第四章 假设检验
数理统计之假设检验ppt课件
z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别
完整版PPT课件
15
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
由样本算得 x543.5, s27.582 查表 t2(n1)t0.02 (4 5)2.776 这里 |t||543549|1.77t0.02(54)2.776
7.58/ 5 接受H0。新罐的平均爆破压力与过去无显著差别。
完整版PPT课件
31
例6 某工厂生产一种螺钉,标准要求是长度是32.5毫米,
假设的决定。 ❖ 基本思想(规则或前提)
小概率事件在一次试验中几乎不会发生。
完整版PPT课件
4
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
❖ 3 给定显著性水平 ,按分布写出小概率事件及其
概率表达式;
❖ 4 由样本计算出需要的数值;
❖ 5 判断小概率事件是否发生,是则拒绝,否接受
完整版PPT课件
9
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
2
z x
2
完整版PPT课件
概率论和数理统计 假设检验
检验统计量T
X 0 S n
~ t ( n 1) —t检验法
H1 : ≠ 0 H1 : > 0 H1 : < 0
T t ( n 1);
2
T t ( n 1) T t ( n 1)
要问:两总体的均值是否有显著的差别? 应设 H0:1=2,H1: 1≠2——双边检验 要问:总体X的均值是否显著比总体Y的均值大? 应设 H0:1 ≤ 2,H1:1——单边检验 2
四、方法的步骤
13
回顾引例的解题过程 1、根据问题的要求,提出假设H0和备择假设H1。
(它的分布应不含任何未知参数,而且可以查出或算出它的分位点。)
原假设 8
二、常用的术语
备择假设
解: 今假设H0 :=0=0.5, 且记H1 :≠0=0.5,
由于X~N(0, 2),故 X ~ N ( 0 , 2 n) 当H0为真时, X 0 检验统计量 进而: U ~ N (0,1) 检 n 验 水 对于给定的 =0.05, 有
U X Y
21
1
n1
2
2 2
~
N (0,1)
n2
作为检验统计量——U检验法。 两总体X与Y的方差 12、22未知,但12=22= 2,用
T S X Y 1 1 n1 n2 ~ t ( n1 n2 2)
拒绝域
双侧检验的拒绝域取在两侧; 单边检验的拒绝域中不等式的取向与备择假设H1中不 等式的取向完全一致。
例2 在正常情况下,某工厂生产的灯泡的寿命X服从正态分布,今
测得10个灯泡寿命为: 19 1490,1440,1680,1610,1500,1750,1550,1420,1800,1580 问能否认为该工厂生产的灯泡寿命 0=1600 (=0.05)?
第四章 假设检验(1)
§4.1
关于总体未知分布或对已知分布总体中未知 参数的假设称为统计假设,简称假设;
对样本进行考察,从而决定假设是否成立的 方法称为假设检验,简称检验;
例1:罐装可乐的标准容量是250毫升
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢? 通常的办法是每隔一段时间进行抽样检查.
例2(医疗领域)为了检验某种新疗法是否比传统 疗法更有效,对40名患者进行实验。把病人分 成两组,每组20人,第一组采用新疗法,第二 组采用传统疗法。从治疗结果表中,我们能否 认为新疗法比传统疗法更有效?即第一组的康 复人数比第二组多的原因是因为新疗法效果更 好,还是由随机因素引起的?
疗法 新疗法 传统疗法 康复 12 9 未康复 8 11
假设检验中的两类错误 小概率事件不管多小都可能发生,再加上 样本的随机性,它们可能会影响检验结果。 实际情况
决定
拒绝H0 接受H0 以真为假(弃真) 以假为真(取伪)
H0为真 第一类错误 正确
H0不真 正确 第二类错误
P(拒绝H 0 | H 0为真) P(接受H 0 | H 0为假)
2 2 0 2 2 0
2.检验统计量
2
(n 1) S
2
2 0
~ (n 1)
2
2 3. P{12 / 2 (n 1) 2 / 2 ( n 1)} 1
得拒绝域是 (0,
2 1 / 2
(n 1)) ( / 2 (n 1), )
期望已知,关于方差的假设检验
双侧检验:
1.提出假设: H 0 : , H 1 :
2 2 0 2
第四章_两个总体的假设检验
net
1
net
2
两个总体比率之差的检验
(例题分析)
H0 :1- 2 0 H1 :1- 2 < 0 = 0.05 n1=200 , n2=200
临界值(c):
拒绝域
检验统计量:
z
0.27 0.35
1 1 0.31 (1 0.31) 200 200 1.72976
两个总体均值之差的估计 (例题分析)
【例】为检验两种方法组装产品所需时间的差异,分别对两种 不同的组装方法各随机安排 12 个工人,每个工人组装一件产 品所需的时间(分钟)下如表。假定两种方法组装产品的时间服 从正态分布,但方差未知且不相等。取显著性水平0.05,能否 认为方法1组装产品的平均数量明显地高于方法2?
2 ( d d ) i i 1 n
d
di
i 1
n
nd
sd
nd 1
匹配样本
(数据形式)
观察序号 样本1 样本2 差值
1 2 M i M n
x11 x12 M x1i M x 1n
x21 x22 M x 2i M x 2n
d1 = x11 - x21 d2 = x12 - x22 M d i = x 1i - x 2i M dn = x1n- x2n
拒绝域
P值决策
z z / 2
z z
z z
P 拒绝H0
两个总体比率之差的检验
(例题分析)
【例】一所大学准备采取一项学生 在宿舍上网收费的措施,为了解男 女学生对这一措施的看法是否存在 差异,分别抽取了 200 名男学生和 200名女学生进行调查,其中的一个 问题是:“你是否赞成采取上网收 费的措施?”其中男学生表示赞成 的比率为 27% ,女学生表示赞成的 比率为 35% 。调查者认为,男学生 中表示赞成的比率显著低于女学生 。取显著性水平 =0.01 ,样本提供 的证据是否支持调查者的看法?
第4章 假设检验(田间试验与统计分析 四川农业大学)
2 2
2
s2 1
s2 2
Hale Waihona Puke s2 es2 e
df1
s2 1
df1
df
2
s
2 2
df2
s2 e
5 2.412 4 3.997 54
3.1164
1.提出假设
H0 :1=2; HA :1≠2 。
2、计算t值
t x1 x2 s x1 x2
s x1 x2
第二节 单个样本平均数的假设检验
在实际研究工作中,常常要检验某样本
所属总体平均数与已知的总体平均数 0 是 否有差异。已知的总体平均数 0 一般为一些
公认的理论数值、经验数值或期望数值。
若σ2已知
u x 0 x
x
n
u检验
s2 若σ2未知
t x 0
sx
sx
s n
x2 1 ( x)2
x x 30.3667(g) s
n
n
2.5328 (g)
n 1
sx
s 0.8443 (g) n
t x 0 30.3667 27.5 3.395
sx
0.8443
df=n-1=9-1=8
t0.05(8) =2.306 t0.01(8) =3.355 | t |=3.395 > t0.01(8)
第四章 假设检验
第一节 假设检验的基本原理 第二节 单个样本平均数的假设检验 第三节 两个样本平均数的假设检验 第四节 百分率资料的假设检验 第五节 参数的区间估计
假设检验(test of hypothesis)又叫显著性 检验 (test of significance),是统计学中的一 个重要内容 。假设检验的方法很多 ,常用的
4第四章 假设检验、t检验和Z检验
编号
1 2 3
干预前
12 9 10
干预后
15 12 16
差值(d)
3 3 6
d2
9 9 36
4
5 6
6
5 8
10
12 9
4
7 1
16
49 1
7
8 9 10
13
11 10 9
19
18 15 11
67 5 2Fra bibliotek3649 25 4
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 : d 0
两独立样本t检验
1.建立假设,确定检验水准
H 0 : 1 2 H 1 : 1 2
2.选定检验方法,计算检验统计量
t 3012 .5 2611 .3 (30 1) 280.1 (32 1) 302.5 1 1 ( ) 30 32 2 30 32
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H 0 : 0 H1 : 0
0.05
2.选定检验方法,计算检验统计量Z值
Z x 0 s/ n 142.6 130 31.25 / 210 5.843
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
度统计学意义。
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对 子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
d d d 0 d t Sd sd / n sd / n v n 1
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果
第四章_假设检验似然比-p值
参数空间为
可以求得
可以求得似然比检验统计量为
1 ( x) exp(nX (1) ) exp (2nX (1) ) 2
它等价与统计量
似然比检验的优点:
1. 它的构造形式与具体的模型无关. 并且
可以证明许多常用的检验就等价于或几
乎等价于似然比检验.
r )) E ( HR (
2. 检验统计量有统一的渐近分布.
2 ln ( x) ~
2 r
7
• 证明:
例
设 x1 , x2 ,, x是来自正态总体 n
2
N ( , 2 )
的简单样本,其中 , 是未知参数。 求检验
H 0: 0,
的似然比检验.
简单计算可知(见教材例3.4.2)
H1: 0
n/2
其中
因此,似然比检验统计量与传统的t统计量的平 方成反比 于是,两个检验统计量的拒绝与有如下关系
f ( x, ) e ( x ) , x , R
试求假设
解: 样本分布为
n 2 f ( x, ) exp ( x i ) I{ x(1) } i 1
一个故事
二、似然比检验
} 考虑检验问题 设统计模型为 { P , , H 0: 0, H1: 1
其中 0 1。定义似然比(Likelihood Ratio)为
( x)
sup{ p ( x, )}
1
0
sup{ p ( x, )}
,
1
解:样本分布为
n 2
n( x 0 ) 2 L( x ) 1 2 ( n 1) S
第4章假设检验习题解答
.
25.设总体 X ~ N ( µ , σ ), 其中µ , σ 都未知 . X 1 , X 2 ,L , X n 为来自该总体的一个样 本.记 X =
1 n 1 n Xi, S2 = ( X i − X ) 2 .则检验假设 H 0 : µ ≤ 2 ∑ ∑ n i =1 n − 1 i =1
H 1 : µ > 2 所使
接受H 0
.
验结论为接受 H 0 ,则在显著性水平为 0.01 下检验结论一定为
24. X ~ N ( µ , 225) ,样本 ( X 1 , X 2 , L X n ) 来自正态总体 X , X 与 S 2 分别是样本均 值与样本方差,要检验 H 0 : µ = µ0 , 采用的统计量是
2 2
X − µ0 15 / n
2. 假设检验中的显著性水平 α 用来控制( A A.犯“弃真”错误的概率. C.不犯“弃真”错误的概率. 3.假设检验中一般情况下( C A. 只犯第一类错误. C. 两类错误都可能犯.
B.犯“纳伪”错误的概率. D.不犯“纳伪”错误的概率. ) .
B. 只犯第二类错误. D. 两类错误都不犯.
4. 假设检验时,当样本容量一定,若缩小犯第一类错误的概率,则犯第二类错误的概 率( B ) . A. 变小. B. 变大. C. 不变. D. 不确定.
检验 P -值: P-value = P ( Z > 1.5 ) = 0.0668 > 0.01 接受 H 0 ,认为这批钢索质量没有显著提高. ,技术革新后,抽出 6 个零件, 35.由经验知某零件质量 X ~ N (15, 0.05 ) (单位:g) 测得质量为: 14.7, 15.1, 14.8, 15.0, 15.2, 14.6. 已知方差不变, 问平均质量是否仍为 15g? 试求问题的 P-值,若取显著性水平 α = 0.05 ,有何结论. 解: H 0 : µ = 15
《统计学(第二版)》电子课件 第4章 假设检验
显著性检验本身对原假设起保护作用,水平越小, 检验犯第一类错误的概率就越小,换言之,越有 可能不拒绝原假设。
2021/8/7
《统计学》第4章假设检验
4-29
4.1.5 双侧检验和单侧检验
常见的三种显著性假设检验形式: (1)双侧检验 H0 : 0 H1 : 0 (2)右侧检验 H0 : 0 H1 : 0 (3)左侧检验 H0 : 0 H1 : 0
从该批产品中随机抽取了100件,发现其中有4件 次品,即样本次品率为4%,A公司认为样本次品 率4%大于1%,所以不接受B公司的这批产品,B 公司则认为虽然样本次品率为4%,但并不能说明 10万件产品的次品率大于1%,因为样本量很小;
2021/8/7
《统计学》第4章假设检验
4-3
问题
(1)A公司是否应该接受该批产品? (2)如果随机抽取了100件产品有3件次品,
H0:pp01%
2021/8/7
《统计学》第4章假设检验
4-12
记X为100件产品中次品的数目,直观上看, X越大,原假设越值得怀疑,反之, X越小, 对原假设越有利;问题是, X大到多少应 该拒绝原假设?
两种处理方法:
2021/8/7
《统计学》第4章假设检验
4-13
1. 假定H0成立,计算事件X≥4的概率
4-32
4.2 一个正态总体的检验
4.2.1 总体均值μ的检验: Z检验 考虑如下三种检验问题
H0:0 H1:0 H0:0 H1:0 H0:0 H1:0
(4.4) (4.5) (4.6)
2021/8/7
《统计学》第4章假设检验
4-33
第4章参数估计和假设检验
第4章参数估计和假设检验第四章参数估计与假设检验掌握参数估计和假设检验的基本思想是正确理解和应⽤其他统计推断⽅法的基础,后⾯将要学习的⽅差分析、⾮参数检验、回归分析、时间序列等统计推断⽅法都是在此基础上展开的。
需要特别指出的是,所有的统计推断都要以随机样本为基础。
如果样本是⾮随机的,统计推断⽅法就不适⽤了。
由于相关知识在先修课程中已经学习过,本章主要在回顾相关知识的基础上,补充讲解必要样本容量的计算、p值、参数估计和假设检验⽅法的软件操作和结果分析等内容。
本章的主要内容包括:(1)参数估计的基本思想和软件实现。
(2)简单随机抽样情况下样本容量的计算。
(3)假设检验的基本原理。
(4)假设检验中的p值。
(5)⼏种常⽤假设检验的软件实现。
第⼀节参数估计⼀、参数估计的基本概念参数估计是指利⽤样本信息对总体数字特征作出的估计。
例如,我们可以通过估计⼀部分产品的合格率对整批产品的合格率作出估计,通过调查⼀个样本的⼈⼝数来对全国的⼈⼝数作出估计,等等。
参数估计可以分为点估计和区间估计。
点估计是指根据样本数据给出的总体未知参数的⼀个估计值。
对总体参数进⾏估计的⽅法可以有多种,例如矩估计法、极⼤似然估计法等,得到的估计量(样本统计量)并不是唯⼀的。
例如我们可以使⽤样本均值对总体均值作出估计,也可以使⽤样本中位数对总体均值进⾏估计。
因此,在参数估计中我们需要对估计量的好坏作出评价,这就涉及到估计量的评价准则问题。
常⽤的估计量评价准则包括⽆偏性、有效性、⼀致性等。
⽆偏性是指估计量的数学期望与总体参数的真实值相等;有效性的含义是,在两个⽆偏估计量中⽅差较⼩的估计量较为有效,⽅差越⼩越有效;⼀致性是指随着样本容量的增⼤,估计量的取值应该越来越接近总体参数。
样本的随机性决定了估计结果的随机性。
由于每⼀个点估计值都来⾃于⼀个随机样本,所以总体参数真值刚好等于⼀个具体估计值的可能性极⼩。
区间估计的⽅法则以概率论为基础,在点估计的基础上给出了⼀个置信区间,并给出了这⼀区间包含总体真值的概率,⽐点估计提供了更多的信息。
统计学 第4章 假设检验
【解】研究者想收集证据予以支持的假设是该 城市中家庭拥有汽车的比率超过30%。 因此,建立的原假设和备择假设为 H0 :μ≤30% H1 :μ>30%
结论与建议
◆原假设和备择假设是一个完备事件组, 而且相互对立。在一项假设检验中,原假设和 备择假设必有一个成立,而且只有一个成立; ◆先确定备择假设,再确定原假设。因为 备择假设大多是人们关心并想予以支持和证实 的,一般比较清楚和容易确定; ◆等号“=”总是放在原假设上; ◆因研究目的不同,对同一问题可能提出 不同的假设,也可能得出不同的结论。 ◆假设检验主要是搜集证据来推翻和拒绝 原假设。
◆理想地,只有增加样本容量,能同时减小 犯两类错误的概率,但增加样本容量又受到很多 因素的限制; ◆通常,只能在两类错误的发生概率之间进 行平衡,发生哪一类错误的后果更为严重,就首 要控制哪类错误发生的概率; ◆在假设检验中,一般先控制第Ⅰ类错误的 发生概率。因为犯第Ⅰ类错误的概率是可以由研 究者控制的。
假设检验的过程
提出假设 作出决策
拒绝假设 别无选择!
总体
我认为人口的平 均年龄是50岁
抽取随机样本
均值 x = 20
二、原假设与备择假设
什么是假设?
对总体参数的具体数
值所作的陈述
我认为这种新药的疗效 比原有的药物更有效!
总体参数包括总体均值、 总体比率、总体方差等 分析之前必须陈述
备择假设。
500g
【解】研究者抽检的意图是倾向于证实这种洗 涤剂的平均净含量并不符合说明书中的陈述。 因此,建立的原假设和备择假设为 H0:μ≥500 H1:μ< 500
提出假设例3
一家研究机构估计,某城市中家庭拥有 汽车的比率超过 30% 。为验证这一估计是否 正确,该研究机构随机抽取了一个样本进行 检验。试陈述用于检验的原假设与备择假设
spss学习第4章-假设检验
(1)假设检验含义
利用统计方法检验一个事先所作出的假设的真伪, 这一假设称为统计假设,对这一假设所作出的检验就 是假设检验
(2)假设检验基本思路
ⅰ. 对总体参数作出某种假设,并假定它是成立的。 ⅱ.根据样本得到的信息(统计量),考虑接受这个 假设后是否会导致不合理的结果,如果合理就接受这个 假设,不合理就拒绝这个假设。 所谓合理性,就是看是否在一次的观察中出现了小 概率事件。
[Ⅰ.提出原假设] [Ⅱ.选择检验统计量]
[Ⅲ.计算检验统计量的观测值和概率P-值]
[Ⅳ.给定显著性水平α,并作出决策]
举例2
利用住房状况问卷调查数据,推断家庭人均住房面积的平均 值是否为20平方米。 [Ⅰ.提出原假设]
[Ⅱ.选择检验统计量]
[Ⅲ.计算检验统计量的观测值和概率P-值]
SPSS软件计算结果
课堂体验 调查内容1:学生视力
抽取22名学生调查他们的视力,假设全校学生的视
力服从于正态分布,是否可以认为学生的视力均值 为0.8?(取显著性水平α=0.05)
调查内容2:每月消费支出(分男、女)
抽取22名学生调查他们的每月消费支出,假设全校学生的消费 支出服从正态分布,比较不同性别同学的消费支出平均值和方 差?是否可以认为该校学生的消费支出均值为 500元 (取显著性水平α=0.05) 男、女同学的月消费支出是否存在显著差异?
[Ⅲ.计算检验统计量的观测值和概率P-值] [Ⅳ.给定显著性水平α,并作出决策]
第二问
[Ⅰ.提出原假设] [Ⅱ.选择检验统计量]
[Ⅲ.计算检验统计量的观测值和概率P-值]
[Ⅳ.给定显著性水平α,并作出决策]
课堂习题
知识点:一个总体参数比例检验 检验量:Z检验
第4章 参数估计与假设检验
2 2Leabharlann y 14.36, n2 2000, 2 1.16
, 2 (2 )
2 1
2
2 2 2 未知但 1 2
(2) 2 未知
S S 或 X t S f=n-1 , X t 2 X t 2 2 n n n
X ~ t (n 1) 选取样本函数 t S n P t t P t t 1 2 2 X P t 1 2 S n 得 的置信度为 1 的置信区间为
23.67,62.27
此题因为是大样本,故用两种方法计算结果相同, 而公式**较简便。如果是小样本,只能按小样本的 公式*计算。若按大样本公式计算,结果误差偏大。
(2 ) , 2 未知且
2 1 2
2 1
2
2
若为小样本,取样本函数 t
2 1 2
X Y 1 2
n
2
n
2
n
0 5 1.960 u 0.0 1 2.576 u0.1 1.645 u0.2 2
例2 伤寒论用桂枝39张处方,桂枝用量服从σ=3g的正 态分布,根据样本均数8.14g,显著水平0.05,估计桂枝用 量μ的置信区间 解:μ 的置信度0.95的置信区间为
3 8.14 1.96 =(7.1984,9.0816)g 39
2 x (1 ) 已知 2 e X u ~ N 0,1 2 / n
2
田间试验与统计分析 第四章 假设检验
品)。此时的无效假设仍为H0:
的左尾即 (, u ]
0 。这 时 否 定 域 位 于 则为HA:
域为 (, 1.64]
u分布曲线 例如当 =0.05时, u 分布的否定
0 ,但备择假设
这种利用一尾概率进行的检验叫一尾检验 。此
时 u 为一尾检验的临界 值。 一尾检验的 u =两尾检验的 u2 例如, 一尾检验的
表4-1 显著性检验的两类错误
客观实际
检验结果 否定 H 0 Ⅰ型错误( ) 推断正确(1- ) 接受 H 0 推断正确(1- ) Ⅱ型错误( )
H 0 成立 H 0 不成立
因此,如果经 检验获得“差异显著”或“差 与 异极显著”,我们有95%或99%的把握认为, 0 不相同, 判断错误的可能性不超过5%或1% ; 若经 检验获得 “差异不显著”, 我们只能认为在本次试 验条件下, 0 与
另一部分是试验误差 (1 2 ) 。
表明,试验的表面差异 ( y1 y2 ) 是由两部分组成:
( y1 y2 ) 是可以计算的,借助数理统计方法可以对试验 误差作出估计。所以,可将试验的表面差异 ( y1 y2 ) 与 试验误差相比较间接推断真实差异 ( 1 2 ) 是否存在,
体中抽样所获得的样本平均数的分布。
第三章已述及,若 y N (, 2 ) 数 y N ( y , y2 ) 得
u y y
,则样本 ,将其标准化,
y ,
,
y
y
n
y
yLeabharlann y 0n
本例, n 9, y 308g, 0 300g 9.5 g 得
y1 510
第四章 假设检验
大,就越容易将试验的真实差异错判为试验误差。
显著性检验的两类错误归纳如下:
表4-1 显著性检验的两类错误
客观实际
H0 成立 H0 不成立
检验结果
否定 H0 Ⅰ型错误( )
接受 H0 推断正确(1- )
推断正确(1- ) Ⅱ型错误( )
与0 有差异而因为试验误差大被掩盖了。
为了降低犯两类错误的概率,一般从选取适当的显
著水平 和增加试验重复次数 n 来考虑。因为选取数 值小的显著水平 值可以降低犯Ⅰ类型错误的概率,
但与此同时也增大了犯Ⅱ型错误的概率,所以显著水
平 值的选用要同时考虑到犯两类错误的概率的大小。
对于田间试验,由于试验条件不容易控制
y1 510
y2 500
我们能否根据 y1 y2 10 就判定这两
个水稻品种平均产量不同?结论是,不一定。
因为两个水稻品种平均产量 y1 、y2 都 是从试验种植的10个小区获得,仅是两个品种
有关总体平均数 1, 2 的估计值。由于存在
试验误差 ,样本平均数并不等于总体平均数 , 样本平均数包含总体平均数与试验误差二部分, 即
∣u∣≥2.526的两尾概率,所以称为 u 检验.
三、显著水平与两种类型的错误
(一)显著水平
用来否定或接受无效假设的概率标准叫显著水
平,记作 。 在生物学研究中常取 =0.05,称为 5% 显著水平; 或 =0.01,称为1% 显著水平或极显著水平。
对于上述例子 u的检验来说,若∣u∣<1.96 ,
则说明试验的表面差异属于试验误差的概率p>0.05,
即表面差异属于试验误差的可能性大,不能否
第四章假设检验
• 在n重贝努利试验中,事件A可能发生0,1,2,…,n次, 则事件A 恰好发生k(0≤k≤n)次的概率Pn(k):
k Pn ( k ) = Cn p k q n − k
k=0,1,2…,n
二项分布的定义: 设随机变量x所有可能取的值为零和正整数:0,1,2,…,n, 且有
k Pn (k ) = Cn p k q n − k
k=0,1,2…,n
其中p>0,q>0,p+q=1,则称随机变量x服从参数为n和p的 二项分布,记为 x~B(n,p)。 , 在n较大,np、nq较接近时,二项分布接近于正态分布; 当n→∞时,二项分布的极限分布是正态分布。
二项分布的平均数、标准差: 当试验结果以事件A发生次数k表示时 μ=np σ=
小概率事件实际不可能原理 随机变量的概率分布——正态分布、二项分布 样本平均数的抽样分布 t分布 假设检验的基本原理和步骤
小概率事件实际不可能原理 • 概率的统计定义 • 在相同条件下进行n次重复试验,如果随机事件A发生的次 数为m,那么m/n称为随机事件A的频率; • 当试验重复数n逐渐增大时,随机事件A的频率越来越稳定 地接近某一数值p,那么就把p称为随机事件A的概率。 • 这样定义的概率称为统计概率,或者称后验概率。可以记 为P(A)=p。
由样本平均数 x 构成的总体称为样本平均数的抽样总体, 其平均数和标准差分别记为 µ x 和 σ x 。
σ x 是样本平均数抽样总体的标准差,简称标准误, ,
它表示平均数抽样误差的大小。 统计学上已证明
µx = µ
σ
x
=
σ
n
两个定理: 1、若随机变量x服从正态分布N(µ,σ2), x1 , x2 ,L, xn 是由x总体得来的随机样本,则统计量 也是正态分布, 且有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章假设检验
一、填空
1、在做假设检验时容易犯的两类错误是和
2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为
3、假设检验有两类错误,也叫第一类错误,它是指原假设H0是的,却由于样本缘故做出了H0的错误;叫第二类错误,它是指原假设
H0是的,却由于样本缘故做出H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为。
5、假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,在显著性水平α下,否定域为
7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为。
(用H0,H1表示)
8、一般在样本的容量被确定后,犯第一类错误的概率为,犯第二类错误的概率为,若减少,则
9、某厂家想要调查职工的工作效率,工厂预计的工作效率为至少制作零件20个/小时,随机抽样36位职工进行调查,得到样本均值为19,样本标准差为6,试在显著水平为0.05的要求下,问该工厂的职工的工作效率(有,没有)达到该标准。
二、选择
1、假设检验中,犯了原假设H0实际是不真实的,却由于样本的缘故而做出的接受H0的错误,此类错误是()
A、α类错误
B、第一类错误
C、取伪错误
D、弃真错误
2、一种零件的标准长度5cm,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为()
A、,
B、,
C、,
D、,
3、一个95%的置信区间是指()
A、总体参数有95%的概率落在这一区间内
B、总体参数有5%的概率未落在这一区间内
C、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数
D、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数
4、假设检验中,如果增大样本容量,则犯两类错误的概率()
A、都增大
B、都减小
C、都不变
D、一个增大一个减小
5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假定这位经销商要检验假设,,取显著水平为α=0.01,并假设为大样本,则此项检验的拒绝域为()
A、
B、
C、
D、
6、某种感冒冲剂规定每包重量为12克,超重或过轻都是严重问题。
从过去的生产数据得知,标准差为2克,质检员抽取25包冲剂称重检验,平均每包的重量为11.85克。
假定产品重量服从正态分布。
假定产品重量服从正态分布。
取显著性水平
0.05,感冒冲剂的每包重量是否符合标准要求?()
A、符合
B、不符合
C、无法判断
D、不同情况下有不同结论
三、判断
1、如果拒绝原假设将会造成企业严重的经济损失时,那么α的值应取得小一些。
()
2、统计假设总是成对提出的,即既要有原假设,也要有备择假设。
()
3、犯第二类错误的概率与犯第一类错误的概率是密切相关的,在样本一定条件下,α小,β就增大;α大,β就减小。
为了同时减小α
和β,只有增大样本容量,减小抽样分布的离散性,这样才能达到目的。
()
4、随着显著性水平α取值的减小,拒绝假设的理由将变得充分。
()
5、假设检验是一种决策方法,使用它不犯错误。
()
四、计算
1、下面是某个随机选取20只部件的装配时间(单位:分)
9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2
10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7
设装配时间的总体服从正态分布,参数均未知,可否认为装配时间的均值为10?
2、某厂家声称其产出的原件使用寿命不低于1000小时,现在从一批原件中随机抽取25件,测得其寿命的平均值为950小时。
一直这种原件的寿命服从正态分布,标准差为100小时。
试求在显著性水平为0.05下,确定厂家的声明是否可信?
设两批器材电阻总体分别服从分布均未知,且两样本独立,问在下,可否认为两批电子器件的电阻相等?
4、在一批产品中抽40 件进行调查,发现次品有6 件,试按显著水平为0.05 来判断该批产品的次品率是否高于10%。
5、某网络公司欲了解甲居民区中的家庭(21户)每月上网的平均小时数是否比乙居民区中的家庭(16户)少。
从这两个独立样本中得出的数据为=16.5(小时),=19.5(小时),S1=3.7(小时)S2=4.5(小时)。
假设两个居民区家庭每月上网小时数服从正态分布
(α=0.01)。