC ∥AB ,∴∠CDF =∠FEA ,∠DCA =∠FAE , ∴△AEF ∽△CDF.(2)∵四边形ABCD 是平行四边形,∴DC =AB ,而AE∶EB =2∶3,设AE =2λ,则BE =3λ,DC =5λ,∵△AEF ∽△CDF ,∴C △AEF C △CDF =AE DC =2λ5λ=25.(3)∵△AEF∽△CDF ,∴S △CDF S △AEF =(CD AE )2=⎝ ⎛⎭⎪⎫522,而△CDF 的面积为20 cm 2,∴△AEF 的面积为165cm 2.14.(14分)一块直角三角形木块的面积为1.5 m 2,直角边AB 长1.5 m ,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示,你能用所学的知识说明谁的加工方法更符合要求吗?(加工损耗忽略不计)解:由S Rt △ABC =1.5,AB =1.5,可求出BC =2,若设所求正方形的边长为x ,在图①中,显然有△CDE∽△CBA ,则有x 1.5=2-x 2,解得x =67;在图②中,作边AC 上的高BM ,交DE 于点N ,易求得AC =2.5,BM =1.2.因为△BDE∽△BAC ,所以x 2.5=1.2-x 1.2,解得x =3037.因为67>3037,所以甲的加工方法更符合要求.菱形的性质与判定(一)学习目标:1.通过折、剪纸张的方法,探索菱形独特的性质;2.通过学生间的交流、讨论、分析、类比、归纳、运用已学过的知识总结菱形的特征.学习过程:一、自主学习:自学课本例题以上的内容,完成下列问题:1.如何从一个平行四边形中剪出一个菱形来??菱形平行四边形的四边形叫做菱形,生活中的菱形有 .2.按探究步骤剪下一个四边形.①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形?有对称轴.图中相等的线段有:图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明.性质:证明:二、课堂检测:1.菱形的两条对角线长分别是12cm,16cm,它的周长等于,面积等于。