2018-2019学年江苏省扬州市仪征市八年级(下)期中数学试卷(解析版)

合集下载

2018-2019学年八年级(下)期中数学试卷 解析版

2018-2019学年八年级(下)期中数学试卷  解析版

2018-2019学年江苏省八年级(下)期中数学试卷含解析一、选择题(每题3分,共18分)1.(3分)为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力情况,就这个问题来说,下面说法正确的是()A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是1002.(3分)下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列各式:其中分式共有()个.A.1B.2C.3D.44.(3分)如果与最简二次根式是同类二次根式,那么a的值是()A.﹣2B.﹣1C.1D.25.(3分)如果把分式中的x和y都扩大为原来的5倍,那么分式的值()A.扩大为原来的5倍B.扩大为原来的10倍C.不变D.缩小为原来的6.(3分)如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②④C.②③④D.①③④二、填空题(每空3分,共30分)7.(3分)某口袋中有红色、黄色、黑色的小球共50个,这些小球除颜色外都相同,通过多次试验后发现摸到红色球的频率稳定在20%,则袋中红色球是个.8.(3分)若分式的值为零,则x=.9.(3分)如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是.10.(3分)计算:1﹣=.11.(3分)若分式方程+1=有增根,则a的值是.12.(3分)已知△ABC的3条中位线分别为3cm、4cm、5 cm,则△ABC的周长为cm.13.(3分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小为.14.(3分)在△ABC中a,b,c为三角形的三边,则=.15.(3分)关于x的方程的解是大于1的数,则a的取值范围是.16.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点(包括点B和点O),但F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=5,则EF的取值范围是.三、解答题(共102分)17.(10分)计算:(1)×﹣(﹣1)0+|﹣3|(2)(3+﹣4)÷18.(10分)化简:(1)1﹣÷(2)﹣x+119.(10分)解方程:(1)﹣=0(2)﹣1=.20.(10分)先化简再求值:化简÷(﹣),并在0,﹣1,1,2四个数中,取一个合适的数作为m的值代入求值.21.(8分)吸烟有害健康.你知道吗,被动吸烟也大大危害着人类的健康.为此,联合国规定每年的5月31日为世界无烟日.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区展开了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成下列统计图:(1)求小明和同学们一共随机调查了多少人?(2)根据以上信息,请你把统计图补充完整;(3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?。

2018-2019学年苏科版八年级数学下册期中测试题及答案

2018-2019学年苏科版八年级数学下册期中测试题及答案

2018-2019学年八年级下期中数学试卷一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.下列等式成立的是()A.B.C.D.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个5.下列根式中,最简二次根式是()A.B.C.D.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.129.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是.12.已知分式无意义,则x;当x时,分式的值为零.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.14.若最简二次根式与是同类二次根式,则a=.15.的最简公分母是.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED 等于度.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A 向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2.(3)△ABC是否为直角三角形?答(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE 是平行四边形.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、水涨船高是必然事件,选项错误;B、守株待兔是随机事件,选项正确;C、水中捞月是不可能事件,选项错误;D、冬去春来是必然事件,选项错误.故选:B.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列等式成立的是( )A .B .C .D .【分析】根据分式的运算即可求出答案.【解答】解:(A )原式=,故A 错误;(C )是最简分式,故C 错误;(D )原式=,故D 错误;故选:B .【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.分式:①;②;③;④中,最简分式的个数有( )A .1个B .2个C .3个D .4个【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a ﹣b );③中有公约数4;故①和④是最简分式. 故选:B .【点评】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.下列根式中,最简二次根式是( )A .B .C .D .【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A 、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选:B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a﹣1)=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某中学九年级500名学生的体重情况,故总体是某中学九年级500名学生的体重情况.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.12【分析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.【解答】解:∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选:B.【点评】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是x≥﹣1.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.14.若最简二次根式与是同类二次根式,则a=4.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣5=a+3,解得a=4.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.的最简公分母是12x3yz.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED 等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A 向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.【分析】(1)先算绝对值,化简二次根式,再合并同类项即可求解;(2)先分母有理化,根据平方差公式计算,再合并同类项即可求解;(3)先因式分解,将除法变为乘法,再约分计算即可求解;(4)先通分,再约分计算即可求解.【解答】解:(1)=2﹣3++3=3;(2)=﹣1+4﹣2=+1;(3)(xy﹣x2)÷=﹣x(x﹣y)×=﹣xy;(4)﹣a﹣1=﹣==.【点评】考查了二次根式的混合运算,分式的混合运算,关键是熟练掌握计算法则正确进行计算.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1(2,﹣4).(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2(﹣2,4).(3)△ABC是否为直角三角形?答不是(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.【分析】(1)依据△A1B1C1与△ABC关于x轴对称,即可得到△A1B1C1,并写出点A1的坐标;(2)依据△A1B1C1绕原点O旋转180°后得到的△A2B2C2进行画图并写出点A2的坐标;(3)利用勾股定理的逆定理进行计算即可;=×BC×AD,即可得到AD的长.(4)利用格点图,画出BC边上的高AD,依据S△ABC【解答】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标(2,﹣4);(2)如图所示,△A2B2C2,点A2的坐标(﹣2,4);(3)∵AB2+AC2<BC2,∴△ABC不是直角三角形;(4)如图所示,BC边上的高AD即为所求,=×BC×AD,∵S△ABC∴(1+2)×4﹣×1×2﹣×1×3=××AD,解得AD=,故答案为:(2,﹣4);(﹣2,4);不是;.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【分析】(1)根据A级人数除以A级所占的百分比,可得抽测的总人数;(2)根据抽测总人数减去A级、B级人数,可得C级人数,根据C级人数,可得答案;(3)根据圆周角乘以C级所占的百分比,可得答案;(4)根据学校总人数乘以A级与B级所占百分比的和,可得答案.【解答】解:(1)此次抽样调查中,共调查了50÷25%=200名学生,故答案为:200;(2)C级人数为200﹣50﹣120=30(人),条形统计图;(3)C级所占圆心角度数:360°×(1﹣25%﹣60%)=360°×15%=54°(4)达标人数约有8000×(25%+60%)=6800(人).【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE 是平行四边形.【分析】利用平行四边形的性质,可先证得四边形BEDF为平行四边形,则可证得BE=DF,且BE∥DF,结合条件可求得ME=NF,则可证得结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC且AD∥BC,∵AE=CF,∴DE=BF,且DE∥BF,∴四边形BEDF为平行四边形,∴BE=DF,∵M、N分别是BE、DF的中点,∴ME=NF,且ME∥NF,∴四边形MFNE是平行四边形.【点评】本题主要考查平行四边形的性质和判定,熟练掌握平行四边形的性质和判定方法是解题的关键.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.【分析】由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;【点评】此题考查了平行四边形的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质,是解决问题的关键.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.【解答】解:(1)∵BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S=××=;△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,该情况不符合题意.②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).【点评】本题主要考查一次函数的综合应用,涉及待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得B、D坐标是解题的关键,在(2)中联立两直线求得H点的横坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较基础,难度适中.。

扬州八年级数学下学期期中考试试题

扬州八年级数学下学期期中考试试题

2019扬州八年级数学下学期期中考试试题一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卷相应的位置上)1、下列计算错误的是()A. B. C. D.2、代数式- 中是分式的有()A.1个B.2个C.3个D.4个3、有两个事件,事件A:367人中至少有两人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件4、如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连结AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5、下列抽样调查较科学的是()①为了知道烤箱中所烤的面包是否熟了,取出一小块品尝;②为了了解初中三个年级学生的平均身高,向初三年级一个班的学生做调查;③为了了解北京市2019年的平均气温,上网查询了2019年7月份31天的气温情况;④为了了解初中三个年级学生的平均体重,向初一,初二,初三年级各一个班的学生做调查.A.①②B.①③ C.①④D.③④6、顺次连结矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7、为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.55% B.60% C.65% D.70%8、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF 与GB的大小关系是()A.CF>GB B.GB=CF C.CF<GB D.无法确定二、填空题(本大题共10小题,每小题3分,共30分)9、把分式的分子和分母中各项系数都化为整数为 .10、若关于x的方程axx-2=4x-2+1无解,则a的值是__________.11、如果分式的值是0,则x的值应为 .12、如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是。

2018-2019学年苏科版八年级下期中数学试卷(含答案解析)

2018-2019学年苏科版八年级下期中数学试卷(含答案解析)

2018-2019学年八年级下期中数学试卷一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.下列等式成立的是()A.B.C.D.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个5.下列根式中,最简二次根式是()A.B.C.D.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.129.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是.12.已知分式无意义,则x;当x时,分式的值为零.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.14.若最简二次根式与是同类二次根式,则a=.15.的最简公分母是.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2.(3)△ABC是否为直角三角形?答(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、水涨船高是必然事件,选项错误;B、守株待兔是随机事件,选项正确;C、水中捞月是不可能事件,选项错误;D、冬去春来是必然事件,选项错误.故选:B.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列等式成立的是()A.B.C.D.【分析】根据分式的运算即可求出答案.【解答】解:(A)原式=,故A错误;(C)是最简分式,故C错误;(D)原式=,故D错误;故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a﹣b);③中有公约数4;故①和④是最简分式.故选:B.【点评】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.下列根式中,最简二次根式是()A.B.C.D.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选:B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a﹣1)=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某中学九年级500名学生的体重情况,故总体是某中学九年级500名学生的体重情况.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.12【分析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.【解答】解:∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选:B.【点评】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是x≥﹣1.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.14.若最简二次根式与是同类二次根式,则a=4.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣5=a+3,解得a=4.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.的最简公分母是12x3yz.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.【分析】(1)先算绝对值,化简二次根式,再合并同类项即可求解;(2)先分母有理化,根据平方差公式计算,再合并同类项即可求解;(3)先因式分解,将除法变为乘法,再约分计算即可求解;(4)先通分,再约分计算即可求解.【解答】解:(1)=2﹣3++3=3;(2)=﹣1+4﹣2=+1;(3)(xy﹣x2)÷=﹣x(x﹣y)×=﹣xy;(4)﹣a﹣1=﹣==.【点评】考查了二次根式的混合运算,分式的混合运算,关键是熟练掌握计算法则正确进行计算.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1(2,﹣4).(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2(﹣2,4).(3)△ABC是否为直角三角形?答不是(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.【分析】(1)依据△A1B1C1与△ABC关于x轴对称,即可得到△A1B1C1,并写出点A1的坐标;(2)依据△A1B1C1绕原点O旋转180°后得到的△A2B2C2进行画图并写出点A2的坐标;(3)利用勾股定理的逆定理进行计算即可;(4)利用格点图,画出BC边上的高AD,依据S=×BC×AD,即可得到AD△ABC的长.【解答】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标(2,﹣4);(2)如图所示,△A2B2C2,点A2的坐标(﹣2,4);(3)∵AB2+AC2<BC2,∴△ABC不是直角三角形;(4)如图所示,BC边上的高AD即为所求,=×BC×AD,∵S△ABC∴(1+2)×4﹣×1×2﹣×1×3=××AD,解得AD=,故答案为:(2,﹣4);(﹣2,4);不是;.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【分析】(1)根据A级人数除以A级所占的百分比,可得抽测的总人数;(2)根据抽测总人数减去A级、B级人数,可得C级人数,根据C级人数,可得答案;(3)根据圆周角乘以C级所占的百分比,可得答案;(4)根据学校总人数乘以A级与B级所占百分比的和,可得答案.【解答】解:(1)此次抽样调查中,共调查了50÷25%=200名学生,故答案为:200;(2)C级人数为200﹣50﹣120=30(人),条形统计图;(3)C级所占圆心角度数:360°×(1﹣25%﹣60%)=360°×15%=54°(4)达标人数约有8000×(25%+60%)=6800(人).【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.【分析】利用平行四边形的性质,可先证得四边形BEDF为平行四边形,则可证得BE=DF,且BE∥DF,结合条件可求得ME=NF,则可证得结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC且AD∥BC,∵AE=CF,∴DE=BF,且DE∥BF,∴四边形BEDF为平行四边形,∴BE=DF,∵M、N分别是BE、DF的中点,∴ME=NF,且ME∥NF,∴四边形MFNE是平行四边形.【点评】本题主要考查平行四边形的性质和判定,熟练掌握平行四边形的性质和判定方法是解题的关键.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.求证:BE=CD.【分析】由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;【点评】此题考查了平行四边形的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质,是解决问题的关键.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H 点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF =90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.【解答】解:(1)∵BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,=××=;∴S△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,该情况不符合题意.②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).【点评】本题主要考查一次函数的综合应用,涉及待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得B、D坐标是解题的关键,在(2)中联立两直线求得H点的横坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较基础,难度适中.。

江苏省仪征市2018-2019学年八年级数学下学期期中试题

江苏省仪征市2018-2019学年八年级数学下学期期中试题

江苏省仪征市2018-2019学年八年级数学下学期期中试题(考试时间120分钟,满分150分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各式a5,n2m,12p,ab+1,a+b3中分式有(▲)A.2个 B.3个 C.4个 D.5个2. 下列二次根式中属于最简二次根式的是(▲)3. 下列调查中,适合用普查的是(▲)A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况4. 下列事件是确定事件的是(▲)A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻5. 如果把分式nmn-3中的m和n都扩大3倍,那么分式的值(▲)A.不变 B.扩大3倍 C.缩小3倍D.扩大9倍6.如图,在ABC∆中,BF平分ABC∠,AF BF⊥于点F,D为AB的中点,连接DF 延长交AC于点E.若10AB=,16BC=,则线段EF的长为(▲)A. 2B. 3C. 4D. 57. 如图,在菱形纸片ABCD中,60A∠=︒,折叠菱形纸片ABCD,使点C落在DP(P为FEDCBAB′(第6题)(第7题)(第8题)AB 中点)所在直线上的点'C 处,得到经过点D 的折痕DE ,则DEC ∠的大小为(▲ )A.78°B.75︒C.06︒D.45︒8. 如图,在□ABCD 中,点E 为AB 的中点,F 为BC 上任意一点,把△BEF 沿直线EF 翻折,点B 的对应点B ′落在对角线AC 上,则与∠FEB 一定相等的角(不含∠FEB )有( ▲ )A .2个B .3个C .4个D .5个二、填空题(本大题共10小题,每小题3分,共30分)9. 当x= ▲ 时,分式1x -12-x 的值是0.10. 在函数12y --=x x 中,自变量x 的取值范围是 ▲ .11. 分式2215,36x xy 的最简公分母是 ▲ .12. 若m 是2的小数部分,则12m 2++m 的值是 ▲ .13. 若最简二次根式23a +与24a -是同类二次根式,则a= ▲ .14. 在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0. 25附近,则口袋中白球可能有 ▲ 个.15. 一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为 ▲ .16. 已知菱形的周长为40 cm ,一条对角线长为16 cm ,则此菱形的面积是 ▲ cm 2. 17. 已知1ab =, t =bb a -+-11a , 则8201t = ▲ . 18. 如图,在矩形ABCD 中,AD=6,点P 是直线AD上一动点,若满足△PBC 是等腰三角形的点P 有且 只有3个,则AB 的长为 ▲ .DBAC(第18题)三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.( 满分8分)计算:(11 (2)y x yx +-+x 220. ( 满分8分)若x ,y 为实数,且y <x -3+3-x +2,试化简:96222+---+y y y x 。

2018-2019学年苏科版数学八年级下册期中试卷含答案

2018-2019学年苏科版数学八年级下册期中试卷含答案

2018-2019学年八年级下期中数学试卷一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥15.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°7.下列运算正确的是()A.=B.=C.=x+y D.=8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣19.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25二.填空题(每空2分,共18分)11.当x=时,分式无意义;当x=时,分式的值为0.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.17.已知xy>0,则化简代数式x的结果是.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+ 20.(8分)计算:(1)﹣(2)﹣(a+1)21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名市民,扇形统计图中m=.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标;并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(,),B为(,);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个【分析】根据分式的定义对各式进行逐一判断即可.【解答】解:在、、的分母中含有字母,属于分式,故选:B.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了轴对称图形与中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥1【分析】根据二次根式的被开方数为非负数可得出关于x的一次不等式,解出即可得出x的范围.【解答】解:∵二次根式有意义,∴可得x﹣1≥0,解得x≥1.故选:D.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题关键是掌握二次根式有意义的条件:二次根式的被开方数为非负数.5.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选:D.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别.6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点评】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.7.下列运算正确的是()A.=B.=C.=x+y D.=【分析】根据分式的基本性质即分子分母同时扩大或缩小相同的倍数,分式的值不变,分别对每一项进行分析,即可得出答案.【解答】解:A、=﹣,故本选项错误;B、,不能约分,故本选项错误;C、,不能约分,故本选项错误;D、==,故本选项正确;故选:D.【点评】此题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣1【分析】根据=|a|=,进而化简求出即可.【解答】解:∵2<x<3,∴2﹣x<0,3﹣x>0,∴+=x﹣2+3﹣x=1.故选:A.【点评】此题主要考查了二次根式的化简求值,正确记忆公式是解题关键.9.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断.【解答】解:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②若=﹣1﹣2a,则a≤﹣,错误;③=,=3,是同类二次根式,正确;④分式是最简分式,正确;故选:C.【点评】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25【分析】正方形ABCD的面积为边长的平方,所以只要能求边长的平方即可;作辅助线构建全等三角形,证明△ABN≌△CDG(AAS),则AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,利用勾股定理求出AB的平方,可得结论.【解答】解:过A点作AM⊥l3分别交l2、l3于点N、M,过C点作CH⊥l2分别交l2、l3于点H、G,∵四边形ABCD是正方形,l1∥l2∥l3∥l4,∴AB=CD,∠ABN+∠HBC=90°,∵CH⊥l2,∴∠BCH+∠HBC=90°,∴∠BCH=∠ABN,∵∠BCH=∠CDG,∴∠ABN=∠CDG,∵∠ANB=∠CGD=90°,在△ABN和△CDG中,,∴△ABN≌△CDG(AAS),∴AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,在Rt△ABN中,由勾股定理得:AB2=AN2+BN2=22+32=13,则正方形ABCD的面积=AB2=13;故选:C.【点评】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理、正方形的面积,同时利用了同角的余角相等证明两角相等,为全等创造了条件,此方法在直角三角形经常运用,要熟练掌握.二.填空题(每空2分,共18分)11.当x=1时,分式无意义;当x=﹣3时,分式的值为0.【分析】依据“分式的分母为零时分式无意义”和“当分式的分子为零且分母不为零时分式的值为0”分别求出x的值即可.【解答】解:当x﹣1=0,即x=1时分式无意义;当时,分式的值为0,解得x=﹣3;故填:1;﹣3.【点评】本题主要考查分式有意义及分式的值为零的条件,注意分式的值为零需要满足分式有意义.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到红球的可能性最大.【分析】先求出总球的个数,再分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最大.【解答】解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个,∴摸到红球的概率是=;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.【点评】本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为0.8(精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【分析】AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠2,即当x=2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.已知xy>0,则化简代数式x的结果是﹣.【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【解答】解:∵xy>0,且有意义,∴x<0,y<0,∴x=x•=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为4.【分析】根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.【解答】解:如图,连接MN,∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°﹣120°=60°,∵BC=4,∴BF=2,EF=2,在Rt△EFC中,∵EF2+FC2=EC2,EC=4.故答案为:4【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质,轴对称最短路线问题和旋转的问题.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+【分析】①原式利用平方差公式和乘法分配律计算,再计算加减可得;②先计算乘除,再合并同类二次根式即可得.【解答】解:①原式=32﹣()2+2﹣2=9﹣7+2﹣2=2;②原式=﹣+2=﹣+2=4+.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.(8分)计算:(1)﹣(2)﹣(a+1)【分析】(1)利用同分母分式加减运算法则计算,再约分即可得;(2)先通分,再根据加减法则计算可得.【解答】解:(1)原式===;(2)原式=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算顺序和运算法则.21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了50名市民,扇形统计图中m=32.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是43.2°.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.【分析】(1)根据A类型的人数和所占的百分比求出随机调查的总人数,用C类型的人数除以总人数即可求出m的值;(2)用总人数乘以B类型的人数所占的百分比求出B类型的人数,从而补全统计图;(3)用360°乘以“D类型”所占的百分比即可;(4)用“不了解”的人数除以总人数即可得出“不了解”的概率.【解答】解:(1)本次问卷共随机调查的市民数是:8÷16%=50(人),m%=×100%=32%,故扇形统计图中m=32;故答案为:50,32;(2)根据题意得:50×40%=20(人),补全条形统计图如图所示:(3)扇形统计图中“D类型”所对应的圆心角的度数是:360°×=43.2°;故答案为:43.2°;(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是=;故答案为:.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标(3,﹣4);并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(1,﹣3).【分析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用平移规律得出△ABC平移后的位置;(3)利用所画三角形连接对应点得出对称中心.【解答】解:(1)如图所示:△A1B1C1即为所求,A1(3,﹣4);故答案为:(3,﹣4);(2)如图所示:△A2B2C2即为所求;(3)如图所示:中心对称点O′的坐标为:(1,﹣3).故答案为:(1,﹣3).【点评】此题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC交于点N,如图1(2),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.方法一:证明:将△ADE绕点A顺时针旋转90°,得到新△ABF,如图1(3)∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM方法二:证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(4)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【分析】(1)由点C的坐标利用待定系数法即可求出直线l1的解析式,再分别令直线l1的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线l2的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;(3)分AB为边和AB为对角线两种情况讨论.当AB为边时,根据菱形的性质找出点P的坐标,结合A、B的坐标即可得出点Q的坐标;当AB为对角线时,根据三角形相似找出点P的坐标,再根据菱形对角线互相平分即可得出点Q的坐标.综上即可得出结论.【解答】解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,∴A(8,0).故答案为:8;0;0;4.(2)∵点C(4,2)是直线l2:y=kx﹣6上的点,∴2=4k﹣6,解得:k=2,∴直线l2为y=2x﹣6.∵点E的横坐标为m(0≤m≤4),∴E(m,﹣m+4),F(m,2m﹣6),∴EF=﹣m+4﹣(2m﹣6)=10﹣m.∵四边形OBEF是平行四边形,∴BO=EF,即4=10﹣m,解得:m=.故当m=时,四边形OBEF是平行四边形.(3)假设存在.以P、Q、A、B为顶点的菱形分两种情况:①以AB为边,如图1所示.∵点A(8,0),B(0,4),∴AB=4.∵以P、Q、A、B为顶点的四边形为菱形,∴AP=AB或BP=BA.当AP=AB时,点P(8﹣4,0)或(8+4,0);当BP=BA时,点P(﹣8,0).当P(8﹣4,0)时,Q(8﹣4﹣8,0+4),即(﹣4,4);当P(8+4,0)时,Q(8+4﹣8,0+4),即(4,4);当P(﹣8,0)时,Q(﹣8+8﹣0,0+0﹣4),即(0,﹣4).②以AB为对角线,对角线的交点为M,如图2所示.∵点A(8,0),B(0,4),∴M(4,2),AM=AB=2.∵PM⊥AB,∴∠PMA=∠BOA=90°,∴△AMP∽△AOB,∴,∴AP=5,∴点P(8﹣5,0),即(3,0).∵以P、Q、A、B为顶点的四边形为菱形,∴点Q(8+0﹣3,0+4﹣0),即(5,4).综上可知:若点P为x轴上一点,则在平面直角坐标系中存在一点Q,使得P、Q、A、B四个点能构成一个菱形,此时Q点坐标为(﹣4,4)、(4,4)、(0,﹣4)或(5,4).【点评】本题考查了待定系数法求函数解析式、平行四边形的性质以及菱形的性质,解题的关键是:(1)利用待定系数法求出直线解析式;(2)找出关于m的一元一次方程;(3)分AB为边或对角线考虑.本题属于中档题,难度不大,解决该题型题目时,充分利用平行四边形和菱形的性质是解题的关键.。

2018-2019学年度第二学期八年级数学期中考试题及参考答案

2018-2019学年度第二学期八年级数学期中考试题及参考答案

学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。

苏科版2018-2019学年度第二学期八年级期中考试数学试题3

苏科版2018-2019学年度第二学期八年级期中考试数学试题3

2018-2019学年度第二学期期中考试八年级数学试题(请考生在答题卡上作答)温馨提示:1.本试卷共6页,27题.全卷满分150分,考试时间为100分钟.2.请在答题卡规定的区域内作答,在其它位置作答一律无效.3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.下列图形是中心对称,但不是轴对称图形的是2.分式yx261和xyz21最简公分母是A.yzx26 B.xyz6 C.yzx212 D.xyz123.若分式x2-1x-1的值为零,则x的值为A.0 B.1 C.-1 D.±14.下列事件是必然事件的是A.小红经过十字路口时,遇到红灯B.打开数学课本时刚好翻到第60页C.火车开到月球上D.在十三名中国学生中,必有属相A.B.C.D.相同的5.我县三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是A.折线统计图B. 扇形统计图C.条形统计图D.频数分布直方图6.菱形不具备的性质是A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.如图所示的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字.下列说法正确的是A.如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形B.只要指针连续转六次,一定会有一次停在6号扇形C.指针停在奇数号扇形与停在偶数号扇形的可能性大小相等D.只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大8.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结论:①AE =BF ;12 34 56第7题图ABCDEF 第8题图O 第14题图②AE ⊥BF ;③OB =OE ;④S △AOB =S 四边形DEOF 中,正确的有A .1个B .2个C .3个D .4个 二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若分式12-x 有意义,则x 应满足的条件是 ▲ . 10.计算111---x x x 的结果是 ▲ . 11.为了了解某校八年级420名学生的视力情况,从中抽查60人的视力,在这个问题中个体是 ▲ .12.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是 ▲ .13.一只不透明的袋子里装有3个红球、4个黄球和5个白球,这些球除颜色外都相同,从中任意摸出1个球,则摸出 ▲ 球的可能性最小. 14.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点的可能性大小相同),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是 ▲ m 2.15.如图,在□ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于 ▲ .16.如图所示,将一个含30°角的直角三角板ABC 绕点A 顺时针旋转一定角度(小于360º),使得点B ,A ,C′在同一条直线上,则三角板ABC 旋转的角度是 ▲ º.17.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 ▲ cm. 18.如图,P 是等边三角形ABC 内一点,将线段AP 绕 点A 顺时针旋转60°得到线段AP ',连接BP '.若P A =3,PB =4,PC =5,则四边形APBP '的面积 为 ▲ .三、解答题(本题共9小题,共96分.解答时写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)约分:(1)xyz z xy 422; (2)422-+x yxy .20.(本题满分10分)计算: (1)34312+--+-a a a a ; (2)3121+-+x x .21.(本题满分9分)如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.A BCDEF第15题图30º第16题图ACC 'B ' 第17题图A BCEO 第18题图AB CP'(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形;(3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.22.(本题满分12分)某地区为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是 ▲ ;(2)在扇形统计图中,“主动质疑”对应的圆心角为 ▲ 度; (3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在初中数学课堂中能“独立思考”的学生约有多少人?A BC图1A BC图2ABC图30 250人数 200 150 100 50主动 质疑 独立 思考 专注 听讲 题目84224 168 40% 主动质疑独立 思考专注 听讲讲解 题目23.(本题满分10分)下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n ) 50 100 150 200 250 300 500投中次数(m ) 28 60 78 104 123 153 252投中频率(nm) 0.56 0.60 0.520.520.49▲ ▲(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是 ▲ ;(精确到0.1) (3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?24.(本题满分9分)如图,点E 、F 分别是□ABCD 的边AB 、CD 上的点,且BE =DF .求证:四边形AECF 是平行四边形. .25.(本题满分12分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于点E .(1)求证:△AFE ≌△CDE .(2)若AB =3,BC =6,求△AEC 的面积.AEFA BCD E F第24题图26.(本题满分12分)将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .其中点B 落在点E 处,点C 落在点F 处,点D 落在点G 处. (1)如图1,当点E 在BD 上时.求证:EF 平分∠DEG ;(2)在(1)的条件下,如图2,分别延长ED 、GF ,相交于点H ,求证:DH = BE ;(3)当α= ▲ 时,GC=GB .(直接填空,不必说理)27.(本题满分14分)如图1,已知正方形ABCD ,点E 是边BA 边上一动点(不与点A 、B 重合),连接CE .将△CBE 沿着BA 方向平移,使得BC 边与AD 边重合,得到△DAF .(1)四边形CEFD 能否是一个菱形?说明理由;ABCDEF图1GABCDEF图2GHABC D备用图CD图1(2)在图1的基础上,连接AC,过点E作EG⊥AC于点G,如图2.①若已知∠BEC=70º,求∠CEG的度数;②如图3,连接GD、GF.求证:GD=GF;③若△CGD为等腰三角形,求∠CEG的度数.ABC DE F图2GABC DE F图3G。

2018至2019学年度第二学期八年级期中考试数学试卷

2018至2019学年度第二学期八年级期中考试数学试卷

2018~2019学年度第二学期期中检测八年级数学试题(全卷共140分,考试时间90分钟)一、选择题(本大题有8小题,每小题3分,共24分)1. 下列电视台的台标,是中心对称图形的是(▲)A B C D2. 下列调查中,适合采用普查方式的是(▲) A. 调查某校八(1)班学生校服的尺码 B. 调查某电视连续剧在全国的收视率 C. 调查一批炮弹的杀伤半径D. 调查长江中现有鱼的种类3. 为了了解某市50000名学生参加初中毕业考试数学成绩,从中抽取了1000名考生的数学成绩进行统计.下列说法错误的是(▲) A. 50000 名学生的数学成绩的全体是总体B. 每个考生是个体C. 从中抽取的1000名考生的数学成绩是总体的一个样本D. 样本容量是10004. 下列选项中,能够显示部分在总体中所占百分比的统计图是(▲)A.扇形统计图B.条形统计图C.折线统计图D.频数分布直方图5. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是(▲) A. 摸到红球是必然事件B. 摸到白球是不可能事件C. 摸到白球与摸到红球的可能性相等D. 摸到红球比摸到白球的可能性大6. 下列事件:①东边日出西边雨②抛出的篮球会下落;③没有水分,水稻种子发芽:④367人中至少有2人的生日相同.其中确定事件有(▲) A. 1个B. 2个C. 3个D. 4个7. 如图,矩形ABCD 的对角线AC= 8cm ,∠AOD= 120°,则AB 的长为(▲) A. 2cmB. 4cmC.3cm D. 32cm8. 将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1, A 2, ... An 分别是正方形对角线的交点,则n 个正方形重叠形成的阴影部分面积的和为(▲) A.41cm 2B.41 n cm 2C.4n cm 2 D. n)41(cm 2ODABC二、填空题(本大题共有8小题,每小题4分,共32分)9. 如果分式32-x 有意义, 则x 的值为 . 10.若32=b a ,则a b a +的值为 .11.“平行四边形的对角线互相平分”是 事件. (填“必然”“不可能” 或“随机”)12.在学校“传统文化”考核中,某个班50名学生中有40人达到优秀。

江苏省扬州市八校联考2018-2019学年第二学期八年级数学期中考试 解析版

江苏省扬州市八校联考2018-2019学年第二学期八年级数学期中考试  解析版

2018-2019学年江苏省扬州市八校联考八年级(下)期中数学试卷一、选择题(每题3分,共24分)1.(3分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.2.(3分)下列各式属于分式的是()A.B.C.D.3.(3分)完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.对北斗导航卫星上的零部件进行检查D.考察一批炮弹的杀伤半径.4.(3分)“投掷一枚硬币,正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件5.(3分)今年某市有近9000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.9000名考生是总体C.这1000名考生是总体的一个样本D.1000名学生是样本容量6.(3分)若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.7.(3分)如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关8.(3分)如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)9.(3分)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是.10.(3分)要使分式有意义,则x的取值范围是.11.(3分)分式,,的最简公分母为.12.(3分)约分:=.13.(3分)已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8,则第三组的频率为.14.(3分)若分式的值为0,则x的值是.15.(3分)如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为cm.16.(3分)如图,点O是菱形ABCD两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为8和10时,则阴影部分的面积为.17.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n个菱形的边长是.18.(3分)如图,正方形OABC在平面直角坐标系中,点B的坐标是(1,7),则点A 的坐标为.三、解答题(共96分)19.(8分)先化简,再求值,其中x=﹣2,y=2.20.(8分)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?21.(8分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为.22.(8分)期中考试临近,某校初二年级教师对复习课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有8000名初二学生,那么在复习课中,“独立思考”的学生约有多少人?23.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?24.(10分)如图,四边形ABCD是平行四边形,E,F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF.(2)求证:四边形EBFD是平行四边形.25.(10分)如图,折叠矩形ABCD,使点C重合于点A(点D重合于点G),折痕为EF 交对角线AC于O.(1)判断四边形AECF的形状,并说明理由;(2)若AB=4,BC=8,求四边形AECF的面积.26.(10分)如图,四边形ABCD中,∠ABC=90°,∠CAD=2∠CAB=45°,E、F分别是CD、CA的中点,AC=AD=8,求BE的长.27.(12分)平面直角坐标系xOy中,对于点P(x,y)和Q(﹣x,y′),给出如下定义:y′=,称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(﹣1,2),点(﹣1,2)的“可控变点”为点(1,﹣2)根据定义,解答下列问题;(1)点(3,4)的“可控变点”为点.(2)点P1的“可控变点”为点P2,点P2的“可控变点”为点P3,点P3的“可控变点”为点P4,…,以此类推.若点P2018的坐标为(3,a),则点P1的坐标为.(3)若点N(a,3)是函数y=﹣x+4图象上点M的“可控变点”,求点M的坐标.28.(12分)如图,正方形ABCO的边OB、OA分别在x、y轴上,点C坐标为(8,8),将正方形ABCO绕点A逆时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段BC于点Q,ED的延长线交线段OB于点P,连接AP、AQ.(1)求证:△ACQ≌△ADQ;(2)求∠PAQ的度数,并判断线段OP、PQ、CQ之间的数量关系,并说明理由;(3)连接BE、EC、CD、DB得到四边形BECD,在旋转过程中,四边形BECD能否是矩形?如果能,请求出点P的坐标,如果不能,请说明理由.2018-2019学年江苏省扬州市八校联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列各式属于分式的是()A.B.C.D.【分析】根据分式的定义进行解答即可,即分母中含有字母的式子叫分式.【解答】解:A、是分数,它不是分式,故本选项不正确;B、的分母中含有字母a,因此它是分式.故本选项正确;C、π是常数,所以不是分式.故本选项不正确;D、中分母不含有字母,因此它们是整式,而不是分式.故本选项不正确;故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有字母的式子即为分式.3.(3分)完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.对北斗导航卫星上的零部件进行检查D.考察一批炮弹的杀伤半径.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、人数不多,容易调查,宜采用全面调查;B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合全面调查;C、对北斗导航卫星上的零部件进行检查,因为调查的对象比较重要,应采用全面调查;D、考察一批炮弹的杀伤半径适合抽样调查;故选:D.【点评】本题主要考查了全面调查和抽样调查,解题时根据调查的对象的范围的大小作出判断,当范围较小时常常采用全面调查.4.(3分)“投掷一枚硬币,正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件【分析】根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件即可得出答案.【解答】解:抛一枚硬币,可能正面朝上,也可能反面朝上,∴“抛一枚硬币,正面朝上”这一事件是随机事件.故选:B.【点评】本题主要考查了必然事件、随机事件、不可能事件的概念,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)今年某市有近9000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.9000名考生是总体C .这1000名考生是总体的一个样本D .1000名学生是样本容量【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A 、每位考生的数学成绩是个体,此选项正确;B 、9000名考生的数学成绩是总体,此选项错误;C 、这1000名考生的数学成绩是总体的一个样本,此选项错误;D 、1000是样本容量,此选项错误;故选:A .【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.(3分)若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .B .C .D .【分析】根据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、==;B 、==;C 、;D 、==.故A 正确.故选:A .【点评】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.7.(3分)如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选:C.【点评】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.8.(3分)如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个【分析】连结CE,根据菱形的性质和全等三角形的判定可得△ABE≌△CBE,根据全等三角形的性质可得AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,可得∠ECF =∠EFC,根据等角对等边可得CE=EF,从而得到AE=EF,在Rt△ABO中,根据含30°的直角三角形的性质得到AO=2,可得2≤AE≤4,从而得到EF的长的整数值可能是2,3,4.【解答】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.【点评】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明△ABE≌△CBE.二、填空题(每题3分,共30分)9.(3分)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是100.【分析】找到样本,根据样本容量的定义解答.【解答】解:样本是在全校范围内随机抽取的100名学生的运动服尺码,故样本容量为100.故答案为:100.【点评】样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.10.(3分)要使分式有意义,则x的取值范围是x≠1.【分析】根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.11.(3分)分式,,的最简公分母为10xy2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,分母分别是2x、2y2、5xy,故最简公分母是10xy2;故答案是:10xy2.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.12.(3分)约分:=.【分析】先找出分子与分母的最大公因数或式,再约去最大公因数或式,从而达到约分的目的.【解答】解:原式==.故答案为.【点评】本题考查了分式的约分,解决此题的关键是找出分子与分母的最大公因数或式.13.(3分)已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8,则第三组的频率为.【分析】根据频数的和等于样本数,可得第三组的频数,根据频率公式,可得答案.【解答】解:第三组的频数为40﹣5﹣12﹣8=15,第三组的频率为=,故答案为:.【点评】本题是对频率、频数灵活运用的综合考查,注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.14.(3分)若分式的值为0,则x的值是﹣5.【分析】直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣25=0,|x﹣5|≠0,解得:x=﹣5.故答案为:﹣5.【点评】此题主要考查了分式的值为零,正确把握定义是解题关键.15.(3分)如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为10cm.【分析】利用线段垂直平分线的性质即可求出BE=DE,得出△ABE的周长=AB+AE+BE =AB+AD.【解答】解:∵AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,△ABE的周长=AB+AE+BE=AB+AD=×20=10(cm),故答案为:10.【点评】本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长的和.16.(3分)如图,点O是菱形ABCD两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为8和10时,则阴影部分的面积为20.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为8和10,∴菱形的面积=×10×8=40,∵O是菱形两条对角线的交点,∴阴影部分的面积=×40=20.故答案为:20.【点评】本题考查了菱形的性质以及中心对称的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.17.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.18.(3分)如图,正方形OABC在平面直角坐标系中,点B的坐标是(1,7),则点A 的坐标为(4,3).【分析】作AD⊥x轴于D,AE⊥y轴于E,BF⊥AE于F,证明△BAF≌△OAD,根据全等三角形的性质得到BF=OD,AF=AD,根据题意列式计算即可.【解答】解:作AD⊥x轴于D,AE⊥y轴于E,BF⊥AE于F,则四边形EODA是矩形,∴∠EAD=90°,又∠BAO=90°,∴∠BAF=∠OAD,在△BAF和△OAD中,∴△BAF≌△OAD,∴BF=OD,AF=AD,∵点B的坐标是(1,7),∴,解得,OD=4,AD=3,∴点A的坐标为(4,3).【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.三、解答题(共96分)19.(8分)先化简,再求值,其中x=﹣2,y=2.【分析】先化简,然后代入x、y求值即可.【解答】解:原式=﹣=﹣,当x=﹣2,y=2时,原式==1【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.(8分)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?【分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握平行四边形的对角线互相平分,属于中考常考题型.21.(8分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为(4,1).【分析】(1)让三角形的各顶点都绕点A顺时针旋转90°后得到对应点,顺次连接即可;(2)根据△ABC的各顶点关于原点的中心对称,得出A2、B2、C2的坐标,连接各点,即可得到结论.【解答】解:(1)所画图形如下所示,△A1B1C1即为所求;(2)所画图形如下所示,△AB2C2即为所求.点C2的坐标为(4,1),故答案为:(4,1).【点评】本题主要考查了旋转变换图形的方法,图形的中心对称问题和平移的性质,考查了利用直角坐标系解决问题的能力,关于原点对称的两个点的横坐标和纵坐标都互为相反数.22.(8分)期中考试临近,某校初二年级教师对复习课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将频数分布直方图补充完整;(4)如果全市有8000名初二学生,那么在复习课中,“独立思考”的学生约有多少人?【分析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360°即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以8000即可得到结果.【解答】解:(1)根据题意得:224÷40%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:×360°=54°,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560﹣(84+168+224)=84,补全统计图如下:(4)根据题意得:8000××100%=2400(人),则“独立思考”的学生约有2400人.【点评】此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=0.6;(3)试估算盒子里黑、白两种颜色的球各有多少只?【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.24.(10分)如图,四边形ABCD是平行四边形,E,F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF.(2)求证:四边形EBFD是平行四边形.【分析】(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.25.(10分)如图,折叠矩形ABCD,使点C重合于点A(点D重合于点G),折痕为EF 交对角线AC于O.(1)判断四边形AECF的形状,并说明理由;(2)若AB=4,BC=8,求四边形AECF的面积.【分析】(1)根据平行线及折叠的性质可得出∠CAE=∠CAD=∠ACF=∠ACB,从而利用等腰三角形的性质可得出EC=EA,结合AE∥CF可判断AECF为菱形.(2)设BE=x,则CE=8﹣x,由AE2=CE2,列出等式可解出x的值,求出BE后,即可计算出四边形AECF的面积.【解答】解:(1)四边形AECF是菱形,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,由折叠的性质得:∠CAE=∠CAD,∠ACF=∠ACB,∴∠CAE=∠CAD=∠ACF=∠ACB,∴AE∥CF,EC=EA,∴四边形AECF是菱形.(2)设BE=x,则CE=8﹣x,在Rt△ABE中,42+(8﹣x)2=x2,∴x=5,∵四边形AECF是菱形,∴四边形AECF的面积=EC•AB=5×4=20.【点评】本题考查折叠的性质、勾股定理及菱形的性质,根据折叠的性质及平行线的性质得出∠CAE=∠CAD=∠ACF=∠ACB,是判断AECF形状的关键,另外在解答第二问时要注意根据勾股定理求出BE的长.26.(10分)如图,四边形ABCD中,∠ABC=90°,∠CAD=2∠CAB=45°,E、F分别是CD、CA的中点,AC=AD=8,求BE的长.【分析】根据三角形中位线定理和直角三角形斜边上的中线推知BF=EF=4,再由等腰三角形的性质和平行线的性质求得∠BFE=90°,所以在等腰直角△BEF中求得BE的长度即可.【解答】解:∵E、F分别是CD、CA的中点,∴EF∥AD且EF=AD,∴∠CFE=∠CAD=45°,EF=4.∵∠ABC=90°,F是CA的中点,∴BF=AC=AF=4,∴∠BAF=∠ABF,∴∠BFC=2∠BAC=45°,∴∠BFE=90°,∴BE=4.【点评】考查了直角三角形斜边上的中线,根据三角形中位线定理和直角三角形斜边上的中线推知△BEF是等腰三角形是解题的难点.27.(12分)平面直角坐标系xOy中,对于点P(x,y)和Q(﹣x,y′),给出如下定义:y′=,称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(﹣1,2),点(﹣1,2)的“可控变点”为点(1,﹣2)根据定义,解答下列问题;(1)点(3,4)的“可控变点”为点(﹣3,4).(2)点P1的“可控变点”为点P2,点P2的“可控变点”为点P3,点P3的“可控变点”为点P4,…,以此类推.若点P2018的坐标为(3,a),则点P1的坐标为(﹣3,﹣a).(3)若点N(a,3)是函数y=﹣x+4图象上点M的“可控变点”,求点M的坐标.【分析】(1)依据“可控变点”的定义可得,点(3,4)的“可控变点”为点(﹣3,4);(2)依据变化规律可得每四次变化出现一次循环,即可得到当点P2018的坐标为(3,a),则点P1的坐标为(﹣3,﹣a);(3)分两种情况讨论:当﹣a≥0时,a≤0;当﹣a<0时,a>0,分别把点M的坐标代入函数y=﹣x+4即可得到结论.【解答】解:(1)∵x=3>0,∴根据“可控变点”的定义可得,点(3,4)的“可控变点”为点(﹣3,4),故答案为:(﹣3,4);(2)当x≥0时,点P1(x,y)的“可控变点”为点P2(﹣x,y),点P2(﹣x,y)的“可控变点”为点P3(x,﹣y),点P3(x,﹣y)的“可控变点”为点P4(﹣x,﹣y),点P4(﹣x,﹣y)的“可控变点”为点P5(x,y),…,故每四次变化出现一次循环;当x<0时,同理可得每四次变化出现一次循环;∵2018=4×504+2,∴当点P2018的坐标为(3,a),则点P1的坐标为(﹣3,﹣a),故答案为:(﹣3,﹣a);(3)由题意知,点M的横坐标为﹣a.当﹣a≥0时,a≤0,此时点M(﹣a,3).代入y=﹣x+4,得3=a+4,a=﹣1,符合题意,∴点M的坐标为(1,3);当﹣a<0时,a>0,此时点M(﹣a,﹣3).代入y=﹣x+4,得﹣3=a+4,a=﹣7,不合题意,舍去.综上所述,点M的坐标为(1,3).【点评】本题主要考查了一次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要根据点的坐标变化规律进行判断.28.(12分)如图,正方形ABCO的边OB、OA分别在x、y轴上,点C坐标为(8,8),。

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】(1)

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】(1)

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】姓名_____________ 班级 ______________ 分数_____________、单选题1. 下列命题中,真命题的个数是()①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③ 一组对边平行,另一组对边相等的四边形是平行四边形A. 3个B. 2 个C. 1 个D. 0 个2. 如果把分式中的a和b都缩小2倍,则分式的值()A.缩小4倍B. 缩小2倍C. 不变D. 扩大2倍3. 函数- 一的图象上有两点」.、龙扛J )且,下列结论正确的是X _-()A. 1B. 1C. 1D. 1与之间的大小关系不能确定、选择题4. 若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B. 矩形C. 菱形D. 正方形三、单选题5. 在同一直角坐标平面内,如果直线]与双曲线,一没有交点,那么和一的关系一定是()A. 、一异号B. 、一同号C. >0, <0D. <0, >06. 在物理并联电路里,支路电阻R1、R2与总电阻R之间的关系式为=+,若R工R1,用R、R1表示R2正确的是()A. R2=»B. R2= 冷C. R2= 菱D. R2= | 豐7.已知+=3,则分式協緡的值为()A. B. 9 C. 1 D.不能确定四、填空题12.反比例函数y= (m-2) x2m+1的函数值为一时,自变量x 的值是9.当x时,分式肉有10.如图,点P 在反比例函数y=的图象上,且PD 丄x 轴于点。

.若厶P0的面积为3,则 CF 分别是/ AB 和 Z BC 啲平分线,BE EF=.CF 分别与AD 相交T —和b =冰卜D.BE7?13.如图,把一个长方形纸片沿EF折叠后,点D, C分别落在D', C的位置,若Z EFB =65°,则Z AED = __________________ .r + 5-'-(其中A ,B 为常数),求A 2 014B=15. 若A 、B 两点关于’轴对称,且点A 在双曲线- 一上,点B 在直线丁二」宀了上,设2x点A 的坐标为(a,b ),则邑+ — = ___________________ 。

江苏省扬州市仪征市八年级(下)期中数学试卷

江苏省扬州市仪征市八年级(下)期中数学试卷

江苏省扬州市仪征市八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各式、、、+1、中分式有()A.2个B.3个C.4个D.5个2.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.3.(3分)下列调查中,适合用普查的是()A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况4.(3分)下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻5.(3分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.57.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.(3分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)当x=时,分式的值是0.10.(3分)函数y=的自变量x的取值范围是.11.(3分)分式,的最简公分母是.12.(3分)若m是的小数部分,则m2+2m+1的值是.13.(3分)若最简二次根式与是同类二次根式,则a=.14.(3分)在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则口袋中白球可能有个.15.(3分)一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为.16.(3分)已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为cm2.17.(3分)已知ab=1,t=+,则t2018=.18.(3分)如图,在矩形ABCD中,AD=6,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)﹣6+|1﹣|(2)﹣x+y20.(8分)若x,y为实数,且y<++2,试化简:x2+|y﹣2|﹣.21.(8分)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(10分)某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次抽样调查一共抽查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)如果学校计划购买课外读物6000册,请根据样本数据,估计学校应该购买“科普”类读物多少册?24.(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.25.(10分)已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.26.(10分)观察下列各式:===﹣1,同理:=…=﹣,…从计算结果中找出规律,并利用这一规律计算:(+++…+)(+1)27.(12分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称,;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB的顶点M的坐标;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.28.(12分)(1)方法回顾在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:第一步添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.(2)问题解决如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)拓展研究如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2,∠GEF=90°,求GF 的长.江苏省扬州市仪征市八年级(下)期中数学试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.A;2.C;3.B;4.B;5.A;6.B;7.B;8.C;二、填空题(本大题共10小题,每小题3分,共30分)9.﹣1;10.x>1;11.6x2y2;12.2;13.4;14.3;15.15;16.96;17.1;18.6或3;三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.;20.;21.;22.(,﹣1);23.200;40;60;72;24.;25.;26.;27.长方形;正方形;28.;。

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】

2019学年江苏省扬州市八年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列调查中,适合用全面调查方法的是()A. 了解一批电视机的使用寿命B. 了解我市居民的年人均收入C. 了解我市中学生的近视率D. 了解某校数学教师的年龄状况二、选择题2. 下列图形中,既是轴对称图形,又是中心对称图形的个数是()A.1个B.2个C.3个D.4个三、单选题3. 下列说法中,不正确是()A. 对角线互相平分的四边形是平行四边形B. 两组对角分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边平行另一组对边相等的四边形是平行四边形4. 以下说法正确的是()A. 一次摸奖活动的中奖率是1%,那么摸100次奖必然会中一次奖;B. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件;C. 一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是.D. 必然事件的概率为15. 一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是()A. B. C. D.6. 如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 3S1=2S27. 如图,□ ABCD中,对角线AC和BD相交于O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A. 1<m<11B. 2<m<22C. 10<m<12D. 5<m<68. 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是()A. (2,0)B. (-1,1)C. (-2,1)D. (-1,-1)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】。

扬州八年级数学下学期期中试题

扬州八年级数学下学期期中试题

2019扬州八年级数学下学期期中试题一、选择题(本题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列调查工作需采用的普查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查2.下列标志图中,既是轴对称图形,又是中心对称图形的是( )3. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.□ABCD是轴对称图B.AC=BDC.AC⊥BD D.S□ABCD =4S△AOB4.x 克盐溶解在a克水中,取这种盐水m克,其中含盐()A. 克B. 克C. 克D. 克5.某中学为迎接端午节,举行了”我爱中国,发扬中国文化”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()A. B. C. D.6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.则∠CDF等于()。

A、80°°B、70°C、65°D、60°7.如图,在□ABCD中,对角线AC与BD相交于点E, ,BD=2,将△ABC 沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为()A. B. C. D.8.如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x 轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为()A.4 B.45C.8 D.85二、填空题(每题3分,共30分)9.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第次时,正面向上的概率为______.10.当时,分式的值为0.11.□A BCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得□ABCD是菱形的条件有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年江苏省扬州市仪征市八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个2.下列代数式是分式的是()A. x2B. yπC. x2+y3D. 2x−y3.下列调查中,最适宜采用全面调查(普查)的是()A. 调查国内外观众对影片《流浪地球》的观影感受B. 调查春节期间各大超市所售腊肉的品质状况C. 调查某班同学的数学寒假作业完成情况D. 调查某批次疫苗的质量4.为了准确反映某车队5名司机3月份耗去的汽油费用,且便于比较,那么选用最合适、直观的统计图是()A. 统计表B. 条形统计图C. 扇形统计图D. 折线统计图5.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100名运动员的年龄.就这个问题来说,下面说法中正确的是()A. 抽取的100名运动员的年龄是样本B. 2000名运动员是总体C. 100名运动员是抽取的一个样本容量D. 每个运动员是个体6.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28∘B.38∘C.62∘D. 72∘7.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指()A.S矩形ABMN=S矩形MNDCB.S矩形EBMF=S矩形AEFNC. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD8.定义:如果一个关于x的分式方程ax =b的解等于1a−b,我们就说这个方程叫差解方程.比如:2x=43就是个差解方程.如果关于x的分式方程mx=m-2是一个差解方程,那么m的值是()A. 2B. 12C. −12D. −2二、填空题(本大题共10小题,共30.0分)9.分式b4a3与16abc的最简公分母是______.10.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第五组的频数分别为6,8,9,12,10,则第六组的频率是______.11.某同学期中考试数学考了150分,则他期末考试数学______考150分,(选填“不可能”“可能”或“必然”)12.若分式|x|−1x+1的值为零,则x的值为______.13.若ab=23,则aa+b=______.14.如图,△ABC中,AB=7cm,BC=6cm,AC=5cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于______cm.15.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,若∠ECD=20°,则∠ADB=______°.16.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是______.17.如图,在矩形ABCD中,F是BC边上的一点,BC=6BF=6,E是AB边的中点,DE平分∠ADF,则DF的长是______.18.如图,正方形ABCD边长为3,点E、F是对角线AC上的两个动点(点E在点F的左侧),且EF=1,则DE+BF的最小值是______.三、计算题(本大题共2小题,共18.0分)19.(1)计算:xx2−1÷(1-1x+1)(2)解方程:22x−1=120. 老师在黑板上书写了一个代数式的正确计算结果,随后用字母A 代替了原代数式的一部分,如下:(A -x 2−1x 2−2x+1)÷x x+1=x+1x−1(1)求代数式A ,并将其化简;(2)原代数式的值能等于-1吗?请说明理由.四、解答题(本大题共8小题,共78.0分)21. 某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小强参加是确定事件? (2)当n 为何值时,男生小强参加是随机事件?22. 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数 1 2 3 4 5 6 出现的次数1096988①填空:此次实验中,“1点朝上”的频率是______;②小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表: 试验总次数 100 200 500 1000 2000 5000 10000 1点朝上的次数 18 34 82 168 330 835 1660 1点朝上的频率0.1800.1700.1640.1680.1650.1670.166“1点朝上”的概率的估计值是______.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A ,B ,C ,D 四等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试成绩在总人数的前30%考生为A 等级,前30%至前70%为B 等级,前70%至前90%为C 等级,90%以后为D 等级)(1)抽取了______名学生成绩; (2)请把频数分布直方图补充完整;(3)扇形统计图中A 等级所在的扇形的圆心角度数是______;(4)若测试成绩在总人数的前90%为合格,该校初二年级有800名学生,求全年级生物合格的学生共约多少人.24. 如图,平行四边形ABCD 的边AB 长为4cm ,DE 平分∠ADC ,若∠B =80°,∠DAE =50°,求平行四边形ABCD 的周长?25. 为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种13,结果提前4天完成任务,原计划每天种多少棵树?26. 如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD ,BE ,BC 于点P ,O ,Q ,连接BP ,EQ . (1)求证:四边形BPEQ 是菱形;(2)F 为AB 的中点,则线段OF 与线段AE 有什么位置关系和数量关系,并说明理由; (3)在(2)的条件下,若AB =6,OF =4,求PQ 的长.27. 通常情况下,a +b 不一定等于ab ,但我们数学上存在这样一些特殊的数对,观察:2+2=2×2,3+32=3×32,4+43=4×43,…,我们把符合a +b =ab 的两个数叫做“和积数对”,已知m 、n (m >1,n >1)是一对“和积数对”.(1)请举出一对m 、n 是“和积数对”,并验证其正确性; (2)求代数式3m 2n 2−2(m+n)2(2m+2n)2的值;(3)小明发现了一个关于m 、n 的结论:n m +mn +2=mn ;你认为小明发现的结论正确吗?请说明理由.28. 知识再现:已知,如图1,四边形ABCD 是正方形,点M 、N 分别在边BC 、CD 上,连接AM 、AN 、MN ,∠MAN =45°,延长CB 至G 使BG =DN ,连接AG ,根据三角形全等的知识,我们可以证明MN =BM +DN . 知识探究:(1)在图1中,作AH ⊥MN ,垂足为点H ,猜想AH 与AB 有什么数量关系?并证明; 知识应用:(2)如图2,已知∠BAC =45°,AD ⊥BC 于点D ,且BD =2,AD =6,则CD 的长为______;知识拓展:(3)如图3,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,∠FEC =2∠BAE ,AB =24,求DF 的长.答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:,,+的分母中均不含有字母,因此它们是整式,而不是分式.故A、B、C选项错误;的分母中含有字母,因此是分式.故D选项正确.故选:D.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.【答案】C【解析】解:A.调查国内外观众对影片《流浪地球》的观影感受适合抽样调查;B.调查春节期间各大超市所售腊肉的品质状况适合抽样调查;C.调查某班同学的数学寒假作业完成情况适合全面调查;D.调查某批次疫苗的质量适合抽样调查;故选:C.普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.【答案】B【解析】解:根据题意,要求清楚地比较5名司机的汽油费用,而条形统计图能清楚地表示出每个项目的具体数目,符合要求,故选:B.根据题意的要求,结合统计图的特点作出判断即可.考查了统计图的选择,解决此类问题,需要明确题意的要求,根据统计图的特点选择合适的统计图.5.【答案】A【解析】解:A.抽取的100名运动员的年龄是样本,此选项正确;B.2000名运动员的年龄情况是总体,此选项错误;C.100是抽取的一个样本容量,此选项错误;D.每个运动员的年龄情况是个体,此选项错误;故选:A.根据样本、总体、个体的定义,进行分析即可.总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本.此题主要考查了样本、总体、个体,关键是掌握样本、总体、个体的定义.6.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴∠B=180°-∠A=180°-118°=62°,∵CE⊥AB,∴∠BCE=90°-∠B=28°.故选:A.由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.此题考查了平行四边形的性质以及直角三角形的性质.注意平行四边形的邻角互补.7.【答案】D【解析】证明:∵S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△AEF+S△FCM)又∵S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,∴S矩形NFGD=S矩形EBMF.故选:D.根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.8.【答案】D【解析】解:由关于x 的分式方程=m-2是一个差解方程,得到x=,把x=代入方程得:2m=m-2,解得:m=-2,故选:D.利用差解方程定义确定出方程的解,代入方程计算即可求出m的值.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.【答案】12a3bc【解析】解:分式与的最简公分母是12a3bc,故答案为:12a3bc.找出各个因式的最高次幂,乘积就是分母的最简公分母.此题主要考查了最简公分母,关键是掌握找最简公分母的一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里;②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10.【答案】0.1【解析】解:∵一个容量为50的样本,把它分成6组,第一组到第五组的频数分别为6,8,9,12,10,∴第六组的频数是50-6-8-9-10-12=5,∴第六组的频率是:5÷50=0.1,故答案为:0.1.一个容量为50的样本,把它分成6组,第一组到第五组的频数分别为6,8,9,12,10,用样本容量减去前五组的频数,得到第六组的频数,进而求出频率即可.此题考查频数与频率问题,关键是利用频数、频率和样本容量三者之间的关系进行分析.11.【答案】可能【解析】解:某同学期中考试数学考了150分,则他期末考试数学可能考150分,故答案为:可能.据必然事件、不可能事件、随机事件的概念可区别各类事件.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】1【解析】解:,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.故若分式的值为零,则x的值为1.分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.13.【答案】25【解析】解:由,得a=,∴=.故答案为:.由,得a=,代入所求的式子化简即可.解题关键是用到了整体代入的思想.14.【答案】12【解析】解:∵D,E分别是AB,BC的中点,∴DE∥AC,DE=AC=2.5cm,同理,EF∥AB,EF=AB=3.5cm,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2×(2.5+3.5)=12(cm),故答案为:12.根据三角形中位线定理得到DE∥AC,DE=AC,EF∥AB,EF=AB,得到四边形ADEF是平行四边形,计算即可.本题考查的是三角形中位线定理、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】35【解析】解:∵菱形ABCD,∴AD∥BC,BC=CD,∵CE⊥BC,∠ECD=20°,∴∠BCD=90°+20°=110°,∴∠DBC=,∴∠ADB=∠DBC=35°,故答案为:35°根据菱形的性质和三角形的内角和以及平行线的性质解答即可.此题考查菱形的性质,关键是根据菱形的性质和三角形的内角和以及平行线的性质解答.16.【答案】4【解析】解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故答案为:4.连结AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF⊥BD是解题的关键.17.【答案】7【解析】解:如图所示:作DF的中点为点H,连接EH,EF,设∠ADE=α,CD=2x,则AE=BE=x.∵E、H 分别是AB、DH的中点‘∴EH∥AD,∴∠ADE=∠DEH=α,又∵ED是∠ADF的角平分线,∴∠ADE=∠FDE=α,∴∠EDH=∠HED=α,∴EH=HD,又∵H是DF的中点,∴DH=FH,∴EH=FH,∴∠HEF=∠HFE,又∵∠EHF=∠HDE+∠HED,∴∠EHF=2α,∴∠HEF=90°-α,∴△DEF是直角三形.又∵∠DEF=∠DEH+∠HEF,∴∠DEF=90°-α+α=90°.又∵BC=6BF=6,∴BF=1,FC=5,AD=BC=6,∴在Rt△BEF,Rt△AED,Rt△DCF中有:EF2=BE2+BF2=x2+1,ED2=AD2+AE2=62+x2=36+x2,DF2=DC2+FC2=52+(2x)2=25+4x2;又∵在Rt△DEF中有:DF2=DE2+EF2,∴25+4x2=36+x2+x2+1,解得:∴===7.故答案为7.由矩形ABCD,可得到四边形ABFD是梯形.已知点E为AB的中点,作梯形的中位线EH,得EH∥AD;ED是∠ADF角平分线,连接EF,从计算等腰三角形DHE和等腰三角形FHE的内角关系,证明∠DEF=90°;结合线段BC=6BF=6的长度,在几个直角三角形中多次用勾股定理并找出线段之间的数量和位置关系,建立等量关系求出AB或CD,即可求出DF的长.本题考查了矩形性质,梯形的中位线,角平分线,勾股定理,直角三角形,等腰三角形及平行线等相关知识;难点是找DF的中点及梯形的中位线,以及构建Rt△DEF及证明.18.【答案】√19【解析】解:如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是正方形,AB=3,∠BAD=90°∴AD=AB,∴△ABD是等腰直角三角形,∴BD=AB=3,在Rt△BDM中,BM==∴DE+BF的最小值为.故答案为.如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,得到DM=EF,DM∥EF,根据平行四边形的性质得到DE=FM,求得DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB 最短,根据勾股定理即可得到结论.本题考查了正方形的性质、平行四边形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会添加常用辅助线,把问题转化为两点之间线段最短解决,属于中考填空题中的压轴题.19.【答案】解:(1)原式=x(x+1)(x−1)•x+1x=1x−1;(2)去分母得:2=2x-1,解得:x=1.5,经检验x=1.5是分式方程的解.【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)∵(A -x 2−1x 2−2x+1)÷xx+1=x+1x−1 ∴[A -(x+1)(x−1)(x−1)2]⋅x+1x=x+1x−1∴(A -x+1x−1)⋅x+1x=x+1x−1∴A -x+1x−1=x+1x−1÷x+1x∴A =x+1x−1⋅xx+1+x+1x−1 ∴A =xx−1+x+1x−1 ∴A =2x+1x−1;(2)原代数式的值不能等于-1,理由:若原代数式的值等于-1, 则x+1x−1=-1,得x =0,当x =0时,原代数式中的除式等于0,原代数式无意义, 故原代数式的值不能等于-1. 【解析】(1)根据题目中的等式可以求得代数式A ,并将其化简;(2)先判断,然后根据判断说明理由即可.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【答案】解:(1)当女生选1名时,三名男生都能选上,男生小强参加是必然事件,确定事件,当女生选4名时,三名男生都不能选上,男生小强参加是不可能事件,确定事件,综上所述,当n =1或4时,男生小强参加是确定事件; (2)当n =2或3时,男生小强参加是随机事件. 【解析】(1)根据确定事件包括必然事件和不可能事件两种情况解答; (2)根据随机事件的定义解答.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 22.【答案】0.2 0.166【解析】解:(1)①此次实验中,“1点朝上”的频率是:=0.2,故答案为:0.2; ②不正确,因为在一次实验中频率并不等于概率,只有当实验中试验 次数很大时,频率才趋近于概率.(2)根据图表中数据可得出:“1点朝上”的概率的估计值是0.166. 故答案为:0.166.(1)①利用频数除以总数=频率进而得出答案; ②利用频率与概率的区别进而得出答案; (2)利用频率估计概率的方法得出概率的估计值.此题主要考查了利用频率估计概率,正确理解频率与概率的区别与联系是解题关键.23.【答案】50 72° 【解析】解:(1)抽取的学生总人数为23÷46%=50(名), 故答案为:50;(2)D 等级人数为50-(10+23+12)=5(名), 补全频数分布直方图如下:(3)扇形统计图中A 等级所在的扇形的圆心角度数是360°×=72°,故答案为:72°;(4)根据题意得:800×90%=720(人),则全年级生物合格的学生共约720人.(1)根据B等级的人数除以占的百分比确定出学生总数即可;(2)求出D等级的人数,补全频数分布直方图即可;(3)求出A等级的百分比,乘以360即可得到结果;(4)由学生总数乘以90%即可得到结果.此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.24.【答案】解:∵四边形ABCD是平行四边形,∴AB=CD=4cm,且AD∥BC,∴∠ADE=∠CED,又∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD=4cm,∵AD∥BC,∴∠DAE=∠AEB=50°,又∵∠B=80°,∴∠BAE=50°=∠AEB,∴AB=BE=4cm,∴BC=8cm,∴▱ABCD的周长=2(4+8)=24(cm).【解析】依据平行线的性质以及角平分线的定义,即可得到∠CED=∠CDE,进而得出CE=CD=4cm,依据平行线的性质以及三角形内角和定理,即可得到∠BAE=50°=∠AEB,进而得到AB=BE=4cm,即可得出▱ABCD的周长.本题主要考查了平行四边形的性质、平行线的性质以及等腰三角形的判定,证出CE=CD,BE=AB是解题的关键.25.【答案】解:设原计划每天种x棵树,据题意得,480 x −48043x=4,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.【解析】根据:原计划完成任务的天数-实际完成任务的天数=4,列方程即可.此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.26.【答案】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,{∠PEO=∠QBOOB=OE∠POE=∠QOB,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:OF∥AE且OF=12AE.理由如下:∵四边形BPEQ是菱形,∴OB=OE.又∵F是AB的中点,∴OF是△BAE的中位线,∴AE∥OF且OF=12AE.(3)解:∵AB=6,F是AB的中点,∴BF=3.∵OF∥AE,∴∠BFO=90°.在Rt△FOB中,OB=√BF2+OF2=5,∴BE=10.设菱形的边长为x,则AP=8-x.在Rt△APB中,BP2=AB2+AP2,即x2=62+(8-x)2,解得:x=254,由菱形的面积公式可知:254×6=12×10×PQ,解得:PQ=152.【解析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE 是平行四边形,再根据菱形的判定即可得出结论;(2)先证明OF 为△BAE 的中位线,然后依据三角形的中位线定理进行解答即可;(3)先求得OB 的长,则可得到BE 的长,设菱形的边长为x ,则AP=8-x ,在Rt △APB 中依据勾股定理可列出关于x 的方程,然后依据菱形的面积公式可求得PQ 的长.本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识,列出关于x 的方程是解题的关键. 27.【答案】解:(1)答案不唯一.如5,54,验证:∵5+54=254,5×54=254, ∴5+54=5×54; (2)∵m 、n (m >1,n >1)是一对“和积数对”,∴m +n =mn ,∴3m 2n 2−2(m+n)2(2m+2n)2=3m 2n 2−2(mn)2(2mn)2=3m 2n 2−2m 2n 24m 2n 2=m 2n 24m 2n2=14. (3)小明发现的结论正确,理由是:去分母得:m 2+n 2+2mn =m 2n 2,即(m +n )2=m 2n 2, ∵m >1,n >1, ∴m +n =mn . ∴结论正确. 【解析】(1)由已知条件的规律可得:5+=5×; (2)根据“和积数对”的定义将代数式变形得到原式=,再化简后约分计算即可求解;(3)结论正确,把结论去分母,再开平方,就可以得到“和积数对”:m+n=mn .本题考查了“和积数对”的定义,以及分式的化简,熟知“和积数对”的定义是解答此题的关键. 28.【答案】3【解析】解:知识探究:(1)∵BG=DN ,∠ABG=∠ADN=90°,AB=AD , ∴△ABG ≌△ADN (SAS ), ∴∠GAB=∠NAD ,AG=AN ,∵∠MAN=45°, ∴∠BAM+∠NAD=45°, ∴∠GAB+∠BAM=45°, ∴∠GAM=∠MAN , ∵AM=AM ,AG=AN , ∴△AGM ≌△ANM (SAS ), ∴∠ABG=∠AMN , ∵AB ⊥BM ,AH ⊥MH , ∴AH=AB .知识应用:(2)如图1所示,将△ABD 和△ADC 翻折,延长EB 、GC 交于点F ,∵△ABE ≌△ABD ,∴EB=BD=2,AE=AD=6,∠E=∠ADB=90°, ∵△ACD ≌△ACG ,∴AD=AG=6,∠ADC=∠G=90°, ∵∠BAG=45°, ∴∠EAG=2∠BAC=90°, ∴四边形AEFG 为矩形, ∵AE=AG=6,∴四边形AEFG 为正方形, 设CD=CG=x ,∴CF=6-x ,BF=4,BC=2+x , ∴42+(6-x )2=(2+x )2, 解得x=3,∴CD=3, 故答案为:3.知识拓展:(3)如图2所示,连接AF,过点A作AM⊥EF,∵∠FEC=2∠BAE,设∠BAE=α,则∠FEC=2α,∴∠BEA=90°-α,∴∠AEM=90-α,∴∠AEB=∠AEM,∵AB⊥BE,AM⊥EM,∴AB=AM=AD,∵AF=AF,∴△AMF≌△AFD(HL),∵AB=24,点E为BC边上的中点,∴BE=EC=EM=12,设FM=FD=x,则CF=24-x,EF=12+x,∴122+(24-x)2=(12+x)2,解得x=8,∴DF=8.(1)根据已知条件可证出△AGB≌△ADN,再证明△AGM≌△ANM,可得AM为∠GMN的角平分线,则AB=AH.(2)还原(1)图形,同理设未知数,根据勾股定理列方程即可.(3)连接AF,过点A作AM⊥EF,根据∠FEC=2∠BAE,可得∠AEB=∠AEM,可推出△AMF≌△AFD,设FM=FD=x,则CF=24-x,EF=12+x,可列式为122+(24-x)2=(12+x)2,解得x=8,即DF=8.此题考查了正方形的性质,全等三角形的判定及勾股定理,根据全等三角形对应边之间的关系,设未知数利用勾股定理列方程为解题关键.第11页,共11页。

相关文档
最新文档