CHAPTER 8_1 Four Wave mixing

合集下载

数字信号处理英文版课后答案(8)

数字信号处理英文版课后答案(8)

Chapter 8 Solutions 8.1 The Fourier transform gives the spectrum of this non-periodic signal:Ω-Ω-++=Ω2j j e 25.0e 5.01)(X8.2 The samples for the signal are:The spectrum for the signal is given byΩ-Ω-Ω-++-=Ω4j 3j j e e e 5.0)(X8.3 Ω-Ω-Ω-Ω-∞-∞=Ω-++++==Ω∑8j 6j 4j 2j n jn e e e e 1e ]n [x )(X8.4 The first eight sample values for the signal are shown in the table.The signal contains an infinite number of non-zero samples, but the first 5, shown above, should be sufficient to approximate the DTFT reasonably well.Ω-Ω-Ω-Ω-∞-∞=Ω-+-+-≈=Ω∑4j 3j 2j j n jn e 0039.0e 0156.0e 0625.0e 25.01e ]n [x )(X8.5 The DTFT for x 1[n] isΩ-Ω-∞-∞=Ω-++==Ω∑2j j n jn 11e 3e 21e ]n [x )(XThe DTFT for x 2[n] isΩ-Ω-Ω-∞-∞=Ω-++==Ω∑4j 3j 2j n jn 22e 3e 2e 1e ]n [x )(XThe DTFT for x 3[n] isΩ-Ω-∞-∞=Ω-++==Ω∑2j j n jn 33e 1e 23e ]n [x )(XAll three signals have identical magnitude spectra, shown below.|X(The phase spectra of the three signals differ. They are shown in the figure below. From the DTFT expressions above, it is easy to see that )(X e )(X 12j 2Ω=ΩΩ- and)(X e )(X 12j 3Ω-=ΩΩ-. The first relationship means that the phase for x 2[n] will always be 2Ω less than the phase for x 1[n]. The second relationship means that the phase for x 3[n] is always 2Ω less than the negative of the phase for x 1[n], since X 1(-Ω) produces phases that are the negatives of the phases for X 1(Ω), following the odd phase spectrum rule. Both of these two relationships can be confirmed in the table or the plot, remembering that θ ± 2π = θ.8.6 The samples of the signal are shown in the table:The DTFT isΩ-Ω-Ω-∞-∞=Ω-+-==Ω∑4j 2j j n jn e 866.0e 866.0e 866.0e ]n [x )(X8.7 The period of the signal is N = 10. The sample values are listed in the table:The N = 10 DFS coefficients are given by:510k 2j 410k 2j 310k 2j 210k 2j 9n n10k 2j k e e e e e ]n [x c π-π-π-π-=π-+++==∑= 1|–2πk/5 + 1|–3πk/5 + 1|–4πk/5 + 1|–πkBecause of the symmetry of the spectrum, it is enough to calculate the coefficients for k = 0 to k = N/2 = 5, and to produce the other parts of the spectrum from this data.The magnitudes in the second half of the spectrum are a mirror image of those in the first. The phases in the second half are the negatives of the phases in the first half.|X(8.8 (a) The signal x[n] has the digital period N = 4. Its spectrum can be found using the discrete Fourier series:34k 2j 4k2j 3n n4k 2j k ee2e]n [x c π-π-=π--+==∑= 2 + 1|–πk/2 – 1|–3πk/2(b) The magnitude spectrum appears to repeat every second sample, while the phase spectrum repeats every four samples. The period of both spectra must be the same, so the overall period must be 4. As for all periodic signals, the period of the spectrum matches the period of the signal. 8.9 The signal has a period of N = 4, so the DFS coefficients are given by:24k2j 3n n4k 2j k e1e ]n [x c π-=π--==∑= 1 – 1|–πkSeveral cycles of the spectra are shown in the figures below.(8.10 The spectra for non-periodic signals are produced using the DTFT. The spectra, X(Ω), are smooth, continuous functions of frequency with a period of 2π. They are plotted against digital frequency Ω. If desired, the spectra can be plotted as X(f) versus frequency in Hz, using f = Ωf S /(2π).The spectra for periodic signals having a period N are produced using the DFS. The spectra, c k , are line functions of frequency with a period of N. They are plottedagainst the index k. If desired, the spectra can be plotted against frequency in Hz, using f = kf S /N.For both non-periodic and periodic signals, magnitude spectra are even and phase spectra are odd.8.11 (a) The signal is non-periodic. Its spectrum is given by the DTFT:Ω-Ω-Ω-∞-∞=Ω-++==Ω∑3j 2j j n jn e 3e 2e e ]n [x )(XThe magnitude and phase spectra appear as dashed lines in the figure in part (b). (b) The signal is a periodic version of the signal in (a), with period N = 4. Its spectrum is given by the DFS:34k2j 24k 2j 4k2j 3n n4k 2j k e3e 2ee]n [x c π-π-π-=π-++==∑= 1|–πk/2 + 2|–πk + 3|–3πk/2 The magnitude and phase spectrum are plotted below, dashed lines for the DTFT and solid for the DFS. Note that the DFS samples the DTFT.8.12 The harmonic frequencies are given by f = kf S /N. For f S = 12 kHz and N = 72, the first five harmonics are: 166.7, 333.3, 500.0, 666.7, and 833.3 Hz.8.13 For the first cosine, N/M = 2π/Ω = 2π/(2π/3) = 3, so the period is 3. For the second cosine, N/M = 2π/Ω = 2π/(π/3) = 6, so the period is 6. The lowest common multiple of these two periods is 6, so this is the overall period of the waveform.The signal samples are given by The Fourier coefficients are calculated as:56k2j 46k2j 36k2j 26k 2j 6k2j 5n n6k 2j k e5.0e 5.1e e 5.1e5.03e]n [x c π-π-π-π-π-=π---+--==∑= 3 – 0.5|–k π/3 –1.5|–2k π/3 + 1|–k π –1.5|–4k π/3 – 0.5|–5k π/3 The magnitude spectrum is periodic with period 6. Six spectrum samples cover the range from 0 to the sampling frequency, 4 kHz. Therefore, each point of the spectrum covers 4000/6 = 2000/3 Hz. As a result, k = 3 corresponds to the Nyquist frequency of 2 kHz. Using kf S /N, the two spikes in the spectrum below the Nyquist frequency, at k =1 and k = 2, map to frequencies of 2000/3 = 666.7 and 2(2000)/3 = 1333.3 Hz. Using Ω = 2πf/f S , these analog frequencies correspond to the digital frequencies π/3 and 2π/3 rads. Thespike at the higher frequency is twice the height of the other because its amplitude in the signal is double that of the other component. The other two spikes in the spectrum, at k = 6 – 1 and k = 6 – 2 map to imaged versions of the baseband frequencies.8.14 (a) Since the magnitude spectrum is periodic with period 14, the digital signal is periodic with the same period. (b) Fourteen points of the magnitude spectrum cover the sampling frequency, 16 kHz. Each point covers an interval 16/14 = 1.143 kHz wide. For a 16 kHz sampling frequency, the Nyquist frequency is 8 kHz. The first seven points of the magnitude spectrum cover this range. Three spikes occur within the Nyquist range, at k = 1, 2 and 3, or, using kf S /N, 1143, 2286 and 3429 Hz.(The magnitude spectrum belongs to the signal x[n] = sin(n π/7) + 2sin(n2π/7) +3sin(n3π/7). The digital frequencies π/7, 2π/7 and 3π/7 rads are, for a 16 kHz sampling rate, obtained from the analog frequencies 1143, 2286 and 3429 Hz.)8.15 (a) Since the magnitude spectrum has a period of 24, the digital signal also has a period of 24 samples. (b) Twenty-four samples cover 12 kHz, which means each point of the magnitude spectrum covers 0.5 kHz. The spikes at k = 2, 4 and 9 map to frequencies of kf S /N = 1, 2 and 4.5 kHz. The other three spikes are occur above the Nyquist frequency, at k = 24 –2 = 22, k = 24 – 4 = 20 and k = 24 – 9 = 15. The frequencies that correspond to these values of k are imaged copies of the baseband frequencies. (c) Using Ω = 2πf/f S , the digital frequencies are π/6, π/3 and 3π/4 rads.(The signal whose magnitude spectrum is shown is x[n] = cos(n π/6) + cos(n π/3) + cos(n3π/4).)8.16 The Fourier expansion can be matched to ∑-=π=1N 0k n N k2j k e c N 1]n [x . Since N = 16,n 1622j n1612j n 1612j n 1622j e e 2j 1e 2j e ]n [x πππ-π-+++-=⎪⎪⎭⎫ ⎝⎛+++-=πππ-π-n 1622j n 1612j n 1612j n 1622j e 8e 4j 8e 4j e 881The only non-zero coefficients c k are: c –2 = 8, c –1 = –j4, c 0 = 8, c 1 = j4, c 2 = 8. The other 11 coefficients in each period must be zero. The magnitudes of the non-zero coefficients are 8, 4, 8, 4, 8 and the phases are 0, –π/2, 0, π/2 and 0. The magnitude and phase spectra constructed using this information are shown below. Remember that the sequence of magnitudes and phases repeats every 16 points.8.17 (a)(i) Since 2π/Ω = 14π/(6π) = 7/3, the digital period is 7.(ii) The signal contains the frequency f = Ωf S /(2π) = 30000/7 Hz. For a digital period of 7, each point of the magnitude spectrum covers f S /N = 10000/7 Hz. Since each frequency is represented by kf S /N, a spike occurs in this magnitude spectrum at k = 3. Due to imaging, a second, symmetrically-placed spike occurs at N – 3 = 7 – 3 = 4.(b)(i) Since 2π/Ω = 10π/(3π) = 10/3, the digital period is 10.(ii) The signal contains the frequency f = Ωf S /(2π) = 3000 Hz. For a digital period of 10, each point of the magnitude spectrum covers f S /N = 1000 Hz. Therefore, a spike occurs in this magnitude spectrum at k = 3. Due to imaging, a second, symmetrically placed spike occurs at N – 3 = 10 – 3 = 7.(c)(i) For the first component 2π/Ω = 6, and for the second component 2π/Ω = 16. The digital period is the lowest common multiple of these two periods, or 48.(ii) The signal contains the frequencies f = Ωf S/(2π) = 10000/6 = 5000/3 Hz and f = Ωf S/(2π) = 10000/16 = 625 Hz. For a digital period of 48, each point of the magnitude spectrum covers f S/N = 10000/48 = 625/3 Hz. Therefore, spikes occur in this magnitude spectrum at k = 3 and k = 8. Symmetrically placed spikes occur at N – 3 = 48 – 3 = 45 and N – 8 = 48 – 8 = 40 as a result of imaging.(d)(i) As in part (c), the digital period is 48.(ii) The spikes occur in the same locations as in (c), but the higher frequency spike is twice as tall as the lower frequency spike.8.18 As evidenced by the zeros in the magnitude spectrum, some frequencies are excluded from this signal. The most significant contribution lies at a digital frequency of about 0.1 radian. The exact value is 0.113 radians. With f S = 20 kHz, f = Ωf S/(2π) = (0.113)(20000)/(2π), or about 360 Hz. The next biggest peak occurs at about 0.3 radians. The exact value is 0.336 radians, which corresponds to a frequency of 1070 Hz. Most of the important signal content lies below the fourth zero in the spectrum, at 0.395 radians or 1257 Hz.8.19 The number of points in the DFS spectrum gives the digital period of the underlying signal. The digital period in this case is N = 23. The periodic signal whose magnitude spectrum is shown has a large DC component and contributions at all harmonic frequencies, kf S/N = k(20000)/23 = 869.6k Hz. The first few harmonics are 869.6 Hz, 1739.1 Hz, 2608.7 Hz, …. The amplitudes of the harmonics decrease rapidly with frequency. The fundamental frequency of the signal is 869.6 Hz, so the period of the signal is NT S = 1.15 msec.8.20 (a) Ω-)X5.0(e5.0+Ωj-=(b) For a sampling frequency of f S= 16 kHz, the Nyquist frequency is 8 kHz. A cut-off of 2 kHz corresponds to a digital frequency of Ω = 2πf/f S = π/4 radians. The low pass filter extracts the lowest frequency elements in the signal.(c) Cut-off frequencies of 3 and 6 kHz correspond to digital frequencies of 0.375πand 0.75π radians. The band pass filter extracts the mid-range frequencies.(d) A cut-off of 7 kHz corresponds to a digital frequency of 0.875π radians. The high pass filter extracts only the highest frequency elements in the signal.8.21 (a) Each of the three terms is periodic. The digital period for each is 14, 3 and 16. The lowest common multiple for these integers is N = 336, the digital period for x[n]. The analog frequencies of the three terms are given by f = Ωf S/(2π). They are 1143, 5333, and 1000 Hz. The DFS frequencies are given by f = kf S/N = 47.6k, so the magnitude spectrum for the signal will contain peaks at k = 24, 112 and 21. These three peaks are shown below. Note the images of these peaks in the second half of the spectrum, at k = 363 – 21 = 342, k = 363 – 24 = 339, and k = 363 – 112 = 251.(b) The low pass filter will extract the two lowest-frequency peaks, at 1000 and 1143 Hz. The DFS magnitude spectrum will contain a peak at k = 21 and one at k = 24, plus imaged peaks at k = 363 – 21 = 342 and k = 363 – 24 = 339.(c) The band pass filter will extract the high frequency peak, at 5333 Hz. The DFS magnitude spectrum for the filtered output will contain a peak at k =112, plus an imaged peak at k = 363 – 112 = 251.(d) The high pass filter output will contain no peaks.8.22 (a) The spectrum has 64 points, so N = 64 is the digital period of the square wave. The fundamental frequency is f S/N = 4000/64 = 62.5 Hz.(b) The period in seconds is the reciprocal of the fundamental frequency, or NT S = 16 msec.(c) The DC component gives the average value of the signal. For this signal, the average is zero.(d) The harmonics present in the signal are odd multiples of the fundamental frequency. The only ones that lie below 500 Hz are 62.5k = 62.5, 187.5, 312.5, and 437.5 Hz. These frequencies correspond to the indices k = 1, 3, 5, 7.。

光学fib效应

光学fib效应

光学Fib效应,通常指的是光纤中的非线性效应。

在光纤通信和光纤激光器等领域,光纤的非线性效应是一个重要的研究课题,因为它们会影响到光信号的质量和传输效率。

以下是一些常见的光纤非线性效应:1. 自相位调制(Self-Phase Modulation, SPM):当光脉冲在光纤中传播时,由于介质的非线性特性,光脉冲的相位会随着强度的变化而变化,这种现象称为自相位调制。

SPM会导致光脉冲的相位谱展宽,从而影响信号的传输质量。

2. 非线性损耗(Nonlinear Loss):在光纤中,当光强度超过一定阈值时,介质会表现出非线性损耗,这通常是由于光引起的介质的折射率变化导致的。

非线性损耗会导致光脉冲的能量随着传输距离的增加而逐渐减少。

3. 增益饱和(Gain Saturation):在光纤激光器中,激光增益介质(如掺杂的光纤)在强光场作用下会表现出饱和特性,即增益随着输入光强度的增加而减少。

这种效应限制了激光器的最大输出功率。

4. 四波混频(Four-Wave Mixing, FWM):当两个或多个不同频率的光波在光纤中传播时,它们会相互作用并产生新的频率成分。

这种效应可以用于波长转换和光信号处理,但也可能引起信号失真。

5. 光纤中的布里渊散射(Brillouin Scattering):这是一种声子与光子相互作用的现象,会导致光脉冲的频率和相位发生变化。

布里渊散射可以用于分布式光纤传感,但也可能对通信信号造成干扰。

6. 非线性折射(Nonlinear Refraction):当光脉冲在光纤中传播时,由于介质的非线性特性,折射率会随着光强度的变化而变化,这会影响光脉冲的传播速度和形状。

这些非线性效应通常在光纤中同时存在,它们的影响可以通过适当的信号调制、光纤设计和管理策略来减轻。

在设计和优化光纤通信系统和光纤激光器时,必须考虑这些非线性效应。

光通信中英文专业术语

光通信中英文专业术语

光通信中英文专业术语ADM Add Drop Multiplexer 分插复用器利用时隙交换实现宽带管理,即允许两个STM-N信号之间的不同VC实现互连,并且具有无需分接和终结整体信号,即可将各种G.703规定的接口信号(PDH)或STM-N信号(SDH)接入STM-M(M>N)内作任何支路。

AON Active Optical Network 有源光网络有源光网络属于一点对多点的光通信系统,由ONU、光远程终端OLT和光纤传输线路组成。

APON ATM Passive Optical Network ATM无源光网络一种结合ATM 多业务多比特率支持能力和无源光网络透明宽带传送能力的理想长远解决方案,代表了面向21 世纪的宽带接入技术的最新发展方向。

ADSL Asymmetric Digital Subscriber Line 非对称数字用户线非对称数字用户线系统ADSL是一种采用离散多频音DMT线路码的数字用户线DSL系统。

AA Adaptive Antenna 自适应天线一种天线提供直接指向目标的波束,比如移动电话的天线,能够随目标移动自动调整功率等因素,也称为智能天线(SMART ANTENNA)。

ADPCM Adaptive Differential Pulse Code Modulation 自适应脉冲编码调制一种编码技术,将模拟采样的比特数从8位降低到3到4位,完成传输信号的压缩,ITU-T 推荐G.721 为32位ADPCM定义了一种算法(每秒8000次采样,每次采样采4比特),与传统PCM编码相比,它的传输容量加倍。

ADFE Automatic Decree Feedback Equalizer自适应判决反馈均衡器一种利用判决后的信号作为后向抽头的输入信号,可以消除噪声对后向抽头信号的影响的均衡器技术。

AMI Alternate Mark Inversion 信号交替反转码一种数字传输中常用的编码技术,逻辑0由空电平表示,而逻辑1由交替反转的正负电压表示。

四波混频

四波混频
四波混频
非线性光学中,四波混频是介质中四个光波相互作用所引起的非线性光学效应,它起因于介质的三阶非线性极化。 四波混频相互作用的方式一般可分为以下三类:
一,三个泵浦场的作用情况;二,输出光与一个光具有相同模式的情况;三,后向参量放大和振荡
由于四波混频在所有介质中都能很容易的观察到,而且变换形式很多,所以它已经得到了很多有意义的应用。例如,利用四波混频可以把可调谐相干光源的频率范围扩展到红外和紫外;在简笔的情况下,四波混频可用于自适应光学的波前再现;在材料应用中共振四波混频技术又非常有效的光谱和分析工具等待
发生四波混频的原因是入射光中的某一个波长上的变化,从而产生了新的波长的光波。
在DWDM系统中,当信道间距与光纤色散足够小且满足相位匹配时,四波混频将成为非线性串扰的主要因素。当信道间隔达到10GHZ 以下时,FWM 对系统的影响将最严重。
通信中,四波混频(Four-Wave Mixing,FWM) 亦称四声子混合,是光纤介质三阶极化实部作用产生的一种光波间耦合效应,是因不同波长的两三个光波相互作用而导致在其它波长上产生所谓混频产物,或边带的新光波,这种互作用可能发生于多信道系统的信号之间,可以产生三倍频、和频、差频等多种参量效应。
目前的DWDM系统的信道间隔一般在100GHZ ,零色散导致四波混频成为主要原因,所以,采用G.653 光纤传输DWDM系统时,容易产生四波混频效应,而采用G.652 或G.655 光纤时,不易产生四波混频效应。但G.652 光纤在1550nm 窗口存口存在一定的色散,传输10G信号时,应加色散补偿,G.655 光纤在1550nm 窗口的色散很小,适合10G DWDM 系统的传输。
四波混频对DWDM系统的影响主要表现在:(1)产生新的波长,使原有信号的光能量受到损失,影响系统的信噪比等性能;(2)如果产生的新波长与原有某波长相同或交叠,从而产生严重的串扰。四波混频的产生要求要求各信号光的相位匹配,当各信号光在光纤的零色散附近传输时,材料色散对相位失配的影响很小,因而较容易满足相位匹配条件,容易产生四波混频效应。

通信名词解释

通信名词解释

缩写全称:ADPCM(Adaptive Differential Pulse Code Modulation):自适应差分脉冲编码调制。

ADSL(Asymmetric Digital Subscriber Line):非对称数字用户专线。

ATM(Asynchronous Transfer Mode):异步传输模式。

AWG(American Wire Gauge):美制电线标准。

单线导体是根据直径,绞线是根据横截面积来决定线号。

BPF(Band-Pass Filter):带通滤波器。

CSMA(Carrier Sense Multiple Access):载波侦听型多址接入协议。

DB(Data Base):数据库。

DMA(Direct Memory Access):存储器直接访问。

DNS(Domain Name Service):域名服务。

DSB(Double Side Bound):双边带。

DSF(Dispersion Shifted Fiber):色散位移光纤。

DWDM(Dense Wavelength Division Multiplexing):密集波分复用系统。

EDFA(Erbium-doped Optical Fiber Amplifier):掺铒光纤放大器。

ESR(Equivalent Series Resistor):等效串联电阻。

FDM(Frequency Division Multiplexing):频分复用。

FM(Frequency Modulation):频率调制。

FTP(File Transfer Protocol):文件传送协议。

FTTx(Fiber to the x):光纤到x技术。

x=Home,Building,Curb,Cabinet(Cab),Premise,etcFWM(Four-Wave Mixing):四波混频。

HTTP(Hyper Text Transfer Protocol):超文本传送协议。

光纤通信英文版常见中英对照单词表

光纤通信英文版常见中英对照单词表

AAbsorption coefficient 吸收系数ac alternating current 交变电流交流Acoustic phonon 声学声子Active component 有源器件AM amplitude modulation 幅度调制AM,FM,PM:幅度/频率/相位调制AON all-optical network 全光网络AOTF acoustic optic tunable filter 声光调制器APD avalanche photodiode 雪崩二极管AR coatings antireflection coatings 抗反膜ASE amplified spontaneous emission 放大自发辐射ASK amplitude shift keying 幅移键控ASK/FSK/PSK 幅/频/相移键控ATM asynchronous transfer mode 异步转移模式Attenuation coefficient 衰减系数Attenuator 衰减器Auger recombination:俄歇复合AWG arrayed-waveguide grating 阵列波导光栅BBand gap:带隙Band pass filter 带通滤波器Beam divergence 光束发散BER bit error rate 误码率BER:误码率BH buried heterojunction 掩埋异质结Binary representation 二进制表示方法Binary 二进制Birefringence 双折射Birefringence双折射Bitrate-distance product 比特距离的乘积Block diagram 原理图Boltzman statistics:玻尔兹曼统计分布BPF band pass filter 带通滤波器Bragg condition 布拉格条件Bragg diffraction 布拉格衍射Brillouin scattering 布里渊散射Brillouin shift 布里渊频移Broad area 宽面Buried heterostructure 掩埋异质结CC3 cleaved-coupled cavity 解理耦合腔Carrier lifetime:载流子寿命CATV common antenna cable television 有线电视CDM code division multiplexing 码分复用Characteristics temperature 特征温度Chirp 啁啾Chirped Gaussian pulse 啁啾高斯脉冲Chromatic dispersion 色度色散Chromatic dispersion 色度色散Cladding layer:包层Cladding 包层CNR carrier to noise ratio 载噪比Conduction band:导带Confinement factor 限制因子Connector 连接头Core cladding interface 纤芯包层界面Core-cladding interface 芯层和包层界面Coupled cavity 耦合腔CPFSK continuous-phase frequency-shift keying 连续相位频移键控Cross-phase modulation 交叉相位调制Cross-talk 串音CSO Composite second order 复合二阶CSRZ:载波抑制归零码Cutoff condition 截止条件CVD chemical vapour deposition 化学汽相沉积CW continuous wave 连续波Cylindrical preform:预制棒DDBR distributed Bragg reflector 分布布拉格反射DBR: distributed Bragg reflector 分布式布拉格反射器dc direct current 直流DCF dispersion compensating fiber 色散补偿光纤Depressed-cladding fiber: 凹陷包层光纤DFB distributed feedback 分布反馈DFB: Distributed Feedback 分布式反馈Differential gain 微分增益Differential quantum efficiency 微分量子效率Differential-dispersion parameter:微分色散参数Diffusion 扩散Digital hierarchy 数字体系DIP dual in line package 双列直插Direct bandgap:直接带隙Directional coupler 定向耦合器Dispersion compensation fiber:色散补偿光纤Dispersion decreasing fiber:色散渐减光纤Dispersion parameter:色散参数Dispersion shifted fiber 色散位移光纤Dispersion slope 色散斜率Dispersion slope:色散斜率Dispersion-flatten fiber:色散平坦光纤Dispersion-shifted fiber:色散位移光纤Double heterojunction 双异质结Double heterostructure:双异质结Doubly clad:双包层DPSK differential phase-shift keying 差分相移键控Driving circuit 驱动电路Dry fiber 无水光纤DSF dispersion shift fiber 色散位移光纤DWDM dense wavelength divisionmultiplexing/multiplexer密集波分复用/器DWDM: dense wavelength division multiplexing密集波分复用E~GEDFA erbium doped fiber amplifier 掺铒光纤激光器Edge emitting LED 边发射LEDEdge-emitting 边发射Effective index 有效折射率Eigenvalue equation 本征值方程Elastic scattering 弹性散射Electron-hole pairs 电子空穴对Electron-hole recombination 电子空穴复合Electron-hole recombination:电子空穴复合Electrostriction 电致伸缩效应Ethernet 以太网External cavity 外腔External quantum efficiency 外量子效率Extinction ratio 消光比Eye diagram 眼图FBG fiber-bragg grating 光纤布拉格光栅FDDI fiber distributed data interface 光纤数据分配接口FDM frequency division multiplexing频分复用FDM:频分复用Fermi level 费米能级Fermi level:费米能级Fermi-Dirac distribution:费米狄拉克分布FET field effect transistor 场效应管Fiber Manufacturing:光纤制作Field radius 模场半径Filter 滤波器Flame hydrolysis 火焰裂解FM frequency modulation 频率调制Forward-biased :正向偏置FP Fabry Perot 法布里-珀落Free spectral range 自由光谱范围Free-space communication 自由空间光通信系统Fresnel transmissivity 菲涅耳透射率Front end 前端Furnace 熔炉FWHM full width at half maximum 半高全宽FWHM: 半高全宽FWM four-wave mixing 四波混频Gain coefficient 增益系数Gain coupled 增益耦合Gain-guided semiconductor laser 增益波导半导体激光器Germania 锗GIOF graded index optical fiber 渐变折射率分布Graded-index fiber 渐变折射率光纤Group index 群折射率GVD group-velocity dispersion 群速度色散GVD: 群速度色散H~LHBT heterojunction-bipolar transistor异质结双极晶体管HDTV high definition television 高清晰度电视Heavy doping:重掺杂Heavy-duty cable 重型光缆Heterodyne 外差Heterojunction:异质结HFC hybrid fiber-coaxial 混合光纤/电缆Higher-order dispersion 高阶色散Highpass filter 高通滤波器Homodyne 零差Homojunction:同质结IC integrated circuit 集成电路IM/DD intensity modulation with direct detection 强度调制直接探测IM/DD: 强度调制/直接探测IMD intermodulation distortion 交互调制失真Impulse 冲激Impurity 杂质Index-guided 折射率导引Indirect bandgap:非直接带隙Inelastic scattering 非弹性散射Inhomogeneous非均匀的Inline amplifier 在线放大器Intensity noise 强度噪声Intermodal dispersion:模间色散Intermode dispersion 模间色散Internal quantum efficiency:内量子效率Intramodal dispersion: 模内色散Intramode dispersion 模内色散Intrinsic absorption 本征吸收ISDN integrated services digital network 综合业务数字网ISI intersymbol interference 码间干扰Isotropic 各向同性Jacket 涂层Jitter 抖动Junction:结Kinetic energy:动能Lambertian source 朗伯光源LAN local-area network 局域网Large effective-area fiber 大有效面积发光Laser threshold 激光阈值Laser 激光器Lateral mode 侧模Lateral 侧向Lattice constant:晶格常数Launched power 发射功率LD laser diode 激光二极管LD:激光二极管LED light emitting diode 发光二极管LED: 发光二极管L-I light current 光电关系Light-duty cable 轻型光缆Linewidth enhancement factor 线宽加强因子Linewidth enhancement factor 线宽增强因子Linewidth 线宽Longitudinal mode 纵模Longitudinal model 纵模Lowpass filter 低通滤波器LPE liquid phase epitaxy 液相外延LPE:液相外延M~NMacrobending 宏弯MAN metropolitan-area network 城域网Material dispersion 材料色散Material dispersion:材料色散Maxwell’s equations 麦克斯韦方程组MBE molecular beam epitaxy 分子束外延MBE:分子束外延MCVD Modified chemical vapor deposition改进的化学汽相沉积MCVD:改进的化学汽相沉积Meridional rays 子午光线Microbending 微弯Mie scattering 米氏散射MOCVD metal-organic chemical vapor deposition金属有机物化学汽相沉积MOCVD:改进的化学汽相沉积Modal dispersion 模式色散Mode index 模式折射率Modulation format 调制格式Modulator 调制器MONET Multiwavelength optical network 多波长光网络MPEG motion-picture entertainment group视频动画专家小组MPN mode-partition noise 模式分配噪声MQW multiquantum well 多量子阱MQW: 多量子阱MSK minimum-shift keying 最小频偏键控MSR mode-suppression ratio 模式分配噪声MSR: Mode suppression ratio 模式抑制比Multimode fiber 多模光纤MZ mach-Zehnder 马赫泽德NA numerical aperture 数值孔径Near infrared 近红外NEP noise-equivalent power 等效噪声功率NF noise figure 噪声指数Nonradiative recombination 非辐射复合Nonradiative recombination:非辐射复合Normalized frequency 归一化频率NRZ non-return to zero 非归零NRZ:非归零码NSE nonlinear Schrodinger equation 非线性薛定额方程Numerical aperture 数值孔径Nyquist criterion 奈奎斯特准则O P QOC optical carrier 光载波OEIC opto-electronic integrated circuit 光电集成电路OOK on-off keying 开关键控OOK:通断键控OPC optical phase conjugation 光相位共轭Optical mode 光模式Optical phase conjugation 光相位共轭Optical soliton 光孤子Optical switch 光开关Optical transmitter 光发射机Optical transmitter:光发射机OTDM optical time-division multiplexing 光时分复用OVD outside-vapor deposition 轴外汽相沉积OVD:轴外汽相沉积OXC optical cross-connect 光交叉连接Packaging 封装Packet switch 分组交换Parabolic-index fiber 抛物线折射率分布光纤Passive component 无源器件PCM pulse-code modulation 脉冲编码调制PCM:脉冲编码调制PCVD:等离子体化学汽相沉积PDF probability density function 概率密度函数PDM polarization-division multiplexing 偏振复用PDM:脉冲宽度调制Phase-matching condition 相位匹配条件Phase-shifted DFB laser 相移DFB激光器Photon lifetime 光子寿命PMD 偏振模色散Polarization controller 偏振控制器Polarization mode dispersion:偏振模色散Polarization 偏振PON passive optical network 无源接入网Population inversion:粒子数反转Power amplifier 功率放大器Power-conversion efficiency 功率转换效率PPM:脉冲位置调制Preamplifer 前置放大器PSK phase-shift keying 相移键控Pulse broadening 脉冲展宽Quantization noise 量化噪声Quantum efficiency 量子效率Quantum limit 量子极限Quantum limited 量子极限Quantum noise 量子噪声RRA raman amplifier 喇曼放大器Raman scattering 喇曼散射Rate equation 速率方程Rayleigh scattering 瑞丽散射Rayleigh scattering 瑞利散射Receiver sensitivity 接收机灵敏度Receiver 接收机Refractive index 折射率Regenerator 再生器Repeater spacing 中继距离Resonant cavity 谐振腔Responsibility 响应度Responsivity 响应度Ridge waveguide laser 脊波导激光器Ridge waveguide 脊波导RIN relative intensity noise 相对强度噪声RMS root-mean-square 均方根RZ return-to-zero 归零RZ: 归零码SSAGCM separate absorption, grading, charge, and multiplication吸收渐变电荷倍增区分离APD的一种SAGM separate absorption and multiplication吸收渐变倍增区分离APD的一种SAM separate absorption and multiplication吸收倍增区分离APD的一种Sampling theorem 抽样定理SBS 受激布里渊散射SBS stimulated Brillouin scattering 受激布里渊散射SCM subcarrier multiplexing 副载波复用SDH synchronous digital hierarchy 同步数字体系SDH:同步数字体系Self-phase modulation 自相位调制Sellmeier equation:塞米尔方程Sensitivity degradation 灵敏度劣化Sensitivity 灵敏度Shot noise 散粒噪声Shot noise 散粒噪声Single-mode condition 单模条件Sintering :烧结SIOF step index optical fiber 阶跃折射率分布SLA/SOA semiconductor laser/optical amplifier 半导体光放大器SLM single longitudinal mode 单纵模SLM: Single Longitudinal mode单纵模Slope efficiency 斜率效率SNR signal-to-noise ratio 信噪比Soliton 孤子SONET synchronized optical network 同步光网络SONET:同步光网络Spectral density:光谱密度Spontaneous emission:自发辐射Spontaneous-emission factor 自发辐射因子SRS 受激喇曼散射SRS stimulated Raman scattering 受激喇曼散射Step-index fiber 阶跃折射率光纤Stimulated absorption:受激吸收Stimulated emission:受激发射STM synchronous transport module 同步转移模块STM:同步转移模块Stripe geometry semiconductor laser 条形激光器Stripe geometry 条形STS synchronous transport signal 同步转移信号Submarine transmission system 海底传输系统Substrate:衬底Superstructure grating 超结构光栅Surface emitting LED 表面发射LEDSurface recombination:表面复合Surface-emitting 表面发射TTCP/IP transmission control protocol/internet protocol传输控制协议/互联网协议TDM time-division multiplexing 时分复用TDM:时分复用TE transverse electric 横电模Ternary and quaternary compound:三元系和四元系化合物Thermal equilibrium:热平衡Thermal noise 热噪声Thermal noise 热噪声Threshold current 阈值电流Timing jitter 时间抖动TM transverse magnetic 横磁Total internal reflection 全内反射Transceiver module 收发模块Transmitter 发射机Transverse 横向Transverse mode 横模TW traveling wave 行波U ~ ZVAD vapor-axial epitaxy 轴向汽相沉积VAD:轴向沉积Valence band:价带VCSEL vertical-cavity surface-emitting laser垂直腔表面发射激光器VCSEL: vertical cavity surface-emitting lasers 垂直腔表面发射激光器VPE vapor-phase epitaxy 汽相沉积VPE:汽相外延VSB vestigial sideband 残留边带Wall-plug efficiency 电光转换效率WAN wide-area network 广域网Waveguide dispersion 波导色散Waveguide dispersion:波导色散Waveguide imperfection 波导不完善WDMA wavelength-division multiple access 波分复用接入系统WGA waveguide-grating router 波导光栅路由器White noise 白噪声XPM cross-phase modulation 交叉相位调制YIG yttrium iron garnet 钇铁石榴石晶体Zero-dispersion wavelength 零色散波长Zero-dispersion wavelength:零色散波长。

【国家自然科学基金】_四波混频(fwm)_基金支持热词逐年推荐_【万方软件创新助手】_20140803

【国家自然科学基金】_四波混频(fwm)_基金支持热词逐年推荐_【万方软件创新助手】_20140803

2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
科研热词 四波混频 半导体光放大器 纠缠光子对 光通信 偏振移位键控 量子密钥分发系统 量子光学 粒子群优化算法 密集波分复用 四波混频噪声 四波混频(fwm) 啁啾高斯脉冲 受激拉曼散射(srs) 全光译码器 全光比较器 全光半减器 光子晶体光纤(pcf) 光子晶体光纤 信道选择 交叉增益调制 g.653光纤 dwdm
推荐指数 5 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2011年 科研热词 推荐指数 序号 四波混频 4 1 半导体光放大器 4 2 全光波长转换器 2 3 光通信 2 4 非线性光学 1 5 近简并四波混频 1 6 边模抑制比 1 7 转换效率 1 8 色散 1 9 色度色散补偿 1 10 系统 1 11 眼图 1 12 注入锁定 1 13 波长变换 1 14 慢光 1 15 射速 1 16 基础 1 17 四波混频效应 1 18 四波混频噪声功率 1 19 四波混频(fwm) 波长变换 光子晶体光纤(pcf) 1 转换效率 20 3db带宽 全光混频 1 21 全光 1 22 光信号检测 1 偏振移位键控 1 交叉相位调制 1 交叉增益调制 1 上转换 1 ip业务流量 1 ip over wdm网络 1 gb 1
2011年 科研热词 四波混频 非线性光学 高非线性光纤 非线性相位噪声 载流子动力学 超快光学 自相位调制 磷化铟 相位噪声 电磁诱导透明 温度 深陷阱 晶体 差分相移键控 啁啾 受激布里渊散射 参量振荡器 功率 光纤激光器 光纤光学 偏振 三次谐波 推荐指数 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Glider Flying Handbook说明书

Glider Flying Handbook说明书

Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。

自相位调制

自相位调制

自相位调制
非线性薛定谔方程
A i 2 2A 2 i A | A | A (1) 2 z 2 2 T 式中,A为脉冲包络的慢变振幅,T是随脉冲以群速度vg移动的参 考系中的时间量度(T=t-z/vg)。方程右边的三项分别对应于光 脉冲在光纤中传输时的吸收效应、色散效应和非线性效应。
用U
V exp(iNL ) 做代换,并令方程两边的实部和虚部分别相等,有
V 0 z
NL e z 2 V z LNL
由于振幅V不沿光纤长度L变化,直接对相位方程进行积分,可以得到 通解为
自相位调制
U ( L, T ) U (0, T ) exp[iNL ( L, T )]
自相位调制
定义:在非线性光学介质中,介质的折射率与入射光的光强有关,
信号光强的瞬时变化引起光感应折射率变化,这将导致光波在传播 过程中发生相位变化,光波相位变化正比于光功率,因此称之为自 相位调制。 在单波长系统中光强变化导致相位变化时,自相位调制效应使信 号频谱逐渐展宽。这种展宽与信号的脉冲形状和光纤的色散有关。
exp 1 2m
为得到展宽因子,需要知道脉宽T0与初始谱宽 0 T01 高斯脉冲,有
令m=1,可以计算出
的关系。对无啁啾
幅度下降到1/e处的半宽度
max 0.86 0 max
表明展宽因子近似由最大相移φmax数值给定。
自相位调制
自相位调制

脉冲频谱的变化
SPM感应频率啁啾可以使频谱展宽,也可以使频谱变窄,这取决于 入射脉冲的啁啾方式。 若入射脉冲是无啁啾的,SPM总是导致频谱展宽。令δω(T)的时间 11 2 m 导数为零,可以得到δω的最大值为 1 1

通信专业实务(传输与接入-有线)-光纤通信概述-第2节光纤

通信专业实务(传输与接入-有线)-光纤通信概述-第2节光纤

通信专业实务(传输与接入-有线)-光纤通信概述-第2节光纤[判断题]1.按照光纤的传输模式来分阶跃型光纤和渐变(型)光纤。

()A.正确B.错误参考答(江南博哥)案:B参考解析:本题是对光纤的分类进行的考察。

按光纤纤芯折射率来分:阶跃型光纤和渐变型光纤按光纤传输模式来分:单模光纤和多模光纤,其中:单模光纤适合长距离,大容量的光纤通信系统。

本小题说法错误。

[判断题]5.对于G.652(常规单模光纤),若光信号波长大于零色散波长,那么由于光纤色散,光信号长波长部分较短波长部分传输得慢A.正确B.错误正确答案:A参考解析:常规单模光纤在1.27nm波长处色散为零,大于1.27nm时色散为正,随波长增加传描速率变慢。

[判断题]6.数值孔径是光纤的一个重要参数,反映光纤捕捉光线能力的大小;光纤直径越大,则数值孔径相应增大,光纤捕捉光线的能力也就越强?A.正确B.错误正确答案:B参考解析:本题考查数值孔径的概念。

从空气中入射到光纤纤芯端面上的光线被光纤捕获称为束缚光线的最大入射角θc的正弦值,称为光纤的数值孔径(NA)。

NA与纤芯和包层的折射率分布有关,而与光纤的直径无光。

数值孔径反映/光纤捕捉光线能力的大小。

NA越大,光纤捕捉光线的能力就越强,光纤与光源之间的耦合效率就越高。

本题说法错误。

[判断题]7.G.653光纤是指色散平坦型单模光纤。

()A.正确B.错误正确答案:B参考解析:本小题是对常用的单模光纤的类型进行的考察。

G.652:常规单模光纤,零色散波长在1310nm附近,最低损耗在1550nm附近。

G.653:色散位移单模光纤,在1550nm的色散为零和最低损耗,不利于多信道的WDM系统中传输,会发生四波混频导致信道间发生串扰。

G.655:非零色散位移单模光纤,在1550nm窗保留了一定的色散,使得光纤同时具有了较小色散和最小衰减。

能够避免四波混频,G.655光纤适用于DWDM系统中。

本小题说法错误。

光纤通信系统中的信噪比优化技术研究

光纤通信系统中的信噪比优化技术研究

光纤通信系统中的信噪比优化技术研究在光纤通信系统中,信噪比是评估通信质量的重要指标之一。

信噪比(Signal-to-Noise Ratio,SNR)是指信号的强度与噪声的强度之比。

在一个理想的通信系统中,信号的强度应该远远大于噪声的强度,从而确保信号能够准确地传输和解码。

然而,在实际情况下,光纤通信系统中会存在各种噪声源,如光子噪声、热噪声、信号间的干扰等,这些噪声会降低信号质量,影响通信性能的可靠性和传输速率。

因此,优化信噪比成为提升光纤通信系统性能的关键技术之一。

一、信噪比的影响因素要优化信噪比,首先需要了解信噪比受到哪些因素的影响。

1.光纤传输损耗:光纤中会存在传输损耗,主要包括光纤材料的吸收损耗、色散损耗和散射损耗等。

这些损耗会降低信号的强度,导致信噪比下降。

2.光波导带宽:光波导带宽是指光传输系统中能够承载的最高频率范围。

当信号频率超过光波导带宽时,信号会受到衰减和失真,从而影响信噪比。

3.发射机和接收机的噪声:发射机和接收机本身产生的噪声也会降低信噪比。

发射机噪声主要来自于光源和调制器的噪声,而接收机噪声主要来自于光电探测器和前端放大器的噪声。

4.光纤的非线性效应:光纤中存在一些非线性效应,如自相位调制(Self-Phase Modulation,SPM)和四波混频(Four-Wave Mixing,FWM)等。

这些非线性效应会在光信号传输过程中引入额外的噪声,降低信噪比。

二、信噪比优化技术1.光纤传输损耗的优化为了降低光纤传输损耗,可以采用以下技术:(1)使用低损耗的光纤材料:研发和应用具有低损耗特性的新型光纤材料。

(2)光纤色散补偿:通过引入特定的补偿器件,如色散补偿光纤、色散补偿模块等,来抵消光纤中的色散损耗。

(3)光纤放大器:通过在传输过程中插入光纤放大器来弥补传输衰减,增强信号强度。

2.光波导带宽的优化为了增大光波导带宽,可以采用以下技术:(1)多模光纤:多模光纤相比单模光纤具有更宽的带宽,适用于某些需要高带宽的应用场景。

Whirlpool 高压洗衣机用户手册说明书

Whirlpool 高压洗衣机用户手册说明书

1234: detergent for the main wash, water softener,bleach, stain removerCongratulations ä you have opted for a modern, high-qualitydomestic appliance manufactured by Bosch. This washing machine is distinguished by its economical water and energy consumption.Each machine that leaves our factory has been inspected thoroughly to ensure that it functions properly and is in perfect condition.For further information and a selection of our products go to our web site: You can find the contact details for your nearest after-sales service here or in the after-sales service directory (depending on model),see also Installation Instructions, page 7.–GB 0844 8928979 Calls from a BT landline will be charged at up to 3 pence per minute. A call set-up fee of up to 6 pence may apply.–IE 01450 2655Environmentally friendly waste disposalAll packaging must be disposed of in accordance with environmental guidelines.This appliance is certified in accordance with European Directive 2002/96/EEC on waste electrical and electronic equipment (WEEE).This directive provides the framework for the EU-wide collection and reuse of used appliances.ContentsPageʋIntended use .......................................................................................1ʋProgrammes .......................................................................................1ʋSetting and adjusting the programme ...........................................3ʋWashing ...........................................................................................3/4ʋAfter washing ......................................................................................4ʋIndividual settings ..........................................................................5/6ʋImportant information ....................................................................... 6ʋOverview of programmes ................................................................7ʋSafety instructions .............................................................................8ʋConsumption values .........................................................................8ʋCare .....................................................................................................9ʋInformation on the indicator lights ..................................................9ʋMaintenance ....................................................................................10ʋWhat to do if (11): fabric softener, starch Turning the tap offNot required for Aqua-Stop models9Before washing for the first timeDo not load any laundry into the machine. Turn on the tap. Add the following to compartment II Pause). At the end of the programme, turn the programme selector to Spento (Machine housing, control panel–––Cleaning the detergent drawer ...... if it contains detergent or fabric softener residues.1.2.3.Clean the detergent dispenser tray and insert with water and a brush andDescaling Ensure there is no laundry in the machineDescale the appliance according to the descaler manufacturer's instructions. This should not be necessary if the correct dosage of detergent is used.Information on the indicator lights model-dependentA signal sounds and indicator lights for the spin speed flash:¤¤¤¤¤Close the washing machine door properly; laundry may be caught.¤¤¤¤¤Detergent solution pumpblocked; Clean the detergent solution pump –> page 10.Drainage hose/waste pipe blocked; Clean the drainagehose at the siphon –> page 10.¤¤¤¤¤Open the tap completely, supply hose kinked or trapped;Clean the filter –> page 10,Water pressure too low.¤¤¤¤¤Motor fault. Call the after-sales service.¤¤¤¤¤Water in the base tub, appliance leaking. Call theafter-sales service.10Detergent solution pumpTurn the programme selector to 1.2.To prevent unused detergent from flowing straight into the drain during the next wash: pour 1 litre of water into compartment Drainage hose at the siphonTurn the programme selector to 1.2.3.Reattach the drainage hose and secure the connection with the hose clamp.Filter in the water supply1.2.Instruction manual Washing machineenObserve the safety instructions on page 8.Read these instructions and the separate installation instructions before operating the washing machine.12: detergent for the main wash, water softener,bleach, stain removerCongratulations ä you have opted for a modern, high-qualitydomestic appliance manufactured by Bosch. This washing machine is distinguished by its economical water and energy consumption.Each machine that leaves our factory has been inspected thoroughly to ensure that it functions properly and is in perfect condition.For further information and a selection of our products go to our web site: You can find the contact details for your nearest after-sales service here or in the after-sales service directory (depending on model),see also Installation Instructions, page 7.–GB 0844 8928979 Calls from a BT landline will be charged at up to 3 pence per minute. A call set-up fee of up to 6 pence may apply.–IE 01450 2655Environmentally friendly waste disposalAll packaging must be disposed of in accordance with environmental guidelines.This appliance is certified in accordance with European Directive 2002/96/EEC on waste electrical and electronic equipment (WEEE).This directive provides the framework for the EU-wide collection and reuse of used appliances.ContentsPageʋIntended use .......................................................................................1ʋProgrammes .......................................................................................1ʋSetting and adjusting the programme ...........................................3ʋWashing ...........................................................................................3/4ʋAfter washing ......................................................................................4ʋIndividual settings ..........................................................................5/6ʋImportant information ....................................................................... 6ʋOverview of programmes ................................................................7ʋSafety instructions .............................................................................8ʋConsumption values .........................................................................8ʋCare .....................................................................................................9ʋInformation on the indicator lights ..................................................9ʋMaintenance ....................................................................................10ʋWhat to do if (11): fabric softener, starch (*model-dependent)Turning the tap offNot required for Aqua-Stop models349Before washing for the first timeDo not load any laundry into the machine. Turn on the tap. Add the following to compartment II Pause). At the end of the programme, turn the programme selector to Spento (Machine housing, control panel–––Cleaning the detergent drawer ...... if it contains detergent or fabric softener residues.1.2.3.Clean the detergent dispenser tray and insert with water and a brush and5.Push in the detergent drawer.Descaling Ensure there is no laundry in the machineDescale the appliance according to the descaler manufacturer's instructions. This should not be necessary if the correct dosage of detergent is used.Information on the indicator lights model-dependentA signal sounds and indicator lights for the spin speed flash:¤¤¤¤¤Close the washing machine door properly; laundry may be caught.¤¤¤¤¤Detergent solution pumpblocked; Clean thedetergent solution pump –> page 10.Drainage hose/waste pipe blocked; Clean the drainagehose at the siphon –> page 10.¤¤¤¤¤Open the tap completely, supply hose kinked or trapped;Clean the filter –> page 10,Water pressure too low.¤¤¤¤¤Motor fault. Call the after-sales service.¤¤¤¤¤Water in the base tub, appliance leaking. Call theafter-sales service.10Detergent solution pumpTurn the programme selector to 1.2.To prevent unused detergent from flowing straight into the drain during the next wash: pour 1 litre of water into compartment Drainage hose at the siphonTurn the programme selector to 1.2.3.Reattach the drainage hose and secure the connection with the hose clamp.Filter in the water supply1.2.Instruction manualWashing machineenObserve the safety instructions on page 8.Read these instructions and the separate installation instructions beforeoperating the washing machine.。

通信专业常用英语术语祥解

通信专业常用英语术语祥解

通信专业常用英语术语祥解ADM Add Drop Multiplexer 分插复用器:利用时隙交换实现宽带管理,即同意两个STM-N信号之间的不一致VC实现互连,同时具有无需分接与终结整体信号,即可将各类G.703规定的接口信号(PDH)或者STM-N信号(SDH)接入STM-M(M>N)内作任何支路。

AON Active Optical Network 有源光网络:有源光网络属于一点对多点的光通信系统,由ONU、光远程终端OLT与光纤传输线路构成。

APON ATM Passive Optical Network A TM无源光网络:一种结合ATM 多业务多比特率支持能力与无源光网络透明宽带传送能力的理想长远解决方案,代表了面向21 世纪的宽带接入技术的最新进展方向。

ADSL Asymmetric Digital Subscriber Line 非对称数字用户线:非对称数字用户线系统ADSL是一种使用离散多频音DMT线路码的数字用户线DSL系统。

AA Adaptive Antenna 自习惯天线:一种天线提供直接指向目标的波束,比如移动电话的天线,能够随目标移动自动调整功率等因素,也称之智能天线(SMART ANTENNA)。

ADPCM Adaptive Differential Pulse Code Modulation 自习惯脉冲编码调制:一种编码技术,将模拟采样的比特数从8位降低到3到4位,完成传输信号的压缩,ITU-T推荐G.721 为32位ADPCM定义了一种算法(每秒8000次采样,每次采样采4比特),与传统PCM编码相比,它的传输容量加倍。

ADFE Automatic Decree Feedback Equalizer自习惯判决反馈均衡器:一种利用判决后的信号作为后向抽头的输入信号,能够消除噪声对后向抽头信号的影响的均衡器技术。

AMI Alternate Mark Inversion 信号交替反转码:一种数字传输中常用的编码技术,逻辑0由空电平表示,而逻辑1由交替反转的正负电压表示。

光子晶体谐振腔英文

光子晶体谐振腔英文

光子晶体谐振腔英文Photonic Crystal ResonatorPhotonic crystals are materials with periodic variations in their refractive indices, which can manipulate thebehavior of light. One of the key components of photoniccrystal devices is the photonic crystal resonator.A photonic crystal resonator is a cavity within the photonic crystal structure that can confine and enhance the light within its boundaries. The cavity is created by introducing defects, such as missing or displaced dielectric elements, into the periodic lattice of the photonic crystal. The defect acts as a local variation of the refractive index, causing the light to be trapped and resonant within the cavity.The confinement and enhancement of light in the photonic crystal resonator make it an ideal platform for various applications, such as lasing, sensing, and nonlinear optics.Lasing in the Photonic Crystal ResonatorA photonic crystal resonator can serve as a laser cavity by introducing a gain medium into the cavity. The confinement of light in the cavity can greatly enhance the interaction between the gain medium and the light, resulting in efficient lasing.The lasing in the photonic crystal resonator has several advantages over traditional Fabry-Perot laser cavities. First, the photonic crystal resonator can provide a much higherquality factor (Q factor), which is a measure of theefficiency of energy storage in the cavity. The high Q factorresults in a narrower linewidth and a higher coherence of the laser emission.Second, the photonic crystal resonator can provide a directional emission due to the efficient coupling of thelight out of the cavity through the photonic crystal waveguide. The directional emission can simplify the laser device design and improve its performance.Sensing with the Photonic Crystal ResonatorThe photonic crystal resonator can also be used as a sensor by exploiting the changes in the resonance conditionof the cavity due to the presence of the analyte. The analyte can change the refractive index of the cavity, causing ashift in the resonance wavelength or a change in the Q factor.The sensitivity of the photonic crystal resonator sensor can be greatly enhanced by using the slow light effect, which can increase the interaction between the light and theanalyte. The slow light effect is achieved by designing the photonic crystal structure to have a narrow bandgap, which slows down the group velocity of the light near the band edge.Nonlinear Optics in the Photonic Crystal ResonatorThe confinement and enhancement of light in the photonic crystal resonator can also result in strong nonlinear optical effects. The high intensity of the light in the cavity can induce various nonlinear optical phenomena, such as second harmonic generation, parametric amplification, and four-wave mixing.The nonlinear optical effects in the photonic crystal resonator can be further enhanced by exploiting the slowlight effect, which can increase the effective nonlinear coefficient and the phase matching condition.In summary, the photonic crystal resonator is aversatile platform for various photonic applications, including lasing, sensing, and nonlinear optics. Its unique properties, such as high Q factor, directional emission, and slow light effect, make it an attractive candidate for the next generation of photonic devices.。

光纤的色散与非线性效应精品文档

光纤的色散与非线性效应精品文档
• A narrow spectral width laser might produce only one line with a linewidth of 300 MHz. Modulating it at 1 Gbps will add 2 GHz. 2,300 MHz is just less than .02 nm (at 1500 nm). So now:
• In many cases we can't have DSF because the fibre we must use is already installed.
• four-wave mixing effectively prohibit the use of DSF.
Dispersion Compensating Fibre
• in a typical single-mode fibre using a laser with a spectral width of 6 nm over a distance of 10 km : Dispersion = 17ps/nm/km × 6 nm × 10 km = 1020 ps
结论: 不适用于10Gb/s以上速率传输,但可应用于
2.5Gb/s以下速率的DWDM。
G.653单模光纤(DSF)
低损耗 零色散 小有效面积 长距离、单信道超高速EDFA系统
四波混频(FWM)是主要的问题,不利于DWDM技术
结论: 适用于10Gb/s以上速率单信道传输,但不适
用于 DWDM应用,处于被市场淘汰的现状。
• since a greater proportion of the wave at shorter wavelengths is confined within the core, the shorter wavelengths “see” a higher RI than do longer wavelengths. Therefore shorter wavelengths tend to travel more slowly than longer ones.

浅谈多波混频的光谱学

浅谈多波混频的光谱学

浅谈多波混频的光谱学多波混频光谱学是在双光子共振非简并四波混频的基础上,最近提出的一种研究原子或分子高激发态和高角动量态的有效光谱学工具,和四波混频一样,该方法所要求的相位匹配条件较宽松,能够在很大的扫频范围(几百至几千cm-1)内实现,可以用来研究任意阶数的混频效应,因此具有更大的普遍性。

其优点如下:能够作用于距离极远的样品,所以它可被用于天文学;十分灵敏,通常只需非常少的量就可鉴别某种物质;通常是一种非破坏性的样品分析方法;能产生详细的空间和时间信息。

1 多波混频的原理图1为多波混频原理图,光束2…n沿同方向入射,光束n和光束n′有一个很小的夹角θ,光束1和光束n沿着相反的方向共线传播,此时,当满足相位匹配条件时,将得到几乎与光束n′相反方向传播的信号光Signal,即为多光子共振多波混频信号。

它也服从能量和动量守恒定律:2 多波混频光谱学的优点及应用多波混频是非线性光学效应的一种应用。

光在介质中的传播过程实际上是光与物质相互作用的过程,其特点是介质对光的响应呈非线性的关系,此时,光在介质中传播会产生新的频率,不同的频率的光波之间会产生耦合,独立传播原理和线性叠加原理不再成立。

激光器的诞生使非线性作为现代光学的一个重要分支迅速发展起来。

对非线性光学的研究具有很大的应用价值和长远的科学意义。

它不仅为我们提供了产生强相干光辐射和扩展波段的新手段,而且还能够提供一些实际可用的新方法和新技术;非线性光学的应用领域非常的广泛。

非线性光学在光信息技术、激光技术和纳米光子技术等领域均有重要应用,例如光调制器、光存储器、光纤放大器、光纤激光器、纳米光开关、激光脉冲压缩、激光选模、激光防护、纳米激光器、纳米传感器等。

原子的高激发态就是多波混频光谱学研究的重要领域之一。

高激发态原子主要存在于星球内部、宇宙空间、地球大气、高温等离子体及各种气体激光器内,已经成为了近些年原子分子研究的重点。

传统研究激发态常用荧光法,由于处于里德伯态的粒子发出的荧光太微弱所以此法不可行。

光调制指数

光调制指数

光调制指数及其优化方法光调制指数是一个描述光信号调制程度的参数,它反映了光信号的幅度变化与载波幅度的比值。

光调制指数是光通信系统中重要的性能指标之一,它影响着系统的信噪比、非线性失真和传输距离等。

本文将介绍光调制指数的定义、计算方法、测量方法和影响因素,以及如何优化光调制指数以提高系统性能。

光调制指数的定义光调制指数(Optical Modulation Index,OMI)是指光信号在调制过程中,最大幅度与最小幅度之差与最大幅度与最小幅度之和的比值,用公式表示为:OMI=P max−P min P max+P min其中,P max和P min分别表示光信号的最大和最小功率。

光调制指数是一个无量纲的参数,通常用百分比或分贝(dB)来表示。

例如,如果一个光信号的最大功率为10 mW,最小功率为1 mW,那么它的光调制指数为:OMI=10−110+1=0.45=45%或者OMI=10log1010−110+1=6.5dB从上式可以看出,光调制指数越大,表示光信号的幅度变化越大,也就是说,信息在光信号中的占比越高。

反之,如果光调制指数越小,表示光信号的幅度变化越小,也就是说,信息在光信号中的占比越低。

光调制指数的计算方法对于不同类型的光信号,有不同的计算方法。

下面分别介绍几种常见的光信号的计算方法。

直接强度调制(Direct Intensity Modulation,DIM)直接强度调制是一种将电信号直接转换为光强变化的调制方式,它是最简单也是最常用的一种光调制方式。

直接强度调制可以用一个激光器来实现,激光器的输出功率随着输入电流的变化而变化。

直接强度调制可以用于数字信号或模拟信号的传输。

对于数字信号,例如二进制数字信号(Binary Digital Signal),其取值只有0和1两种状态,分别对应于激光器输出功率的高电平和低电平。

因此,对于二进制数字信号的直接强度调制,其光调制指数可以直接由高电平和低电平对应的功率来计算:OMI=P H−P LP H+P L其中,P H和P L分别表示高电平和低电平对应的功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

++
++
++
正、负电荷中心重合,外场导致正、负电荷中心发生相
()
()()()
()()x
ω E ωχy y x ω E ωχy xy y xy ))))1010εε=⋅物理意义:y 方向的电场分量引起介质x 方向的极化。

一阶极化率为二阶张量,共有9项。

二阶非线性极化强度:
()
()()
()()()
()()()()()
()()()()()()()⎥
⎦⎤
⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−=⎥⎦
⎤⎢⎣⎡−==−=∑∑∑∑∑∑∑∑∑
∑=+=+=+s n s r
m r k j i n m n m ijk i k j n m n k m j n m ijk i i k
j n
m n k m j n m
ijk
i s E r E k j i i
E E i p P E E p n m n m n m )))))))ωωωωωχεωωωωωχεωεωωωωω
ωχεωωωωω
ωωω
ωω:,,,,,,,,,20,,20202,,202
光场具有方向、偏振、频率等特性,因此,决定了极化强度也与之对应。

光场的方向性决定:
z
y x k j i k E j E i E E z y x )
))))
),,,,;
=++=()
()()()
()⎪⎪⎩

⎪⎨⎧======∑∑∑∑∑∑l k j l k j j k l ijkl j k l ijkl l k j j k l ijkl i k j j k ijk k j j k ijk k j j k ijk i i E E E j E k E l E l k j i E E E P i E E j E k E k j i E E P ,,,,)
3(0)3(0,,)3(0)
3(,)2(0,)2(0,)2(0)2( ;::))))M ))))M t ))))))t χεχεχεχεχεχε
在非线性极化强度中就会有下面的形式:
()()()
()()()
()()()()()()()⎪⎪⎩

⎪⎨⎧−=−=∑∑=++=+ω
ωωωω
ωωωωωωωωωχωωωωωωχωq n m n m q n m q n m q n m n m n m n m E E E P E E P ,,33,22,,,,,方向频率
非线性极化率χ(r)(dielectric susceptibility)为(r +1)张量, 共有3r+1 个元素。

()
()()
()
{}
()()()
r i
j m j r
m m m m m m m r r E E E P
ωωωωωω
ωχ
ωωω...,...,,,2121
⎥⎦

⎢⎣⎡∑−=∑=M M t 振动频率为ω的r 阶非线性极化强度
因此,在讨论光学非线性问题时应该注意频率和偏振特性。

在实验中,频率和偏振都是可控制的参量,选择单一的频率、偏振及光束方向可使问题大大简化。

第八章四波混频
四波混频(FWM)也称为四波混频光学相位共轭。

四波混频过程是四个波在非线性光学介质中相互作用的过程。

当两束泵浦光和一束信号光入射到非线性介质内时,由于介质在强光的作用下会产生非线性极化,在一定的条件下,各束光产生的非线性极化间的耦合将产生第四束光---相位共轭光。

三阶非线性效应。

如果四束光频率相同,称为简并四波混频(Degenerate FWM);
如果四束光频率不同,称为非简并四波混频;或近简并四波混频。

如果光的频率等于或接近于介质的电子共振频率,则称为共振型四波混频;如果光的频率远离介质的电子共振频率,则称为非共振型四波混频。

四波混频为参量过程---光与介质相互作用后,介质仍回到初态,能量只在光场与光场之间转移。

•相共轭光
•用简并四波混频产生相共轭
•受激光子回波和简并四波混频
•动态光栅---空间栅和频率栅
•空间栅的形成和探测: 简并四波混频
•频率栅的形成和探测: 受激光子回波
•近简并四波混频---移动的光栅
•四波混频在光谱学中的应用
---用简并四波混频研究材料的非线性
---用近简并四波混频测量T
1
---用四波混频研究半导体中载流子的动力学
•用非相干光时间延迟四波混频研究超快速过程
E2(r,t)为E1(r,t)的背向相共轭波。

人们研究得较多的是背向相位共轭波,它的传播方向与原始波相反,而相位的空间分布却与原始波相同,利用这一特性原则上就有可能解决光束在经过无规则扰动介质后的波前畸变的自动补偿问题。

在介质中传播时波面发生了畸变,原来以空间调制形若E
1
,式携带的信息丧失或畸变。

这时,如果可以产生相共轭波E
2
的性质则它沿相反方向在畸变介质中传播,并重现未畸变的E
1。

(r,t)满足这个方程。

振幅为a*(r),沿-z传播的光E
2
E2在任何r 处都有与E1成复共轭的振幅
相共轭波能够“修复”畸变正是由于两个波间这种一一对应的关系
怎样产生相共轭波?
[]
3
4
1)()()
3(0)
3(e )(e )(⎭

⎫⎩⎨⎧+=∑=−−−m t i t i m m m r k *
m r k r E r E P
ωωχε其中,与E 4的相共轭波有关的项是
代入缓变包络近似后的Maxwell 方程
()
()
()()()()()()
()
()()()()()z k t i z k t i e
z E r E r E k k k k k P
e
z E r E r E k k k k k P
3
4
*
3213033213*
4213044213,,++=−=−+=−+==−=−+=−+=ωωχεωωωωχεωωωω耦合产生三阶非线性极化强度
d 解得电场具有正弦函数得形式
k和r是一对共轭变量,一个k的序列(其中至少有两个k)相干形成强度在空间上的周期性,在非线性介质中,将引起光学性质的空间周期性,产生空间栅。

两束或两束以上光相干,形成光场强度在空间上的周期性分布空间上周期性
分布的光强与
非线性介质相
互作用,使介
质产生空间上
的周期性分布
的光学性质
一束光通过光
学性质在空间
上的具有周期
性的区域,产
生衍射
光场强度周期性分布空间光栅衍射
()∑∑∫∫∞
=∞
−∞
=−−==
=0
)
()
()(d e
)()(d e )()('m m mT t i t
i mT t E mT F mT F E f E t E ω
ωωωωωωt 时到来的光脉冲通过这样的区域,将在
t'= t + mT
的时刻重现。

具有频率上周期性光学性质的介质形成频率栅。

f (ω)
E (t )
E'(t )
Fabry-Perot标准具就是Δ=πc/nd的频率栅,这里d是两块平行板间的距离,n是介质的折射率。

()∑∞
=−
=
)
(
)
(
'
m
mT
t
E
mT
F
t
E
可以用标准具对短脉冲的作用直观地理解。

设脉冲的持续时间小于2nd/c (按照测不准关系,频谱宽度大于πc/nd),由于脉冲持续时间小于光在腔内往复一次的时间,腔内多次反射的光脉冲之间不发生相互作用,输出是间隔2nd/c并随时间衰减的一串脉冲
空间栅的形成和探测: 简并四波混频
介质的光学性质在两束光干涉的区域内产生空间上的调制,人们很早就用这种方法通过照相术制备光栅。

这里,光化学反应使介质发生了永久性的变化,形成了永久性的光栅。

如果介质不发生这样的永久性变化,那么,光源关闭后,产生的光栅将会逐渐消失,这样的光栅称为动态光栅或瞬态光栅,可以用它对一束探测光的衍射来探测。

E b和E p干涉与非线性介质作用形成的光栅对k1的衍射也恰在-k
4
方向,由于这个光栅条纹间距较前一个小(在简并四波混频中θ 通常很小),激发的空间扩
散比较严重,衍射效率不如前者。

至于E
f 和E
b
干涉
与非线性介质作用形成的光栅,不满足E
p
衍射的相位匹配条件,因此对共轭波产生没有贡献。

相关文档
最新文档