Data-Reuse and Parallel Embedded Architectures for Low-Power, Real-Time Multimedia Applicat

合集下载

林业院校中“数据科学导论”的课程改革探索

林业院校中“数据科学导论”的课程改革探索

计算机教学与教育信息化本栏目责任编辑:王力林业院校中“数据科学导论”的课程改革探索熊飞,曹涌,孙永科(西南林业大学大数据与智能工程学院,云南昆明650224)摘要:数据科学导论是数据科学与大数据专业中很重要的导论性课程,课程中涉及了统计学、计算机、机器学习和深度学习的大量前沿内容,具有理论复杂、知识点繁多的特点。

理工科基础较为薄弱的林业院校学生掌握难度较大。

本文提出了数据分析基础、机器学习与深度学习和数据管理与产品开发的三大模块构成的课程体系以及相应的教学模式,侧重于培养学生以数据为中心的思维模式,形成了符合林业院校特色的导论课程。

关键词:数据科学导论;课程改革;导论课程;林业院校;思维模式中图分类号:TP391文献标识码:A文章编号:1009-3044(2021)15-0147-03开放科学(资源服务)标识码(OSID ):Exploration on Course Reform of Introduction to Data Science in Forestry Universities XIONG Fei,CAO Yong,SUN Yong-ke(College of Big Data and Intelligent Engineering,Southwest Forestry University,Kunming 650224,China)Abstract:Introduction to Data Science is an important introductory course for Data Science and Big Data Technology,which covers a wide range of cutting-edge content in statistics,computers,machine learning,and deep learning.Therefore learning of this course is a challenging work for students that whitweak foundations in science and engineering in forestry universities.A teaching model focus on cultivating a data-centric mindset is introduced in this paper,which includes three parts:data analysis,Machine learning and deep learning,data management and product development.The redesign of Introduction to Data Science makes it con⁃form to the characteristics of forestry university.Key words:introduction to data science;course reform;introductory course;forestry universities;1引言2015年由国务院印发了《国务院关于印发促进大数据发展行动纲要的通知》标志着国家把大数据上升到了国家战略的层面,随后在2016年教育部在《教育部高等教育司关于2016年度普通高等学校本科专业设置工作有关问题的说明》中增加了数据科学与大数据技术专业(专业代码:08910T )来促进数据科学专业人才的培养。

重庆大学研究生学位论文格式

重庆大学研究生学位论文格式

重庆大学研究生学位论文格式内容摘要:重庆大学研究生学位论文格式,重庆大学研究生论文模板 1 引言的质量,便利研究生学位论文的收集、存储、处理、加工、检索、利用、交流、传播。

1.2 本标准... 重庆大学研究生学位论文格式,重庆大学研究生论文模板1 引言的质量,便利研究生学位论文的收集、存储、处理、加工、检索、利用、交流、传播。

1.2 本标准适用于申请硕士学位、博士学位的学位论文的编写格式。

1.3 本标准是参照中华人民共和国国家标准《科学技术报告、学位论文和学术论文的编写格式》和《文后参考文献著录规则》制订的。

2 学位论文2.1 硕士学位论文硕士学位论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专业知识,并对所研究课题有新的见解,有从事科学研究工作或独立担负专门技术工作的能力。

2.2 博士学位论文博士学位论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具有独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。

3 编写要求3.1 学位论文须用16K标准白纸、使用简化汉字、计算机打印、复制。

3.2 学位论文页边距按以下标准设置:上边距:2.8cm;下边距:2.5cm;左边距:2.5cm;右边距:2.5cm;装订线:0.5cm;页眉:1.6cm;页脚:1.5cm。

3.3 页眉从摘要页开始到最后,在每一页的最上方,用5号宋体,左对齐为“重庆大学博士(或硕士)学位论文”,右对齐为各章章名,页眉之下划1条线。

双面复制的论文,左页页眉居中为“重庆大学硕士(或博士)学位论文”,右页页眉居中为各章章名。

3.4 学位论文字间距设置为标准字间距(小四号宋体)或加宽0.2磅(五号宋体);行间距设置为加宽0.2磅。

也可参考上述值按每页32字×36行(小四字宋体)或34字×36行(五号宋体)设置。

4 编写格式4.1 学位论文章、节的编号采用阿拉伯数字分级编号(见6.2.1)。

残差半循环神经网络[发明专利]

残差半循环神经网络[发明专利]

专利名称:残差半循环神经网络专利类型:发明专利
发明人:汤琦,祁褎然
申请号:CN202080036830.3申请日:20200323
公开号:CN114175052A
公开日:
20220311
专利内容由知识产权出版社提供
摘要:残差半循环神经网络(RSNN)可以被配置成接收时不变输入和时变输入数据以生成一个或多个时间序列预测。

所述时不变输入可以由所述RSNN的多层感知器处理。

所述多层感知器的输出可以用作所述RSNN的循环神经网络单元的初始状态。

循环神经网络单元还可以接收时不变输入,并且利用所述时不变输入处理所述时不变输入以生成输出。

所述多层感知器和所述循环神经网络单元的输出可以被组合以生成所述一个或多个时间序列预测。

申请人:赛诺菲
地址:法国巴黎
国籍:FR
代理机构:北京坤瑞律师事务所
代理人:封新琴
更多信息请下载全文后查看。

基于自适应对偶字典的磁共振图像的超分辨率重建

基于自适应对偶字典的磁共振图像的超分辨率重建
Ad a p t i v e Du a l Di c t i o n a r y
L I U Z h e n - q i , B A 0 L i - j u n , C HE N Z h o n g
r De p a r t m e n t o f E l e c t r o n i c S c i e n c e , X i a me n U n i v e r s i t y , Xi a me n 3 6 1 0 0 5 , C h i n a )
刘振 圻 , 包立君 , 陈 忠
( 厦 门大学电子科 学系, 福建 厦门 3 6 1 0 0 5 )
摘 要: 为了提高磁共振成像的图像 质量 , 提 出了一种基于 自适应对偶字典的超分辨率 去噪重建方法 , 在超分辨率重建过程 中引入去噪功能 , 使 得改善图像 分辨率的同时能够有效地滤除 图像 中的噪声 , 实现 了超分辨率重建和去噪技术 的有机结合 。该 方法利用聚类一P c A算 法提取图像的主要特征来构造主特征字典 , 采用 训练方法设计 出表达图像 细节信 息的 自学 习字 典 , 两者 结合构成的 自适应对偶字典具有 良好 的稀疏度和 自适应性 。实验表 明, 与其他超分辨率算法相 比, 该方法超分辨率重建效果显 著, 峰值信噪 比和平均结构相似度均有所提高。
第2 8 卷第 4 期
2 0 1 3 年8 月
பைடு நூலகம்光 电技术 应 用
EL ECT RO一 0P T I C T ECHNOLOGY AP P LI CAT1 0N
V O1 . 28. NO. 4
Au g u s t , 2 01 3

信号 与信息处理 ・
基 于 自适应对偶 字典的磁共振 图像 的超 分辨率重建

近似概念格及其增量构造算法研究

近似概念格及其增量构造算法研究
d i1 .9 9 ji n 10 —6 5 2 1 . 1 0 ・ o :0 3 6 /.s .0 1 3 9 .0 2 0 .0 s 5
Ap r xmain c n e tltie a d ic e n a o sr ci g ag rt m p o i t o c p atc n n r me tlc n tu tn loih o
c y.e p ca l o h aa s t t a g c l n e st . s e i y f rte d t e swi lr e s a e a d d n i l h y
Ke r s a p o i t n c n e t at e o m l o c p n lss n o lt oma c n e t n r me tlc n t c ig a— y wo d : p r xma i o c p t c ;f r a n e ta ay i ;i c mp ee fr l o tx ;ic e n a o sr t l o l i c u n
mainTc nl y L oa gNom l oee L oagH n n4 12 C i ) t eh oo , uy n r a lg , uy n ea 7 0 2, hn o g Cl a
Ab t a t T e c a sc c n e tlt c sl td i n o lt no ma in n o d rt ov h s l tt n, r s n e e s r c : h l si o c p at e i i e n ic mp e e i fr t .I r e o s l e t i i ai p e e t d a n w i mi o mi o c n e t a t e mo e— p rx ma in c n e t at e o c p t c d la p o i t o c p t c ,wi h c ud b s d t e l i si g v l e i r l o t t O h t l i o l i t o l e u e o d a t misn —a u n f ma n e . n t a c w h o c x

牛顿-拉夫逊潮流计算中检测雅可比矩阵奇异性和网络孤岛的新方法

牛顿-拉夫逊潮流计算中检测雅可比矩阵奇异性和网络孤岛的新方法

由 ( 式可得:I 【 0由于 D是对角矩 3 ) = 阵, , 因此 至少有一对角元 素为 0 。 因为 U= UL D D ,VL 设该潮流计算 是 n 节点 系统 。 所以( ) 2) 2 或( 工 a b弋有一个成立 , U 中有一 H子矩阵奇异 ,那 么 H矩阵各 个列向量线 性相 即 n 一1 零行 或 中有一零列 。 u 中行为零 , 是行相关 隋况 ;丰中列 为 关 , : 这 L 即 - = ( 不全为 0 q 0 ) 零, 这是列相关 隋况。 其 中: 是 H矩 阵的列 向量 ,1是相关 系 c T A矩 阵奇异 , 那么 A矩 阵行 向量 、 向量线 列 数 。由潮流雅可 比矩阵元素计算可知 : 性相关 , 即: 对 同一节点 , 素和 J 素的计 算具 有完 H元 元 全相似 的表达式 ,因此 ,矩 阵的各个列 向量也 J (a 4) 应满足( , 即:
中国新技术新产 品
一7

C ia N w T c n l ge n r d cs h n e e h oo isa d P o u t
高 新 技 术
新型停 水 自动关 闭阀结构 、 点及操作要 点 特
张金龙 曹 艳
( 西安航 空技 术高等专科学校机械 工程 系, 陕西 西安 7 0 7 ) 10 7
中图分 类 号 : 4 . 文献标 识 码 : G6 45 A

I 言 。在 日常生 活 中 , 前 由于停 水时 忘记 关 闭 阀门 , 水 时 也没 能及 时 关 闭 阀门 , 来 造成 水 资源 浪 费甚 至形 成安 全 隐 患 的情况 屡 见不 鲜 。 着全 民节 水 概念 不 断深入 人 心 , 一 问 随 这 题 引起 各方 关 注 。 因此 急 需设 计 一 款可 以在 停 水 时 自动关 闭 的水 阀 ,它 能够 在停 水 后 即 使 人们 忘记 关 闭 水 龙 头 也 能实 现 自动 关 闭 , 而再 次 来水 时 不 至于 出 现水 患 的情 况 ,能够 有 效 的节 约水 资源 。 要 实 现 自动 关 闭 功 能首 先 要 有 动 力 , 这 方 面可 以借 助 磁性 元件 的磁 力 、弹性 元 件 的 弹力 、 力 等外 力 , 时考 虑供 水 和停 水 时 的 重 同 水 压变 化 , 通过 联 动机 构实 现 。 2停 水 自动关 闭 阀 的结 构 及 特点 。利用 水 压 、 力 等 力 学 特 性 , 过 一 系 列 的实 验 、 重 经 改 进 , 发 出一 种 简单 、 行 的带 有 停水 自锁 研 可 机 构 的水 阀 。 款 水 阀为纯 机 械构 造 , 阀体 这 以 为 主体 框 架 , 有 阀 芯 、 封 圈 、 心 轮 以及 配 密 偏 手柄 , 无弹 性元 件 , 作状 况 不 受环 境 和时 间 工 的 限制 , 构 简 单 , 价 低 廉 并 方 便拆 换 , 结 造 整 体 可靠 性 高 。 停 水 自动关 闭 阀结 构 原 理 如 图 1 示 , 所 实 物 如 图 2所示 。序号 l 水 阀 的偏 心轮 , 为 2 为 0 型密 封 圈 , 为 V型 密封 圈 , 阀体 , 3 4为 5 为 阀芯 , 销 轴 , 手 柄 。 阀体 4是 主 框 6为 7为 架 , 来装 配其 它 元 件 , 进 水 口和 出 水 口; 用 有 阀芯 5的顶 端 与末 端分 别 装有 V 型密 封 圈 3 和 0 型 密 封 圈 2v 型 密 封 圈 3利 用 其 锥 面 , 与 阀体 4内部 锥 面 配合 实 现 停 水 时 密 封 , 而 0型密 封 圈 2与 阀体 4内壁 的接 触 实 现来 水 时对 水 阀末 端 的密 封 ,在 阀 芯 5的 中部 开两

植物基因组上游开放阅读框的挖掘方法及其翻译调控

植物基因组上游开放阅读框的挖掘方法及其翻译调控

植物基因组上游开放阅读框的挖掘方法及其翻译调控植物基因组上游开放阅读框的挖掘方法及其翻译调控植物基因组上游开放阅读框(ORF)的研究是基因组学的主要研究领域之一,这是植物体内的遗传物质的一个重要特征,它具有很强的调节功能,可以控制表达基因的起点和终点,以及影响某一基因的翻译及其产物。

因此,开发ORF挖掘方法是构建调控网络、检测基因多样性、探索基因功能以及分析植物表达谱等研究中至关重要的工具。

一、基因组学方法在ORF挖掘中的应用1. 锚序列方法锚序列方法包括双锚序列比对(TBLASTN)、MRAP和CRAIG等,通过比对群体基因组序列搜索到ORF,这是开创ORF挖掘的基本方法。

锚序列方法的优点是可靠性高,而且可以生成真实和可信的ORF序列库。

目前,该研究方法已被广泛应用于序列比对、基因家族鉴定、物种比较研究等方面。

2. 大规模测序分析技术近年来,大规模测序技术的出现使ORF挖掘变得更容易。

该技术可以结合锚序列比对结果,从植物基因组上游挖掘出ORF序列。

大规模测序分析技术在植物ORF挖掘中有重要应用,如能够提高检测灵敏度,使挖掘更加有效。

3. 基因组优化算法或深度学习技术基于现有的锚序列比对结果,利用进化计算优化多序列比对(MSA)算法挖掘植物ORF,将算法模型称为基因组研究优化算法(GA)。

GA能够精确地提取信息,从而可以最大限度地挖掘出ORF序列。

此外,还有一些深度学习技术,如卷积神经网络(CNN),可以用来挖掘ORF序列。

二、ORF翻译调控机制1. 转录密码子优化一个ORF的翻译取决于其翻译起始位点的优化,这样的起始位点能够产生正确的长度的蛋白质,其结构可以有效活化和调控。

因此,识别转录密码子优化是挖掘ORF的重要步骤,也是分析单个基因的重要方法,可以帮助我们了解基因表达的基本机制。

2. 非密码子对翻译程序的调控另外,ORF翻译过程可能受到非密码子对翻译程序的调控,如含有表达调控因子(TF)、mRNA修饰等因子。

基于子树特征的中文实体关系抽取

基于子树特征的中文实体关系抽取

[ src] K re to s o lt nh v e mpiirpeett no auesae ihcnt iig i sfletr o ueesAs Abta t en l h d reai a eh l tersnao f etr pcs c a ’ds nus ueu a ef m sls. me f r o t i c i f wh t h f u r a
的实体 关系抽取方法 。 利用子树挖掘和特征选择得到有效子树 , 并将其作为特征模板构造特征 向量。 中文语料 库上进行 的实验结果表 明, 在 该方法具有较好 的分类效果 。
关健词 :实体 关系抽取 ;短语结构语法 ;依存语法 ;特征选择 ;卡方统计量
Ch n s t yRea in Ex r ci nBa e n S b r eFe t r i e eEn i l t0 ta t0 s d0 u te a u e t
te fr aeoia o . xei e t sli ieeln ug a b s o a e rp sdme o r ni lt ne t ciniefc v . h m t r t n E l rnnar utnChns g aedt ae h wsh t o oe t df tyr ao xr t f t e o c g zi  ̄ r le a a s t t p h h o e t e i a o s ei
们普遍 使用的 2种方法 。基于 平面特征 的方法显式地将各种 语言特征表达成一个特征 向量 的形式 ,但其特征 的选择 是启
发式 的,需要大量人力 ,且性能 的提升 困难 。此外 ,该 方 】
2 依存语法树 . 2
依存语法是由 T sir 于 15 enee 99年提出的一种语 法理论 。 在依存语法树中 ,词 与词之 间通过依存和支配发生联 系,如

多模态话语分析视角下的《花木兰》字幕翻译

多模态话语分析视角下的《花木兰》字幕翻译

第43卷第4期2021年4月宜春学院学报Journal of Yichun UniversityVol.43)No.4Apr.2021多模态话语分析视角下的《花木兰》字幕翻译刘明玉(天津外国语大学通识教育学院,天津300270)摘要:张德禄提出了文化、语境、内容和表达四个层面的多模态话语分析模型,本文以此为理论框架,以迪士尼真人版电影《花木兰》为例,对其字幕翻译进行多模态话语分析,探究其字幕翻译如何成功把握语言、视觉、听觉等模态形式,完美契合电影的各个多模态交际场景,充分帮助中国观众理解电影故事内容。

关键词:多模态话语分析;字幕翻译;《花木兰》中图分类号:H059文献标识码:A文章编号:1671-380X(2021)04-0084-05On Subtitle Translation of Mulan from Based on Multimodal Discourse AnalysisLIU Ming-yu(School of General Education)Tianjin Foreign Studies University,Tianjin300270,China) Abstract:Zhang Delu sets up a synthetic theoretical framework for multimodal discourse analysis,which consists of multimodal discourse syshms at four l evels:culture,context,content and medic.Based on thm framework,thm paper analyzes the subtitle translation of the movic Mulan starring Crystal Liu from the perspective of multimodal discourse analysic.Thic paper11x5to explorr how translated subtitlec well match the multimodal discourse contextc in the movic by combining audio and yisual modaities with lingual modality in the subtitle traniation sc as to help Chsneteaudsenoeunderttand them9ese4Key words:multimodal discourse analysis;subtitle translation;Mulan近年来,国外电影不断引进,为了帮助观众理解电影内容,字幕翻译应运而生;字幕翻译已发展为一项产业,官方和民间的字幕翻译蓬勃发展,相关的翻译研究也不断涌现。

基于二维斜帐篷映射和中国剩余定理的彩色图像加密算法

基于二维斜帐篷映射和中国剩余定理的彩色图像加密算法

基于二维斜帐篷映射和中国剩余定理的彩色图像加密算法苏杰彬;朱子怡;钟幸贤;刘晶;叶瑞松
【期刊名称】《图像与信号处理》
【年(卷),期】2022(11)2
【摘要】本文将二维斜帐篷映射与中国剩余定理相结合,提出了一种基于置换–扩散模式的高效图像加密算法。

在置换过程中,该算法利用二维斜帐篷映射生成混沌序列,通过对混沌序列进行升序排列得到位置置换索引序列,用于图像像素位置的随机置乱。

在扩散过程中,利用中国剩余定理对置乱后的图像颜色分量进行重构,并引入实数广义Arnold映射来改变图像颜色分量的灰度值分布。

各种安全性分析都表明了本文提出的图像加密算法的有效性,能有效抵御各种攻击。

【总页数】14页(P54-67)
【作者】苏杰彬;朱子怡;钟幸贤;刘晶;叶瑞松
【作者单位】汕头大学数学系汕头
【正文语种】中文
【中图分类】TP3
【相关文献】
1.联合二维logistic混沌映射与比特重组的彩色图像加密算法
2.基于有限状态斜帐篷映射的图像加密算法
3.基于整数动态耦合帐篷映射的视频加密算法
4.基于三维Logistic映射和斜帐篷映射的图像加密
5.基于中国剩余定理和Logistic映射的彩色图像加密算法
因版权原因,仅展示原文概要,查看原文内容请购买。

雅典娜方案

雅典娜方案

雅典娜方案1. 概述雅典娜方案是一种用于构建和部署机器学习模型的开源框架,由百度公司推出。

与其他机器学习框架相比,雅典娜具有更高的灵活性和可扩展性,可以支持大规模的分布式训练和推理。

本文档将详细介绍雅典娜方案的架构、特点和使用方式。

2. 架构雅典娜方案的架构包括以下几个核心组件:2.1. 训练组件训练组件是用于构建和训练机器学习模型的核心组件。

它提供了各种算法和工具,包括数据预处理、特征工程、模型选择和训练等功能。

雅典娜的训练组件可以支持分布式训练,可以将大规模的数据集分割为多个小批量进行训练,并且可以使用多台机器进行并行计算,以加快训练速度。

2.2. 推理组件推理组件用于将已经训练好的模型应用到新的数据上,生成预测结果。

雅典娜的推理组件可以支持在线推理和离线推理,可以根据需求选择最佳的推理模式。

推理组件还提供了模型服务的接口,可以将模型封装成可部署的服务,供其他应用程序调用。

2.3. 数据管理组件数据管理组件用于管理机器学习模型的输入和输出数据。

它可以支持多种数据源,包括本地文件、数据库、分布式文件系统等。

数据管理组件还提供了数据转换和数据清洗的功能,可以对输入数据进行预处理,以满足模型训练的要求。

2.4. 模型部署组件模型部署组件用于将已经训练好的模型部署到生产环境中。

它提供了简单易用的部署工具,可以将模型转换为可在生产环境中运行的格式,比如TensorFlow的SavedModel格式或ONNX的模型格式。

模型部署组件还提供了性能优化和资源管理的功能,以保证模型在生产环境中的高效运行。

3. 特点雅典娜方案具有以下几个重要特点:3.1. 开源雅典娜方案是一个开源项目,通过GitHub上的开源社区进行维护和更新。

用户可以自由地查看和修改源代码,以适应自己的需求。

同时,用户还可以贡献自己的代码和功能,为雅典娜方案的发展做出贡献。

3.2. 易用性雅典娜方案提供了简单易用的用户接口,使得用户可以轻松地构建和训练机器学习模型。

Advances in

Advances in

Advances in Geosciences,4,17–22,2005 SRef-ID:1680-7359/adgeo/2005-4-17 European Geosciences Union©2005Author(s).This work is licensed under a Creative CommonsLicense.Advances in GeosciencesIncorporating level set methods in Geographical Information Systems(GIS)for land-surface process modelingD.PullarGeography Planning and Architecture,The University of Queensland,Brisbane QLD4072,Australia Received:1August2004–Revised:1November2004–Accepted:15November2004–Published:9August2005nd-surface processes include a broad class of models that operate at a landscape scale.Current modelling approaches tend to be specialised towards one type of pro-cess,yet it is the interaction of processes that is increasing seen as important to obtain a more integrated approach to land management.This paper presents a technique and a tool that may be applied generically to landscape processes. The technique tracks moving interfaces across landscapes for processes such as waterflow,biochemical diffusion,and plant dispersal.Its theoretical development applies a La-grangian approach to motion over a Eulerian grid space by tracking quantities across a landscape as an evolving front. An algorithm for this technique,called level set method,is implemented in a geographical information system(GIS).It fits with afield data model in GIS and is implemented as operators in map algebra.The paper describes an implemen-tation of the level set methods in a map algebra program-ming language,called MapScript,and gives example pro-gram scripts for applications in ecology and hydrology.1IntroductionOver the past decade there has been an explosion in the ap-plication of models to solve environmental issues.Many of these models are specific to one physical process and of-ten require expert knowledge to use.Increasingly generic modeling frameworks are being sought to provide analyti-cal tools to examine and resolve complex environmental and natural resource problems.These systems consider a vari-ety of land condition characteristics,interactions and driv-ing physical processes.Variables accounted for include cli-mate,topography,soils,geology,land cover,vegetation and hydro-geography(Moore et al.,1993).Physical interactions include processes for climatology,hydrology,topographic landsurface/sub-surfacefluxes and biological/ecological sys-Correspondence to:D.Pullar(d.pullar@.au)tems(Sklar and Costanza,1991).Progress has been made in linking model-specific systems with tools used by environ-mental managers,for instance geographical information sys-tems(GIS).While this approach,commonly referred to as loose coupling,provides a practical solution it still does not improve the scientific foundation of these models nor their integration with other models and related systems,such as decision support systems(Argent,2003).The alternative ap-proach is for tightly coupled systems which build functional-ity into a system or interface to domain libraries from which a user may build custom solutions using a macro language or program scripts.The approach supports integrated models through interface specifications which articulate the funda-mental assumptions and simplifications within these models. The problem is that there are no environmental modelling systems which are widely used by engineers and scientists that offer this level of interoperability,and the more com-monly used GIS systems do not currently support space and time representations and operations suitable for modelling environmental processes(Burrough,1998)(Sui and Magio, 1999).Providing a generic environmental modeling framework for practical environmental issues is challenging.It does not exist now despite an overwhelming demand because there are deep technical challenges to build integrated modeling frameworks in a scientifically rigorous manner.It is this chal-lenge this research addresses.1.1Background for ApproachThe paper describes a generic environmental modeling lan-guage integrated with a Geographical Information System (GIS)which supports spatial-temporal operators to model physical interactions occurring in two ways.The trivial case where interactions are isolated to a location,and the more common and complex case where interactions propa-gate spatially across landscape surfaces.The programming language has a strong theoretical and algorithmic basis.The-oretically,it assumes a Eulerian representation of state space,Fig.1.Shows a)a propagating interface parameterised by differ-ential equations,b)interface fronts have variable intensity and may expand or contract based onfield gradients and driving process. but propagates quantities across landscapes using Lagrangian equations of motion.In physics,a Lagrangian view focuses on how a quantity(water volume or particle)moves through space,whereas an Eulerian view focuses on a localfixed area of space and accounts for quantities moving through it.The benefit of this approach is that an Eulerian perspective is em-inently suited to representing the variation of environmen-tal phenomena across space,but it is difficult to conceptu-alise solutions for the equations of motion and has compu-tational drawbacks(Press et al.,1992).On the other hand, the Lagrangian view is often not favoured because it requires a global solution that makes it difficult to account for local variations,but has the advantage of solving equations of mo-tion in an intuitive and numerically direct way.The research will address this dilemma by adopting a novel approach from the image processing discipline that uses a Lagrangian ap-proach over an Eulerian grid.The approach,called level set methods,provides an efficient algorithm for modeling a natural advancing front in a host of settings(Sethian,1999). The reason the method works well over other approaches is that the advancing front is described by equations of motion (Lagrangian view),but computationally the front propagates over a vectorfield(Eulerian view).Hence,we have a very generic way to describe the motion of quantities,but can ex-plicitly solve their advancing properties locally as propagat-ing zones.The research work will adapt this technique for modeling the motion of environmental variables across time and space.Specifically,it will add new data models and op-erators to a geographical information system(GIS)for envi-ronmental modeling.This is considered to be a significant research imperative in spatial information science and tech-nology(Goodchild,2001).The main focus of this paper is to evaluate if the level set method(Sethian,1999)can:–provide a theoretically and empirically supportable methodology for modeling a range of integral landscape processes,–provide an algorithmic solution that is not sensitive to process timing,is computationally stable and efficient as compared to conventional explicit solutions to diffu-sive processes models,–be developed as part of a generic modelling language in GIS to express integrated models for natural resource and environmental problems?The outline for the paper is as follow.The next section will describe the theory for spatial-temporal processing us-ing level sets.Section3describes how this is implemented in a map algebra programming language.Two application examples are given–an ecological and a hydrological ex-ample–to demonstrate the use of operators for computing reactive-diffusive interactions in landscapes.Section4sum-marises the contribution of this research.2Theory2.1IntroductionLevel set methods(Sethian,1999)have been applied in a large collection of applications including,physics,chemistry,fluid dynamics,combustion,material science,fabrication of microelectronics,and computer vision.Level set methods compute an advancing interface using an Eulerian grid and the Lagrangian equations of motion.They are similar to cost distance modeling used in GIS(Burroughs and McDonnell, 1998)in that they compute the spread of a variable across space,but the motion is based upon partial differential equa-tions related to the physical process.The advancement of the interface is computed through time along a spatial gradient, and it may expand or contract in its extent.See Fig.1.2.2TheoryThe advantage of the level set method is that it models mo-tion along a state-space gradient.Level set methods start with the equation of motion,i.e.an advancing front with velocity F is characterised by an arrival surface T(x,y).Note that F is a velocityfield in a spatial sense.If F was constant this would result in an expanding series of circular fronts,but for different values in a velocityfield the front will have a more contorted appearance as shown in Fig.1b.The motion of thisinterface is always normal to the interface boundary,and its progress is regulated by several factors:F=f(L,G,I)(1)where L=local properties that determine the shape of advanc-ing front,G=global properties related to governing forces for its motion,I=independent properties that regulate and influ-ence the motion.If the advancing front is modeled strictly in terms of the movement of entity particles,then a straightfor-ward velocity equation describes its motion:|∇T|F=1given T0=0(2) where the arrival function T(x,y)is a travel cost surface,and T0is the initial position of the interface.Instead we use level sets to describe the interface as a complex function.The level set functionφis an evolving front consistent with the under-lying viscosity solution defined by partial differential equa-tions.This is expressed by the equation:φt+F|∇φ|=0givenφ(x,y,t=0)(3)whereφt is a complex interface function over time period 0..n,i.e.φ(x,y,t)=t0..tn,∇φis the spatial and temporal derivatives for viscosity equations.The Eulerian view over a spatial domain imposes a discretisation of space,i.e.the raster grid,which records changes in value z.Hence,the level set function becomesφ(x,y,z,t)to describe an evolv-ing surface over time.Further details are given in Sethian (1999)along with efficient algorithms.The next section de-scribes the integration of the level set methods with GIS.3Map algebra modelling3.1Map algebraSpatial models are written in a map algebra programming language.Map algebra is a function-oriented language that operates on four implicit spatial data types:point,neighbour-hood,zonal and whole landscape surfaces.Surfaces are typ-ically represented as a discrete raster where a point is a cell, a neighbourhood is a kernel centred on a cell,and zones are groups of mon examples of raster data include ter-rain models,categorical land cover maps,and scalar temper-ature surfaces.Map algebra is used to program many types of landscape models ranging from land suitability models to mineral exploration in the geosciences(Burrough and Mc-Donnell,1998;Bonham-Carter,1994).The syntax for map algebra follows a mathematical style with statements expressed as equations.These equations use operators to manipulate spatial data types for point and neighbourhoods.Expressions that manipulate a raster sur-face may use a global operation or alternatively iterate over the cells in a raster.For instance the GRID map algebra (Gao et al.,1993)defines an iteration construct,called do-cell,to apply equations on a cell-by-cell basis.This is triv-ially performed on columns and rows in a clockwork manner. However,for environmental phenomena there aresituations Fig.2.Spatial processing orders for raster.where the order of computations has a special significance. For instance,processes that involve spreading or transport acting along environmental gradients within the landscape. Therefore special control needs to be exercised on the order of execution.Burrough(1998)describes two extra control mechanisms for diffusion and directed topology.Figure2 shows the three principle types of processing orders,and they are:–row scan order governed by the clockwork lattice struc-ture,–spread order governed by the spreading or scattering ofa material from a more concentrated region,–flow order governed by advection which is the transport of a material due to velocity.Our implementation of map algebra,called MapScript (Pullar,2001),includes a special iteration construct that sup-ports these processing orders.MapScript is a lightweight lan-guage for processing raster-based GIS data using map alge-bra.The language parser and engine are built as a software component to interoperate with the IDRISI GIS(Eastman, 1997).MapScript is built in C++with a class hierarchy based upon a value type.Variants for value types include numeri-cal,boolean,template,cells,or a grid.MapScript supports combinations of these data types within equations with basic arithmetic and relational comparison operators.Algebra op-erations on templates typically result in an aggregate value assigned to a cell(Pullar,2001);this is similar to the con-volution integral in image algebras(Ritter et al.,1990).The language supports iteration to execute a block of statements in three ways:a)docell construct to process raster in a row scan order,b)dospread construct to process raster in a spreadwhile(time<100)dospreadpop=pop+(diffuse(kernel*pop))pop=pop+(r*pop*dt*(1-(pop/K)) enddoendwhere the diffusive constant is stored in thekernel:Fig.3.Map algebra script and convolution kernel for population dispersion.The variable pop is a raster,r,K and D are constants, dt is the model time step,and the kernel is a3×3template.It is assumed a time step is defined and the script is run in a simulation. Thefirst line contained in the nested cell processing construct(i.e. dospread)is the diffusive term and the second line is the population growth term.order,c)doflow to process raster byflow order.Examples are given in subsequent sections.Process models will also involve a timing loop which may be handled as a general while(<condition>)..end construct in MapScript where the condition expression includes a system time variable.This time variable is used in a specific fashion along with a system time step by certain operators,namely diffuse()andfluxflow() described in the next section,to model diffusion and advec-tion as a time evolving front.The evolving front represents quantities such as vegetation growth or surface runoff.3.2Ecological exampleThis section presents an ecological example based upon plant dispersal in a landscape.The population of a species follows a controlled growth rate and at the same time spreads across landscapes.The theory of the rate of spread of an organism is given in Tilman and Kareiva(1997).The area occupied by a species grows log-linear with time.This may be modelled by coupling a spatial diffusion term with an exponential pop-ulation growth term;the combination produces the familiar reaction-diffusion model.A simple growth population model is used where the reac-tion term considers one population controlled by births and mortalities is:dN dt =r·N1−NK(4)where N is the size of the population,r is the rate of change of population given in terms of the difference between birth and mortality rates,and K is the carrying capacity.Further dis-cussion of population models can be found in Jrgensen and Bendoricchio(2001).The diffusive term spreads a quantity through space at a specified rate:dudt=Dd2udx2(5) where u is the quantity which in our case is population size, and D is the diffusive coefficient.The model is operated as a coupled computation.Over a discretized space,or raster,the diffusive term is estimated using a numerical scheme(Press et al.,1992).The distance over which diffusion takes place in time step dt is minimally constrained by the raster resolution.For a stable computa-tional process the following condition must be satisfied:2Ddtdx2≤1(6) This basically states that to account for the diffusive pro-cess,the term2D·dx is less than the velocity of the advancing front.This would not be difficult to compute if D is constant, but is problematic if D is variable with respect to landscape conditions.This problem may be overcome by progressing along a diffusive front over the discrete raster based upon distance rather than being constrained by the cell resolution.The pro-cessing and diffusive operator is implemented in a map al-gebra programming language.The code fragment in Fig.3 shows a map algebra script for a single time step for the cou-pled reactive-diffusion model for population growth.The operator of interest in the script shown in Fig.3is the diffuse operator.It is assumed that the script is run with a given time step.The operator uses a system time step which is computed to balance the effect of process errors with effi-cient computation.With knowledge of the time step the it-erative construct applies an appropriate distance propagation such that the condition in Eq.(3)is not violated.The level set algorithm(Sethian,1999)is used to do this in a stable and accurate way.As a diffusive front propagates through the raster,a cost distance kernel assigns the proper time to each raster cell.The time assigned to the cell corresponds to the minimal cost it takes to reach that cell.Hence cell pro-cessing is controlled by propagating the kernel outward at a speed adaptive to the local context rather than meeting an arbitrary global constraint.3.3Hydrological exampleThis section presents a hydrological example based upon sur-face dispersal of excess rainfall across the terrain.The move-ment of water is described by the continuity equation:∂h∂t=e t−∇·q t(7) where h is the water depth(m),e t is the rainfall excess(m/s), q is the discharge(m/hr)at time t.Discharge is assumed to have steady uniformflow conditions,and is determined by Manning’s equation:q t=v t h t=1nh5/3ts1/2(8)putation of current cell(x+ x,t,t+ ).where q t is theflow velocity(m/s),h t is water depth,and s is the surface slope(m/m).An explicit method of calcula-tion is used to compute velocity and depth over raster cells, and equations are solved at each time step.A conservative form of afinite difference method solves for q t in Eq.(5). To simplify discussions we describe quasi-one-dimensional equations for theflow problem.The actual numerical com-putations are normally performed on an Eulerian grid(Julien et al.,1995).Finite-element approximations are made to solve the above partial differential equations for the one-dimensional case offlow along a strip of unit width.This leads to a cou-pled model with one term to maintain the continuity offlow and another term to compute theflow.In addition,all calcu-lations must progress from an uphill cell to the down slope cell.This is implemented in map algebra by a iteration con-struct,called doflow,which processes a raster byflow order. Flow distance is measured in cell size x per unit length. One strip is processed during a time interval t(Fig.4).The conservative solution for the continuity term using afirst or-der approximation for Eq.(5)is derived as:h x+ x,t+ t=h x+ x,t−q x+ x,t−q x,txt(9)where the inflow q x,t and outflow q x+x,t are calculated in the second term using Equation6as:q x,t=v x,t·h t(10) The calculations approximate discharge from previous time interval.Discharge is dynamically determined within the continuity equation by water depth.The rate of change in state variables for Equation6needs to satisfy a stability condition where v· t/ x≤1to maintain numerical stabil-ity.The physical interpretation of this is that afinite volume of water wouldflow across and out of a cell within the time step t.Typically the cell resolution isfixed for the raster, and adjusting the time step requires restarting the simulation while(time<120)doflow(dem)fvel=1/n*pow(depth,m)*sqrt(grade)depth=depth+(depth*fluxflow(fvel)) enddoendFig.5.Map algebra script for excess rainfallflow computed over a 120minute event.The variables depth and grade are rasters,fvel is theflow velocity,n and m are constants in Manning’s equation.It is assumed a time step is defined and the script is run in a simulation. Thefirst line in the nested cell processing(i.e.doflow)computes theflow velocity and the second line computes the change in depth from the previous value plus any net change(inflow–outflow)due to velocityflux across the cell.cycle.Flow velocities change dramatically over the course of a storm event,and it is problematic to set an appropriate time step which is efficient and yields a stable result.The hydrological model has been implemented in a map algebra programming language Pullar(2003).To overcome the problem mentioned above we have added high level oper-ators to compute theflow as an advancing front over a land-scape.The time step advances this front adaptively across the landscape based upon theflow velocity.The level set algorithm(Sethian,1999)is used to do this in a stable and accurate way.The map algebra script is given in Fig.5.The important operator is thefluxflow operator.It computes the advancing front for waterflow across a DEM by hydrologi-cal principles,and computes the local drainageflux rate for each cell.Theflux rate is used to compute the net change in a cell in terms offlow depth over an adaptive time step.4ConclusionsThe paper has described an approach to extend the function-ality of tightly coupled environmental models in GIS(Ar-gent,2004).A long standing criticism of GIS has been its in-ability to handle dynamic spatial models.Other researchers have also addressed this issue(Burrough,1998).The con-tribution of this paper is to describe how level set methods are:i)an appropriate scientific basis,and ii)able to perform stable time-space computations for modelling landscape pro-cesses.The level set method provides the following benefits:–it more directly models motion of spatial phenomena and may handle both expanding and contracting inter-faces,–is based upon differential equations related to the spatial dynamics of physical processes.Despite the potential for using level set methods in GIS and land-surface process modeling,there are no commercial or research systems that use this mercial sys-tems such as GRID(Gao et al.,1993),and research systems such as PCRaster(Wesseling et al.,1996)offerflexible andpowerful map algebra programming languages.But opera-tions that involve reaction-diffusive processing are specific to one context,such as groundwaterflow.We believe the level set method offers a more generic approach that allows a user to programflow and diffusive landscape processes for a variety of application contexts.We have shown that it pro-vides an appropriate theoretical underpinning and may be ef-ficiently implemented in a GIS.We have demonstrated its application for two landscape processes–albeit relatively simple examples–but these may be extended to deal with more complex and dynamic circumstances.The validation for improved environmental modeling tools ultimately rests in their uptake and usage by scientists and engineers.The tool may be accessed from the web site .au/projects/mapscript/(version with enhancements available April2005)for use with IDRSIS GIS(Eastman,1997)and in the future with ArcGIS. It is hoped that a larger community of users will make use of the methodology and implementation for a variety of environmental modeling applications.Edited by:P.Krause,S.Kralisch,and W.Fl¨u gelReviewed by:anonymous refereesReferencesArgent,R.:An Overview of Model Integration for Environmental Applications,Environmental Modelling and Software,19,219–234,2004.Bonham-Carter,G.F.:Geographic Information Systems for Geo-scientists,Elsevier Science Inc.,New York,1994. Burrough,P.A.:Dynamic Modelling and Geocomputation,in: Geocomputation:A Primer,edited by:Longley,P.A.,et al., Wiley,England,165-191,1998.Burrough,P.A.and McDonnell,R.:Principles of Geographic In-formation Systems,Oxford University Press,New York,1998. Gao,P.,Zhan,C.,and Menon,S.:An Overview of Cell-Based Mod-eling with GIS,in:Environmental Modeling with GIS,edited by: Goodchild,M.F.,et al.,Oxford University Press,325–331,1993.Goodchild,M.:A Geographer Looks at Spatial Information Theory, in:COSIT–Spatial Information Theory,edited by:Goos,G., Hertmanis,J.,and van Leeuwen,J.,LNCS2205,1–13,2001.Jørgensen,S.and Bendoricchio,G.:Fundamentals of Ecological Modelling,Elsevier,New York,2001.Julien,P.Y.,Saghafian,B.,and Ogden,F.:Raster-Based Hydro-logic Modelling of Spatially-Varied Surface Runoff,Water Re-sources Bulletin,31(3),523–536,1995.Moore,I.D.,Turner,A.,Wilson,J.,Jenson,S.,and Band,L.:GIS and Land-Surface-Subsurface Process Modeling,in:Environ-mental Modeling with GIS,edited by:Goodchild,M.F.,et al., Oxford University Press,New York,1993.Press,W.,Flannery,B.,Teukolsky,S.,and Vetterling,W.:Numeri-cal Recipes in C:The Art of Scientific Computing,2nd Ed.Cam-bridge University Press,Cambridge,1992.Pullar,D.:MapScript:A Map Algebra Programming Language Incorporating Neighborhood Analysis,GeoInformatica,5(2), 145–163,2001.Pullar,D.:Simulation Modelling Applied To Runoff Modelling Us-ing MapScript,Transactions in GIS,7(2),267–283,2003. Ritter,G.,Wilson,J.,and Davidson,J.:Image Algebra:An Overview,Computer Vision,Graphics,and Image Processing, 4,297–331,1990.Sethian,J.A.:Level Set Methods and Fast Marching Methods, Cambridge University Press,Cambridge,1999.Sklar,F.H.and Costanza,R.:The Development of Dynamic Spa-tial Models for Landscape Ecology:A Review and Progress,in: Quantitative Methods in Ecology,Springer-Verlag,New York, 239–288,1991.Sui,D.and R.Maggio:Integrating GIS with Hydrological Mod-eling:Practices,Problems,and Prospects,Computers,Environ-ment and Urban Systems,23(1),33–51,1999.Tilman,D.and P.Kareiva:Spatial Ecology:The Role of Space in Population Dynamics and Interspecific Interactions.Princeton University Press,Princeton,New Jersey,USA,1997. Wesseling C.G.,Karssenberg, D.,Burrough,P. A.,and van Deursen,W.P.:Integrating Dynamic Environmental Models in GIS:The Development of a Dynamic Modelling Language, Transactions in GIS,1(1),40–48,1996.。

一种基于大知识库的亲属关系自动推理模型

一种基于大知识库的亲属关系自动推理模型
导 出 未知 的 另 一 边 关 系 。
关 键 词 :计 算机 应 用 ; 中文 信 息 处 理 ; 亲属 关 系;自动 推 理 ; 知模 型 ; 识 库 ; 认 知 逆判 断 ; 递 路 径 传 中图 分 类 号 :TP3 1 9 文 献标 识码 :A
A n r d Au o a i a o i g M o e s d o r e S a e Ki d e t m t c Re s n n d lBa e n La g - c l
Ch n s i s i a c r i g y Th n wld e b s s c n it d o wo l r re :t e p rp e a o e wh c t r sv r— ie ekn hp co dn 1. e k o e g a e i o ss e ft i a is h e i h r l n ih s o e a i b
型 的 汉 语 亲 属 关 系知 识 库 , 包括 外 围 知识 库 和 核 心 知 识 库 两 种 。前 者 详尽 列 举 亲 属 名 词 和 称 呼 动 词 所 涉 及 的各 种
句式 , 给 出相 应 的语 义表 达 式 ; 者 包括 三 个 子 库 :性 质 库 ( 画 亲 属 关 系 中 的 性 别 、 幼 等 属 性 ) 逆 判 断库 ( 并 后 刻 长 、 刻

种 基 于 大 知 识 库 的 亲 属 关 系 自动 推 理 模 型
陈振 宇 袁 毓 林 张 秀 松 周 强 , , ,
( .北 京 大 学 中 文 系 汉语 语 言 学 研 究 中心 , 京 1 0 7 ; 1 北 0 8 1 2 .清 华 大 学 信 息 技 术 研 究 院 语 音 和 语 言 技术 中 心 , 京 1 0 8 ) 北 0 0 4

基于周期采样的分布式动态事件触发优化算法

基于周期采样的分布式动态事件触发优化算法

第38卷第3期2024年5月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.3May 2024收稿日期:20230323基金项目:江苏省自然科学基金项目(BK20200824)第一作者:夏伦超,男,20211249098@;通信作者:赵中原,男,zhaozhongyuan@文章编号:1672-6197(2024)03-0058-07基于周期采样的分布式动态事件触发优化算法夏伦超1,韦梦立2,季秋桐2,赵中原1(1.南京信息工程大学自动化学院,江苏南京210044;2.东南大学网络空间安全学院,江苏南京211189)摘要:针对无向图下多智能体系统的优化问题,提出一种基于周期采样机制的分布式零梯度和优化算法,并设计一种新的动态事件触发策略㊂该策略中加入与历史时刻智能体状态相关的动态变量,有效降低了系统通信量;所提出的算法允许采样周期任意大,并考虑了通信延时的影响,利用Lyapunov 稳定性理论推导出算法收敛的充分条件㊂数值仿真进一步验证了所提算法的有效性㊂关键词:分布式优化;多智能体系统;动态事件触发;通信时延中图分类号:TP273文献标志码:ADistributed dynamic event triggerring optimizationalgorithm based on periodic samplingXIA Lunchao 1,WEI Mengli 2,JI Qiutong 2,ZHAO Zhongyuan 1(1.College of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;2.School of Cyber Science and Engineering,Southeast University,Nanjing 211189,China)Abstract :A distributed zero-gradient-sum optimization algorithm based on a periodic sampling mechanism is proposed to address the optimization problem of multi-agent systems under undirected graphs.A novel dynamic event-triggering strategy is designed,which incorporates dynamic variables as-sociated with the historical states of the agents to effectively reduce the system communication overhead.Moreover,the algorithm allows for arbitrary sampling periods and takes into consideration the influence oftime delay.Finally,sufficient conditions for the convergence of the algorithm are derived by utilizing Lya-punov stability theory.The effectiveness of the proposed algorithm is further demonstrated through numer-ical simulations.Keywords :distributed optimization;multi-agent systems;dynamic event-triggered;time delay ㊀㊀近些年,多智能体系统的分布式优化问题因其在多机器人系统的合作㊁智能交通系统的智能运输系统和微电网的分布式经济调度等诸多领域的应用得到了广泛的研究[1-3]㊂如今,已经提出各种分布式优化算法㊂文献[4]提出一种结合负反馈和梯度流的算法来解决平衡有向图下的无约束优化问题;文献[5]提出一种基于自适应机制的分布式优化算法来解决局部目标函数非凸的问题;文献[6]设计一种抗干扰的分布式优化算法,能够在具有未知外部扰动的情况下获得最优解㊂然而,上述工作要求智能体与其邻居不断地交流,这在现实中会造成很大的通信负担㊂文献[7]首先提出分布式事件触发控制器来解决多智能体系统一致性问题;事件触发机制的核心是设计一个基于误差的触发条件,只有满足触发条件时智能体间才进行通信㊂文献[8]提出一种基于通信网络边信息的事件触发次梯度优化㊀算法,并给出了算法的指数收敛速度㊂文献[9]提出一种基于事件触发机制的零梯度和算法,保证系统状态收敛到最优解㊂上述事件触发策略是静态事件触发策略,即其触发阈值仅与智能体的状态相关,当智能体的状态逐渐收敛时,很容易满足触发条件并将生成大量不必要的通信㊂因此,需要设计更合理的触发条件㊂文献[10]针对非线性系统的增益调度控制问题,提出一种动态事件触发机制的增益调度控制器;文献[11]提出一种基于动态事件触发条件的零梯度和算法,用于有向网络的优化㊂由于信息传输的复杂性,时间延迟在实际系统中无处不在㊂关于考虑时滞的事件触发优化问题的文献很多㊂文献[12]研究了二阶系统的凸优化问题,提出时间触发算法和事件触发算法两种分布式优化算法,使得所有智能体协同收敛到优化问题的最优解,并有效消除不必要的通信;文献[13]针对具有传输延迟的多智能体系统,提出一种具有采样数据和时滞的事件触发分布式优化算法,并得到系统指数稳定的充分条件㊂受文献[9,14]的启发,本文提出一种基于动态事件触发机制的分布式零梯度和算法,与使用静态事件触发机制的文献[15]相比,本文采用动态事件触发机制可以避免智能体状态接近最优值时频繁触发造成的资源浪费㊂此外,考虑到进行动态事件触发判断需要一定的时间,使用当前状态值是不现实的,因此,本文使用前一时刻状态值来构造动态事件触发条件,更符合逻辑㊂由于本文采用周期采样机制,这进一步降低了智能体间的通信频率,但采样周期过长会影响算法收敛㊂基于文献[14]的启发,本文设计的算法允许采样周期任意大,并且对于有时延的系统,只需要其受采样周期的限制,就可得到保证多智能体系统达到一致性和最优性的充分条件㊂最后,通过对一个通用示例进行仿真,验证所提算法的有效性㊂1㊀预备知识及问题描述1.1㊀图论令R表示实数集,R n表示向量集,R nˑn表示n ˑn实矩阵的集合㊂将包含n个智能体的多智能体系统的通信网络用图G=(V,E)建模,每个智能体都视为一个节点㊂该图由顶点集V={1,2, ,n}和边集E⊆VˑV组成㊂定义A=[a ij]ɪR nˑn为G 的加权邻接矩阵,当a ij>0时,表明节点i和节点j 间存在路径,即(i,j)ɪE;当a ij=0时,表明节点i 和节点j间不存在路径,即(i,j)∉E㊂D=diag{d1, ,d n}表示度矩阵,拉普拉斯矩阵L等于度矩阵减去邻接矩阵,即L=D-A㊂当图G是无向图时,其拉普拉斯矩阵是对称矩阵㊂1.2㊀凸函数设h i:R nңR是在凸集ΩɪR n上的局部凸函数,存在正常数φi使得下列条件成立[16]:h i(b)-h i(a)- h i(a)T(b-a)ȡ㊀㊀㊀㊀φi2 b-a 2,∀a,bɪΩ,(1)h i(b)- h i(a)()T(b-a)ȡ㊀㊀㊀㊀φi b-a 2,∀a,bɪΩ,(2) 2h i(a)ȡφi I n,∀aɪΩ,(3)式中: h i为h i的一阶梯度, 2h i为h i的二阶梯度(也称黑塞矩阵)㊂1.3㊀问题描述考虑包含n个智能体的多智能体系统,假设每个智能体i的成本函数为f i(x),本文的目标是最小化以下的优化问题:x∗=arg minxɪΩðni=1f i(x),(4)式中:x为决策变量,x∗为全局最优值㊂1.4㊀主要引理引理1㊀假设通信拓扑图G是无向且连通的,对于任意XɪR n,有以下关系成立[17]:X T LXȡαβX T L T LX,(5)式中:α是L+L T2最小的正特征值,β是L T L最大的特征值㊂引理2(中值定理)㊀假设局部成本函数是连续可微的,则对于任意实数y和y0,存在y~=y0+ω~(y -y0),使得以下不等式成立:f i(y)=f i(y0)+∂f i∂y(y~)(y-y0),(6)式中ω~是正常数且满足ω~ɪ(0,1)㊂2㊀基于动态事件触发机制的分布式优化算法及主要结果2.1㊀考虑时延的分布式动态事件触发优化算法本文研究具有时延的多智能体系统的优化问题㊂为了降低智能体间的通信频率,提出一种采样周期可任意设计的分布式动态事件触发优化算法,95第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法其具体实现通信优化的流程图如图1所示㊂首先,将邻居和自身前一触发时刻状态送往控制器(本文提出的算法),得到智能体的状态x i (t )㊂然后,预设一个固定采样周期h ,使得所有智能体在同一时刻进行采样㊂同时,在每个智能体上都配置了事件检测器,只在采样时刻检查是否满足触发条件㊂接着,将前一采样时刻的智能体状态发送至构造的触发器中进行判断,当满足设定的触发条件时,得到触发时刻的智能体状态x^i (t )㊂最后,将得到的本地状态x^i (t )用于更新自身及其邻居的控制操作㊂由于在实际传输中存在时延,因此需要考虑满足0<τ<h 的时延㊂图1㊀算法实现流程图考虑由n 个智能体构成的多智能体系统,其中每个智能体都能独立进行计算和相互通信,每个智能体i 具有如下动态方程:x ㊃i (t )=-1h2f i (x i )()-1u i (t ),(7)式中u i (t )为设计的控制算法,具体为u i (t )=ðnj =1a ij x^j (t -τ)-x ^i (t -τ)()㊂(8)㊀㊀给出设计的动态事件触发条件:θi d i e 2i (lh )-γq i (lh -h )()ɤξi (lh ),(9)q i (t )=ðnj =1a ij x^i (t -τ)-x ^j (t -τ)()2,(10)㊀㊀㊀ξ㊃i (t )=1h[-μi ξi (lh )+㊀㊀㊀㊀㊀δi γq i (lh -h )-d i e 2i (lh )()],(11)式中:d i 是智能体i 的入度;γ是正常数;θi ,μi ,δi 是设计的参数㊂令x i (lh )表示采样时刻智能体的状态,偏差变量e i (lh )=x i (lh )-x^i (lh )㊂注释1㊀在进行动态事件触发条件设计时,可以根据不同的需求为每个智能体设定不同的参数θi ,μi ,δi ,以确保其能够在特定的情境下做出最准确的反应㊂本文为了方便分析,选择为每个智能体设置相同的θi ,μi ,δi ,以便更加清晰地研究其行为表现和响应能力㊂2.2㊀主要结果和分析由于智能体仅在采样时刻进行事件触发条件判断,并在达到触发条件后才通信,因此有x ^i (t -τ)=x^i (lh )㊂定理1㊀假设无向图G 是连通的,对于任意i ɪV 和t >0,当满足条件(12)时,在算法(7)和动态事件触发条件(9)的作用下,系统状态趋于优化解x ∗,即lim t ңx i (t )=x ∗㊂12-β2φm α-τβ2φm αh -γ>0,μi+δi θi <1,μi-1-δi θi >0,ìîíïïïïïïïï(12)式中φm =min{φ1,φ2}㊂证明㊀对于t ɪ[lh +τ,(l +1)h +τ),定义Lyapunov 函数V (t )=V 1(t )+V 2(t ),其中:V 1(t )=ðni =1f i (x ∗)-f i (x i )-f ᶄi (x i )(x ∗-x i )(),V 2(t )=ðni =1ξi (t )㊂令E (t )=e 1(t ), ,e n (t )[]T ,X (t )=x 1(t ), ,x n (t )[]T ,X^(t )=x ^1(t ), ,x ^n (t )[]T ㊂对V 1(t )求导得V ㊃1(t )=1h ðni =1u i (t )x ∗-x i (t )(),(13)由于ðni =1ðnj =1a ij x ^j (t -τ)-x ^i (t -τ)()㊃x ∗=0成立,有V ㊃1(t )=-1hX T (t )LX ^(lh )㊂(14)6山东理工大学学报(自然科学版)2024年㊀由于㊀㊀X (t )=X (lh +τ)-(t -lh -τ)X ㊃(t )=㊀㊀㊀㊀X (lh )+τX ㊃(lh )+t -lh -τhΓ1LX^(lh )=㊀㊀㊀㊀X (lh )-τh Γ2LX^(lh -h )+㊀㊀㊀㊀(t -lh -τ)hΓ1LX^(lh ),(15)式中:Γ1=diag (f i ᶄᶄ(x ~11))-1, ,(f i ᶄᶄ(x ~1n ))-1{},Γ2=diag (f i ᶄᶄ(x ~21))-1, ,(f i ᶄᶄ(x ~2n))-1{},x ~1iɪ(x i (lh +τ),x i (t )),x ~2i ɪ(x i (lh ),x i (lh+τ))㊂将式(15)代入式(14)得㊀V ㊃1(t )=-1h E T (lh )LX ^(lh )-1hX ^T (lh )LX ^(lh )+㊀㊀㊀τh2Γ2X ^T (lh -h )L T LX ^(lh )+㊀㊀㊀(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )㊂(16)根据式(3)得(f i ᶄᶄ(x ~i 1))-1ɤ1φi,i =1, ,n ㊂即Γ1ɤ1φm I n ,Γ2ɤ1φmI n ,φm =min{φ1,φ2}㊂首先对(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )项进行分析,对于t ɪ[lh +τ,(l +1)h +τ),基于引理1和式(3)有(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )ɤβhφm αX ^T (lh )LX ^(lh )ɤβ2hφm αðni =1q i(lh ),(17)式中最后一项根据X^T (t )LX ^(t )=12ðni =1q i(t )求得㊂接着分析τh2Γ2X ^(lh -h )L T LX ^(lh ),根据引理1和杨式不等式有:τh2Γ2X ^T (lh -h )L T LX ^(lh )ɤ㊀㊀㊀㊀τβ2h 2φm αX ^T (lh -h )LX ^(lh -h )+㊀㊀㊀㊀τβ2h 2φm αX ^T (lh )LX ^(lh )ɤ㊀㊀㊀㊀τβ4h 2φm αðni =1q i (lh -h )+ðni =1q i (lh )[]㊂(18)将式(17)和式(18)代入式(16)得㊀V ㊃1(t )ɤβ2φm α+τβ4φm αh -12()1h ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+1h ðni =1d i e 2i(lh )㊂(19)根据式(11)得V ㊃2(t )=-ðni =1μih ξi(lh )+㊀㊀㊀㊀ðni =1δihγq i (lh -h )-d i e 2i (lh )()㊂(20)结合式(19)和式(20)得V ㊃(t )ɤ-12-β2φm α-τβ4φm αh ()1h ðni =1q i (lh )+㊀㊀㊀㊀τβ4φm αh 2ðn i =1q i (lh -h )+γh ðni =1q i (lh -h )-㊀㊀㊀㊀1h ðni =1(μi -1-δi θi)ξi (lh ),(21)因此根据李雅普诺夫函数的正定性以及Squeeze 定理得㊀V (l +1)h +τ()-V (lh +τ)ɤ㊀㊀㊀-12-β2φm α-τβ4φm αh()ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+γðni =1q i (lh -h )-㊀㊀㊀ðni =1(μi -1-δiθi)ξi (lh )㊂(22)对式(22)迭代得V (l +1)h +τ()-V (h +τ)ɤ㊀㊀-12-β2φm α-τβ2φm αh-γ()ðl -1k =1ðni =1q i(kh )+㊀㊀τβ4φm αh ðni =1q i (0h )-㊀㊀12-β2φm α-τβ4φm αh()ðni =1q i(lh )-㊀㊀ðlk =1ðni =1μi -1-δiθi()ξi (kh ),(23)进一步可得㊀lim l ңV (l +1)h -V (h )()ɤ㊀㊀㊀τβ4φm αh ðni =1q i(0h )-16第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法㊀㊀㊀ðni =1(μi -1-δi θi )ðl =1ξi (lh )-㊀㊀㊀12-β2φm α-τβ2φm αh-γ()ð l =1ðni =1q i(lh )㊂(24)由于q i (lh )ȡ0和V (t )ȡ0,由式(24)得lim l ң ðni =1ξi (lh )=0㊂(25)基于ξi 的定义和拉普拉斯矩阵的性质,可以得到每个智能体的最终状态等于相同的常数,即lim t ңx 1(t )= =lim t ңx n (t )=c ㊂(26)㊀㊀由于目标函数的二阶导数具有以下性质:ðni =1d f ᶄi (x i (t ))()d t =㊀㊀㊀㊀-ðn i =1ðnj =1a ij x ^j (t )-x ^i (t )()=㊀㊀㊀㊀-1T LX^(t )=0,(27)式中1=[1, ,1]n ,所以可以得到ðni =1f i ᶄ(x i (t ))=ðni =1f i ᶄ(x ∗i )=0㊂(28)联立式(26)和式(28)得lim t ңx 1(t )= =lim t ңx n (t )=c =x ∗㊂(29)㊀㊀定理1证明完成㊂当不考虑通信时延τ时,可由定理1得到推论1㊂推论1㊀假设通信图G 是无向且连通的,当不考虑时延τ时,对于任意i ɪV 和t >0,若条件(30)成立,智能体状态在算法(7)和触发条件(9)的作用下趋于最优解㊂14-n -1φm -γ>0,μi+δi θi <1,μi-1-δi θi >0㊂ìîíïïïïïïïï(30)㊀㊀证明㊀该推论的证明过程类似定理1,由定理1结果可得14-β2φm α-γ>0㊂(31)令λn =βα,由于λn 是多智能体系统的全局信息,因此每个智能体很难获得,但其上界可以根据以下关系来估计:λn ɤ2d max ɤ2(n -1),(32)式中d max =max{d i },i =1, ,n ㊂因此得到算法在没有时延情况下的充分条件:14-n -1φm -γ>0㊂(33)㊀㊀推论1得证㊂注释2㊀通过定理1得到的稳定性条件,可以得知当采样周期h 取较小值时,由于0<τ<h ,因此二者可以抵消,从而稳定性不受影响;而当采样周期h 取较大值时,τβ2φm αh项可以忽略不计,因此从理论分析可以得出允许采样周期任意大的结论㊂从仿真实验方面来看,当采样周期h 越大,需要的收剑时间越长,但最终结果仍趋于优化解㊂然而,在文献[18]中,采样周期过大会导致稳定性条件难以满足,即算法最终难以收敛,无法达到最优解㊂因此,本文提出的算法允许采样周期任意大,这一创新点具有重要意义㊂3㊀仿真本文对一个具有4个智能体的多智能体网络进行数值模拟,智能体间的通信拓扑如图2所示㊂采用4个智能体的仿真网络仅是为了初步验证所提算法的有效性㊂值得注意的是,当多智能体的数量增加时,算法的时间复杂度和空间复杂度会增加,但并不会影响其有效性㊂因此,该算法在更大规模的多智能体网络中同样适用㊂成本函数通常选择凸函数㊂例如,在分布式传感器网络中,成本函数为z i -x 2+εi x 2,其中x 表示要估计的未知参数,εi 表示观测噪声,z i 表示在(0,1)中均匀分布的随机数;在微电网中,成本函数为a i x 2+b i x +c i ,其中a i ,b i ,c i 是发电机成本参数㊂这两种情境下的成本函数形式不同,但本质上都是凸函数㊂本文采用论文[19]中的通用成本函数(式(34)),用于证明本文算法在凸函数上的可行性㊂此外,通信拓扑图结构并不会影响成本函数的设计,因此,本文的成本函数在分布式网络凸优化问题中具有通用性㊂g i (x )=(x -i )4+4i (x -i )2,i =1,2,3,4㊂(34)很明显,当x i 分别等于i 时,得到最小局部成本函数,但是这不是全局最优解x ∗㊂因此,需要使用所提算法来找到x ∗㊂首先设置重要参数,令φm =16,γ=0.1,θi =1,ξi (0)=5,μi =0.2,δi =0.2,26山东理工大学学报(自然科学版)2024年㊀图2㊀通信拓扑图x i (0)=i ,i =1,2,3,4㊂图3为本文算法(7)解决优化问题(4)时各智能体的状态,其中设置采样周期h =3,时延τ=0.02㊂智能体在图3中渐进地达成一致,一致值为全局最优点x ∗=2.935㊂当不考虑采样周期影响时,即在采样周期h =3,时延τ=0.02的条件下,采用文献[18]中的算法(10)时,各智能体的状态如图4所示㊂显然,在避免采样周期的影响后,本文算法具有更快的收敛速度㊂与文献[18]相比,由于只有当智能体i 及其邻居的事件触发判断完成,才能得到q i (lh )的值,因此本文采用前一时刻的状态值构造动态事件触发条件更符合逻辑㊂图3㊀h =3,τ=0.02时算法(7)的智能体状态图4㊀h =3,τ=0.02时算法(10)的智能体状态为了进一步分析采样周期的影响,在时延τ不变的情况下,选择不同的采样周期h ,其结果显示在图5中㊂对比图3可以看出,选择较大的采样周期则收敛速度减慢㊂事实上,这在算法(7)中是很正常的,因为较大的h 会削弱反馈增益并减少固定有限时间间隔中的控制更新次数,具体显示在图6和图7中㊂显然,当选择较大的采样周期时,智能体的通信频率显著下降,同时也会导致收敛速度减慢㊂因此,虽然采样周期允许任意大,但在收敛速度和通信频率之间需要做出权衡,以选择最优的采样周期㊂图5㊀h =1,τ=0.02时智能体的状态图6㊀h =3,τ=0.02时的事件触发时刻图7㊀h =1,τ=0.02时的事件触发时刻最后,固定采样周期h 的值,比较τ=0.02和τ=2时智能体的状态,结果如图8所示㊂显然,时延会使智能体找到全局最优点所需的时间更长,但由于其受采样周期的限制,最终仍可以对于任意有限延迟达成一致㊂图8㊀h =3,τ=2时智能体的状态36第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法4 结束语本文研究了无向图下的多智能体系统的优化问题,提出了一种基于动态事件触发机制的零梯度和算法㊂该机制中加入了与前一时刻智能体状态相关的动态变量,避免智能体状态接近最优值时频繁触发产生的通信负担㊂同时,在算法和触发条件设计中考虑了采样周期的影响,在所设计的算法下,允许采样周期任意大㊂对于有时延的系统,在最大允许传输延迟小于采样周期的情况下,给出了保证多智能体系统达到一致性和最优性的充分条件㊂今后拟将本算法向有向图和切换拓扑图方向推广㊂参考文献:[1]杨洪军,王振友.基于分布式算法和查找表的FIR滤波器的优化设计[J].山东理工大学学报(自然科学版),2009,23(5):104-106,110.[2]CHEN W,LIU L,LIU G P.Privacy-preserving distributed economic dispatch of microgrids:A dynamic quantization-based consensus scheme with homomorphic encryption[J].IEEE Transactions on Smart Grid,2022,14(1):701-713.[3]张丽馨,刘伟.基于改进PSO算法的含分布式电源的配电网优化[J].山东理工大学学报(自然科学版),2017,31(6):53-57.[4]KIA S S,CORTES J,MARTINEZ S.Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication[J].Automatica,2015,55:254-264.[5]LI Z H,DING Z T,SUN J Y,et al.Distributed adaptive convex optimization on directed graphs via continuous-time algorithms[J]. IEEE Transactions on Automatic Control,2018,63(5):1434 -1441.[6]段书晴,陈森,赵志良.一阶多智能体受扰系统的自抗扰分布式优化算法[J].控制与决策,2022,37(6):1559-1566. [7]DIMAROGONAS D V,FRAZZOLI E,JOHANSSON K H.Distributed event-triggered control for multi-agent systems[J].IEEE Transactions on Automatic Control,2012,57(5):1291-1297.[8]KAJIYAMA Y C,HAYASHI N K,TAKAI S.Distributed subgradi-ent method with edge-based event-triggered communication[J]. IEEE Transactions on Automatic Control,2018,63(7):2248 -2255.[9]LIU J Y,CHEN W S,DAI H.Event-triggered zero-gradient-sum distributed convex optimisation over networks with time-varying topol-ogies[J].International Journal of Control,2019,92(12):2829 -2841.[10]COUTINHO P H S,PALHARES R M.Codesign of dynamic event-triggered gain-scheduling control for a class of nonlinear systems [J].IEEE Transactions on Automatic Control,2021,67(8): 4186-4193.[11]CHEN W S,REN W.Event-triggered zero-gradient-sum distributed consensus optimization over directed networks[J].Automatica, 2016,65:90-97.[12]TRAN N T,WANG Y W,LIU X K,et al.Distributed optimization problem for second-order multi-agent systems with event-triggered and time-triggered communication[J].Journal of the Franklin Insti-tute,2019,356(17):10196-10215.[13]YU G,SHEN Y.Event-triggered distributed optimisation for multi-agent systems with transmission delay[J].IET Control Theory& Applications,2019,13(14):2188-2196.[14]LIU K E,JI Z J,ZHANG X F.Periodic event-triggered consensus of multi-agent systems under directed topology[J].Neurocomputing, 2020,385:33-41.[15]崔丹丹,刘开恩,纪志坚,等.周期事件触发的多智能体分布式凸优化[J].控制工程,2022,29(11):2027-2033. [16]LU J,TANG C Y.Zero-gradient-sum algorithms for distributed con-vex optimization:The continuous-time case[J].IEEE Transactions on Automatic Control,2012,57(9):2348-2354. [17]LIU K E,JI Z J.Consensus of multi-agent systems with time delay based on periodic sample and event hybrid control[J].Neurocom-puting,2016,270:11-17.[18]ZHAO Z Y.Sample-baseddynamic event-triggered algorithm for op-timization problem of multi-agent systems[J].International Journal of Control,Automation and Systems,2022,20(8):2492-2502.[19]LIU J Y,CHEN W S.Distributed convex optimisation with event-triggered communication in networked systems[J].International Journal of Systems Science,2016,47(16):3876-3887.(编辑:杜清玲)46山东理工大学学报(自然科学版)2024年㊀。

Oracle CRM Application Foundation 用户指南说明书

Oracle CRM Application Foundation 用户指南说明书

Part I Resource Manager
1 Introduction to Oracle Resource Manager
1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.3
Overview of the Oracle Resource Manager....................................................................... 1-1 What is the Resource Manager?................................................................................... 1-2 What are Resources? ...................................................................................................... 1-3 Understanding Roles ..................................................................................................... 1-4 Understanding Groups ................................................................................................. 1-6 Determining Group Hierarchy..................................................................................... 1-7 Understanding Teams ................................................................................................... 1-7 What is a Salesperson? .................................................................................................. 1-8 How are the Different Resource Name Fields Used? ............................................... 1-8

基于特征子空间邻域的局部保持流形学习算法

基于特征子空间邻域的局部保持流形学习算法
d i1 .9 9 ji n 10 '6 5 2 1 .4 0 2 o:0 3 6/ .s .0 13 9 .0 2 0 .3 s
L c l y p e evn nfl e r ig ag rtm a e n o ai r s r ig ma i d lan n lo i t o h b sd o
e rc r ad eudn oie ut a r ,ts icltd e leia ani bre tn endb Ecd— a sut e n dnatrn r p det e 一 idfu icy sm tr le hor ao f e y ule rt u r tr e f u s i f t r t t e e g li di i i o
srigma i l ann grtmsc ldNF - P a dN S N E.E p r na eut o lea dORLfc aa aev r evn nf d l riga o h a e S Ⅱ' n F - P o e l i l x ei tl s l nYa n me r s ed tb s e - a i f b i ef ci e e s v ter f t n s . e v ’ Ke r s p st ec ntans etr u s ae lc i pe evn ; ma i l ann y wo d : oiv o srit ;faues bp c ; o a  ̄ rsrig i l nf d l rig o e


娜 ,李
霞 ,刘 国胜
( 深圳大学 信息工程学院 电子 系, 广东 深圳 586 ) 100 要:局部保持流形 学习算法通过保持局部邻域特性来挖掘隐藏在高维数据中的内在流形结构。然而, 对于

基于CorVis ST测量人角膜的弹性模量

基于CorVis ST测量人角膜的弹性模量

( 1 天 津 大 学 机 械 工 程 学 院 力 学 系 3 0 0 3 5 0 天津; 2 天津市眼科医院天津市眼科学与视觉科学重点实验室3 0 0 0 2 2 天津)
摘 要 :根据临床可视化角膜生物力学分析仪(CorVis ST)检測得到近视患者屈光手术前角膜动态变形
历程曲线,采用有限元数值模拟逆解方法确定其角膜在体有效弹性模量。采用计算流体动力学(CFD)
第3 期
泼宋鑫,等:基于CorVisST测量人角膜的弹性模量
863
(
1 )劉 亙
入 (i莲niets>

X
B
-sui
E
X
S
)
出 U (outlet)
( I 0 3 P P
角膜(cornea)
巩 膜 (sclera)
巩 膜 的 平 均 厚 度 为 〇 .75_,半 径 为 12mm。 在生理状态下,角膜受到丨O P 的作用而产生初
测量角膜弹性力学性能的实验包括离体实验 和 在 体 实 验 。采 用 较 广 泛 的 离 体 实 验 有 单 轴 拉 伸 实 验 [M]和 膨 胀 实 验 [5]。单 轴 拉 伸 试 验 可 以 通 过 由 拉 伸 切割得到的角膜矩形条带获得角膜沿拉伸方向的应 力-应 变 关 系 。膨 胀 实 验 可 模 拟 角 膜 的 生 理 状 态 ,在 角膜的后表面施加压力使角膜变形,通过比较数值 模拟结果和实验结果逆解角膜材料参数。离体测量 可以加深对角膜生物力学特性的了解,但不同患者 角膜的弹性性能具有个体化差异,因此将离体实验 结 果 用 于 临 床 实 践 会 有 误 差 。在 体 实 验 方 法 众 多 , 例 如 逐 步 压 痕 法 W、用 于 测 量 角 膜 杨 氏 模 量 的 剪 切 波成像技术[7],以 及 使 用 光 学 相 干 弹 性 成 像 (OCE) 测量角膜不同厚度位置的位移[8]等 。这些方法的缺 点是不能得到角膜的非线性弹性材料特性,只能测 量角膜局部的弹性性能。

有序点集与无序点集的曲面重构方法比较

有序点集与无序点集的曲面重构方法比较

有序点集与无序点集的曲面重构方法比较
钟华颖
【期刊名称】《新建筑》
【年(卷),期】2011(000)003
【摘要】曲面重构在逆向工程领域是指利用物体表面的点集重新构建物体形状的操作,这一技术对于非标准建筑设计同样适用.从已知排列顺序的点集(有序点集)和未知排列顺序的点集(无序点集)出发,对自由曲面进行重构是曲面重构的两种基本方法.本文对此进行了对比研究,并由这两种出发点,生成包含表皮及支撑结构的双层曲面系统,验证了该技术在建筑设计领域应用的可行性.
【总页数】3页(P96-98)
【作者】钟华颖
【作者单位】东南大学建筑学院,南京,210096
【正文语种】中文
【中图分类】TU-05
【相关文献】
1.曲面模型重构方法比较及误差分析 [J], 莫海军;周佳军;林志生
2.基于点云数据的曲面重构方法及其比较 [J], 李红莉;邢渊
3.多约束的平面点集形状重构方法 [J], 朱杰;孙毅中
4.从点集重构曲面网格方法综述 [J], 王静;薛为民;毋茂盛
5.3D散列点集构造光滑曲面新方法 [J], 崔汉国;胡瑞安
因版权原因,仅展示原文概要,查看原文内容请购买。

黑塞矩阵在人文中的应用

黑塞矩阵在人文中的应用

黑塞矩阵在人文中的应用黑塞矩阵是一种著名的数学工具,被广泛应用于物理学、工程学等自然科学领域。

然而,在人文领域中,黑塞矩阵的应用也不容小觑。

在这篇文章中,将会探讨黑塞矩阵在人文领域中的应用,并分析其背后的数学原理。

第一部分:黑塞矩阵的概念及其在人文领域中的应用黑塞矩阵是由德国数学家黑塞(Hess)提出的,它是一个对称矩阵,其中的元素是一阶和二阶偏导数的函数。

在自然科学领域中,黑塞矩阵被广泛应用于描述物理学中的运动、能量、力、热等现象。

然而,在人文领域中,黑塞矩阵的应用也不容忽视。

比如,在社会学中,黑塞矩阵常被用于描述不同社会群体之间的联系和互动关系。

在心理学中,黑塞矩阵被用于量化心理学实验数据的关联性和差异性。

在语言学中,黑塞矩阵则被用于描述语言学习过程中的模式和规律。

第二部分:黑塞矩阵在社会学中的应用在社会学领域中,黑塞矩阵被广泛应用于分析社会群体之间的互动关系。

比如,在社会网络分析中,黑塞矩阵常被用于计算不同社会节点(如个人、组织、社区等)之间的联系强度和拓扑结构。

通过对黑塞矩阵的分析,社会学家可以发现社会网络中的节点之间的关系模式和规律,从而提出有效的社会干预措施。

此外,在社会调查中,黑塞矩阵也经常被用于量化不同变量之间的关联性和差异性。

比如,在调查某一社会问题时,黑塞矩阵可以用于计算不同变量之间的相关系数,从而揭示该社会问题的内在规律和原因。

第三部分:黑塞矩阵在心理学中的应用在心理学领域中,黑塞矩阵被广泛应用于量化心理学实验数据之间的关联性和差异性,从而揭示人类认知和行为方面的模式和规律。

比如,在类比推理实验中,黑塞矩阵可以被用于量化实验参与者在不同类比任务之间的认知关联性。

通过对黑塞矩阵的分析,心理学家可以发现类比推理中的认知模式和规律,从而提出有效的教学和训练策略。

此外,在认知心理学中,黑塞矩阵也经常被用于量化不同记忆系统之间的关系。

比如,在工作记忆实验中,黑塞矩阵可以用于计算参与者在不同记忆任务之间的差异性和相关性,从而揭示工作记忆系统的内在机制和差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Data-Reuse and Parallel EmbeddedArchitectures for Low-Power,Real-Time Multimedia ApplicationsD.Soudris1,N.D.Zervas2,A.Argyriou1,M.Dasygenis1,K.Tatas1,C.E.Goutis2,and A.Thanailakis11VLSI Design and Testing Center,Dept.of Electrical&Computer Eng.,Democritus Univ.of Thrace,Xanthi67100,Greece.2VLSI Design Lab.,Dept.of Electrical&Computer Eng.,Univ.of Patras,Rio26500,Greece.Abstract.Exploitation of data re-use in combination with the use ofcustom memory hierarchy that exploits the temporal locality of dataaccesses may introduce significant power savings,especially for data-intensive applications.The effect of the data-reuse decisions on the powerdissipation but also on area and performance of multimedia applicationsrealized on multiple embedded cores is explored.The interaction betweenthe data-reuse decisions and the selection of a certain data-memory ar-chitecture model is also studied.As demonstrator a widely-used videoprocessing algorithmic kernel,namely the full search motion estimationkernel,is used.Experimental results prove that improvements in bothpower and performance can be acquired,when the right combination ofdata memory architecture model and data-reuse transformation is se-lected.1IntroductionThe number of multimedia systems used for exchanging information is rapidly increasing nowadays.Portable multimedia applications,such as video phones, multimedia terminals and video cameras,are available.Portability as well as packaging,cooling and reliability issues have made power consumption an im-portant design consideration[1].For this reason there is great need for power optimization strategies,especially in higher design levels,where the most signif-icant savings can be achieved.Additionally,these applications also require increased processing power for manipulating large amounts ofdata in real time.To meet this demand,two general implementation approaches exist.Thefirst is to use custom hardware dedicated processors.This solution leads to smaller area and power consumption. However,it lacks offlexibility since only a specific algorithm can be executed by the system.The second solution is to use a number ofembedded instruction set processors.This solution requires increased area and power in comparison to the first solution.However,it offers increasedflexibility and mainly meets easier theD.Soudris,P.Pirsch,andE.Barke(Eds.):PATMOS2000,LNCS1918,pp.243–254,2000.c Springer-Verlag Berlin Heidelberg2000244 D.Soudris et al.time-to-market constraints.In both cases,to meet the real time requirements, the initial application description must be partitioned and assigned to a num-ber ofprocessing elements,which has to be done in a power efficient way.For multimedia applications realized in custom-processor platforms,the dominant factor in power consumption is the one related to data storage and transfer[2]. In programmable platforms though,the power consumed for instructions storage and transfers limits the dominant role of the power related to data storage and transfer[4].The related work that combines partitioning ofthe algorithm and techniques for reducing the memory related power cost is relatively small[2][3][4][5].More specifically,a systematic methodology for the reduction of memory power con-sumption is presented in[2][3].According to this methodology,power optimizing transformations(such as data-reuse)are applied in the high level description of the application prior to partitioning step.These transformations mainly targets to reduction ofthe power due to data storage and transf er.Although,the effi-ciency ofthis methodology has been proved f or custom hardware architectures [2]and for commercially available multimedia processors(e.g.Trimedia)[3],it does not tackle with the problem when an embedded multiprocessor architec-tures are used.The latter point has been stressed in[4]where the data-reuse exploration as proposed in[6]has been applied for uni-processor embedded ar-chitectures.The experimental results of[4]indicated that the reduction ofthe data memory-related power does not always come with a reduction ofthe total power budget for such architectures.Finally,a partitioning approach attempting to improve memory utilization is presented in[5].However,this approach limited by the two-level memory hierarchy,does not explore the effect ofthe high-level power optimizing transformations,and its applicability is limited to a class of algorithms expressed in Weak Single Assignment Code(WSAC)form.Clearly, previous research work has not explored the effect on power,area,and perfor-mance of the high level transformations for the case of multiprocessor embedded architectures.In such architectures a decision that heavily affects power,area and performance is the one related to the data memory architecture-model(i.e. shared,distributed,share-distributed)to be followed.The motivation ofthis work is to investigate the dependencies between the decision ofadapting a certain data memory architecture-model and the high-level power optimizing transformations.The intuition is that these two high-level de-sign steps,which heavily influence all design parameters are not orthogonal to each other.Consequently,in this paper we apply all possible data-reuse trans-formations[6]in a real-life application,assuming a LSGP partitioning scheme [11]and three different data memory architecture-models,namely Distributed, Shared,and Shared-Distributed.For all the data-memory architectures,the transformations’effect on performance,area and power consumption is eval-uated.The experimental results prove that the same data-reuse transformations do not have similar effect on power and performance when applied for different data-memory architecture models.Thus,the claim that the application ofthese transformations in thefirst step can optimize power and/or performance,regard-Data-Reuse and Parallel Embedded Architectures245 less the decisions related to data memory architecture that must follow is proved to be weak.Furthermore,the comparative study concerning power,performance and area ofthe three architectures and all the data reuse transf ormations in-dicate that an effective solution can be acquired from the right combination of data memory architecture model and data-reuse transformation.Finally,once more,the critical influence ofthe instruction power consumption on the total power budget is proved.2Target ArchitecturesWe are working on multiple processor architectures each ofwhich has its own sin-gle on-chip instruction memory.The size ofthe instruction-memory is strongly-depended on the code size executed by a processor.We name this scheme appli-cation specific instruction memory(ASIM).The instruction memory ofdifferent processors may have different size.Concerning the data-memory organization, application specific data memory hierarchy(ASDMH)is assumed.[2][7].Since we focus on parallel processing architectures,we explore ASDMH in combina-tion with three well-established data-memory architectures models:1)distributed data-memory architecture DMA,2)shared data-memory architecture SMA,and 3)shared-distributed SDMA data memory architecture.For all the data-memory architectures models a shared background(probably off-chip)memory module is assumed.Thus,in all cases special care must be taken during the scheduling ofaccesses to this memory,to avoid violating data-dependencies and to keep the number ofmemory ports as small as possible in order to keep the power per access cost as small as possible.With DMA,a separate data-memory hi-erarchy exists for each processor(Fig.1).In this way all memories modules of the memory hierarchy are single ported,but also area overhead is possible in cases oflarge amount ofcommon data to be processed by the N processors.The second data-memory architecture-model(i.e.SMA)implies a common hierarchy ofmemory levels f or the N processors(Fig.2).Since,in the data-dominated programmable parallel processing domain,it is very difficult and very perfor-mance inefficient to sequentially schedule all memory accesses,we assume that the number ofports f or each memory block equals the maximum number of parallel accesses to it.Finally,SDMA is a combination ofthe above two models, where the common data to the N processors are placed in a shared memory hi-erarchy,while a separate data memory hierarchy also exist for the lowest levels ofthe hierarchy(Fig.3).For experimental purposes,we have considered target models with N=2without any restriction about memory hierarchy levels.3Data Reuse TransformationsThe fact that in multimedia applications the power related to memory transfers is the dominant factor in total power cost,motivate us tofind an efficient method to reduce them.This goal can be done by efficient manipulation techniques of memory data transfers.For that purpose,we performed an exhaustive data reuse246D.Soudris et al.Fig.1.The distributed memory data-memory architecture modelFig.2.The shared memory data-memory architecture modelexploration ofthe application’s data.Employing data reuse transf ormations,we determine the certain data sets,which which are heavily re-used in a short period oftime.The re-used data can be stored in smaller on-chip memories, which require less power per access.In this way,redundant accesses from large off-chip memories are transfered on chip,reducing power consumption related to data transfers.Of course,data reuse exploration has to decide which data sets are appropriate to be placed in separate memory.Otherwise,we will need a lot ofdifferent memories f or each data set resulting into a significant area penalty.Data-Reuse and Parallel Embedded Architectures247Fig.3.The shared-distributed data-memory architecture modelSince our target architecture consists ofprogrammable processors,we must take into consideration the power dissipation due to instruction fetching.Pre-vious work[4]forms a sign that this power parameter is a significant part of total system’s power,and thus,it should not be ignored.Also,it depends on both number ofexecuted instructions and the size ofthe application code.Par-ticularly,the number ofexecuted instructions determines how many times the instruction memory is accessed,while the code size determines the memory size. The cost function used for our data reuse exploration on all target architectures is evaluated in terms ofpower,perf ormance,and area,taking into account both data and instruction memories.The cost function for power is:P ower cost=Ni=1power cost i(1)where N is the number ofprocessors and the i-th power estimate,power cost i is:power cost i=c CT[P r(word length(c),#words(c),f read(c),#ports(c))+P w(word length(c),#words(c),f write(c),#ports(c))]+P i(instr word length,code size,f)(2) where c is a member ofthe copy tree(CT)[6],P r(·),P w(·),and P i(·)is the power consumption estimate for read operation,write operation,and instruction248 D.Soudris et al.fetch,respectively.For memory power consumption estimation we use the models reported in[2]and[8].The total delay cost function is obtained by:Delay cost=maxi=1,...,N{#cycles processor i}(3)where#cycles processor i denotes the number ofthe executed cycles ofthe i-th processor(i=1,2,···,N).Also,the maximum number ofcycles is the per-formance of the system.In order to estimate the performance of a particular application,we use the number ofexecuted cycles resulting f rom the considered processor core simulation environment.Here,for experimental reasons we will use the ARMulator[12].High level estimation implies that a designer should decide,which possible solution ofa certain problem is the most appropriate.For that purpose,we will use the measure of power×delay product.This measure can be considered as a generalization ofthe similar concept f rom circuit level design and allows the designer performing trade-offs among several possible implementations.That is, the power efficient architecture is:P ower eff arch=P ower cost×Delay cost(4) The corresponding area cost function is:Area cost=Ni=1area cost i(5)witharea cost i=c CTArea(word length(c),#words(c),#ports(c))+Area(instr word length,code size)(6) For the area occupied by the memories,Mulder’s model is used[9].The cost function of the entire system is given by:Cost=a·P ower eff arch+b·Area cost(7) where a and b are weighting factors for area/energy trade-offs.4Experimental Results-Comparative StudyIn this section,we perform extensive comparative study of the relation between data-reuse transformations and data-memory models,assuming the application’s partitioning.We begin with the description ofour test vehicle and through its partitioning scheme,we will provide the experimental results after the applica-tion of the data-reuse transformations for all target architectures,in terms of power performance and area.Data-Reuse and Parallel Embedded Architectures249 4.1Demonstrator Application and PartitioningOur demonstrator application was selected to be the full search motion estima-tion algorithm[10].It was chosen this algorithm because it is used in a great number ofvideo processing applications.Our experiments were carried out using the luminance components of QCIF frame(144x176)format.Reference window was selected to include15x15candidate blocks,while blocks of16x16pixels were considered.The algorithm structure is described in Figure4(a)which has three double nested loops.A block ofthe current f rame(outer loop)is compared to a number ofcandidate blocks(middle loop).In the inner loop,a distortion criterion is computed to perform the comparison.Partitioning was done with the use ofLSG P technique[11].By applying this technique to a generalized for-loop structure,while assuming p partitions,the form of the partitioned algorithm becomes as shown in Fig.5.for(x=0;x<NB ;x++)for(y=0;y<MB ;y++)for(i=-p;i<p+1;i++)for(j=-p;j<p+1;j++)for(k=0;k<B;k++)for(l=0;l<B;l++)if((B*x+i+k)<0||(B*x+i+k)>N-1||(B*y+j+l)<0||(B*y+j+l)>M-1)\*conditional statement for the pixel of candidate block*\Fig.4.The full search motion estimation algorithmDo in parallel:Beginfor(x=0;x< NpB ;x++){sub-algorithm}for(x= NpB ;x< 2NpB;x++){sub-algorithm}...for(x= (p−1)NpB ;x< NB;x++){sub-algorithm}EndFig.5.The partitioned algorithmThe semantic”Do in parallel”imposes the parallel(concurrent)execution of p nested loops(i.e.sub-algorithm).From this above-code,it is apparent that the outermost loop is broken into p partitions,each ofwhich is mapped to processor.The p processors execute the same algorithmic structure for different values ofloop index x,i.e.different current blocks.Due to the inherent property250 D.Soudris et al.ofalgorithm,a set ofdata should be used by two consecutive sub-algorithms. In other words,data from(k-1)-th processor should be used by k-th processor (k=1,2,3,···,p).Our experiments were carried out assuming p=2,meaning two partitions.Therefore,the loop index x has a range ofnine.Due to QCIF format(144x176),the outermost index ranges from0to8.Thefirst and sec-ond processor execute the algorithm in parallel fashion,for loop index x ranging from0to4and from5to8,respectively.We examined the impact of parti-tioning combined with21data reuse transformations on power,performance, and area.These transformations were applied after the partitioning process was finished in accordance with the previous section.They involved the insertion of memories for a line of current blocks(CB line),a current block(CB),a line of candidate blocks(PB line),a candidate block(PB),a line ofref erence windows (RW line)and a reference window(RW).These transformations were applied for all the three data-memory architecture modeles by taking into account each architecture’s characteristics.In Fig.The copy tree[6]ofthe f ull search motion estimation algorithm is identical for processor1and2,where the dashed lines show the memory levels.Each rectangle contains three labels,where the number determines the applied data reuse transformations associated to memory hier-archy level.The remaining two labels determine the size ofan PB and CB line or block,RW line or reference window.4.2Experimental ResultsComparisons among the three target architectures,in terms ofpower,perf or-mance,and area are shown in Fig.6,8,and9.Fig.6provide comparisons results ofpower consumption with respect to data-reuse transformations.The most power efficient design approach is the combination ofSDMA and data-reuse transf ormations4,5,15,19and20.In con-trary,almost all data-reuse transformations increase the total power when DMA or SMA is assumed.The effect ofthe data-reuse transf ormations on power consumption ofdata memory is shown in Fig.7.As it can be seen,the largest effect is on the SMA, while the most efficient are the two other two data memory architecture models. Comparing Fig.6and7,it is deducted that the power cost related to instruction memory have significant contribution on the total power budget,and in many cases overturns the power savings acquired in the data memory.Thus,the power component related to instruction-memory cannot be ignored during such high level power exploration.Fig.8shows that with DMA and SMA the data-reuse transformations barely affects performance,while with SDMA the transforma-tions have a more significant impact on performance.The greater variation in performance when the SDMA is assumed results from the size of instruction code related to control operations,specifying which memories of the hierarchy should be accessed.However,it can be generally concluded that the transfor-mations have similar effect on the performance for all data-memory architecture models(i.e.a certain transform positively/negativelly affects performance for all data-memory architecture models).Although this is true,the optimal transfor-Data-Reuse and Parallel Embedded Architectures251P o w e r02000400060008000100001200014000160001800012345678901transformationsparison results for total power.P o w e r0,001000,002000,003000,004000,005000,006000,00transformationsFig.7.The effect of data-reuse transf.on power of data memory.mations in terms of performance are different for each different data-memory architecture model.Specifically 4,5,6,18,19and 20for SDMA,6,7,8,9,13,16,17and 18for SMA and DMA are the near-optimal or optimal solutions in terms of performance.In Fig.9the effect ofdata-reuse transf ormations on area is illustrated.From that it can be inferred that each transformation influences area in almost iden-252 D.Soudris et al.P e r f o r m a n c e (i n # c y c l e s )50100150200250300350transformationsFig.8.Performance comparison results of the target architectures.A r e a100200300400500600700800900transformationsFig.9.Area comparison results of the target architectures.tical manner for all data-memory architectural models.It is also clear that all transformations increase area,since they impose the addition of extra data mem-ory hierarchy levels.Moreover,for both DMA and SDMA area cost is similar for each data-reuse transformation.With SMA the area occupation is larger in all cases.This due to the fact that several memory modules are dual ported,to be accessed in parallel by the processing elements.In contrary,most memory modules are single ported and thus,they occupy less area.As it can be seen,Data-Reuse and Parallel Embedded Architectures253P o w e r x D e l a y P r o d u c t1000000200000030000004000000500000060000000123456789012transformationsparison results of the target architectures with respect to power ×delay product .the SDMA is the most area efficient,since with this data-memory architecture model there are no memories in the hierarchy with duplicate data.In order to define which combination ofdata-memory architecture model and data-reuse transformation is the most efficient in terms of performance and power,we plot power ×delayproduct (Fig.10).We infer that there exist enough possible solutions,which can be chosen by the designer.These solutions are:the transformation 3with SMA,transformations 15and 17with DMA and transformations 4,5,15,19and 20with SDMA.If also the area dimension is taken into account,the effective solutions are transformations 15and 17,and,4,5,15,19and 20with DMA and SDMA,respectively.5ConclusionsData-reuse exploration for the partitioned version of a real life application and for three alternative data-memory architecture models was performed.Applica-tion specific,data-memory hierarchy and instruction memory,as well as embed-ded programmable processing elements,were assumed.The comparison results prove that an effective solution either in terms ofpower or power and delay or power and delay and area,can be acquired from the right combination of data memory architecture model and data-reuse transformation.Thus,in the paral-lel processing domain for multimedia applications,the high-level design decision ofadapting a certain data-memory architecture model and the application of high-level power optimizing transformations should be performed interactively and not in a sequential way (regardless the ordering)as prior research work proposed.254 D.Soudris et al.References1.A.P.Chandrakasan,R.W.Brodersen,Low Power Digital CMOS Design,KluwerAcademic Publishers,Boston,1998.2.F.Catthoor,S.Wuytack et al.,Custom Memory Management Methodology,Kluwer Academic Publishers,Boston,1998.3.K.Masselos,F.Catthoor,H.De Man,and C.E.Goutis,and“Strategy for PowerEfficient Design of Parallel Systems”,in IEEE Trans.on VLSI,vol.7,No.2,June 1999,pp.258-265.4.N.D.Zervas,K.Masselos,and C.E.Goutis,”Data-reuse exploration for low-power realization of multimedia applications on embedded cores”,in Proc.of PATMOS’99,October1999,pp.71-80.5.U.Eckhardt and R.Merker,”Hierarchical Algorithm Partitioning at System Levelfor an Improved Utilization of Memory Structures”,in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,Vol.18,No.1,Jan-uary1999,pp.14-23.6.S.Wuytack,J.-P.Diguet,F.Catthoor,D.Moolenaar,and H.De Man“FormalizedMethodology for Data Reuse Exploration for Low-Power Hierarchical Memory Mappings”,in IEEE Trans.on VLSI Systems,Vol.6,No.4,Dec.1998,pp.529-537.7.L.Nachtergaele,B.Vanhoof,F.Catthoor,D.Moolenaar,and H De Man,”System-level power optimazations of video codecs on embedded cores:a systematic ap-proach”,Journal of VLSI Signal Processing Systems,Kluwer Academic Publish-ers,Boston,1998.ndman,Low power architectural design methodologies,Doctoral Disserta-tion,U.C.Berkeley,Aug.1994.9.J.M.Mulder,N.T.Quach,and M.J.Flynn,”An Area Model for On-Chip Memoriesand its Application”,IEEE Journal of Solid-State Circuits,Vol.SC26,No.1,Feb.1991,pp.98-105.10.V.Bhaskaran and K.Kostantinides,Image and Video Compression Standards,Kluwer Academic Publishers,Boston,1998.11.S.Y.Kung,”VLSI Array Processors”,Prentice Hall,Eaglewood Cliffs,1988.12.ARM software development toolkit,v2.11,Copyright1996-7,Advanced RISCMachines.。

相关文档
最新文档