北京大学数学物理方法经典课件第十三章——变分法

合集下载

变分法

变分法

他们本身是弹性体各点的函数,U这样的 积分依赖于这些函数取得不同的数值,这样的 积分通常称为泛函.一般的函数只依赖于自变 量的值.
13
§10-2 位移变分方程与极小势能原理
一 变分及其性质
高等数学我们学过微分的概念,微分是变量的 增量。那么什么是变分呢?变分是函数的增量,通 常用δ表示。变分具有以下的性质:
1
第十章
能量原理与变分法
§10-1 弹性体的变形比能与形变势能 §10-2 位移变分方程与极小势能原理 §10-3 位移变分法
§10-4 应力变分方程与应力变分方法
1
§10-1 弹性体的变形比能与形变势能
一 变形比能 在复杂应力状态下,设弹性体受有全部六个应力 分量 x , y, z , yz , zx , xy 。根据能量守恒定理,形变 势能的多少与弹性体受力的次序无关,而完全确定于 应力及形变的最终大小。从而有弹性体的形变势能密 度或比能: 1 x x y y z z yz yz zx zx xy xy 2 ij 1 ij d ij ij ij 或 0 2 比能用应力分量表示
U Xu Yv Zwdxdydz X u Yv Zw dS


这个方程就是所谓位移变分方程。其中X,Y,Z为体力分 量,X , Y , Z 为面力分量。
7
虚功方程
在给定体力、面力和约束情况下, 如果找到两种状态:
第一种状态:在给定的体力 fi和面力 X i 已知(找到)可能应力状态ij(k1),在V内:
则 We=Wi
虚功方程未涉及本构关系,所有在各种材料性质虚功方程成立。 虚功方程虽然对两种不相干的可能状态成立,但一般应用是一种 为真实状态,另一种为虚设可能状态(虚设状态)。

变 分 学

变 分 学

变分学殷德京目录第1章变分及其特性第2章提高课程第3章固定边界的变分方法§3.1 变分法的基本预备定理§3.2 最简单的泛函,欧拉方程§3.3第7章变分问题的直接解法及反问题§7.1 直接解法概述§7.10 变分问题的反问题附录1:泛函分析简介附录2:数学课程《变分学》与物理课程《分析力学》的关系编辑版word主体篇编辑版word编辑版word第1章 变分及其特性就数学学科而言,变分学隶属于泛函分析,但其创立却先于泛函分析。

泛函分析起源于对变分法的研究和积分方程的研究,同时得益于非欧几何对空间概念的推广。

见附录1。

变分问题就是研究泛函的极值问题,而泛函概念是函数概念的一种推广。

关于函数概念的一系列主要的推广可具体表述如下:假设有两个任给的集合X 和Y ,还有一个法则f ,如果对于X 中的每个元素x ,根据法则可以唯一地确定Y 中的元素y 与之对应,那么我们就说,在集合X 上定义了一个映射)(x f y =,它的值域包含在Y 内。

特别地,如果映射的值域是实数域或复数域,那么这个映射就叫做泛函。

如果是从线性空间到线性空间的对应关系,那么f 就叫做算子。

变分法中研究的泛函是一种特殊的泛函,其映射的定义域集合(又称原象集合)是函数的集合,值域集合(又称象集合)是实数域。

为了便于理解,在讲述泛函方面理论的同时,我们将伴述可与之对比的函数方面的理论。

【注】:上面已说过变分法中研究的泛函只是一般泛函中的一种特别的泛函,即从函数集到实数集的映射。

所以上述泛函定义比一般的泛函概念来得狭隘。

显然,对{})(x y 中取定的一个函数)(x y ,对应的泛函值)]([x y J 依赖于整个函数,而不是依赖于某个x 对应的一个函数值)(x y ,这是泛函与复合函数的明显区别。

由于这里的泛函是函数的函数,因此常称起自变量作用的函数为泛函的宗量。

为了强调泛函的宗量(自变量)是函数整体,有时将泛函表示为)]([⋅y J 。

数学物理方法(第四版)(汪德新)PPT模板

数学物理方法(第四版)(汪德新)PPT模板

12.1傅里 叶变换
1
12.2傅里 叶变换法
2
12.3拉普 拉斯变换
3
12.4拉普拉 斯变换法
4
第三篇数学物理方程
第13章格林函数法
03
*13.3格林函数法
在波动问题中的应

02
*13.2格林函数法 在输运问题中的应

01
*13.1格林函数法 在稳定场问题中的
应用
第三篇数学物理方程
第14章保角变换法
02 第17章Z变换
*17.1Z变换的定义及其性质 *17.2用Z变换求解差分方程
03 第18章小波变换
*18.1从傅里叶变换,加博变换到小波 变换 *18.2连续小波变换的性质
第四篇数学物理 方法的若干新兴 分支
06 参考文献
参考文献
07 附录
附录
1. 附录A微分算符▽的若干常用公式 2. 附录B几种常用的常系数常微分方程的解 3. 附录C广义积分与积分主值 4. 附录D二阶线性齐次常微分方程w″(z)+p(z)w′(z)+q(z)w(z)
数学物理方法(第四版)(汪德新)
演讲人
2 0 2 X - 11 - 11
01 前言
前言
02 第一篇复变函数导论
第一篇复变函数导 论
第1章复变函数与解析函数 第2章复变函数的积分 第3章解析函数的级数表示 第4章留数定理及其应用 第5章解析延拓多值函数及其黎曼面
第一篇复变 函数导论
第1章复变函数与解析函 数
6.3勒让德多项式的正交性与完备 性
6.2勒让德多项式的微分与积分表 达式母函数与递推公式
6.4关联勒让德方程与关联勒让德 函数
第二篇特殊函数场论与狄拉克δ函数

变分法

变分法

§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。

它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。

这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。

约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。

后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。

有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。

在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。

伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。

变分法PPT教学课件

变分法PPT教学课件
主义道路上。今天的中国,是一个改革开放与和平崛
起的中国。中国的崛起不会妨碍任何人,也不会威胁 任何人;中国的和平崛起有利于亚洲和世界。
(1)你认为中国扶贫成就取得的根本原因是什么? (2)中国的“和平崛起”是由什么决定的? (3)结合材料一运用所学知识谈谈对材料二的理解。
2003年3月20日,美国绕过安理会发动了 对伊拉克战争, 2003年5月1日美国总统布什 就宣布对伊战争取得胜利。
国家谴责和反对恐怖活动的态度表明 ( B )
A全世界人人都反对战争
B要和平是当今时代的主流
C世界和平的主流已发生改变
D当前国际形势总体上已趋向战争和动乱
2.2003年3月20日,美英等国绕开联合国对伊拉
克进行军事打击,伊拉克战争爆发。此举遭到世
界许多国家的谴责,纽约、华盛顿、伦敦等数以
百计的城市爆发了反战示威游行。这说明
①发展问A题是指世界经济的发展,特别是发展中
国家的经济发展问题;②世界经济总体在发展, 但整体的经济形势依然严峻;③全球发展的最突 出的问题是南北发展不均衡;④谋求社会的发展 和繁荣是人类永恒的课题;⑤发展中国家对世界 经济发展的贡献非常小
5-3 变分法
不好分割 整体近似 总能做
变分原理
薛氏方程的变分表达
H (, Hˆ)
H (, ) 0
H E (, ) 1
选择定理
H i Ei i
E0 E1 E2 E3 ....
( i , j ) ij i i 1
The min imum of ( , Hˆ ) /( , ) is (1)E0 ,if can be any state; (2)E1,if can be any state that satisf ies condition ( , 0 ) 0;

数学物理方法

数学物理方法

数学物理方法数学物理方法是一门研究数学在物理学中应用的学科,它是物理学和数学的交叉领域,是理论物理学的重要组成部分。

数学物理方法的研究对象是物理学中的各种问题,包括经典力学、电磁学、热力学、量子力学等。

数学物理方法的应用范围非常广泛,涉及到许多领域,如天体物理学、凝聚态物理学、粒子物理学等。

数学物理方法主要包括数学分析、微分方程、变分法、群论、复变函数等数学工具的应用。

其中,微分方程是数学物理方法中最为重要的工具之一。

微分方程描述了自然界中许多现象的规律,如运动、波动、扩散等。

在物理学中,许多基本定律和方程都可以用微分方程来描述,因此微分方程在数学物理方法中具有非常重要的地位。

另一个重要的数学工具是变分法,它是研究变分问题的数学方法。

在物理学中,很多问题可以用最小作用量原理来描述,而最小作用量原理可以通过变分法来求解。

变分法在经典力学、场论、量子力学等领域都有重要的应用。

群论是研究代数结构的一个分支,它在物理学中也有广泛的应用。

群论可以用来描述对称性,而对称性是物理学中一个非常重要的概念。

在粒子物理学中,群论被用来描述基本粒子的性质和相互作用;在固体物理学中,群论被用来描述晶体结构的对称性。

复变函数是研究复数域上的函数的数学分支,它在物理学中也有重要的应用。

复变函数可以用来描述电磁场、量子力学中的波函数等物理现象。

在量子力学中,复变函数的概念是非常重要的,它可以用来描述微观粒子的运动状态。

总的来说,数学物理方法是物理学中不可或缺的一部分,它为物理学家提供了丰富的数学工具和方法,帮助他们理解和解决物理学中的各种问题。

数学物理方法的研究不仅推动了物理学的发展,也促进了数学的发展。

随着现代物理学的不断发展,数学物理方法的重要性将会变得越来越突出,它将继续发挥着重要的作用。

变分法

变分法

方法 II:
亦可选取如下试探波函数:
φ ( x ) = Ae
− γx 2
A ——归一化常数,γ 是变分参量。这个试探波函 数比第一个好,因为 1.φ(x)是光滑连续的函数; 2.关于 x = 0 点对称,满足边界条件即 当 |x|→∞ 时,ψ→ 0; 3. φ(x)是高斯函数,高斯函数有很好的性质, 可作解析积分,且有积分表可查。
ˆ = − ∇ 2 − ∇ 2 − 2e − 2e + e H 1 2 2µ 2µ r1 r2 r12
用变分法求氦原子基态能量。 (1)氦原子Hamilton量
ˆ =H ˆ +H ˆ H 0 12
将 H 分成两部分 其中
2 2 2 2 ˆ 2 2 e e 2 2 ˆ = − ˆ (r H ( r ) H H ∇ − + − ∇ − = + 0 1 2 1 1 2 2) 2 2 µ µ r r 1 2 2 e ˆ = H 12 r12

e
−γ x
1 2 d 2 −γ x 2 2 2 [− + µω x ]e dx 2 2µ dx 2
− γx 2 ˆ − γx 2 ˆ H (γ ) = ∫ φ * Hφdx =| A | ∫ e He dx −∞ −∞ 2 2 ∞ d 1 2 −γ x 2 −γ x 2 2 2 =| A | ∫ e [− + µω x ]e dx 2 −∞ 2µ dx 2 2
例 1.
(五)实例
对一维简谐振子试探波函数,前面已经给出了两种可 能的形式。下面我们就分别使用这两种试探波函数, 应用变分法求解谐振子的基态近似能量和近似波函数。 c ( λ2 − x 2 ), | x |< λ ψ ( x) = 方法I 使用第一种试探波函数: | x |> λ 0, ∞ 1.首先定归一化系数 ∫− ∞ ψ *ψdx = 1

数学物理中的变分法

数学物理中的变分法

摘要数学物理中的变分方法是把一个数学物理方程的定解问题归结为变分问题——求泛函的极值问题。

变分方法是解数学物理方程定解问题的常用方法。

变分原理描述微分方程定解问题与一定条件下泛函的极值问题之间存在着一种等价关系,从而可以通过求解相应泛函的极值问题(即变分问题)得到微分方程定解问题的解。

本文首先介绍了变分原理及其在边值问题中的应用,阐述了Dirichlet原理、正定对称算子的变分原理以及其它边值问题的变分原理;其次讨论的变分方法的基本问题;接着着重介绍了数学物理中常见的两种变分方法:Ritz方法和Galerkin方法及其在解本证值和边值问题中的应用;最后给出了其他一些变分近似方法:Kantorovich法、最速下降法、最小平方法及Courant法等。

关键词:变分方法;Dirichlet原理;Ritz方法;Kantorovich法AbstractV ariational methods in mathematical physics is due to the variational problem - seek the extremal of the functional definite solution of a mathematical physics equations. The variational method is commonly used method for solving mathematical physics EQUA TION. V ariational principle to describe the differential equation definite solution of the problem under certain conditions, functional extremal problem there is an equivalence relation, thus solving the problem of the extreme value of the corresponding functionals (ie, change of sub-issues) to get the differential equation given solution of the problem solution.This paper first introduces the application of the variational principle and its Boundary Problems on the Dirichlet principle, the variational principle of symmetric positive definite operator, and the other boundary value variational principle; followed by discussion of the variational method; then focuses on mathematical physics in two of the variational method: the Ritz method and Galerkin method and its application in the solution of the value of the card and Boundary V alue Problems; Finally, some other variational approximation methods: of Kantorovich method, the steepest descent method, the least squares method and the Courant law.Key words:variational methods; Dirichlet principle; Ritz method; Kantorovich method目录目录 (I)第1章概述 (1)第2章变分原理 (2)2.1膜平衡问题 (9)2.2 Dirichlet原理 (3)2.3正定对称算子的变分原理 (5)2.4其它边值问题的变分原理 (7)2.4.1 Neumaan问题的变分原理 (7)2.4.2 第三类边值问题的变分原理 (8)第3章变分方法的基本问题 (9)3.1 泛函与泛函极值的基本问题 (9)3.2 Euler-lagrange方程 (10)3.3 多个变量的变分问题 (11)3.4变端点问题和自然边界条件 (13)第4章常见的两种变分方法及其应用 (15)4.1 Ritz方法 (15)4.1.1 Ritz方法在本征值问题中的应用 (17)4.1.2 Ritz方法解边值问题 (20)4.2 Galerkin方法 (21)4.2.1 Galerkin方法解本征值问题 (22)4.2.2 Galerkin方法解非齐次边值问题 (24)第5章变分的其他近似方法 (26)5.1 Kantorovich法 (26)5.2 最速下降法 (27)5.3 最小平方法及Courant法 (29)5.4 有限元方法 (30)5.4.1 区域的剖分 (30)5.4.2 线性插值基函数 (31)5.4.3 有限元方程的形成 (33)5.4.4 求解有限元方程 (34)结论 (35)参考文献 (36)致谢 (37)第1章概述数学物理中的变分方法是把一个数学物理方程的定解问题归结为变分问题——求泛函的极值问题。

数学物理方法-13-变分法市公开课获奖课件省名师示范课获奖课件

数学物理方法-13-变分法市公开课获奖课件省名师示范课获奖课件

变分法旳优点:
(1) 变分法在物理上能够归纳定律.因为几乎全部旳自 然定律都能用变分原理旳形式予以体现;
(2) 变分法易于实现数学旳统一化.因为一般而言,数学 物理方程旳定解问题都能够转化为变分问题.尤其是前面 简介旳斯特姆-刘维尔本征值问题可转化为变分问题,变 分法提供了施-刘型本征值问题旳本征函数系旳完备性等 结论旳证明;
E-L方程除了上面给出旳形式(13.2.6)之外, 另外还有四种特殊情况:
(1) F 不显含 x

F 0 x
因为
F F ( y, y),
d (F y F ) F y[F d (F )] y[F d (F )]
dx
y x y dx y
y dx y
若 y 0, E-L方程等价于
F y F c y
y(x) 旳泛函,而称 y(x) 为可取旳函数类,为泛函 T[ y(x)]
旳定义域。简朴地说,泛函就是函数旳函数(不是复合函数
旳那种含义).
一般来说,设C是函数旳集合,B是实数或复数旳集合, 假如对于C旳任一元素 y(x) 在B中都有一种元素 J 与之相应, 则称 J 为 y(x) 旳泛函,记为
J J[ y(x)]
设 u(x, y) 为 x, y 旳二元函数,则
J
x2 x1
y2 y1
F
(
x,
y,
u,ux
,
u
y
)dxdy
u(x1, y) u(x2 , y) u(x, y1) u(x, y2 ) 0
与此泛函极值问题相应旳E-L方程为
F F F ( ) ( )0
yi |xa 0,
yi |xb =0
(i 1, 2,, n)
则与此泛函极值问题相应旳E-L方程为

数学物理方法 北大

数学物理方法 北大

数学物理方法北大
北大指的是北京大学,是中国最高学府之一,也是国内重点高校之一。

在数学和物理学科中,北大有着较高的学术声誉,拥有一批国内外知名的数学和物理学者。

以下是一些北大在数学和物理学中常用的方法:
数学方法:
1. 应用数学方法:包括微积分、线性代数、概率统计等,用于解决实际问题,如数值计算、优化问题等。

2. 微分方程:用于描述自然界中的各种动态系统,包括常微分方程和偏微分方程。

3. 群论和代数:用于研究对称性和变换等概念,应用于物理、几何和密码学等领域。

4. 几何和拓扑:用于研究空间的形状和性质,如流形、纤维丛等。

5. 数理逻辑:用于研究形式化的推理和证明的方法。

物理方法:
1. 数值计算方法:包括有限差分、有限元、蒙特卡洛等,用于模拟和求解物理问题。

2. 变分法:用于寻找物理系统的最优解,如最小作用量原理。

3. 统计物理方法:用于研究大量粒子的行为,包括热力学、相变、统计力学等。

4. 场论:用于描述物理系统中的场的性质和行为,如电磁场、量子场论等。

5. 对称性方法:用于研究物理系统的对称性和守恒律,如对称群、连续对称性、
局域对称性等。

以上仅是北大在数学物理领域常用的一些方法,实际上还有许多其他方法和技巧。

这些方法在理论研究和实际应用中发挥着重要作用,为解决复杂问题提供了有效的工具和思路。

数学物理方法 13 变分法共45页PPT

数学物理方法 13 变分法共45页PPT
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
45
பைடு நூலகம்
数学物理方法 13 变分法
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒

通俗简易讲解变分问题ppt课件-PPT课件

通俗简易讲解变分问题ppt课件-PPT课件
C
滚轮(半径为 2 )沿 x 轴滚动的轨迹为旋轮 线(俗称摆线)钟表中的齿轮齿形曲线不是渐开 线而是摆线,其特点中心距不可分,优点精确。
1
2. 等周问题—条件泛函极值

一块钢板围成什么曲面做成的半壁料 仓其容积最大。化成平面问题,定长直线 ,围成什么曲线使其所围面积最大。
' F ( x , y , y )dx ydx 条件: 0 1 y dx l ,泛函0 l
几个概念
• 泛函—函数的函数,表达式:
' F (x ,y ,y )d x称为变分;

F (x ,y , y' )d x;
泛函的极值条件。 Fxyy ( , , ) d x 0
'
几个实例
• 1. 最大速降问题 • 坐标原点到某点M(a,b)时间最短,是走 什么轨道(轨迹)。 ' dF • 根据欧拉方程 Fy' y 0 dx • 降阶欧拉方程(如果泛函不含x)
• 日本鹫津久一郎在1968年出版的《弹性和塑性 力学中的变分法》一书中,才比较明确地应用 了拉氏乘子法,但还有一些要点上不够明确, 如待定乘子通过泛函驻值条件来决定的观点还 没有反映。
• 一直到1977年,国外的文献上才有这一方面的 论述。O.C· 钦科维奇(Zienkiewicz)在《有限元 法》一书中明确地把Courant和Hilbert的经典著 作中有关变分约束条件,待定拉格朗日乘子法 加以讲解,应用到弹性力学变分原理中。比起 钱伟长1964年的工作已晚了13年。
y ( x ,) y ( x ) [ y ( xy ) ( x ) ] 0 0


式中, α为任意实数,易证曲线族 中的每条 曲线都属于容许曲线族。

数学物理方法 13 变分法(精选)PPT45页

数学物理方法 13 变分法(精选)PPT45页
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
T)
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

课件_ch01变分法简介_v1

课件_ch01变分法简介_v1

第三个变分问题:等周问题
在满足 x (s 0 ) = x (s1 ), y(s 0 ) = y(s1 ) 和条件
L(x (s ), y(s )) =
ò
s2
s1
ædx (s )ö ædy(s )ö ÷ ÷ ç ÷ ÷ 1+ç + ds = constant (a) ç ç ÷ ÷ ç ç ÷ ÷ ds ds è ø è ø
注 1:有两个可以选取的函数 x = x (s ), y = y(s ) 注 2:也是边界已定的变分, x (s 0 ) = x (s1 ), y(s 0 ) = y(s1 ) 注 3: y = y(x ), z = z (x ) 之间必须满足的条件(a)也是一个泛函
1.2
变分的基本概念
变分原理 variational principle: 把一个物理学问题 (或其他学科的问 题)用变分法化为求泛函极值(或驻值)的问题。 如果建立了一个新的变分原理,它解除了原有的某问题变分原理的 某些约束条件,就称为该问题的广义变分原理;如果解除了所有的约束 条件,就称为无条件广义变分原理,或称为完全的广义变分原理。 1964 年,钱伟长教授明确提出了引进拉格朗日成子( Lagrange multiplier)把有约束条件的变分原理化为较少(或没有)约束条件的变 分原理的方法。 日本的鹫津一郎教授、中国科学院院士钱伟长教授和刘高联教授等 都是这方面的世界级大师。
这里假定 y(x ) 是在某一函数类(容许函数)中任意的改变。
2 微分与变分
所谓很小的改变量系指变量函数 y(x ) 与 y1(x ) 的接近程度。 当 dy = y1(x ) - y(x ) 的模很小 时,称 y(x ) 与 y1(x ) 有零阶接近度。当下面诸模都很小时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档