小升初数学几何七大模块之几何模块详解

合集下载

小升初数学必备专题之几何模块

小升初数学必备专题之几何模块

目录几何知识网络 (2)第一章几何图形的认知 (13)第二章长度与角度的计算 (16)第三章直线形计算一 (22)第四章几何图形剪拼 (26)第五章格点与割补 (30)第六章直线形计算二 (35)第七章圆与扇形 (40)第八章直线形计算三 (45)第九章立体几何 (50)第十章几何综合一 (55)第十一章几何综合二 (60)几何知识网络⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=+-⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=+-⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧.2)(.1/////////....面数棱数顶点数任何一个立体图形都有欧拉公式:转化推算公式测量解题方法求体积求面积求棱长问题类型球体圆锥圆柱体棱锥长方体正方体多面体立体图形区域面积小线段面图形:其交点数对于任何一个复杂的平共角定理:锯齿定理:长方形相关结论:相似三角形:中位线定理:梯形蝴蝶定理:蝴蝶定理:沙漏定理:鸟头定理:燕尾定理:三角形等积变形:勾股定理:容斥原理:定理比例对称添补法重叠法转法旋平移法割补法重新组合法辅助线法直接求法加、减法常用法方题解求面积求周长求角度求长度问题类型复合图形多边形不规则图形弧长直径半径扇形半圆圆正多边形梯形平行四边形长方形正方形形边四等边三角形等腰三角形钝角三角形直角三角形锐角三角形形角三规则图形面周角平角钝角直角锐角角直线:射线:线段:线点:形图面平何几古希腊人的形数观: (1)点:(2)线:两点连成一条直线。

小学几何模块总结知识点

小学几何模块总结知识点

小学几何模块总结知识点小学几何模块是数学课程中的重要组成部分,它涉及到平面图形和立体图形的基本概念、性质和计算方法。

以下是小学几何模块的知识点总结:一、平面图形1. 点、线、面:点是没有大小的位置,线是由点组成的一维对象,面是由线组成的二维对象。

2. 角:由两条射线组成的图形,根据大小可分为锐角、直角、钝角。

3. 三角形:由三条线段首尾相连组成的封闭图形,分为等边三角形、等腰三角形和一般三角形。

4. 四边形:由四条线段首尾相连组成的封闭图形,包括正方形、长方形、平行四边形、菱形和梯形。

5. 圆:平面上所有与定点(圆心)距离相等的点的集合。

6. 多边形:由多条线段首尾相连组成的封闭图形,根据边数的不同有不同的名称,如五边形、六边形等。

二、立体图形1. 长方体:六个面都是矩形的立体图形,具有12条棱和8个顶点。

2. 正方体:长方体的一种特殊形式,所有边长相等。

3. 圆柱:由两个平行的圆形底面和连接它们的侧面组成。

4. 圆锥:一个顶点和底面圆形通过一个曲面连接。

5. 球体:所有点到中心点距离相等的三维图形。

三、图形的周长和面积1. 周长:图形边界的长度,平面图形的周长可以通过加总所有边长来计算。

2. 面积:图形覆盖的平面区域大小,可以通过不同的公式来计算,如三角形的面积公式为底乘高除以2。

四、图形的体积和表面积1. 体积:立体图形所占据的空间大小,可以通过不同的公式来计算,如长方体的体积公式为长乘宽乘高。

2. 表面积:立体图形所有表面的总面积,可以通过加总所有面积来计算。

五、对称性1. 轴对称:图形沿一条直线折叠后,两侧能够完全重合。

2. 中心对称:图形绕一点旋转180度后,能够与原图形完全重合。

六、图形的变换1. 平移:图形在平面上沿着某一方向移动一定的距离。

2. 旋转:图形绕一点旋转一定的角度。

3. 反射:图形沿一条直线翻转。

七、图形的相似和全等1. 相似:两个图形的对应角相等,对应边成比例。

2. 全等:两个图形完全重合,所有对应边和角都相等。

奥数资料小升初复习必备资料奥数七大模块重要知识点

奥数资料小升初复习必备资料奥数七大模块重要知识点

奥数资料小升初复习必备资料奥数七大模块重要知识点奥数是指奥林匹克数学竞赛,是国内外通用的一个数学竞赛项目。

奥数不仅要求学生有扎实的数学基础,还要求学生有良好的逻辑思维和问题解决能力。

小升初时,家长们常常会让孩子参加奥数培训,以提高孩子的数学水平。

下面是奥数小升初复习必备资料。

奥数的内容主要分为七大模块,分别是算术,代数,几何,数论,综合题,应用题和证明题。

每个模块都有其重要的知识点,在小升初复习时,要对这些知识点有充分的了解和掌握。

1.算术:四则运算是算术的基础,包括加减乘除和整数的运算法则。

在小学阶段,学生应对四则运算有扎实的掌握,能够熟练进行运算。

2.代数:代数是数学的一门重要分支,包括代数式的简化、方程的解法等。

在小升初的复习中,要掌握基本的代数式简化方法和方程的求解方法。

3.几何:几何是研究空间形状和其性质的学科,包括平面几何和立体几何。

在小升初的复习中,要掌握基本的平面几何和立体几何的概念和性质。

4.数论:数论是研究整数的性质和关系的学科,包括最大公因数、最小公倍数等。

在小升初的复习中,要掌握数论的基本概念和性质,能够进行数论问题的解答。

5.综合题:综合题是将多个数学知识点结合起来进行解答的题目。

在小升初的复习中,要能够灵活运用所学的知识进行综合题的解答。

6.应用题:应用题是将数学知识应用到实际问题中进行解答的题目。

在小升初的复习中,要能够理解应用题的背景和要求,运用所学的知识进行解答。

7.证明题:证明题要求学生通过严谨的推理和证明来解决问题。

在小升初的复习中,要能够理解证明题的要求和思路,能够进行证明题的解答。

在复习奥数时1.理解基础概念:奥数的知识点是建立在基础概念之上的,所以首先要理解数学的基本概念和定义。

2.熟练运用公式和定理:奥数中会使用到很多公式和定理,要能够熟练运用这些公式和定理,进行问题的解答。

3.掌握解题方法:对于不同类型的题目,要学会不同的解题方法,培养灵活的思维和解题能力。

总集篇-七种典型几何模型【七大考点】-2024年小升初数学(解析版)

总集篇-七种典型几何模型【七大考点】-2024年小升初数学(解析版)

总集篇·七种典型几何模型【七大考点】【第一篇】专题解读篇本专题是难点03:总集篇·七种典型几何模型。

本部分内容以七种典型几何模型为主,其中包括一半模型、等高模型、等积变形模型、鸟头模型、蝴蝶模型、相似模型、燕尾模型等,绝大部分考点属于思维拓展内容,考点考题综合性极强,难度极大,建议作为小升初复习难点内容,再根据学生实际水平和总体掌握情况,选择部分考点进行讲解,一共划分为七个考点,欢迎使用。

【第二篇】目录导航篇【考点一】几何模型其一:一半模型 (2)【考点二】几何模型其二:等高模型 (3)【考点三】几何模型其三:等积变形 (7)【考点四】几何模型其四:鸟头模型 (13)【考点五】几何模型其五:蝴蝶模型(风筝模型或任意四边形模型) (16)【考点六】几何模型其六:相似模型 (20)【考点七】几何模型其七:燕尾模型 (24)【第三篇】知识总览篇【第四篇】典型例题篇【考点一】几何模型其一:一半模型。

【方法点拨】对于长方形来说,最简单的一半就是连接对角线,当然通过等积变形还可以得到很多很多一半,最为常见的就是长方形中的一座山的样子的三角形。

【典型例题】如图,在长方形中有3块面积已经给出,求阴影部分的面积是( )。

A.10B.11C.12D.13解析:通过观察图形发现,已知三角形的面积和阴影部分图形的面积没有直接的联系,那不妨换个角度,在这个长方形中有两个长方形一半的三角形,那么这两个三角形的面积相加应该等于长方形面积,但是由于有重叠部分,两个三角形没有占满整个长方形,那么空出来的部分其实就和重叠部分面积相同,即重叠等于未覆盖。

阴影面积=5+3+4=12,选C。

【对应练习】如图所示,长方形ABCD中,三角形APD的面积是25,三角形BQC的面积为35,则阴影部分面积为多少?【考点二】几何模型其二:等高模型。

【方法点拨】三角形面积的计算公式是三角形面积=底×高÷2。

从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。

归纳小升初-数学-几何-五大几何模型.doc

归纳小升初-数学-几何-五大几何模型.doc

一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△知识框架五大几何模型(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.④A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDA B CDEFG①AD AE DE AFAB AC BC AG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小升初平面几何常考五大模型知识分享

小升初平面几何常考五大模型知识分享

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2 -c(c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。

小升初数学几何五大几何模型

小升初数学几何五大几何模型

一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△知识框架五大几何模型(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.④A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDA B CDEFG①AD AE DE AFAB AC BC AG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小升初数学重要知识点梳理平面几何形的性质与运用

小升初数学重要知识点梳理平面几何形的性质与运用

小升初数学重要知识点梳理平面几何形的性质与运用在小升初数学中,平面几何是一个非常重要的部分。

平面几何涉及到各种形状的性质与运用,对于学生来说,掌握好这些知识点是非常重要的。

本文将对小升初数学中平面几何形的性质与运用进行梳理,并且探讨其在解题中的应用。

一、点、线、面的基本概念在开始具体讨论平面几何形的性质与运用之前,我们首先需要明确一些基本概念。

点是最基本的几何对象,它没有任何大小,用来表示位置。

线是由无数个点组成的,具有长度但没有宽度。

面是由无数个点和线组成的,它有长度和宽度。

明确了这些基本概念后,我们才能更好地理解和应用平面几何形的性质与运用。

二、图形的名称和性质在平面几何中,我们经常遇到各种各样的图形,比如三角形、矩形、圆形等等。

下面我们将逐一介绍它们的名称和性质。

1. 三角形三角形是由三条线段组成的图形,它有三个顶点和三条边。

根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。

等边三角形的三条边长度相等,等腰三角形的两边相等,普通三角形的三边都不相等。

掌握好三角形的性质,可以帮助我们在解题中更好地应用它们。

2. 矩形矩形是由四条边组成的图形,它的对边相等且平行,相邻的两条边相等但不平行。

矩形有很多重要的性质,比如面积计算公式为长乘以宽,对角线相等且互相平分,等等。

在解题中,我们可以利用这些性质来快速求解问题。

3. 圆形圆形是由一个圆心和无数个等距离的点组成的图形,它的形状特殊,没有边和角。

圆形的面积计算公式为πr²,其中r表示半径。

圆形有很多重要的性质,比如直径是两个点之间的最大距离,弦是两个点之间的线段,切线与半径垂直等等。

掌握好这些性质,可以帮助我们更好地理解和应用圆形。

三、图形的运用了解了平面几何形的性质后,我们可以将它们灵活地应用于解题中。

下面列举一些常见的应用场景。

1. 计算图形的面积和周长在解题中,经常需要计算图形的面积和周长。

对于三角形来说,可以利用海伦公式或者底边乘以高来计算面积,利用边长之和来计算周长。

小升初-数学-几何-七大模块之几何模块详解精编版

小升初-数学-几何-七大模块之几何模块详解精编版

小升初几何
小升初奥数大概分为计算、数论、几何、计数、组合、行程、应用题七大模块。

几何问题涵盖了小学奥数所有关于图形的知识点,可以说是重中之重,更是各类奥数杯赛以及小升初考试中最常见的一类题型,同时也是课本中常考的题型。

几何又是奥数学习中的难中之难,很多孩子在分析解决这类问题时都感觉力不从心而无从下手,这是因为其具体题型变化多样,形成10多种题型(比如巧求周长、巧求面积、圆与扇形、格点与面积、勾股定理与弦图、几何五大模型、立体图形等等),都有各自相对独特的解题公式和方法。

几何模块包含以下知识点:
(一)直线型
1、长度与角度
2、格点与割补
3、三角形等积变换与一半模型
4、勾股定理与弦图
5、五大模型
(二)曲线型
1、圆与扇形的周长与面积
2、图形旋转扫过的面积问题
(三)立体几何
1、立体图形的面积与体积
2、平面图形旋转成的立体图形问题
3、平面展开图
4、液体浸物问题
几何体系所包含的五大基本模型:。

小升初几何形体知识点总结

小升初几何形体知识点总结

小升初几何形体知识点总结一、基本概念几何形体是指由点、线、面组成的图形,是几何学研究的对象之一。

在我们日常生活中,常见的几何形体有:点、线、面、多边形、三角形、四边形、圆等等。

下面我们来逐个介绍几何形体的基本概念和性质。

1. 点、线和面1.1 点点是最基本的几何概念,没有长度、宽度、高度,用点来表示位置。

1.2 线线是由一系列相互连接的点构成,没有宽度。

可以延伸到无限远。

1.3 面面是由一系列线相互连接而成,有宽度,可以用平面或者曲面来表示。

2. 多边形多边形是一个由若干条线段首尾相接而构成的封闭图形。

3. 三角形三角形是一个三边的多边形,其中任意两边之和大于第三边。

4. 四边形四边形是一个四边的多边形,常见的有矩形、正方形、平行四边形等。

5. 圆圆是一个平面上所有边到一个固定点(圆心)的距离都相等的图形。

二、基本性质1. 点、线、面点没有长度、宽度、高度;线没有宽度,有长度,可以延伸到无限远;面有宽度和长度,可以用平面或者曲面来表示。

2. 多边形多边形的边数和顶点数相同,任意两条边之间的夹角之和等于360度。

三角形内角和为180度,任意两边之和大于第三边。

4. 四边形四边形的对角线互相平分,相邻内角之和为180度,对角和为360度。

5. 圆圆的直径是其两个相对的边界上的最长的线段,它同时也是圆心到圆上任意一个点的距离。

圆的面积公式为πR^2,其中R为半径。

三、立体图形立体图形是由平面图形组成的空间图形,常见的有:正方体、长方体、棱柱、棱锥、圆柱和圆锥等。

1. 正方体正方体是六个相等的正方形组成的立体图形,每个顶点拥有三个面。

2. 长方体长方体是由六个矩形组成的立体图形,拥有八个顶点、12条棱和六个面。

3. 棱柱棱柱是由两个并排的平行四边形组成的立体图形,顶面和底面平行。

4. 棱锥棱锥是由一个不是平行四边形的底面和一个顶点组成的立体图形,顶面和底面不平行。

5. 圆柱圆柱是由两个平行的圆面和一个侧面组成的立体图形。

小升初奥数七大模块内容

小升初奥数七大模块内容

小升初奥数七大模块内容,你知道多少?奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题。

同学们,看到这七大模块你都熟悉吗?模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独同学们,虽然在这里我们介绍了奥数,但并不是说小升初只考奥数知识,随着这两年的政策的调整,并不是一味的求难就能在小升初过程中拿得好成绩哦,数学拓展之余,千万不可以忘记基础要打牢哦,小升初,拓展知识的同时,基础也一定要牢固。

小升初必备资料:奥数七大模块及各模块重要知识点

小升初必备资料:奥数七大模块及各模块重要知识点

小升初必备资料:奥数七大模块及各模块重要知识点小升初必备资料:奥数七大模块及各模块重要知识点历年小升初考试中数学成绩占有重要地位,择校考试过程中为了更进一步的拉开分数的距离,除了基础的数学知识必须熟练掌握熟练之外,数学的拓展内容也成为考核的重点部分。

数学思维拓展,也就是大家常说的奥数。

所有的奥数知识,总的来分可以分为七大模块,各类试题都由这七大模块而来。

那么,奥数都有哪些模块呢?每个模块都有哪些重要知识呢?一起看看这些模块你掌握住了多少?奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初几何
小升初奥数大概分为计算、数论、几何、计数、组合、行程、应用题七大模块。

几何问题涵盖了小学奥数所有关于图形的知识点,可以说是重中之重,更是各类奥数杯赛以及小升初考试中最常见的一类题型,同时也是课本中常考的题型。

几何又是奥数学习中的难中之难,很多孩子在分析解决这类问题时都感觉力不从心而无从下手,这是因为其具体题型变化多样,形成10多种题型(比如巧求周长、巧求面积、圆与扇形、格点与面积、勾股定理与弦图、几何五大模型、立体图形等等),都有各自相对独特的解题公式和方法。

几何模块包含以下知识点:
(一)直线型
1、长度与角度
2、格点与割补
3、三角形等积变换与一半模型
4、勾股定理与弦图
5、五大模型
(二)曲线型
1、圆与扇形的周长与面积
2、图形旋转扫过的面积问题(三)立体几何
1、立体图形的面积与体积
2、平面图形旋转成的立体图形问题
3、平面展开图
4、液体浸物问题
几何体系所包含的五大基本模型:。

相关文档
最新文档