风道风压、风速和风量的测定

合集下载

管道风压、风速、风量测定

管道风压、风速、风量测定
仪器的测量部分采用电子放大线路和运算放大器,并用 数字显示测量结果。测量的范围为0.05~19.0m/s(必要时 可扩大至40m/s)
仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这

风速与风量的检测方法

风速与风量的检测方法

洁净室的风速与风量的检测方法1、风速与风量的检测方法A 、风量、风速检测必须首先进行。

各项净化效果都是在设计的风量、风速下获得。

B 、检测前检查风机是否运转正常。

必须实地测量被测风口、风管的尺寸。

C 、对于单向流(层流)洁净室,采用室截面平均风速和洁净积乘积的方法确定风量。

(取离高效过滤器 0.3m 垂直于气流处的截面作为采样截面,按照测试点间距不宜大于 0.6m 在截面上设置不少于 5 个测试点,所有读数的算术平均值作为平均风速。

)垂直单向流(层流)洁净室的测定截面取据地面 0.8m ~ 1m 的水平截面;水平单向流(层流)洁净室的测定截面取据送风面 0.5m ~ 1m 的垂直截面;截面上测试点数量应不少于 10 个,间距不应大于 2m ,均匀布置;D 、对于安有过滤器的风口,以风口截面平均风速和风口净截面积的乘积确定风量。

(在风口截面或引用辅助风管的截面上按不少于 6 个均匀布置的测试点得出平均风速。

)E 、对于风口上风侧有较长的支管段且已经或可以打孔时,可以用风管法确定风量。

(在出风口前不小于 3 倍管径或 3 倍大边长度处打孔;)F 、对于矩形风管,将测定截面分成若干个相等的小截面,每个小截面尽可能接近正方形,边长不大于 200mm ,测试点位于小截面中心,但整个截面上不宜少于 3 个测试点;对于圆形风管,应按等面积圆环法划分测定截面和确定测试点数;在风管外壁上开孔,插入热式风速计探头或皮托管。

(通过测动压,换算为风量。

)2、风速和风量的评定标准( 1 )、对于乱流洁净室:A 、系统得实测风量应大于各自的设计风量,但不应超过 20% ;B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ;C 、室内各风口的风量与各自设计风量之差均不应超过设计风量的±15% ;( 2 )、对于单向流(层流)洁净室:A 、实测室内平均风速应大于设计风速,但不应超过 20% ;B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ;( 3 )、新鲜空气量:洁净室(区)内应保持一定的新鲜空气量,其数值应取下列风量中的最大值A 、非单向流洁净室(区)总送风量的 10% ~ 30% ,单向流洁净室(区)总送风量的 2% ~ 4% ;B 、补偿室内排风和保持室内正压值所需的新鲜空气量;C 、保证室内每人每小时的新鲜空气量不小于 40m3 ;3 、相关标准数据净化空调系统,根据室内容许噪声级要求,风管内的风速:总风管: 6 ~ 10m /s ;无送、回风口的支风管: 4 ~ 6m /s ;有送、回风口的支风管: 2 ~ 5m /s※为保证空气洁净度等级的送风量,制药洁净室按下表相关数据进行计算:洁净度等级( ISO14644-1 )气流类型平均风速( m/s )换气次数( h-1 )应用实例1 ~ 4单向流0.3 ~ 0.5—无菌加工5单向流0.2 ~ 0.5—直接支持无菌加工的其它加工区6非单向流—50 ~ 60无菌加工的支持区;包括受控的制备区7非单向流—15 ~ 258~9非单向流—10 ~ 15微电子洁净室实例:洁净度等级( ISO14644-1 )气流流型平均风速( m/s )单位面积送风量(m3/㎡·h )应用实例2 U 0.3 ~ 0.5—光刻、半导体工艺区; 3U0.3 ~ 0.5—工作区、半导体工艺区; 4U0.3 ~ 0.5—工作区、多层掩膜工艺、密盘制造、半导体服务区、动力区; 5U0.2 ~ 0.5—6M0.1 ~ 0.3—动力区、多层工艺、半导体服务区; N 或M—70 ~ 1607N 或 M —30 ~ 70服务区、表面处理; 8N 或 M— 10 ~ 20 服务区U :单向流N :非单向流M : 混合流(单向流和单向流的组合流型)医院中,采用空调的手术室、产房工作区和灼伤病房的气流速度宜 ≤ 0.2m /s ;核医学科的通风柜应采用机械排风,排风口的风速应保持 1m /s 左右; 生物实验室用生物安全柜与排风系统得连接方式:生物安全柜级别 工作口平均进风速度( m/s ) 循环风比例( % ) 排风比例( % ) 连接方式 Ⅰ级 0.380 100 密闭连接 Ⅱ级A10.38 ~ 0.507030可排到房间或设置局部排风罩A2 0.50 70 30可设置局部排风罩或密闭连接B1 0.50 30 70密闭连接B2 0.50 0 100密闭连接Ⅲ级—0 100密闭连接4 、出具测试报告测试报告应包含如下内容:a 、测试单位的名称与地址、测试人名称、测试日期、数据采集系统得名称;b 、所参考的测试标准的编号与版本日期,如 ISO 14644-3 : 2002 ;c 、所测设施名称及毗邻区域的名称及测试点的座标;d 、测试类型与测试条件;e 、指定的性能标准,包括占用状态;f 、所采用的测试方法;g 、测试结果;h 、所参考的测试标准对特定测试所规定的其他具体要求;。

现场风量、风速、风质测量管理制度

现场风量、风速、风质测量管理制度

现场风量、风速、风质测量管理制度1. 引言为了确保工作场所的空气质量达到相关标准要求,保障员工的身体健康和工作环境的安全性,公司制定了现场风量、风速、风质测量管理制度。

本制度旨在规范对工作场所中风量、风速以及风质的测量与管理。

2. 适用范围本制度适用于公司内所有工作场所,包括但不限于办公室、车间、实验室和生产线等各类工作场所。

3. 定义•现场风量:指单位时间内某个区域内的空气流动量,通常以立方米/小时(m³/h)来表示。

•风速:指单位时间内空气流动的速度,通常以米/秒(m/s)来表示。

•风质:指空气的质量状况,包括温度、湿度、含氧量等。

4. 现场风量、风速、风质测量设备和方法4.1 现场风量测量设备为了准确测量现场风量,公司将配备以下测量设备:•风速计:用于测量空气流动的速度。

采用高精度风速计,能在不同区域快速测量风速,并实时显示结果。

•静压差计:用于测量风道、管道等区域的静压差。

通过测量静压差,可以计算出风量。

4.2 风速测量方法4.2.1 员工培训所有相关人员在操作风速计前,都需要接受相关培训,掌握正确的操作方法和注意事项。

4.2.2 定点测量在工作场所中的不同位置进行定点测量,记录每个位置的风速,并进行合理的平均处理。

4.2.3 定时测量定时测量各个区域的风速,通过连续多次测量获得平均值,以保证测量结果的准确性。

4.3 风质测量设备和方法公司将配备以下测量设备和方法,以确保工作场所的风质符合相关要求:•温湿度计:用于测量空气的温度和湿度。

温湿度计具有高精度和快速响应的特点,可以实时监测工作环境的温湿度。

•氧气浓度测量仪:用于测量空气中氧气浓度的仪器。

通过监测氧气浓度,可以判断空气中氧气含量是否符合要求。

4.4 测量结果记录和管理所有测量结果需要记录并进行管理,包括测量时间、测量位置、测量数值等信息。

公司将建立相应的风量、风速、风质测量结果数据库,记录和管理所有测量数据。

5. 监测与评估公司将定期对工作场所中的风量、风速以及风质进行监测和评估,确保符合相关标准要求。

空调风系统风压与风速测试方法

空调风系统风压与风速测试方法

测孔
测点位置
式 中 Vp— —— 风 管 测 定 断 面 平 均 风 速 , m/s; !— —— 空 气 的 密 度 , kg/m3。 知 道 了 风 管 内 的 平 均 风 速 后 Vp 后 , 通 过 管 内 的 风 量 L可 按 下 式计算: L=3600Vp F m3/h 风管内的风速计算与管内气流温度有关, 所以在测风压的同 时, 也要测出气流温度。
同心环上各测点到风管中心的距离可按下式计算: 式 中 : R— —— 风 管 半 径 , mm; Rn— —— 风 管 中 心 到n环 测 点 的 距 离 , mm;
n— —— 从 风 管 中 心 算 起 圆 环 的 顺 序 号 ; m— —— 风 管 断 面 所 划 分 的 圆 环 数 。
3. 风管内风压测定与风量计算
压 的 代 数 和 , 即Pq=Pj+ Pd。这 三 项 数 值 可 以 根 据 需 要 分 别 测 量 , 也 在 风 管 内 测 量 时 , 可 将 热 球 风 速 仪 探 头 插 入 测 孔 。 测 送 、 回 风 口
可测得其中两项而求得第三项。在进行风压测量时, 要区别所测 时, 可用热球风速仪紧贴风口平面测试风速。若风口面积较大, 可
风速, 计算出平均风速后再计算风量。
5. 结语
空 调 调 试 人 员 应 掌 握 通 风 系 统 风 口 风 量 测 试 方 法 和 方 形 、圆 形风管或风口测点布置方法, 以确保测试结果的准确性。特别应 做到相同风口的测点数目、测点位置必须相同。根据实验室实验 和现场调试的经验, 用热球风速仪测定风口平面测出的风口风 量, 更具有代表性, 绝大部分风口实测风量均在允许偏差范围内。
200 ̄400 4 16
400 ̄600 5 20

风道风压、风速和风量的测定

风道风压、风速和风量的测定

风道风压、风速和风量的测定一、实验的目的了解和掌握通风系统风道内风压、风速和风量的测点布置方法及测定方法,测定数据的处理和换算。

从而对通风系统气流分布是否均匀作出理论判断。

二、实验仪器和设备1.U型压力计一台(测量范围在10000Pa)2.倾斜式微压计一台(测量范围在250Pa)3.热球式风速仪一台(测量范围在0.05-30.0m/s)4.毕托管一支5.外径φ10mm,壁后1mm的橡胶管或乳胶管数米。

6.蒸馏水500ml7.纯酒精500ml8.钢卷尺一把,长度值不小于2m三、测试原理及方法1.测试原理风道风压、风速和风量的测定,可以通过毕托管、U型压力计、倾斜式微压计、热球式风速仪等仪器来完成。

毕托管、U型压力计可以测试风道内的全压、动压和静压,由测出的全压可以知道风机工作状况,通风系统的阻力等。

由测出的风道动压可以换算出风道的风量。

也可以用热球式风速仪直接测量风道内风速,由风速换算出风道内风量。

2.测量位置的确定由于风管内速度分布是不均匀的,一般管中心风速最大,越靠近管壁风速越小。

在工程实践中所指的管内气流速度大都是指平均风速。

为了得到断面的平均风速,可采用等截面分环法进行测定。

对圆形风管可将圆管断面划分若干个等面积的同心环,测点布置在等分各小环面积的中心线上,如图1所示,把圆面积分成m个等面积的环形,则:,然后将每个等分环面积再二等分,则此圆周距中心为Y n,与直径交点分别为1、2、3,…n点,这些点就是测点位置。

各小环划分的原则是:环数取决于风管直径,划分的环数越多,测得的结果越接近实际,但不能太多,否则将给测量和计算工作带来极大麻烦,一般参照表5分环。

表5 测量时不同管径所分环数n 表6 圆管测点位置值图2测压管标定测点位置 图3 矩形风管测点位置为了将测压管准确地放在风管中预定的位置,必须在测压管上作出标志。

由测压端中心线向管柄方向取风管直径的一半即等于R 为刻度中心,如图2所示,再根据计算出来的Y 1、Y 2、Y 3…Y n 值在管柄上逐次标出测点位置。

通风管道风压、风速、风量测定(精)

通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

测量断面位置示意图见p235图2.8-1。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。

选择测量断面,还应考虑测定操作的方便和安全。

(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。

对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。

测点越多,测量精度越高。

图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。

圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。

通风管道风压风速风量测定DOC

通风管道风压风速风量测定DOC

通风管道风压风速风量测定通风管道在工业生产和建筑物中起着重要的作用。

为确保通风管道的安全和有效,需要对通风管道进行风压、风速、风量测定。

以下是一些测量通风管道的基本方法。

一、风压测量仪器•喜马拉雅差压计•数字多功能仪表步骤1.在通风管道的两边墙壁上钻孔,使孔之间的距离相等。

2.将差压计连接在通风管道上,调整读数到设置零点。

3.打开通风机,记录差压计的读数。

如果差压计涉及到密封效应,需要进行更多调整以得到更准确的读数。

如果机器噪音太大,可以考虑将差压计放置在远离机器的地方。

计算通风管道的压强等于差压计的读数。

使用以下公式计算通风管道的风速: •风速(m/s)= 差压计的读数 * (角度系数 / 因素系数)•风速(英尺/分钟)= 差压计的读数 * (角度系数 / 因素系数) * 196.85其中,角度系数和因素系数根据差压计的型号而异。

二、风速测量仪器•热线风速仪•热膜风速仪步骤1.在通风管道上安装风速仪器。

尽量远离通风系统的进口和出口,以避免干扰。

2.打开通风机,等待五到十分钟,直到温度和湿度稳定。

3.风速仪器将记录并显示当前风速。

计算通风管道的风量等于风速和扇叶面积的乘积。

使用以下公式计算通风管道的风速:•风量(立方米/小时)= 风速 (米/秒) × 扇叶面积 (平方米) × 3600•风量(立方英尺/分钟)= 风速 (英尺/分钟) × 扇叶面积 (平方英尺) ×60三、风量测量仪器•平衡法风量计•流量计步骤1.在通风管道上安装风量计。

平衡法风量计需要根据通风管道的直径进行调整。

2.打开通风机,将通风管道进行平衡,直到读数稳定。

3.查看风量计上的读数。

计算无需计算。

风量计上的读数已经是通风管道的实际风量。

四、对于工业生产和建筑物中的通风管道,测量其风压、风速、风量是十分重要的。

使用合适的仪器和正确的测量方法,可确保通风管道的安全和有效。

不同的测量方法有不同的精度和调整要求,需要选择合适的测量方法和仪器。

风管风压风速风量测定实验报告册

风管风压风速风量测定实验报告册

学生实验报告实验课程名称:风管风压、风速、风量测定开课实验室:建筑设备与环境工程实验研究中心学院年级专业、班级学生姓名学号开课时间至学年第学期风管中风压、风速、风量的测定一.实验目的及任务风管/水管内压力、流速、流量量的测定是建筑环境与设备工程专业学生应该掌握的基本技能之一。

通过本实验要求:1) 掌握用毕托管及微压计测定风管中流动参数的方法。

2) 学会应用工程中常见的测定风管中流量的仪表。

3) 将同一工况下的各种流量测定方法的结果进行比较、分析。

4) 学习管网阻力平衡调节的方法二:测定原理及装置系统的测试拟采用毕托管和微压计测压法进行。

1- 集流器 2-静压环 3-整流器 4-风量测定仪 5电加热器 6流行测压器 7-热电偶 8-均衡器 9-压力测量器 10-实验试件 11-调节阀 12- 风机 13-电机图1:管道内风速测量装置三:实验测试装置及仪器1) 毕托管加微压计测压法测试原理测试过程中,首先选定管内气流比较平稳的断面作为测定界面,为了测断面的静压、全压,经断面划分为若干个等面积圆环或小矩形(本实验为获取较高精度的测试结果,将等面积小矩形设定为100x100mm ),然后用毕托管和微压计测得断面上个测点的静压和风管中心的全压,并计算平均动压P jp 、平均全压P qp ,由此计算P dp 及管中风量L : 静压的测量平均值:j1j2jnj p p p p P n++⋅⋅⋅=;全压的测量平均值q1q2qnq p p p p P n++⋅⋅⋅=qp jp dp P P P =+管内平均流速:dp V ==风管总风量:P L F V =⋅ 式中:n-----------断面上测点数 F ——— 断面面积㎡适用毕托管及微压计测量管内风量是基本方法,精度较高。

本测定装置多功能实验装置,除可测定风管内气流的压力、流速及流量外,还设有电加热器、换热器来测定换热量、空气阻力等。

2) 毕托管、微压计测压适用方法1- 准备好毕托管、微压计和连接胶管,并对微压计进行水平校正和倾斜管中的液面凋零。

管道风速传感器如何测量管道风压、风速、风量

管道风速传感器如何测量管道风压、风速、风量

管道风速传感器如何测量管道风压、风速、风量风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。

以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。

选择测量断面,还应考虑测定操作的方便和安全。

(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。

2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。

二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。

测试中需测定气体的静压、动压和全压。

测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。

通风系统风量、风压的测量概要

通风系统风量、风压的测量概要

通风系统风量、风压的测量概要通风系统的风量和风压是评估系统工作效率的两个重要指标。

风量是指通风系统中单位时间内流过的空气量,通常以立方米/小时或立方英尺/分钟表示。

风压是指系统中流体的静态压力,通常以帕斯卡或英尺水柱高表示。

本文将介绍通风系统中测量风量和风压的方法和概念。

风量的测量直接侧压法通过单直管或多支直管测量管道中的风速,根据实测风速和管道截面积计算出风量,是一种简便、经济的方法。

但是该方法只适用于低速风场(小于40m/s)。

冷热水法该方法利用水箱来测量通风系统的流量,将冷却水或加热水流经管道,根据流量和温度差计算出风量。

由于需要水箱的支持,该方法要求场地和设备条件较为苛刻。

静压法静压法是一种比较准确的测量方法,常用于大型通风系统的测量。

该方法通过在管道上装置静压孔和静压管来测量管道两侧的静压差,进而计算出风量。

风压的测量静压法静压法可以同时测量风量和风压。

该方法需要安装静压头,根据静压差计算出风压。

具有准确、简便的优点,特别适用于大型通风系统的测量。

动压法动压法通过在管道中安装风速头,将动压差转化为风速,再根据静压差计算出风压。

该方法是测量风压的一种常用方法,但需要关注仪器选择和安装位置的影响。

差压法差压法也是计算风压的一种方法,将差压传感器放在管道上游和下游位置,并测量差压。

该方法对于管道内流体的密度要求不高,但需要关注仪器精度和安装的准确性。

本文介绍了通风系统中测量风量和风压的三种常用方法,包括静压法、动压法和差压法。

不同方法具有不同适用范围和利弊,使用时需要根据具体情况综合考虑。

同时,为了保证测量结果的准确性,还需要注意仪器的选择、安装位置和使用方法等方面的问题。

风量风压风速的计算方法

风量风压风速的计算方法

风量风压风速的计算方法一、测定点位置的选择:通风管道内风速及风量的测定,是通过测量压力再换算取得的。

要得到管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面,减少气流扰动对测量结果的影响,也很重要。

测量断面应选择在气流平稳的直管段上。

由于速度分布的不均匀性,压力分布也是不均匀的,因此必须在同一断面上多点测量,然后求出平均值。

圆形风道在同一断面设两个互相垂直的测孔,并将管道断面分成一定数量的等面积同心环。

矩形风道可将风道断面分成若干等面积的小矩形,测点布置在每个小矩形的中心。

二、风道内压力的测定。

测试中需测定气体的静压、动压和全压。

测全压的孔应迎着气流的方向,测静压的孔应垂直于气流的方向,全压和静压之差即为动压。

气体压力的测量通常是用插入风道中的测压管将压力信号取出,常用的仪器是皮托管和压力计。

标准皮托管是一个弯成90°的双层同心圆管。

压力计有U形压力计和倾斜式微型压力计。

皮托管和压力计相配合测出压力。

三、风速的测定。

常用的测定管道内风速的方法有间接式和直读式。

间接式先测得管内某点动压,再算出该点风速。

此法虽然繁琐,由于精度高,在通风测试系统中得到广泛应用。

直读式测速仪是热球式热电风速仪,测头会受到周围空气流速的影响,根据温升的大小即可测出气流的速度。

四、局部吸排风口风速的测定:1,匀速移动法:使用叶轮式风速仪,沿风口断面匀速移动,测得风口平均风速。

2,定点测定法:使用热球式热电风速仪,按风口断面大小,分成若干面积相等的小方块,在小方块的中心测定风速,取其平均值。

五、局部吸排风口风量的测定:1,用动压法测定断面动压,计算出风速,算出风量。

2,用动压法不易找到稳定的测压断面时,使用静压法求得风量。

矿井通风参数测定实验报告

矿井通风参数测定实验报告

矿井通风参数测定实验报告一、实验目的本实验旨在通过测定矿井通风参数,包括风速、风量和风压等,了解矿井通风系统的运行情况,为矿井安全生产提供科学依据。

二、实验原理1.风速测定原理:利用风速仪测定矿井风道中风的速度,通常使用热线风速仪进行测定。

根据热式风速仪的工作原理,可以通过测量风道中风的速度来推测风量和风压等参数。

2.风量测定原理:通过测量单位时间内风道中空气的体积和风的速度,计算出单位时间内风量的大小。

通常使用平板流量计进行测量,通过测量风速、风道横截面积和流量表的读数等信息,计算出单位时间内通过风道的空气体积。

3.风压测定原理:通过测量矿井风道中的风压,了解矿井通风系统的压力情况。

通常使用差压表进行测量,将差压表装置在不同位置的风道上,通过读取差压表的值,计算出相应位置的风压大小。

三、实验步骤1.风速测定:将热式风速仪插入风道中,将风速仪的显示装置设置在适当的位置,并等待其稳定后,记录下相应风速仪的读数。

2.风量测定:将平板流量计安装在风道上,通过控制器调节平板流量计的阻力板,使其达到平衡,然后记录下流量计的读数。

3.风压测定:将差压表依次安装在风道的不同位置,记录下相应的差压表读数,并计算出相应的风压值。

四、实验结果与分析通过实验测定,得到了风速、风量和风压等参数的数据,如下所示:风速:10.5m/s风量:1500m³/h风压:200Pa通过对实验数据的分析1.在本次实验中,矿井通风系统的风速较高,达到了10.5m/s,表明通风系统的运行正常,对矿井空气的流通起到了积极的促进作用。

2.通过风量的测定,得知单位时间内通过风道的空气体积为1500m³/h,这也说明了通风系统的正常工作状态。

3.风压测定结果为200Pa,表明通风系统对矿井内部施加了一定的压力,保证了矿井空气的流动,并有效地防止了有害气体的积聚。

五、实验总结与建议通过本次实验,我们成功地测定了矿井通风参数,掌握了测定方法和技巧,对矿井通风系统的运行情况有了更深入的了解。

通风管道风压、风速、风量测定(精)

通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

测量断面位置示意图见p235图2。

8-1.当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面.如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。

选择测量断面,还应考虑测定操作的方便和安全。

(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值.1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。

对于圆形风道,同心环上各测点距风道内壁距离列于表2。

8—2。

测点越多,测量精度越高。

图2。

8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示.圆风管测点与管壁距离系数(以管径为基数表2.8-2二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行.测试中需测定气体的静压、动压和全压。

风量风压风速的计算方法

风量风压风速的计算方法

风量风压风速的计算方法风量、风压和风速是风力工程中常用的几个重要参数,它们之间的关系和计算方法对于风力工程设计、建筑通风和空调系统设计等领域都非常重要。

下面将详细介绍风量、风压和风速的计算方法。

1.风量计算方法:风量是指单位时间内通过风道或风口的空气量,通常用立方米每小时(m3/h)表示。

计算风量的方法主要有以下几种:a.风量计直接测量法:使用风量计器直接测量风量。

常用的风量计器有热线式风量计、翼片式风量计、旋翼式风量计等。

b.风量计算公式法:根据风道或风口的几何尺寸和空气速度计算风量。

如矩形风道的风量计算公式为:风量=风道的面积×风速。

c.实验室测试法:在实验室中通过建立模型进行风洞实验,测量模型上方或模型周围的风量,然后进行比例计算得到实际工程中的风量。

2.风压计算方法:风压是指风力作用于单位面积上的压力,通常用帕斯卡(Pa)或牛顿每平方米(N/m2)表示。

计算风压的方法主要有以下几种:a.风压计直接测量法:使用风压计直接测量风压。

常用的风压计有静压传感器、动压传感器、静压管等。

b.风压计算公式法:根据气流速度和管道形状等因素,使用相关的公式计算风压。

如圆管道风压计算公式为:风压=0.5×空气密度×风速的平方。

c.风洞实验法:通过模型在风洞中进行试验,测量模型表面的风压,然后进行比例计算得到实际工程中的风压。

3.风速计算方法:风速是指空气运动的速度,通常用米每秒(m/s)表示。

计算风速的方法主要有以下几种:a.风速计直接测量法:使用风速计直接测量风速。

常用的风速计有热线风速计、旋转风速计、风速计索等。

b.风速计算公式法:根据风压、风量等参数的关系,使用相关的公式计算风速。

如根据风量和风道面积计算风速的公式为:风速=风量/风道的面积。

c.等速线法:利用等速线的特性,在风速图上找到实际工况点的风速。

需要注意的是,以上计算方法是基于一些理想假设和模型推导得到的,并且在实际应用中还需要考虑实际工程环境、空气密度、局部阻力等因素的影响。

管道内风速及风量的测定

管道内风速及风量的测定

图6 孔板流量计
五.喷嘴流量计
喷嘴流量计是差压式流量计的一种,测定原理 同孔板流量计。
L 1.41CFn Pd 1.41CFn P
n
n

n

B Pj
287 273.15 tn

图7 喷嘴流量计
若有n个相同的喷嘴同时工作,其总流量为Lz= nL
上述式中:L——经过喷嘴的空气流量, m3/s; Lz ——空气的总流量,m3/s; C——喷嘴流量系数; Fn ——喷嘴喉口部面积,㎡; Pd ——喷嘴喉部处动压, Pa; △ P ——喷嘴前后静压差, Pa; ρn ——喷嘴入口处的空气密度,㎏/m3; B ——当地大气压力, Pa; Pj ——喷嘴入口处静压,Pa;
p
2 Pdp



B
287 273.15

tn
式中:νp ——平均流速, m/s;
Pdp ——断面上平均动压值,Pa; ρ ——空气密度,㎏/m3; B ——当地大气压力, Pa; tn ——管道内空气温度,℃
5. 管道内流量的计算
L=vF
式中:L——管道内的流量, m3/s; ν ——平均流速, m/s; F——管道断面积,㎡.
为使实验系统的风量可调,用可控硅调速装置 改变直流电机的输入电压,在v=120~180v之间 任取三个不同的电压,从而得到系统中不同的 三个风量,每改变一个风量,均用比托管法测 出断面上的动压,同时记录双纽线集流器,笛 形流量计,孔板流量计,喷嘴流量计的压差值, 然后按有关公式计算出相应的系数。
本实验以比托管法为基准,测出通 风系统的风速、风量,其他几种流量计 与之进行比较,测出各自的流量系数或 者校正系数。

风速与风量的检测方法

风速与风量的检测方法

洁净室的风速与风量的检测方法1、风速与风量的检测方法A 、风量、风速检测必须首先进行。

各项净化效果都是在设计的风量、风速下获得。

B 、检测前检查风机是否运转正常。

必须实地测量被测风口、风管的尺寸。

C 、对于单向流(层流)洁净室,采用室截面平均风速和洁净积乘积的方法确定风量。

(取离高效过滤器 0.3m 垂直于气流处的截面作为采样截面,按照测试点间距不宜大于 0.6m 在截面上设置不少于 5 个测试点,所有读数的算术平均值作为平均风速。

)垂直单向流(层流)洁净室的测定截面取据地面 0.8m ~ 1m 的水平截面;水平单向流(层流)洁净室的测定截面取据送风面 0.5m ~ 1m 的垂直截面;截面上测试点数量应不少于 10 个,间距不应大于 2m ,均匀布置;D 、对于安有过滤器的风口,以风口截面平均风速和风口净截面积的乘积确定风量。

(在风口截面或引用辅助风管的截面上按不少于 6 个均匀布置的测试点得出平均风速。

)E 、对于风口上风侧有较长的支管段且已经或可以打孔时,可以用风管法确定风量。

(在出风口前不小于 3 倍管径或 3 倍大边长度处打孔;)F 、对于矩形风管,将测定截面分成若干个相等的小截面,每个小截面尽可能接近正方形,边长不大于 200mm ,测试点位于小截面中心,但整个截面上不宜少于 3 个测试点;对于圆形风管,应按等面积圆环法划分测定截面和确定测试点数;在风管外壁上开孔,插入热式风速计探头或皮托管。

(通过测动压,换算为风量。

)2、风速和风量的评定标准( 1 )、对于乱流洁净室:A 、系统得实测风量应大于各自的设计风量,但不应超过 20% ;B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ;C 、室内各风口的风量与各自设计风量之差均不应超过设计风量的±15% ;( 2 )、对于单向流(层流)洁净室:A 、实测室内平均风速应大于设计风速,但不应超过 20% ;B 、总实测新风量和设计新风量之差,不应超过设计新风量的±10% ;( 3 )、新鲜空气量:洁净室(区)内应保持一定的新鲜空气量,其数值应取下列风量中的最大值A 、非单向流洁净室(区)总送风量的 10% ~ 30% ,单向流洁净室(区)总送风量的 2% ~ 4% ;B 、补偿室内排风和保持室内正压值所需的新鲜空气量;C 、保证室内每人每小时的新鲜空气量不小于 40m3 ;3 、相关标准数据净化空调系统,根据室内容许噪声级要求,风管内的风速:总风管: 6 ~ 10m /s ;无送、回风口的支风管: 4 ~ 6m /s ;有送、回风口的支风管: 2 ~ 5m /s※为保证空气洁净度等级的送风量,制药洁净室按下表相关数据进行计算:洁净度等级( ISO14644-1 )气流类型平均风速( m/s )换气次数( h-1 )应用实例1 ~ 4单向流0.3 ~ 0.5—无菌加工5单向流0.2 ~ 0.5—直接支持无菌加工的其它加工区6非单向流—50 ~ 60无菌加工的支持区;包括受控的制备区7非单向流—15 ~ 258~9非单向流—10 ~ 15微电子洁净室实例:洁净度等级( ISO14644-1 )气流流型平均风速( m/s )单位面积送风量(m3/㎡·h )应用实例2 U 0.3 ~ 0.5—光刻、半导体工艺区; 3U0.3 ~ 0.5—工作区、半导体工艺区; 4U0.3 ~ 0.5—工作区、多层掩膜工艺、密盘制造、半导体服务区、动力区; 5U0.2 ~ 0.5—6M0.1 ~ 0.3—动力区、多层工艺、半导体服务区; N 或M—70 ~ 1607N 或 M —30 ~ 70服务区、表面处理; 8N 或 M— 10 ~ 20 服务区U :单向流N :非单向流M : 混合流(单向流和单向流的组合流型)医院中,采用空调的手术室、产房工作区和灼伤病房的气流速度宜 ≤ 0.2m /s ;核医学科的通风柜应采用机械排风,排风口的风速应保持 1m /s 左右; 生物实验室用生物安全柜与排风系统得连接方式:生物安全柜级别 工作口平均进风速度( m/s ) 循环风比例( % ) 排风比例( % ) 连接方式 Ⅰ级 0.380 100 密闭连接 Ⅱ级A10.38 ~ 0.507030可排到房间或设置局部排风罩A2 0.50 70 30可设置局部排风罩或密闭连接B1 0.50 30 70密闭连接B2 0.50 0 100密闭连接Ⅲ级—0 100密闭连接4 、出具测试报告测试报告应包含如下内容:a 、测试单位的名称与地址、测试人名称、测试日期、数据采集系统得名称;b 、所参考的测试标准的编号与版本日期,如 ISO 14644-3 : 2002 ;c 、所测设施名称及毗邻区域的名称及测试点的座标;d 、测试类型与测试条件;e 、指定的性能标准,包括占用状态;f 、所采用的测试方法;g 、测试结果;h 、所参考的测试标准对特定测试所规定的其他具体要求;。

风速风压风量相关知识

风速风压风量相关知识

风速风压风量相关知识风速、风压和风量是描述风的物理性质的重要参数。

它们在气象学、建筑工程、环境科学等领域具有重要的应用价值。

本文将分别介绍风速、风压和风量的概念、测量方法以及它们之间的关系。

一、风速风速是指单位时间内空气流经某一点的速度。

通常使用米/秒(m/s)作为风速的单位。

风速的测量可以通过气象观测仪器如风速计或风速传感器来完成。

风速计是一种测量风速的仪器,常见的有翼片式风速计和超声波风速计等。

翼片式风速计通过测量翼片旋转的速度来计算风速,而超声波风速计则利用超声波的传播时间差计算风速。

二、风压风压是指风对物体表面单位面积上的压力。

通常使用帕斯卡(Pa)作为风压的单位。

风压的测量可以通过风压计或压力传感器等仪器来完成。

风压计是一种测量风压的仪器,常见的有静压孔风压计和差压风压计等。

静压孔风压计通过测量风对孔口的静压力来计算风压,而差压风压计则利用风对两侧压力差来计算风压。

三、风量风量是指单位时间内通过某一横截面的空气流量。

通常使用立方米/秒(m³/s)或立方米/小时(m³/h)作为风量的单位。

风量的测量可以通过风量计或流量传感器等仪器来完成。

风量计是一种测量风量的仪器,常见的有热线风量计和旋翼风量计等。

热线风量计利用加热丝的冷却程度来计算风量,而旋翼风量计则通过测量旋转翼片的转速来计算风量。

风速、风压和风量之间存在一定的关系,可以通过一些基本的物理公式进行计算。

例如,风速和风压之间的关系可以通过风速计算公式来表示,即风压等于空气密度乘以风速的平方再乘以一个系数。

而风速和风量之间的关系可以通过风量计算公式来表示,即风量等于风速乘以横截面积。

这些公式可以帮助我们在实际应用中进行风速、风压和风量的计算和转换。

在实际应用中,风速、风压和风量的测量和计算对于气象预报、建筑设计和室内空气质量控制等方面都具有重要意义。

例如,在建筑工程中,需要考虑风压对建筑物结构的影响,以确保建筑物的安全性。

风压、风量的测定(精)

风压、风量的测定(精)

风压、风量的测定方法测定磨机内的通风量,一般是从测定磨机出口通风管的风量而求得的。

通风管内的风量Q是测点处管道内断面积F 与其平均风速w a 之乘积。

某一测定管道内断面F 是已知的,实质上就是成了对该测定断面的平均风速w a 的测定了。

管道内风速通常是用测定该断面的动压并通过计算来确定的。

用这种方法来测定风量,不仅适用于磨机,也适用其它低于通风管中的风量测定。

气体在管道中流动是由于系统的总压力差所引起的,在总压力差相同时,系统的阻力愈大则气体流速愈低。

因此,流速和压力的关系可用伯努利方程式联系起来,即:j d p p p =+ (P a )式中:p —某一截面上气体的全压力(P a );p j —同一截面上气体的静压力 (P a );p d —同一截面上气体的动压力,也称速度压力(P a )。

22d p ρω=(㎏/m 3)其中:ρ—气体的密度(㎏/m 3)。

测定动压在于计算气体流速和流量,测定静压主要是计算管道和通风系统的阻力。

压力测定仪器和方法(1)毕托管① 标准毕托管,如图1所示。

标准毕托管测孔很小,当通风管道中气体的含尘浓度较大时,易被堵塞,因此只适于在较清洁管道中使用。

② S 型毕托管在使用前须用标准毕托管进行校正求出它的校正系数。

当流速在5~30m/s 的范围时,其速度校正系数平均值约为0.84。

S 型毕托管不同于标准毕托管,它有两个平行开孔测孔,如图5-4-2所示。

在测定时,一个测孔图1 标准毕托管对着气流测全压,另一个测孔背向气流测静压。

由于S 型毕托管的测孔开口较大,不易被粉尘堵塞。

(2)压力计① U 型压力计,是一个U 型玻璃管,内装测压液体,常用的液体有水、乙醇和汞,视被测压力范围选用。

在磨机通风测量中,使用的U 型压力计内的测压液体一般是水。

U 型压力计的误差较大,不适于测量微小压力。

② 倾斜式微压计,如图3所示。

倾斜的玻璃上刻度表示压力计读数。

测压时,将微压计的容器开口与测定中压力较高的一端相连,将倾斜管的一端与压力较低的一端相连。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风道风压、风速和风量的测定
一、实验的目的
了解和掌握通风系统风道内风压、风速和风量的测点布置方法及测定方法,测定数据的处理和换算。

从而对通风系统气流分布是否均匀作出理论判断。

二、实验仪器和设备
1.U型压力计一台(测量范围在10000Pa)
2.倾斜式微压计一台(测量范围在250Pa)
3.热球式风速仪一台(测量范围在0.05-30.0m/s)
4.毕托管一支
5.外径φ10mm,壁后1mm的橡胶管或乳胶管数米。

6.蒸馏水500ml
7.纯酒精500ml
8.钢卷尺一把,长度值不小于2m
三、测试原理及方法
1.测试原理
风道风压、风速和风量的测定,可以通过毕托管、U型压力计、倾斜式微压计、热球式风速仪等仪器来完成。

毕托管、U型压力计可以测试风道内的全压、动压和静压,由测出的全压可以知道风机工作状况,通风系统的阻力等。

由测出的风道动压可以换算出风道的风量。

也可以用热球式风速仪直接测量风道内风速,由风速换算出风道内风量。

2.测量位置的确定
由于风管内速度分布是不均匀的,一般管中心风速最大,越靠近管壁风速越小。

在工程实践中所指的管内气流速度大都是指平均风速。

为了得到断面的平均风速,可采用等截面分环法进行测定。

对圆形风管
可将圆管断面划分若干个等面积的同心环,测点布置在等分各小环面积的中心线上,如图1所
示,把圆面积分成m个等面积的环形,则:,然后将每个等分环面积再二等分,则此圆周距中心为Y n,与直径交点分别为1、2、3,…n点,这些点就是测点位置。

各小环划分的原则是:环数取决于风管直径,划分的环数越多,测得的结果越接近实际,但不能太多,否则将给测量和计算工作带来极大麻烦,一般参照表5分环。

表5 测量时不同管径所分环数
风管直径≦130 130-200 200-400 400-600 600-800
(mm)
划分环数 1 2 3 4 6 为了简化现场测试的计算工作量,现将计算各测点距管道路中心的距离Y n/R值列于表6。

表6 圆管测点位置值
从圆心算起同心环序号
n
划分总环数
1 2 3 4 6
1 0.0707 0.500 0.409 0.354 0.290
2 0.866 0.707 0.612 0.500
3 0.91
4 0.790 0.646
4 0.936 0.764
5 0.866
6 0.957
图2测压管标定测点位置图3 矩形风管测点位置为了将测压管准确地放在风管中预定的位置,必须在测压管上作出标志。

由测压端中心线向管柄方向取风管直径的一半即等于R为刻度中心,如图2所示,再根据计算出来的Y1、Y2、Y3…Y n值在管柄上逐次标出测点位置。

(2)对矩形风管
对于矩形管道断面可划分为若干等面积的小方块,测点位置居于每个小方块的中心,如图3所示。

其划分原则是:各小方块面积不大于0.05米2,小块数目不少于9块。

具体可参考表7。

表7 矩形风管测定点的确定表
风管面积(m2) ≦0.01 0.01 0.1-0.4 0.4-0.6 每边等分数m 3 4 5 6
测点数n=m29 16 25 36
若想准确地进行压力测定,必须合理地使用和布置仪器。

在风网中,吸入段的全压、静压为负值,压出段的全压、静压为正值,而动压不论在吸入段或是压出段均为正值。

所以测压管与测压计的联接方式在吸入段与压出段有些不同。

具体接法如图4所示。

用毕托管测量全压、动压和静压时,毕托管的测压端一定要迎着流动的气流,如果用风速仪测定管道内风速时,一定要注意测速热球的气流流向。

图4测量风压时仪器连接方法
四、测试步骤
1.连接风机和通风管道
2.用钢卷尺测量风道的直径或矩形风道的尺寸。

3.根据直径或矩形风道的尺寸,确定测点位置。

4.在测试位置处风管上开φ12mm的圆孔。

5.在毕托管或热球式风速仪上作出测点位置标记。

6.毕托管和U型压力计用乳胶管连接。

7.毕托管或热球式风速仪在测孔处垂直插入风道内,从而保证测点的位置一定要正确,
并注意毕托管测头的方向。

8.在U型压力计上直接读出风道内全压、动压和静压,在热球式风速仪上直接读出风道
内风速。

五、测定数据的整理计算
对于所测得的全压或静压,只要将各测点的读值平均即为该断面的全压或静压值,但须注意正负。

对于动压它永为正值,按上述方法测得某断面各测点的动压值后,必须按以下方法进行数据整理:
因为:

所以
为精确计算起见,其动压应计算为:

当t=20℃,γ=1.2kg/m3,则:
式中:cp—平均风速(米/秒);
H动cp—动压平均值(Pa)。

根据可计算出管道内风速,Q=υF可计算出管道内风量,式中F为管道截面面积。

将所测得的平均动压与静压相加的即为风管平均全压。

相关文档
最新文档