Electron Counting Statistics and Coherent States of Electric Current
电磁感知大数据综合分析与利用
doi:10.3969/j.issn.1003-3114.2023.02.004引用格式:王鹏,张君毅,郎俊杰,等.电磁感知大数据综合分析与利用[J].无线电通信技术,2023,49(2):231-238.[WANG Peng,ZHANG Junyi,LANG Junjie,et prehensive Analysis and Utilization of Electromagnetic Sensing Data Based on Big Data [J].Radio Communications Technology,2023,49(2):231-238.]电磁感知大数据综合分析与利用王㊀鹏1,2,张君毅1,2,郎俊杰1,王㊀韩1(1.中国电子科技集团公司第五十四研究所,河北石家庄050081;2.河北省电磁频谱认知与管控重点实验室,河北石家庄050081)摘㊀要:电磁空间是重要的国家战略资源,其重要性不断提升,实现海量电磁感知数据的综合利用是未来联合行动的必然要求㊂针对上述需求,分析了电磁感知数据的特点及情报保障需求,设计了数据融合与数据挖掘一体化的数据处理模型,提出电磁感知数据综合分析与利用处理流程,重点分析了侦察感知数据智能化识别㊁多源数据关联分析㊁动态知识库构建与维护㊁目标行为分析与意图识别等关键技术,为实现电磁感知数据综合高效利用奠定了基础㊂关键词:大数据;电磁感知数据;数据挖掘中图分类号:TN919㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)02-0231-08Comprehensive Analysis and Utilization of ElectromagneticSensing Data Based on Big DataWANG Peng 1,2,ZHANG Junyi 1,2,LANG Junjie 1,WANG Han 1(1.The 54th Research Institute of CETC,Shijiazhuang 050081,China;2.Hebei Key Laboratory of Electromagnetic Spectrum Cognition and Control,Shijiazhuang 050081,China)Abstract :Electromagnetic space is an important national strategic resource.Its importance is increasing.The comprehensive utili-zation of massive electromagnetic sensing data is an inevitable requirement of future joint action.The characteristics of electromagneticsensing data and intelligence support requirements are analyzed.A data processing model integrating data fusion and data mining is set up.The processing flow of comprehensive data analysis and utilization system is proposed.Key technologies such as intelligent identifi-cation,correlation analysis of multi-source data,construction and maintenance of dynamic knowledge base,and target behavior analysis and intention recognition are analyzed.Research result of this paper can lay a foundation for realizing comprehensive and efficient utili-zation of electromagnetic sensing data.Keywords :big data;electromagnetic sensing data;data mining收稿日期:2022-12-22基金项目:中国科学技术协会青年人才托举工程(2020QNRC001)Foundation Item :The Young Elite Scientist Sponsorship Program byCAST(2020QNRC001)0 引言随着现代联合作战的发展,电磁空间重要性不断提升,争夺日趋复杂㊂2015年12月,美国在发布的‘决胜电磁波:重拾美国在电磁频谱的优势地位“研究报告中提出 电磁频谱战 的概念,将电磁频谱中进行的所有行动(包括电子战㊁通信和感知等)都视为电磁频谱战组成部分㊂2016年10月,美军发布JDN 3-16‘联合电磁频谱作战“条令,将电磁频谱作战定义为利用㊁攻击㊁防护和管理电磁作战环境的军事行动,指出这些行动包括联合部队所有电磁能的发射与接收㊂电磁空间是重要的国家战略资源,电磁感知大数据应用场景多种多样,挖掘业务纷繁复杂,应用点千差万别,致使电磁感知大数据综合分析与利用充满挑战,成为广大学者们关注的焦点㊂文献[1]从电磁大数据的特点及处理需求出发,提出了针对特定场景的轻量化技术架构㊂文献[2]从电磁空间作战保障需求出发,对电磁空间大数据应用实现路径进行分析和展望㊂文献[3]在梳理我国电磁频谱感知数据管理现状基础上提出了基于大数据的电磁频谱感知数据管理系统㊂文献[4]提出了天基海量电磁数据处理的系统框架㊂文献[5]对电磁态势分析中的多源信息处理方法进行了分析讨论㊂文献[6-7]讨论了机器学习在频谱大数据分析与处理上的应用㊂文献[8]分析了基于大数据架构的频谱综合利用分析方法㊂上述研究为电磁感知大数据综合分析与利用提供了借鉴㊂本文从联合作战条件下的电磁感知数据特点及处理需求出发,重点探索了基于大数据的电磁感知数据综合分析与利用系统模型㊁数据处理流程㊁关键技术及实现方法,以期对电磁大数据的综合处理与应用研究提供参考和借鉴㊂1㊀电磁感知数据综合利用需求分析1.1㊀电磁感知数据特点分析在联合作战条件下,电磁感知数据具有来源多㊁属性多㊁类型多㊁开环非配合等特点㊂随着侦察需求的提升,侦获数据种类越来越多,数据格式越来越复杂,数据量爆炸式增长,电磁感知数据呈现明显的大数据特性[2]:数据体量大(Volume)㊀随着全谱信息感知需求的不断增长,信息感知频段不断加宽,电磁感知数据体量日益增长,尤其是原始信号数据体量可达每秒数百兆字节,即使经过层层处理和压缩之后,数据体量依然十分庞大㊂数据多样性(Variety)㊀随着信息技术的发展,电磁感知数据处理对象从传统的辐射源特征参数为主扩展到中频采样数据㊁电磁频谱数据㊁内涵信息数据,以及相关环境数据(地理㊁气象㊁水文㊁电磁层)等㊂尤其在联合条件下,系统所需处理数据来自多种体制系统与装备,进一步加剧了数据的多样性㊂处理数据快(Velocity)㊀态势生成㊁指挥决策和行动控制等应用对海量电磁感知数据的处理提出了很高的要求,需要快速提取数据中蕴含的高价值信息㊂不同层次的需求对处理速度要求不同,从毫秒㊁秒到分钟等多个量级㊂具有应用价值(Value)㊀通过处理和深度挖掘,可以获取信号级㊁辐射源级㊁平台目标级㊁网络级等多层次㊁多类别的高价值信息,可为指挥决策㊁行动控制提供目标清单㊁目标属性㊁目标行为等多层次㊁多类别情报产品支援,但数据中存在大量的噪声和无效数据,呈现典型的高价值低密度特点㊂1.2㊀电磁空间作战保障需求分析行动筹划㊁态势感知㊁行动控制和效果评估反馈共同构成电磁空间作战的闭环链路,链路中的各个环节都需要情报支援信息的保障,主要需求包括[9-11]:①行动阶段:提供电磁目标体系组成㊁电磁目标清单㊁目标的部署关系/航线㊁目标编组情况㊁目标活动规律等情报保障信息;②态势感知阶段:为电磁目标识别㊁电磁态势生成㊁电磁目标行为异常告警㊁电磁目标威胁分析等提供情报知识支撑;③行动控制阶段:为各类装备提供电磁目标分布㊁重点目标引导信息㊁威胁目标引导信息以及装备加载数据等情报保障信息;④评估反馈阶段:为作战效果评估提供作战任务相关的信号参数信息㊁目标活动信息㊁目标行为信息等情报保障信息㊂综上所述,联合行动条件下电磁感知数据呈现新的特点,对电磁感知数据的综合处理与应用提出了新的需求和挑战㊂当前传统体制电磁感知数据实时处理系统多利用已知模式对数据进行融合分析处理以获取频谱和目标的实时态势并进行呈现㊂但缺乏对积累历史数据的分析,无法获取频谱和目标的行为规律,无法满足信息化联合作战条件下对侦察信息综合利用以及高价值信息提取的要求㊂而基于大数据体制的电磁感知数据分析系统则多利用数据挖掘技术对数据进行深度分析,以提取隐含在数据中潜在的㊁未知的知识,但又缺乏与实时处理系统的交互,缺乏分析挖掘成果的利用㊂为更加有效利用多感知设备数据,本文提出了一种基于大数据的电磁感知数据综合分析与利用架构,将数据融合与数据挖掘进行了一体化设计,以期形成更加高效的电磁感知数据综合处理能力㊂2㊀基于大数据的电磁感知数据分析与利用2.1㊀电磁感知数据分析与利用系统模型数据融合和数据挖掘是对侦察数据进行处理的两种不同方式,数据融合的长处是及时性,重在推理,通过侦察结果及时给出目标状态;数据挖掘重在归纳,通过对一段时间空间内的侦察元数据进行发掘,发现新的知识,作为数据融合的重要补充㊂基于数据融合与数据挖掘一体化的信息处理模型如图1所示[12]㊂图1㊀基于数据融合与数据挖掘一体化的信息处理模型Fig.1㊀Integrated data mining and fusion model for information processing㊀㊀本文设计的电磁感知数据综合分析与利用系统模型如图2所示㊂基于大数据的电磁感知数据综合分析与利用系统主要由数据采集系统㊁数据管理系统㊁实时分析系统㊁离线分析系统㊁知识库系统㊁电磁空间应用系统等组成㊂①数据采集系统:主要完成各类传感器侦察数据的采集,并利用已建立的元数据模型实现对接入数据的统一描述和预处理,并根据处理需求进行实时分发和落盘存储;②数据管理系统:主要完成各类数据的存储与管理,基于分布式文件系统㊁事务型数据库㊁分析型数据库㊁内存数据库等多种数据存储方式对数据进行分类存储与管理,并构建统一的数据访问引擎,为后续分析提供统一的数据视图;③实时分析系统:对系统接入的各类数据进行实时在线分析,获取当前电磁空间的实时态势,以知识库为支撑,为指挥人员提供实时决策支撑;④离线分析系统:主要对系统存储的各类历史数据进行深度挖掘和分析,提取蕴含在数据中的高价值信息,并将信息综合为知识,对知识库进行补充或更新;⑤知识库系统:主要对离线分析系统获取的知识进行存储和管理,并为实时分析系统及数据采集传输系统提供支撑;⑥电磁空间应用系统:综合离线分析系统及在线分析系统的相关信息,实现电磁空间作战的作战筹划㊁态势感知㊁行动控制㊁评估反馈等实际作战应用㊂图2㊀电磁感知大数据分析与利用架构模型Fig.2㊀Architecture model of electromagnetic sensing data comprehensive analysis and utilization2.2㊀电磁感知数据分析与利用数据处理流程以上节中的电磁感知大数据分析与利用架构模型为基础,以数据信息流转为主线,设计电磁感知数据处理数据流程如图3所示㊂数据采集将电磁频谱感知系统及其他业务系统数据进行统一的汇聚接入与清洗处理;信号特征提取与目标识别对数据进行分类处理,并将特征提取及目标识别结果的信息进行标注;信息关联融合则对数据进行深度的关联与融合,实时处理得到电磁态势,非实时处理获取电磁目标活动规律与模型;数据标注与检索根据识别及融合结果完成数据的标注,并为识别及关联融合提供标签数据;电磁数据可视化则完成电磁数据信号及电磁目标的展示与数据的交互式筛选㊂图3㊀电磁感知大数据处理流程Fig.3㊀Flow of electromagnetic sensing dataprocessing3㊀关键技术及途径分析3.1㊀信号与目标智能识别技术现有电磁信号与目标的识别多采用传统机器学习算法,以理论或专家经验抽象为特征,并通过多次实验筛选重要特征组成特征向量,作为分类器的输入以实现数据的识别,此种方式主要存在两个问题:一是特征可能不全面,尚有可以提升识别性能的特征并未被发现;二是特征组合可能不准确,需要经过实验反复筛选特征,组成特征向量,但特征较多时,无法穷尽所有的特征组合㊂深度学习实现了基于数据的特征自学习,为解决上述问题提供了可行的途径,目前已经在通信信号调制样式智能识别[13-14]㊁电磁信号个体识别[15]㊁电磁目标智能识别[16]等多个领域广泛应用㊂在前期研究中[13],已实现了基于卷积神经网络的通信信号调制样式识别[17],构建了如图4(a)所示的基于深度卷积神经网络的识别模型,输入原始采样的IQ两路数据,网络自动完成分类特征的自学习,最终实现调制样式的识别,如图4(b)所示,取得了较好的识别效果㊂(a)识别模型(b)识别结果图4㊀调制样式识别模型和结果Fig.4㊀Recognition model and results of modulation3.2㊀多源数据关联分析技术电磁感知数据由不同位置㊁不同功能的侦察设备(传感器)所侦获,具有一定的内在关联性㊂据此,在统一数据视图基础上,结合数据挖掘技术,从空㊁时㊁频㊁能等多域展开电磁数据的关联性分析,发掘数据中蕴含的关系和模型,实现对电磁空间数据变化规律的把握,突破现有单一手段和单一视角的局限性,为系统快速出情和指挥决策提供支撑㊂综合来看,主要的任务包括:①信号级:汇总并印证各类信号参数,构建信号参数特征数据仓库,综合利用统计分析㊁聚类等数据分析方法,获取通信信号在时域㊁频域㊁空域等特征规律,为信号识别及活动异常进行支撑㊂②目标级:实现基于海量数据的目标特征挖掘和模型学习,达成对电磁目标的主动识别,建设电磁目标特征信息库,通过跟踪挖掘目标历史海量数据,实现重要目标的全面刻画和本体重构㊂依据电磁目标识别库模型和电磁信号参数数据,对海量数据的电磁目标特征进行挖掘,对数据进行预处理,把多种来源㊁不同结构的数据进行融合,重复的数据进行过滤,对重名㊁别名等问题进行识别㊁数据拆分提取㊁查漏补缺㊁数据降维等一系列操作,实现海量侦察数据的过滤和目标初步筛选㊂对于初步处理的电磁目标,依据行动使用要求,进行针对性的精准识别,获取电磁目标的物理特征㊁信号特征及其他个体特征,并完善目标数据库,结合历史记录信息,分析目标活动规律,为目标活动情况的分析预测提供支撑㊂③网络级:对于初步处理的网络,依据用户使用要求,进行针对性的精准识别,获取网络的物理特征㊁传输系统特征及其他个体特征,对内容进行理解和分析及挖掘,并完善网络数据库,结合历史记录信息,分析网络的活动规律㊁网络内目标间联络规律,实现对网络特性的分析㊂文献[18]根据数据包提取的元数据,构建了IP 通联网络,如图5(a)所示㊂为进一步实现网络中重要通联关系及节点的识别,提出了基于模块度的通联网络自动划分算法和一种基于度和集聚系数的节点重要性评价方法,网络社区划分结果如图5(b)所示,节点重要性评价结果如图5(c)所示㊂(a )IP通联网络(b )网络社区划分结果(c )节点重要性评价结果图5㊀网络通联处理结果Fig.5㊀Communication network processing results3.3㊀动态知识库构建与维护技术系统在工作时,要求能够实时感知目标及周边战场的环境信息,然而在当前高密度复杂电磁环境中,辐射源数目巨大且不同辐射源的信号存在较大差异㊂为了能够快速㊁准确㊁全面地实施认知,必须对系统战场环境进行认知建模,通过统一的模型架构来描述不同类型的信息,为系统各业务应用提供知识支撑㊂图6为本文参考文献[19]初步设想的知识库的抽象模型,主要包括电磁环境㊁设备截获环境㊁目标信息及经验信息等㊂其中,电磁环境类知识主要包括电参数㊁低层大气数据㊁电离层参数㊁地海杂波等;设备截获环境类知识主要包括侦察部署信息㊁装备工作参数等;目标信息类知识主要包括目标的基本属性㊁任务属性㊁基本情况㊁辐射源配备㊁组网情况㊁辐射源信息㊁信号特征信息;经验信息则主要由根据以往经验形成的行动案例等构成㊂图6㊀知识库模型Fig.6㊀Knowledge basemodel为保证系统的不断演进能力,知识库需具备动态更新与维护的能力㊂以知识库中的案例库为例,需将案例库的管理技术贯穿于案例检索㊁复用㊁修正㊁保存等案例推理的各个环节,如图7所示,并需要对案例进行全生命周期的管理,包括增加㊁修改㊁删除㊁查询㊁版本维护等,为保证案例库的安全性,还需要提供权限管理控制能力㊂图7㊀案例库生命周期管理Fig.7㊀Life cycle of case base3.4㊀目标行为分析与意图识别技术目标行为分析与识别对于行动指挥具有重要意义,是在形成目标态势的基础上对其行为及意图进行进一步分析和澄清㊂目前,多利用大数据分析技术对目标历史活动行为进行分析,与专家经验等共同构建目标行为知识库,在知识的辅助下,结合当前目标态势,对目标的行为及其意图进行分析识别,已经得到广泛研究[20-21]㊂文献[22]针对目标多次运动轨迹,利用时序关联分析方法,对移动目标的典型运动轨迹进行自动化识别,以实现目标典型行为轨迹的积累,为后续的目标行为分析及识别提供知识支撑㊂目标原始运动轨迹如图8所示,设置阈值为80%后,得到的典型轨迹结果为{34,49,54,59,78,88,103,108,113,123,128,133,167,176,181}㊂{}中编号为栅格化后位置点的编号㊂图8㊀目标运动轨迹Fig.8㊀Trajectory tracking of target4㊀结论针对电磁感知数据综合分析与利用问题,在总结现有研究成果的基础上,从电磁感知数据特点及应用需求出发,设计了数据融合与数据挖掘的一体化信息处理模型,重点阐述了基于大数据的数据处理流程,分析了可能涉及的关键技术及解决途径㊂本文的研究成果可为联合应用条件下电磁感知数据综合分析与利用的系统构建及相关技术研究提供支撑和借鉴㊂参考文献[1]㊀臧维明,李高云,旷生玉,等.电磁大数据挖掘分析架构研究[J].中国电子科学研究院学报,2020,15(10):969-976.[2]㊀李斌,李高云,陈亮.电磁大数据挖掘应用研究[J].电子信息对抗技术,2019,34(4):50-54.[3]㊀罗争.基于大数据的电磁频谱感知数据管理与挖掘[J].信息通信,2016,9:137-138.[4]㊀曾德国,徐富元,张君,等.天基海量电磁数据深度处理服务平台[J].航天电子对抗,2017,33(5):5-10.[5]㊀金芳,杨坤,汪洋.电磁态势分析显示中的多源信息处理方法[J].计算机与网络,2020,46(5):58-60.[6]㊀史通,王洁,罗畅,等.机器学习在频谱大数据分析与处理上的应用[J].火力与指挥控制,2018,43(6):47-51.[7]㊀吴启晖,邱俊飞,丁国如.面向频谱大数据处理的机器学习方法[J].数据采集与处理,2015,30(4):703-713.[8]㊀张平,刘献杰,李佳.基于大数据架构的军民融合频谱综合利用分析[J].无线电工程,2018,48(5):419-423.[9]㊀刘庆国,黄学军.联合作战电磁态势分析[M].北京:解放军出版社,2012.[10]王世忠,赵宝献,王运献.对网络电磁空间作战的基本认识[J].军事学术,2011(10):27-30.[11]房朝辉,祝利,李学锋.网络电磁空间作战情报保障聚能机理研究[J].西安通信学院学报,2013,12(2):86-88.[12]WALTZE rmation Understanding:Integrating DataFusion and Data Mining Processes[J].IEEE InternationalSymposium on Circuits and Systems,1998(6):553-556.[13]王鹏,张君毅,赵国庆.基于卷积神经网络的调制识别新方法[J].无线电工程,2019,49(6):453-457.[14]葛战,伍警,李兵,等.基于循环谱和深度神经网络的调制识别方法[J ].无线电工程,2022,52(10):1718-1725.[15]李军,夏春秋.基于深度学习的辐射源个体识别方法总数[J].舰船电子对抗,2022,45(2):89-94.[16]周宁宁,朱士涛,年毅恒,等.一种基于多模态OAM波束的目标特征智能识别方法[J].雷达学报,2021(5):760-772.[17]O S HEA T J,CORGAN J,CLANCY T C.ConvolutionalRadio Modulation Recognition Networks[J/OL].arXiv:1602.04105.[2022-12-20].https:ʊ/abs/1602.04105.[18]王鹏,张君毅,赵国庆.一种基于社交网络的卫星IP数据分析算法[J].无线电工程,2019,49(8):657-660.[19]FETTE B A.认知无线电技术:第2版[M].赵知劲,郑仕链,尚俊娜,译.北京:科学出版社,2013. [20]成磊峰,何丽莎,薛丽惠,等.基于深度学习的目标行为知识发现方法[J].计算机与数字工程,2022,50(3):532-537.[21]成磊峰.基于历史规律的目标行为变化预测方法[J].指挥信息系统与技术,2022,13(1):30-33.[22]高轶,王鹏.一种基于数据挖掘的目标行为规律分析方法[J].无线电工程,2018,48(12):1043-1047.作者简介:㊀㊀王㊀鹏㊀博士,中国电子科技集团公司第五十四研究所高级工程师㊂主要研究方向:通信对抗侦察信息处理㊁信号大数据㊂张君毅㊀博士,中国电子科技集团公司第五十四研究所研究员㊂主要研究方向:通信对抗㊁信息处理等㊂郎俊杰㊀中国电子科技集团公司第五十四研究所研究员㊂主要研究方向:通信对抗等㊂王㊀韩㊀硕士,中国电子科技集团公司第五十四研究所工程师㊂主要研究方向:通信对抗侦察㊁信息处理㊂。
何燕的外文翻译
微机系统在很多情况下,电子系统的用途是来处理信息的,这种被用于处理的信息可能是电话交谈,仪表示数的读取或者是一个公司的帐户,但是在每种情况下运行的相同类型主要涉及:信息处理,信息存储和信息的传输。
在传统的电子设计中,这些操作均以功能平台的方式组合起来,例如一个计数器,无论它是电子的计数器还是机械的计数器,都是需要将当前的数值存起来的,而且按照一定的要求将该数值加1。
一种系统,例如一个电子时钟的任何一个系统,它采用的计数器具有其存储和处理能力的散布在整个系统中,因为每个计数器都可以存储和处理部分数字。
现今,基于微处理器的系统从这种常规的处理方式里面分离开来,它把信息处理,信息的存储和信息传输这三种功能分离成不一样系统单元。
这种把系统划分成三部分的分离方法是冯·诺依曼于20世纪40年代设想并提出来的,这个设想是针对微型计算机的设想,自此以后,几乎所有制造的计算机都是以这种结构来设计的,尽管它们在物理形式和物理结构上的范围十分广泛,但是从根本上来说它们都是有着相同基本设计的计算机。
在基于微处理器的系统中,信息的处理将由以微处理器为基础的系统本身来执行完成。
存储是利用存储器电路的,然而系统中信息沟通的输入和输出将是由特殊的输入/输出(I/O)电路。
要在一个以微处理器为基础的时钟里面找出能够执行既有技术功能的特殊硬件的组成部分这将是不可能的,因为时间将被存储在存储器中,并在固定的时间间隔条件下由微处理器来控制增值。
然而,由于系统是几乎完全由软件来定义。
因此对于微处理器的结构和其辅助的电路这种看起来十分抽象的处理方式确使其在具体应用的时候非常灵活。
这样的设计过程主要是软件工程中的一个,并且在生产软件时,就会碰到在传统的生产工程中类似的构造和系统维护的问题。
图1.1 微型计算机的三大组成部分在图1.1说明了微型计算机内这三个部分在一个微处理器控制系统中是怎么样按照机器之中的信息通讯方式而链接起来的。
物理专业英语词汇P
物理专业英语词汇(P) p i n diode p i n 极管p i n junction p i n 结p n i p transistor p n i p 晶体管p n junction p n 结p n p j unction p n p 结p n p n junction p n p n 结p n p n transistor p n p n 晶体管p p junction p p 结p type semiconductor p 型半导体p wave p 波pachymeter 测厚计packing 填塞packing effect 聚集效应packing fraction 聚集率packing loss 聚集效应padua model of the nucleon核子的帕多瓦模型pair 偶pair annihilation 偶湮没pair correlation function 对相关函数pair creation 偶产生pair interaction 偶相互酌pair potential 对势pair production 偶产生pairing energy 对能pairing interaction 偶相互酌pairing rotation 对转动pairing vibration 对振动palaeo astrobiology古天体生物学palaeomagnetism 古地磁学palaeovolcanology 古火山学paleobiogeochemistry古生物地球化学palladium 车钯panalyzor多能分析仪panofsky ratio 帕诺夫斯基比panoramic lens 全景镜头panoramic telescope 全景望远镜paper capacitor 纸电容器paper chromatography 纸色谱法para state 仲态para statistics 仲统计法parabola抛物线parabolic antenna 抛物面天线parabolic curve 抛物曲线parabolic orbit抛物线轨道parabolic potential 抛物线势parabolic reflector抛物面反射器parabolic type 抛物型paraboloid 抛物面paraboloid of revolution 回转抛物面paracrystal 仲晶paradox 佯谬parahelium 仲氦parahydrogen 仲氢parallactic angle 视差角parallactic ellipse 视差椭圆parallactic motion 视差动parallax 视差parallel circuit 并联电路parallel connection 并联parallel cut y 切割parallel displacement 平行位移parallel plate capacitor 平行板形电容器parallel plate condenser 平行板形电容器 parallelogram of forces 力平行四边形 paramagnet 顺磁体paramagnetic absorption 顺磁性吸收paramagnetic element 顺磁性元素paramagnetic material 顺磁物质paramagnetic relaxation 顺磁弛豫paramagnetic resonance 顺磁共振paramagnetic resonance absorption 顺磁共振吸收paramagnetic substance 顺磁物质paramagnetic susceptibility 顺磁磁化率paramagnetism 顺磁性paramagnon顺磁振子parameter 参量parameter of state 态变数parametric amplifier 参量放大器parametric excitation 参量激发parametron 参数器parasitic ferromagnetism 寄生铁磁性parasitic oscillation 寄生振荡parasitic resonance 寄生共振paraterm 仲项paraxial rays近轴光线parent element 母元素parent mass peak 原始峰parent peak 原始峰parhelium 仲氦parity宇称parity conservation law 宇称守恒律parity violation宇称不守恒parsec秒差距partial dislocation 分位错partial equilibrium 部分平衡partial polarization 部分偏振partial pressure 分压partial wave 分波partial wave analysis 分波分析partial wave expansion 分波展开partially conserved axial vector current 轴矢量分守恒partially polarized light 部分偏振光particle 粒子particle acceleration 粒子加速particle accelerator 粒子加速器particle antiparticle conjugation 正反粒子共轭particle aspect of matter 物质的粒子观点particle beam 粒子束particle booster 注入加速器particle collisions 粒子碰撞particle concentration 粒子浓度particle counter 粒子计数器particle hole interaction 粒子空穴相互酌particle hole theory粒子空穴理论particle hole transformation 粒子空穴变换particle particle correlation 粒子粒子相关particle separation 粒子分离particle separator 粒子分离器particle track detector粒子径迹探测器particle transfer reaction 粒子转移反应partition function 统计和parton model部分子模型pascal 帕pascal,s principle 帕斯卡原理paschen back effect帕邢巴克效应paschen runge mounting 帕邢朗格装置paschen series 帕邢系passive electric circuit 无源电路passive network 无源网络passive state 被动状态passivity被动状态path路径path difference 程差path integral路径积分path of vision 视线path tracking星艮踪飞行轨道pattern 图形pattern recognition 图样识另ljpatterson function 帕特森函数patterson method帕特森方法pauli approximation 泡利近似pauli exclusion principle 泡利不相容原理pauli matrix 泡利矩阵pauli paramagnetism 泡利顺磁性pauli principle泡利不相容原理pauli spinor泡利旋量pauli villars regularization 泡利维拉斯正规化pavo孔雀座peak 峰peak energy峰值能量峰peak power峰值功率peak voltage 峰压pearl necklace model珍珠颈挂式模型peculiar galaxy 特殊星系peculiar minor planet 特殊小行星pegasus飞马座peierls potential 佩尔斯势peierls transition 佩尔斯跃迁pellet compression 靶丸压缩pellet implosion 靶丸爆聚pellets 靶丸peltier effect珀耳帖效应pencil 束pencil beam survey 深巡天pencil of light 光束pendular oscillation 摆振动pendulum 摆pendulum clock 摆钟penetrability 贯穿性penetrating power 贯穿本领penetrating shower 贯穿簇射penetration depth 穿透深度penetration depth of london 伦敦穿透深度penetrometer 透度计penning discharge 彭宁放电penning effect 彭宁效应penning gage 彭宁真空计penning ion source 彭宁离子源penning ionization 彭宁电离penrose diagramm彭罗斯图形penrose lattice彭罗斯点阵penrose tile彭罗斯点阵pentagonal prism 五角棱镜pentane lamp 戊烷灯pentode五极管pentration 贵穿penumbra 半影percent百分率percolating network 渗透网络percolation 渗滤percussion 冲击perfect conductivity 理想导电性perfect conductor 理想导体perfect cosmological principle 完全宇宙原理perfect crystal 理想晶体perfect diamagnetism 理想抗磁性perfect elasto plastic body 完全弹塑性体perfect fluid 完全铃perfect gas理想气体perfect liquid 理想液体perfect polarization 全极化perfect solution 理想溶液perfectly black body 绝对黑体perfectly elastic body 完全弹性体perfectly elastic collision 完全弹性碰撞perfectly inelastic collision 完全非弹性碰撞 period 周期period luminosity relation 周期光度关系period of oscillation 振荡周期period of revolution 公转周期periodic comet 周期彗星periodic error 周期误差periodic law 周期律periodic motion 周期运动periodic orbit 周期轨道periodic potential 周期势periodic system 周期系periodic table 周期表periodic zone 周期带peripheral collision 边缘碰撞peripheral reaction 圆周反应peripheral vision 周边视觉periscope潜望镜permalloy坡莫合金permanent magnet 永磁铁permeability 磁导率permeameter 磁导计permeance 磁导permissible dose 容许剂量permissible error 容许误差permissible stress 容许应力permissible tolerance 容许剂量permitted line 容许谱线permittivity介电常数permutation 排列permutation group 置换群permutation operator 置换算符perovskite structure 钙钛矿型结构perpendicular band 正交带perpendicular susceptibility 垂直磁化率perpetual mobile 永恒机关perpetual motion 永恒运动perpetuum mobile 永动机perpetuum mobile of the first kind 第一类永动机perpetuum mobile of the second kind 第二类永动机perseus英仙座persistence of vision 视觉暂留persistent current 持久电流persistent line 暂留谱线personal computer 个人计算机personal error 人为误差personal monitor 个人剂量计personal monitoring 个人监测perturbation 微扰perturbation energy 微扰能perturbation method 摄动法perturbation theory 微扰理论perturbed motion 受摄运动perveance电子管导电系数peta拍它petra正负电子串列存储环型加速器petrapfund series 芬德系phantom人体模型phase相位phase advance capacitor 相位超前电容器phase angle 相位角phase average 相平均phase boundary 相界phase coherent state 相位相干态phase conjugate interferometry 相位共轭干涉法phase contrast 相衬phase contrast method 相衬法phase contrast microscope 相衬显微镜phase diagram 平衡图phase difference 相位差phase discriminator相位鉴别器鉴相器phase displacement 相移phase distortion 相位畸变phase equilibrium 相平衡phase grating相位衍射光栅phase hologram相位全息图phase locked loop 锁相环路phase locking 锁相phase locking technique 锁相法phase margin 相位容限phase matching 相位平衡phase meter 功率因数计phase mode 相位模phase modulation 掂phase orbit 相轨道phase oscillation 相位振动phase retrieval 相位复原phase rule 相律phase sensitive detection 相敏检波phase separation 相分离phase shift 相移phase shift oscillator 相移振荡器phase shifter 移相器phase space 相宇phase space average 相平均phase stability相位稳定性phase transformation 相变phase transition 相变phase transition of the first kind 第一类相变phase transition of the second kind 第二类相变 phase transition of vacuum 真空相变 phase velocity 相速度phase voltage 相电压 phase volume 相体积 phason起伏量子 phasotron稳相加速器 phenomenon 现象 phoenix凤凰座 phon 方phonometer 声响度计 phonon声子 phonon drag 声子曳弓I phonon echo 声子回波 phonon excitation 声子激发phosphor磷光体 phosphorescence 磷光 phot辐透photo acoustic spectroscopy 光声光谱学 photo magnetoelectric effect 光磁电效应 photoacoustics 光声学 photoactivation 光激活 photobiology光生物学photocathode光电阴极 photocell光电池 photoceram光敏玻璃陶瓷 photochemical reaction 光化反应photochemical system 光化学系统 photochemistry 光化学photochromic glass 光变色玻璃 photocolorimeter 光电比色计 photoconduction 光电导 photoconductive cell 光电导管 photoconductive effect 内光电效应photoconductivity 光电导性 photocurrent 光电流photodensitometer 光密度计 photodensitometry光密度分析法 photodetachment 光致脱离 photodetector 光探测器photodiode光电二极管 photoeffect光电效应photoelastic effect 光弹性效应 photoelastic holography 光弹性全息照相 photoelasticimeter光致弹性测量计 photoelasticity 光弹性photoelectret 光永电体photoelectric absorption 光电吸收 photoelectric cell 光电池 photoelectric current 光电流 photoelectric effect 光电效应 photoelectric emission 光电发射photoelectric microphotometer 光电测微光度计photoelectric photometer 光电光度计 photoelectric photometry 光电测光 photoelectric pyrometer 光电高温计 photoelectric threshold 光电阈 photoelectric tube 光电管 photoelectricity 光电 photoelectromagnetic effect 光电磁效应 photoelectron 光电子 photoelectron spectroscopy 光电子谱学 photoemission 光电发射photoexcitation 光激发 photofission光核裂变photogalvanic effect 光生伏打效应 photographicapparatus 照相机 photographic camera 照相机photographic density 照相密度 photographic emulsion 照相乳胶 photographic film 软片 photographic lens 照相物镜 photographic magnitude 照相星等 photographic material 照相材料 photographic photometry 照相测光学photographic plate 照相底板 photographic telescope 天体照相机 photography 照相术 photogun光电子枪photoionization 光致电离 photoirradiation 光致辐照photoluminescence 光致发光 photolysis 光解酌photomagnetic effect 光磁效应 photometer 光度计photometric cube 光度计立方体 photometric distance 测光距离 photometric elements 测光要素 photometric quantity 光度量 photometric standard 光度学标准photometric unit 光度单位 photometric wedge 测光楔photometrical paradox 奥伯斯佯谬 photometry 光度学photomicrograph显微镜照片 photomicroscopic 显微照相机 photomultiplier光电倍增管 photomultiplier tube 光电倍增管 photon光子photon counting method 光子计数法 photon coupled pair 光导发光元件 photon echo 光子回波photon gas 光子气体 photon packet 光子束photonegative effect 负光电效应 photoneutron 光中子photonuclear fission 光核裂变 photonuclear reaction 光核反应 photophoresis 光致迁动 photopic vision 亮视觉 photoplate照相底板 photoradiometer 光辐射计photorecorder自动记录照相机 photoresist光致抗蚀剂photosemiconductor 光半导体 photosensitive resin 光敏尸 photosensitivity 光灵敏度 photosensitization 光敏化 photosphere 光球photostatistics光子统计学 photosynthesis 光合酌phototelegraphy 传真photothermal displacement 光照位移 phototransistor光电晶体管 photovisual magnitude 仿视星等 photovoltaic effect光生伏打效应 physical chaos 物理混沌 physical chemistry 物理化学 physical constant 物理常数physical double star 物理双星 physical libration 物理天平动 physical mathematics 物理数学 physical oceanography 海洋物理学 physical optics 物理光学physical pendulum 复摆physical photometer 物理光度计physical photometry 物理光度学physical property 物理性质physical quantity 物理量physical roentgen equivalent 物理伦琴当量physical variable 物理变星physicist物理学家physico chemical物理化学的physics物理学physics of heat 热物理学physics of metals金属物理学physiological acoustics 生理声学pi bond 键pi electron 电子pi electron approximation 电子近似pi meson 介子pi orbital 轨道pick up reaction 拾取反应pico微微picofarad微微法picosecond 微微秒picosecond laser微微秒激光器picosecond light pulse 微微秒光脉冲picosecond spectroscopy 微微秒光谱学pictor绘架座pid action比例积分微分酌pierce type crystal oscillator 皮尔斯石英振荡器pierce type electron gun 皮尔斯电子枪piezo ceramic element 压电陶瓷元件piezo semiconductor transducer 压电半导体换能器piezoceramics 压电陶瓷piezochromism 受压变色piezoelectric 压电piezoelectric actuator 压电传动装置piezoelectric axis 压电轴piezoelectric constant 压电常数piezoelectric crystal 压电晶体piezoelectric effect 压电效应piezoelectric element 压电元件piezoelectric loudspeaker 压电扬声器piezoelectric modulus 压电模量piezoelectric oscillator 压电振荡器piezoelectric polaron 压电极化子piezoelectric transducer 压电转换器piezoelectric vibration 压电振动piezoelectricity 压电piezometer液体压力计piezoresistor压电电阻器piezotropy 压性pile反应堆pile oscillator 反应堆振荡器pile up effect脉冲堆积效应pilot lamp指示灯pinch effect箍缩效应pinching自压缩pinhole camera针孔照相机pinning 锁住pinning center 锁住中心pinning force 锁住力pinning potential 锁住势pion介子pion beam 介子束pion condensation 介子凝聚pionic atom 介原子pionization介子化过程pipe导管pipe line 导管pippard equation皮帕德方程pirani gage 皮拉尼压力计pisces双鱼座piscis austrinus 南鱼座pitot tube皮托管planar transistor 平面晶体管planck mass普朗克质量planck time普朗克时间planck's constant 普朗克常数planck's function 普朗克函数planck's fundamental length 普朗克基本长度planck's law of radiation 普朗克辐射定律plane concave lens 平凹透镜plane convex lens 平凸透镜plane fault 面缺陷plane grating平面光栅plane mirror 平面镜plane of incidence 入射面plane of polarization 偏光面plane of projection 射影平面plane of symmetry 对称面plane polarization 平面偏振plane polarized light 平面偏振光plane polarized wave 平面偏振波plane wave 平面波planet行星planetarium 天象仪planetary aberration 行星光行差planetary cosmogony 行星演化学planetary geology 行星地质学planetary nebula行星状星云planetary system 行星系planetesimal theory 星子论planetesimals 星子planetoid小行星planimeter 测面仪plano concave lens 平凹透镜plano convex lens 平凸透镜plano cylindrical lens 平圆柱透镜plano spherical lens平面球面透镜plasma等离子体plasma accelerator 等离子体加速器plasma balance等离子体平衡plasma cluster 等离子粒团plasma confinement等离子体禁闭plasma containment等离子体禁闭plasma diagnostics等离子体诊断学plasma dispersion function等离子体弥散函数plasma echo等离子体回波plasma engine等离子体发动机plasma focus等离子体聚焦点plasma frequency 等离子体频率plasma gun等离子体枪plasma heating等离子体加热plasma instability等离子体不稳定性plasma membrane 原生质膜plasma oscillation等离子体振荡plasma physics等离子体物理学plasma potential等离子体势plasma source等离子体源plasma wave等离子体波plasmapause等离子体层顶plasmasphere等离子层plasmoid等离子粒团plasmon等离振子plasmon excitation等离振子激发plastic anisotropy 塑性蛤异性plastic deformation 塑性变形plastic flow 塑性怜plastic material 塑胶plastic potential 塑性势plastic wave 塑性波plastic yield塑性屈服plasticity 塑性plastics 塑胶plate正极plate battery阳极电池组plate circuit板极电路plate current 板极电流plate detection 板极检波plate resistance 板极电阻plate tectonics 板块构造plate voltage板极电压plateau 坪platinum 铂platinum group elements 铂族元素platinum resistance thermometer 铂电阻温度计pleochroic halo 多向色晕pleochroism 多色性pleochromatism 多色性plk method plk 法plot标绘plotter标绘器plug插头plural scattering 多重散射plus 加plus sign 加口号pluto冥王星plutonium 钵plutonium reactor 钚堆plutonium regeneration 钵再生pluviometer 雨量器pneumatic laser气动激光器pockels cell波克尔斯盒pocket dosimeter袖珍剂量计pocket of air 气囊point at infinity 无穷远点point charge 点电荷point contact rectifier 点接触整流point contact transistor 点接触晶体管point defect 点缺陷point discharge 尖端放电point group 点群point lattice 点晶格point of action 酌点point of application 酌点point of contact 接触点point source of light 点光源poise 泊poiseuille flow 泊萧叶怜poiseuille,s law泊萧叶定律poisson bracket 泊松括号poisson equation 泊松方程poisson process 泊松过程poisson,s ratio 泊松比polar aurora 极光polar binding 极性键polar bond极性键polar cap 极冠polar cap absorption 极冠吸收polar crystal极性晶体polar gas极性气体polar light 极光polar liquid极性液体polar molecule 极性分子polar motion 极运动polar sequence 北极星序polar telescope 天极仪polar triangle 极三角形polar vector 极矢量polar wandering 极运动polar year 极年polarimeter 偏振计polarimetry测偏振术polaris北极星polarisation angle布儒斯特偏振角polariscope偏振光镜polariton电磁耦合振子polarity 极性polarizability 极化率polarizability ellipsoid 极化率椭球polarization 极化polarization charge 极化电荷polarization current 极化电流polarization curve 极化曲线polarization factor 极化因数polarization filter 偏振滤光镜polarization force 极化力polarization interferometer 偏振干涉仪polarization microscope 偏光显微镜polarization of neutron 中子的极化polarization orbital 极化轨道polarization potential 极化势polarization spectroscopy 偏振光光谱学polarized beam 极化束polarized ion source 极化离子源polarized light 偏振光polarized neutron diffraction technique 极化中子衍射法polarized nucleus 极化核polarized raman scattering 偏振喇曼散射polarized relay极化继电器polarized target 极化靶polarizer起偏器偏振器polarizing filter 偏振滤光镜polarizing microscope 偏光显微镜polarizing prism 偏振棱镜polarograph 极谱仪polarography 极谱学polaroid偏光片polaron极化子pole 极pole of ecliptic 黄极pole piece 极片pole shoe 极片pole strength磁极强度polestar北极星polhode心迹线polishing 抛光poloidal magnetic field 极向磁场polonium 车卜polyatomic molecule 多原子分子polycondensation 缩聚酌polycrystal 多晶polycrystalline material 多晶物质polydisperse system 多色散系polygon of forces 力多边形polygonization 多边形化polymer聚合物polymer complex聚合络合物polymer crystal 聚合晶体polymer effect 聚合效应polymerization 聚合polymerization of protein 蛋白质聚合polymolecularity 多分子性polymorphism 多形性polyphase 多相polyphase current 多相电流polytrope多变性polytropic change多方状态变化polytropic index 多方指标polytropic process 多变过程pomeranchuk effect坡密朗丘克效应pomeranchuk theorem坡密兰丘克定理pomeron坡密子pool type reactor 池式堆population 全域population inversion 粒子数反转pore小黑子porosity多孔性porous flow 多孔流position 位置position resolution 位置分辨率position sensitive detector对位置灵敏的探测器position vector 位置矢量positive 正片positive charge 正电菏positive column 阳极区positive crystal 正晶体positive electricity 正电positive electrode 阳极positive electron 正电子positive element 正元素positive eyepiece 正目镜positive feedback 正反馈positive hole 空子positive ion 阳离子positive lens 正透镜positive magnetostriction 正磁致伸缩positive meniscus 凹凸透镜positive meson 正介子positive rays 阳射线positon正电子positron正电子positron annihilation 正电子湮没positron beam 正电子束positron channeling 正电子沟道positron electron annihilation 偶湮没positron electron tandem ring accelerator 正负电子串列存储环型加速器petrapositron emission 正电子发射positron factory 正电子工厂positron spectroscopy 正电子谱学positronium电子偶素post newtonian approximation 后牛顿近似post nova燃后新星post post newtonian approximation 后后牛顿近似potassium 车甲potassium dihydrogenphosphate 磷酸二氢钾potential 势potential barrier 势垒potential difference 势差potential divider 分压器potential energy 势能potential energy curve 势能曲线potential field 势场potential flow 势流potential function 势函数potential instability 对粱稳定性potential motion 势运动potential scattering 势散射potential well 势阱potentiometer 电位计potts model波特模型pound 磅powder camera粉末照相机powder diffraction method 粉末法powder pattern粉末干涉象powder photography 粉末照相术power功率power amplification 功率放大power demonstration reactor 动力示范堆power density 功率密度power dissipation 耗散功率power factor 功率因数power factor meter 功率因数计power gain功率增益power of a lens透镜的焦强power reactor 动力堆power tube 功率管poynting robertson effect坡印廷罗伯逊效应poynting,s vector 坡印廷矢量practical system of units 实用单位制prandtl number 普朗特数praseodymium 错pre vacuum初真空pre vacuum pump 预备真空泵preacceleration 预加速preaccelerator 前加速器preamplifier前置放大器precession 旋进precession camera 旋进照相机precession of orbit 轨道旋进precessional constant 岁差常数precious metal 贵金属precipitation 沉淀precision精密度precision measurement 精密测量predict earthquake with catfish 用鲶鱼预报地震prediction 预报prediction of solar activity 太阳活动预告predissociation 预离解preferential recombination 优选复合preionization 预电离preliminary vacuum 初真空pressure 压力pressure broadening 压力增宽pressure coefficient 压力系数pressure dispersion 压力弥散pressure drag 压力阻pressure drop 压降pressure gage 压力表pressure head 压头pressure height equation 气压测高公式pressure of light 光压pressure of water vapor 水汽压pressure sensitive diode 压力敏感二极管pressure sensitive transistor 压力敏感晶体管pressure tensor 压强张量pressurized air 压缩空气pressurized water reactor 压水堆primakoff effect普里马科夫效应primary battery 原电池primary beam初级束流原射线束primary cell 原电池primary circuit 原电路primary colors 原色primary cosmic radiation 原宇宙辐射primary cosmic rays 原宇宙射线primary electron 原电子primary energy 一次能量primary ionization 一次电离primary rainbow 昼primary recrystallization 一次再结晶primary standard 原标准primary star 智primary target 初始靶primary thermometer 初始温度计primary voltage 初级电压prime meridian 零子午线prime vertical 卯酉圈primeval galaxy 原始星系primitive black hole 原始黑洞primitive lattice 初基点阵primordial solar nebula 太阳系星云principal axes of stress 应力轴principal axis 轴principal axis of inertia 惯性轴principal index for extraordinary ray 非常光线舟射率principal moment of inertia 矢口动惯量principal plane 纸面principal point 帚principal quantum number 挚子数principal ray 肘线principal refractive indices 舟射率principal series 诌系principal stress 枝力principle 原理principle of constancy of light velocity 光速不变原理principle of corresponding states 对应态原理principle of detailed balancing 细致平衡原理principle of entropy compensation 熵补偿原理principle of equal a priori probabilities 等验前概率原理principle of equipartition 均分原理principle of equivalence 等价原理principle of equivalence of mass and energy 质能当量原理principle of indeterminancy 测不准原理principle of least action 最小酌原理principle of least constraint 最小约束运动原理principle of microscopic reversibility 微观可逆性原理principle of minimum dissipation of energy 最小能量耗散原理principle of relativity 相对性原理principle of reversibility 可逆性原理principle of superposition 叠加原理principle of virtual displacement 虚位移原理principle of virtual work 虚功原理printed board印刷电路板printed circuit 印刷电路printer打印机prism棱镜prism angle 棱镜角prism spectrograph 棱镜摄谱仪prism spectroscope 棱镜分光镜prismatic transit instrument 折轴中星仪probability 概率probability current density 概率淋度probability density 概率密度probability distribution 概率分布probability distribution function 概率分布函数probability function 概率函数probability of collision 碰撞概率probable error 概率误差probe探头probe charge试探电荷probe method 探测法problem of three bodies 三体问题process control 过程控制product nucleus 生成核production 产生production of entropy 熵产生profile drag翼型阻力profile monitor剖面监测器prognosis 预报program 程序program library 程序库programme 程序programming language 程序设计语言progressive wave 前进波projecting lens 投影透镜projection 投影projection of crystal 晶体投影projection operator 投影算符projector投影器幻灯promethium 专钷prominence 日珥prominence spectroscope 日珥分光镜prompt neutron 瞬发中子propagation 传播propagation constant 传播常数propagation of sound 声传播propagation velocity 传播速度propagator传播函数proper channeling 本盏道proper field 固有场proper lorentz group 固有洛伦兹群proper motion 自行proper time 原时proper tone 固有音proper value 本盏proportion 比例proportional component 比例分量proportional counter 正比计数管proportional ionization chamber 正比电离室proportionality factor 比例系数protoatmosphere 原大气protocol 协议proton质子proton accelerator 质子加速器proton antiproton collision 质子反质子碰撞proton decay 质子衰变proton induced x ray analysis 质子激发 x 射线分析proton linear accelerator 质子直线加速器proton number 质子数proton spectrometer 质子谱仪proton synchrotron质子同步加速器protoplanet 原行星protostar原恒星protosun原太阳prototype 原型prototype meter 米原器proximity 附近proximity effect 邻近效应proximity switch 接近开关pseudo crossing 伪交叉pseudo crystal 伪晶体pseudo dipole interaction 伪偶极子相互酌pseudo energy gap 伪能隙pseudo equilibrium 伪平衡pseudo image 假象pseudo plastic flow 伪塑性流pseudo scalar 伪标量pseudo scalar coupling 伪标量耦合pseudo scalar meson 伪标介子pseudo tensor 伪张量pseudo vector 伪矢量pseudo vector coupling 伪矢量耦合pseudo wave 伪波pseudopotential 伪势pseudostate 伪态pseudosymmetry 伪对称pseudovariable 准变星pss method pss 法psychoacoustics 心理声学psychobiophysics心理生物物理学psychorheology 心理龄学psychrometer 干湿表ptolemaic system托勒玫体系pulsar脉冲星pulsating current 脉动电流pulsating star 脉动星pulsating universe 振动宇宙pulsating variable 脉动星pulsating voltage 脉动电压pulsation 脉动pulse脉冲pulse amplifier 脉冲放大器pulse code modulation 脉冲编码灯pulse coincidence 脉冲符合pulse decay脉冲衰减pulse discharge 脉冲放电pulse duration脉冲持续时间pulse generator脉冲发生器pulse height脉冲高度pulse height analyzer脉冲高度分析器pulse height discriminator 脉冲高度鉴别器pulse height selector脉冲高度选择器pulse interval 脉冲间隔pulse laser脉冲激光pulse length脉冲宽度pulse modulation 脉冲灯pulse motor脉冲电动机pulse neutron source脉冲式中子源pulse oscillator脉冲发生器pulse recurrence frequency 脉冲重复频率pulse repetition frequency 脉冲重复频率pulse shape脉冲波形pulse shape discriminator 脉冲波形鉴别器pulse shaper脉冲成形器pulse shaping脉冲成形pulse spacing脉冲间隔pulse transformer 脉冲变压器pulse width脉冲宽度pulse x rays脉冲x射线pulsed cyclotron脉冲回旋加速器pulsed ion source脉冲离子源pulsed neutron beam 脉冲中子束pulsimeter脉冲计数器pump 泵pumping 抽运pumping speed 抽速punctum remotum 远点pupil光瞳pupillary aperture 光瞳孔径puppis船尾座pure scattering 纯散射pure state 纯态pure tone 纯音purgemeter微量量计purity纯度purple light 柴光push button 按钮push pull推挽式push pull amplifier 推挽放大器pycnometer 比重瓶pyrex glass派热克斯玻璃pyrgeometer地面辐射表pyrheliometer直接日射强度计pyroelectricity 热电pyrogeology 火山学pyrology 热学pyromagnetism 高温磁学 pyrometer高温计 pyrometric cone 测温锥 pyrometry 高温测定法 pyxis罗盘座。
Quantum Computing for Computer Scientists
More informationQuantum Computing for Computer ScientistsThe multidisciplinaryfield of quantum computing strives to exploit someof the uncanny aspects of quantum mechanics to expand our computa-tional horizons.Quantum Computing for Computer Scientists takes read-ers on a tour of this fascinating area of cutting-edge research.Writtenin an accessible yet rigorous fashion,this book employs ideas and tech-niques familiar to every student of computer science.The reader is notexpected to have any advanced mathematics or physics background.Af-ter presenting the necessary prerequisites,the material is organized tolook at different aspects of quantum computing from the specific stand-point of computer science.There are chapters on computer architecture,algorithms,programming languages,theoretical computer science,cryp-tography,information theory,and hardware.The text has step-by-stepexamples,more than two hundred exercises with solutions,and program-ming drills that bring the ideas of quantum computing alive for today’scomputer science students and researchers.Noson S.Yanofsky,PhD,is an Associate Professor in the Departmentof Computer and Information Science at Brooklyn College,City Univer-sity of New York and at the PhD Program in Computer Science at TheGraduate Center of CUNY.Mirco A.Mannucci,PhD,is the founder and CEO of HoloMathics,LLC,a research and development company with a focus on innovative mathe-matical modeling.He also serves as Adjunct Professor of Computer Sci-ence at George Mason University and the University of Maryland.QUANTUM COMPUTING FORCOMPUTER SCIENTISTSNoson S.YanofskyBrooklyn College,City University of New YorkandMirco A.MannucciHoloMathics,LLCMore informationMore informationcambridge university pressCambridge,New York,Melbourne,Madrid,Cape Town,Singapore,S˜ao Paulo,DelhiCambridge University Press32Avenue of the Americas,New York,NY10013-2473,USAInformation on this title:/9780521879965C Noson S.Yanofsky and Mirco A.Mannucci2008This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2008Printed in the United States of AmericaA catalog record for this publication is available from the British Library.Library of Congress Cataloging in Publication dataYanofsky,Noson S.,1967–Quantum computing for computer scientists/Noson S.Yanofsky andMirco A.Mannucci.p.cm.Includes bibliographical references and index.ISBN978-0-521-87996-5(hardback)1.Quantum computers.I.Mannucci,Mirco A.,1960–II.Title.QA76.889.Y352008004.1–dc222008020507ISBN978-0-521-879965hardbackCambridge University Press has no responsibility forthe persistence or accuracy of URLs for external orthird-party Internet Web sites referred to in this publicationand does not guarantee that any content on suchWeb sites is,or will remain,accurate or appropriate.More informationDedicated toMoishe and Sharon Yanofskyandto the memory ofLuigi and Antonietta MannucciWisdom is one thing:to know the tho u ght by which all things are directed thro u gh allthings.˜Heraclitu s of Ephe s u s(535–475B C E)a s quoted in Dio g ene s Laertiu s’sLives and Opinions of Eminent PhilosophersBook IX,1. More informationMore informationContentsPreface xi1Complex Numbers71.1Basic Definitions81.2The Algebra of Complex Numbers101.3The Geometry of Complex Numbers152Complex Vector Spaces292.1C n as the Primary Example302.2Definitions,Properties,and Examples342.3Basis and Dimension452.4Inner Products and Hilbert Spaces532.5Eigenvalues and Eigenvectors602.6Hermitian and Unitary Matrices622.7Tensor Product of Vector Spaces663The Leap from Classical to Quantum743.1Classical Deterministic Systems743.2Probabilistic Systems793.3Quantum Systems883.4Assembling Systems974Basic Quantum Theory1034.1Quantum States1034.2Observables1154.3Measuring1264.4Dynamics1294.5Assembling Quantum Systems1325Architecture1385.1Bits and Qubits138viiMore informationviii Contents5.2Classical Gates1445.3Reversible Gates1515.4Quantum Gates1586Algorithms1706.1Deutsch’s Algorithm1716.2The Deutsch–Jozsa Algorithm1796.3Simon’s Periodicity Algorithm1876.4Grover’s Search Algorithm1956.5Shor’s Factoring Algorithm2047Programming Languages2207.1Programming in a Quantum World2207.2Quantum Assembly Programming2217.3Toward Higher-Level Quantum Programming2307.4Quantum Computation Before Quantum Computers2378Theoretical Computer Science2398.1Deterministic and Nondeterministic Computations2398.2Probabilistic Computations2468.3Quantum Computations2519Cryptography2629.1Classical Cryptography2629.2Quantum Key Exchange I:The BB84Protocol2689.3Quantum Key Exchange II:The B92Protocol2739.4Quantum Key Exchange III:The EPR Protocol2759.5Quantum Teleportation27710Information Theory28410.1Classical Information and Shannon Entropy28410.2Quantum Information and von Neumann Entropy28810.3Classical and Quantum Data Compression29510.4Error-Correcting Codes30211Hardware30511.1Quantum Hardware:Goals and Challenges30611.2Implementing a Quantum Computer I:Ion Traps31111.3Implementing a Quantum Computer II:Linear Optics31311.4Implementing a Quantum Computer III:NMRand Superconductors31511.5Future of Quantum Ware316Appendix A Historical Bibliography of Quantum Computing319 by Jill CirasellaA.1Reading Scientific Articles319A.2Models of Computation320More informationContents ixA.3Quantum Gates321A.4Quantum Algorithms and Implementations321A.5Quantum Cryptography323A.6Quantum Information323A.7More Milestones?324Appendix B Answers to Selected Exercises325Appendix C Quantum Computing Experiments with MATLAB351C.1Playing with Matlab351C.2Complex Numbers and Matrices351C.3Quantum Computations354Appendix D Keeping Abreast of Quantum News:QuantumComputing on the Web and in the Literature357by Jill CirasellaD.1Keeping Abreast of Popular News357D.2Keeping Abreast of Scientific Literature358D.3The Best Way to Stay Abreast?359Appendix E Selected Topics for Student Presentations360E.1Complex Numbers361E.2Complex Vector Spaces362E.3The Leap from Classical to Quantum363E.4Basic Quantum Theory364E.5Architecture365E.6Algorithms366E.7Programming Languages368E.8Theoretical Computer Science369E.9Cryptography370E.10Information Theory370E.11Hardware371Bibliography373Index381More informationPrefaceQuantum computing is a fascinating newfield at the intersection of computer sci-ence,mathematics,and physics,which strives to harness some of the uncanny as-pects of quantum mechanics to broaden our computational horizons.This bookpresents some of the most exciting and interesting topics in quantum computing.Along the way,there will be some amazing facts about the universe in which we liveand about the very notions of information and computation.The text you hold in your hands has a distinctflavor from most of the other cur-rently available books on quantum computing.First and foremost,we do not assumethat our reader has much of a mathematics or physics background.This book shouldbe readable by anyone who is in or beyond their second year in a computer scienceprogram.We have written this book specifically with computer scientists in mind,and tailored it accordingly:we assume a bare minimum of mathematical sophistica-tion,afirst course in discrete structures,and a healthy level of curiosity.Because thistext was written specifically for computer people,in addition to the many exercisesthroughout the text,we added many programming drills.These are a hands-on,funway of learning the material presented and getting a real feel for the subject.The calculus-phobic reader will be happy to learn that derivatives and integrals are virtually absent from our text.Quite simply,we avoid differentiation,integra-tion,and all higher mathematics by carefully selecting only those topics that arecritical to a basic introduction to quantum computing.Because we are focusing onthe fundamentals of quantum computing,we can restrict ourselves to thefinite-dimensional mathematics that is required.This turns out to be not much more thanmanipulating vectors and matrices with complex entries.Surprisingly enough,thelion’s share of quantum computing can be done without the intricacies of advancedmathematics.Nevertheless,we hasten to stress that this is a technical textbook.We are not writing a popular science book,nor do we substitute hand waving for rigor or math-ematical precision.Most other texts in thefield present a primer on quantum mechanics in all its glory.Many assume some knowledge of classical mechanics.We do not make theseassumptions.We only discuss what is needed for a basic understanding of quantumxiMore informationxii Prefacecomputing as afield of research in its own right,although we cite sources for learningmore about advanced topics.There are some who consider quantum computing to be solely within the do-main of physics.Others think of the subject as purely mathematical.We stress thecomputer science aspect of quantum computing.It is not our intention for this book to be the definitive treatment of quantum computing.There are a few topics that we do not even touch,and there are severalothers that we approach briefly,not exhaustively.As of this writing,the bible ofquantum computing is Nielsen and Chuang’s magnificent Quantum Computing andQuantum Information(2000).Their book contains almost everything known aboutquantum computing at the time of its publication.We would like to think of ourbook as a usefulfirst step that can prepare the reader for that text.FEATURESThis book is almost entirely self-contained.We do not demand that the reader comearmed with a large toolbox of skills.Even the subject of complex numbers,which istaught in high school,is given a fairly comprehensive review.The book contains many solved problems and easy-to-understand descriptions.We do not merely present the theory;rather,we explain it and go through severalexamples.The book also contains many exercises,which we strongly recommendthe serious reader should attempt to solve.There is no substitute for rolling up one’ssleeves and doing some work!We have also incorporated plenty of programming drills throughout our text.These are hands-on exercises that can be carried out on your laptop to gain a betterunderstanding of the concepts presented here(they are also a great way of hav-ing fun).We hasten to point out that we are entirely language-agnostic.The stu-dent should write the programs in the language that feels most comfortable.Weare also paradigm-agnostic.If declarative programming is your favorite method,gofor it.If object-oriented programming is your game,use that.The programmingdrills build on one another.Functions created in one programming drill will be usedand modified in later drills.Furthermore,in Appendix C,we show how to makelittle quantum computing emulators with MATLAB or how to use a ready-madeone.(Our choice of MATLAB was dictated by the fact that it makes very easy-to-build,quick-and-dirty prototypes,thanks to its vast amount of built-in mathematicaltools.)This text appears to be thefirst to handle quantum programming languages in a significant way.Until now,there have been only research papers and a few surveyson the topic.Chapter7describes the basics of this expandingfield:perhaps some ofour readers will be inspired to contribute to quantum programming!This book also contains several appendices that are important for further study:Appendix A takes readers on a tour of major papers in quantum computing.This bibliographical essay was written by Jill Cirasella,Computational SciencesSpecialist at the Brooklyn College Library.In addition to having a master’s de-gree in library and information science,Jill has a master’s degree in logic,forwhich she wrote a thesis on classical and quantum graph algorithms.This dualbackground uniquely qualifies her to suggest and describe further readings.More informationPreface xiii Appendix B contains the answers to some of the exercises in the text.Othersolutions will also be found on the book’s Web page.We strongly urge studentsto do the exercises on their own and then check their answers against ours.Appendix C uses MATLAB,the popular mathematical environment and an es-tablished industry standard,to show how to carry out most of the mathematicaloperations described in this book.MATLAB has scores of routines for manip-ulating complex matrices:we briefly review the most useful ones and show howthe reader can quickly perform a few quantum computing experiments with al-most no effort,using the freely available MATLAB quantum emulator Quack.Appendix D,also by Jill Cirasella,describes how to use online resources to keepup with developments in quantum computing.Quantum computing is a fast-movingfield,and this appendix offers guidelines and tips forfinding relevantarticles and announcements.Appendix E is a list of possible topics for student presentations.We give briefdescriptions of different topics that a student might present before a class of hispeers.We also provide some hints about where to start looking for materials topresent.ORGANIZATIONThe book begins with two chapters of mathematical preliminaries.Chapter1con-tains the basics of complex numbers,and Chapter2deals with complex vectorspaces.Although much of Chapter1is currently taught in high school,we feel thata review is in order.Much of Chapter2will be known by students who have had acourse in linear algebra.We deliberately did not relegate these chapters to an ap-pendix at the end of the book because the mathematics is necessary to understandwhat is really going on.A reader who knows the material can safely skip thefirsttwo chapters.She might want to skim over these chapters and then return to themas a reference,using the index and the table of contents tofind specific topics.Chapter3is a gentle introduction to some of the ideas that will be encountered throughout the rest of the ing simple models and simple matrix multipli-cation,we demonstrate some of the fundamental concepts of quantum mechanics,which are then formally developed in Chapter4.From there,Chapter5presentssome of the basic architecture of quantum computing.Here one willfind the notionsof a qubit(a quantum generalization of a bit)and the quantum analog of logic gates.Once Chapter5is understood,readers can safely proceed to their choice of Chapters6through11.Each chapter takes its title from a typical course offered in acomputer science department.The chapters look at that subfield of quantum com-puting from the perspective of the given course.These chapters are almost totallyindependent of one another.We urge the readers to study the particular chapterthat corresponds to their favorite course.Learn topics that you likefirst.From thereproceed to other chapters.Figure0.1summarizes the dependencies of the chapters.One of the hardest topics tackled in this text is that of considering two quan-tum systems and combining them,or“entangled”quantum systems.This is donemathematically in Section2.7.It is further motivated in Section3.4and formallypresented in Section4.5.The reader might want to look at these sections together.xivPrefaceFigure 0.1.Chapter dependencies.There are many ways this book can be used as a text for a course.We urge instructors to find their own way.May we humbly suggest the following three plans of action:(1)A class that provides some depth might involve the following:Go through Chapters 1,2,3,4,and 5.Armed with that background,study the entirety of Chapter 6(“Algorithms”)in depth.One can spend at least a third of a semester on that chapter.After wrestling a bit with quantum algorithms,the student will get a good feel for the entire enterprise.(2)If breadth is preferred,pick and choose one or two sections from each of the advanced chapters.Such a course might look like this:(1),2,3,4.1,4.4,5,6.1,7.1,9.1,10.1,10.2,and 11.This will permit the student to see the broad outline of quantum computing and then pursue his or her own path.(3)For a more advanced class (a class in which linear algebra and some mathe-matical sophistication is assumed),we recommend that students be told to read Chapters 1,2,and 3on their own.A nice course can then commence with Chapter 4and plow through most of the remainder of the book.If this is being used as a text in a classroom setting,we strongly recommend that the students make presentations.There are selected topics mentioned in Appendix E.There is no substitute for student participation!Although we have tried to include many topics in this text,inevitably some oth-ers had to be left out.Here are a few that we omitted because of space considera-tions:many of the more complicated proofs in Chapter 8,results about oracle computation,the details of the (quantum)Fourier transforms,and the latest hardware implementations.We give references for further study on these,as well as other subjects,throughout the text.More informationMore informationPreface xvANCILLARIESWe are going to maintain a Web page for the text at/∼noson/qctext.html/The Web page will containperiodic updates to the book,links to interesting books and articles on quantum computing,some answers to certain exercises not solved in Appendix B,anderrata.The reader is encouraged to send any and all corrections tonoson@Help us make this textbook better!ACKNOLWEDGMENTSBoth of us had the great privilege of writing our doctoral theses under the gentleguidance of the recently deceased Alex Heller.Professor Heller wrote the follow-ing1about his teacher Samuel“Sammy”Eilenberg and Sammy’s mathematics:As I perceived it,then,Sammy considered that the highest value in mathematicswas to be found,not in specious depth nor in the overcoming of overwhelmingdifficulty,but rather in providing the definitive clarity that would illuminate itsunderlying order.This never-ending struggle to bring out the underlying order of mathematical structures was always Professor Heller’s everlasting goal,and he did his best to passit on to his students.We have gained greatly from his clarity of vision and his viewof mathematics,but we also saw,embodied in a man,the classical and sober ideal ofcontemplative life at its very best.We both remain eternally grateful to him.While at the City University of New York,we also had the privilege of inter-acting with one of the world’s foremost logicians,Professor Rohit Parikh,a manwhose seminal contributions to thefield are only matched by his enduring com-mitment to promote younger researchers’work.Besides opening fascinating vis-tas to us,Professor Parikh encouraged us more than once to follow new directionsof thought.His continued professional and personal guidance are greatly appre-ciated.We both received our Ph.D.’s from the Department of Mathematics in The Graduate Center of the City University of New York.We thank them for providingus with a warm and friendly environment in which to study and learn real mathemat-ics.Thefirst author also thanks the entire Brooklyn College family and,in partic-ular,the Computer and Information Science Department for being supportive andvery helpful in this endeavor.1See page1349of Bass et al.(1998).More informationxvi PrefaceSeveral faculty members of Brooklyn College and The Graduate Center were kind enough to read and comment on parts of this book:Michael Anshel,DavidArnow,Jill Cirasella,Dayton Clark,Eva Cogan,Jim Cox,Scott Dexter,EdgarFeldman,Fred Gardiner,Murray Gross,Chaya Gurwitz,Keith Harrow,JunHu,Yedidyah Langsam,Peter Lesser,Philipp Rothmaler,Chris Steinsvold,AlexSverdlov,Aaron Tenenbaum,Micha Tomkiewicz,Al Vasquez,Gerald Weiss,andPaula Whitlock.Their comments have made this a better text.Thank you all!We were fortunate to have had many students of Brooklyn College and The Graduate Center read and comment on earlier drafts:Shira Abraham,RachelAdler,Ali Assarpour,Aleksander Barkan,Sayeef Bazli,Cheuk Man Chan,WeiChen,Evgenia Dandurova,Phillip Dreizen,C.S.Fahie,Miriam Gutherc,RaveHarpaz,David Herzog,Alex Hoffnung,Matthew P.Johnson,Joel Kammet,SerdarKara,Karen Kletter,Janusz Kusyk,Tiziana Ligorio,Matt Meyer,James Ng,SeverinNgnosse,Eric Pacuit,Jason Schanker,Roman Shenderovsky,Aleksandr Shnayder-man,Rose B.Sigler,Shai Silver,Justin Stallard,Justin Tojeira,John Ma Sang Tsang,Sadia Zahoor,Mark Zelcer,and Xiaowen Zhang.We are indebted to them.Many other people looked over parts or all of the text:Scott Aaronson,Ste-fano Bettelli,Adam Brandenburger,Juan B.Climent,Anita Colvard,Leon Ehren-preis,Michael Greenebaum,Miriam Klein,Eli Kravits,Raphael Magarik,JohnMaiorana,Domenico Napoletani,Vaughan Pratt,Suri Raber,Peter Selinger,EvanSiegel,Thomas Tradler,and Jennifer Whitehead.Their criticism and helpful ideasare deeply appreciated.Thanks to Peter Rohde for creating and making available to everyone his MAT-LAB q-emulator Quack and also for letting us use it in our appendix.We had a gooddeal of fun playing with it,and we hope our readers will too.Besides writing two wonderful appendices,our friendly neighborhood librar-ian,Jill Cirasella,was always just an e-mail away with helpful advice and support.Thanks,Jill!A very special thanks goes to our editor at Cambridge University Press,HeatherBergman,for believing in our project right from the start,for guiding us through thisbook,and for providing endless support in all matters.This book would not existwithout her.Thanks,Heather!We had the good fortune to have a truly stellar editor check much of the text many times.Karen Kletter is a great friend and did a magnificent job.We also ap-preciate that she refrained from killing us every time we handed her altered draftsthat she had previously edited.But,of course,all errors are our own!This book could not have been written without the help of my daughter,Hadas-sah.She added meaning,purpose,and joy.N.S.Y.My dear wife,Rose,and our two wondrous and tireless cats,Ursula and Buster, contributed in no small measure to melting my stress away during the long andpainful hours of writing and editing:to them my gratitude and love.(Ursula is ascientist cat and will read this book.Buster will just shred it with his powerful claws.)M.A.M.。
二氧化钛
It is widely recognised that the electrical properties of many technologically important oxides are strongly influenced by electronic states associated with defects and segregated dopants or impurities at surfaces and grain boundaries. Model studies of oxides by the established techniques of contemporary surface science have yielded a rich body of information about electronic states associated with oxygen vacancy defects at single crystal surfaces. B3~ contrast most work on electronic states associated with dopants has been restricted to polycrystalline ceramic material. There is a traditional scepticism in the surface science community about the value of work on polycrystalline samples [1] and therefore an urgent need to initiate experiments on doped single-
Chapter 13 Electrons in AtomsChapter 13电子在原子精品文档
Exceptional Electron Configurations
Orbitals fill in order
Lowest energy to higher energy. Adding electrons can change the
8 total electrons
By Energy Level
Third energy level
s, p, and d orbitals
2 in s, 6 in p, and 10 in d
3s23p63d10
18 total electrons
Fourth energy level
7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f
4s 4p 4d 4f 3s 3p 3d 2s 2p 1s
• 1s2 2s2 2p6 3s2 3p6 4s2
• 20 electrons
Fill from the bottom up
following the arrows
7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f
OBJECTIVES: Explain the significance of quantized energies of electrons as they relate to the quantum mechanical model of the atom.
J. J. Thomson’s Model
s,p,d, and f orbitals
2 in s, 6 in p, 10 in d, ahd 14 in f
4s24p64d104f14
32 total electrons
英文翻译口译分类词汇:科技类词汇
英⽂写作翻译频道为⼤家整理的英⽂翻译⼝译分类词汇:科技类词汇,供⼤家参考:) 科技科学发展观 concept of scientific development全民科学⽂化素质 scientific and cultural qualities of the entire people发展科技 scientific and technological advancement科教兴国 revitalize China through science and education农业技术 agricultural technology⽣态农业environmental-friendly agriculture⽆⼟栽培 soil -less cultivationBP机, 传呼 beeper, pager背投屏幕 rear projection screen不明飞⾏物 unidentified flying object (UFO)操作系统 operating system产品科技含量 technological element of a product创新 innovation电话会议 teleconference电话留⾔机 answering machine对讲机 talkie and walkie多媒体 multimedia防抱死系统 ABS (anti-lock braking system)孵化器 incubator⾼产优质 high yield and high quality⾼技术产业化 apply high technology to production⾼科技板块 high-tech sector⾼科技园 high-tech park个⼈数字助理 PDA (personal digital assistant)⼯业园区 industrial park国家质量技术监督局 the State Bureau of Quality and Technical Supervision国家重点实验室 national key laboratories⽕炬计划 Torch Program (a plan to develop new and high technology)计算机中央处理器 central processing unit(CPU)技术密集产品technology-intensive product交叉学科interdisciplinary branch of science科技成果转化为⽣产⼒ transfer of scientific and technological achievements into productive forces 科技含量 technology content科技基础设施science and technology infrastructure科技是第⼀⽣产⼒ Science and technology constitute a primary productive force科技体制改⾰reform of the science and technology management system科技与经济脱节 science and technology are out of line from the economy可持续发展战略strategy of sustainable development纳⽶ nanometer三峡⽔利枢纽⼯程the key water control project at the Three Gorges on the Yangtze River 物种起源 origin of species新兴学科 new branch of science研究成果 research results在孵企业incubated enterprises⾃动取款机 automatic teller machine (ATM)⾃然科学与社会科学的交叉融合integration of natural and social sciencesIT 信息技术信息港 info port信息⾼地 information highland信息⾼速公路information superhighway信息⾰命information revolution信息含量information content信息化 informationization信息技术处理ITA – Information Technology Agreement信息检索information retrieval办公⾃动化 OA (Office Automation)笔记本电脑 laptop / notebook / portable computer电脑病毒 computer virus电脑犯罪computer crime电⼦管理 e-management电⼦货币e-currency电⼦商务e-business; e-commerce电⼦商务认证e-business certification电⼦邮件 E-mail⾮对称数字⽤户环路 ADSL (Asymmetrical Digital Subscriber Loop)⾼速宽带互联 high-speed broadband networks公告板BBS (bulletin board system)光盘杂志CD-ROM magazine⼴域WAN (wide area net word)汉字处理软件 Chinese character processing software⿊客hacker计算机2000年问题 Y2K problem计算机辅助教育CAI –computer assisted instruction计算机辅助设计 CAD-computer assisted design计算机合成制造 CAM-computer assisted manufacturing计算机中央处理器 CPU – central processing unit超⽂本传送协议 hypertext transfer protocol (HTTP)界⾯ interface⾦融电⼦化 computerized financial services局域 LAN – local area network互联服务提供商 ISP (Internet Service Provider)全球移动通信系统 ( 全球通) global system for mobile communications (GSM)刻录机 CD burner宽带接⼊ broadband access宽带 broadband networks内联、局域 (计算机) Intranet垃圾邮件 junk mail千年问题、千年⾍ millennium bug; Y2K bug⼈⼯智能 AI – artificial intelligence⼈机交互 human - computer interaction⼈机交互 human-computer interaction虚拟⼈ visual human虚拟 virtual net虚拟virtual net虚拟现实virtual reality虚拟银⾏ virtual bank因特服务提供商ISP- internet service provider万维 World Wide Web(WWW)应⽤软件internet applications域名 domain在线on line掌上电脑palm computer政府上⼯程 Government Online Project只读存储器 read-only-memory (ROM)智能感知技术 perceptive technology智能终端 intelligent terminal中⽂信息处理系统 Chinese information processing system数码科技digital technology⾼保真 Hi-Fi ( High Fidelity)⾼清晰度电视 high definition TV (HDTV)光⾕ optical valley光通讯optical communication蓝光光盘 Blue -ray Disc数码港 cyber port数字地球 digital globe数字蜂窝移动通信 digital cellular mobile telecommunications三维电影 three-dimensional movie三维动画 three-dimensional animation[详析] “蓝光光盘” 利⽤蓝⾊的激光束来刻录数据。
electron ptychography原理
【Electron Ptychography原理】1. Electron Ptychography介绍Electron Ptychography是一种先进的电子显微镜成像方法,它利用了电子干涉和计算机算法来实现高分辨率的样品成像。
这一技术已经广泛应用于材料科学、生物学和纳米技术领域,为研究人员提供了强大的工具来观察和分析微小尺度下的结构和特性。
2. 电子干涉原理电子干涉是指电子波在空间中叠加形成干涉图样的现象。
在电子系综的情况下,干涉效应可以通过量子力学的形式来描述。
当电子通过样品时,它们会与样品中的原子发生相互作用,导致电子波的相位和振幅发生变化。
通过测量电子波的干涉图样,可以获取有关样品的结构和性质的信息。
3. Ptychography算法Ptychography是一种通过数学算法重建样品的方法,它利用多个不同位置的电子干涉图样来提高成像分辨率。
需要将样品划分为小区域,并在每个区域使用电子束来获取干涉图样。
利用计算机算法对这些干涉图样进行处理,重建出样品的结构和性质信息。
4. Electron Ptychography的优势Electron Ptychography相比传统的电子显微镜成像方法具有很多优势。
它可以实现超高分辨率的成像,可以观察到纳米级甚至亚纳米级的结构。
它对样品的要求较低,即使是非晶态或生物样品也可以进行成像。
它还可以实现三维成像,能够观察样品的立体结构。
5. 应用领域Electron Ptychography已经在许多领域得到了广泛应用。
在材料科学领域,它可以用来研究晶体结构、界面和缺陷等。
在生物学领域,它可以用来观察生物样品的超小结构,如蛋白质、细胞器等。
在纳米技术领域,它可以用来研究纳米材料的性质和制备工艺。
6. 发展趋势随着电子显微镜技术的不断进步,Electron Ptychography也在不断发展。
未来,人们可以期待更高分辨率的成像技术的出现,以及更多领域的应用。
计算机体系结构-量化研究方法笔记2
计算机体系结构-量化研究方法笔记2一、概述在计算机科学领域,计算机体系结构是一个重要的研究方向。
量化研究方法可以帮助我们更好地理解和分析计算机体系结构的复杂性,从而为优化和改进计算机系统提供支持。
本文将就计算机体系结构的量化研究方法进行笔记整理,并对相关内容进行深入探讨。
二、量化研究方法的基本概念1. 量化研究方法的定义量化研究方法是一种通过定量数据和分析技术来研究问题和现象的方法。
在计算机体系结构领域,量化研究方法可以帮助我们收集和分析系统性能数据、硬件指标、指令级别的执行统计等信息,从而更好地了解计算机系统的特性和性能表现。
2. 量化研究方法的优势量化研究方法可以提供客观、可验证的数据和结论,有利于科学研究的的严谨性和可靠性。
通过量化分析,我们可以深入挖掘计算机体系结构的内在规律和特点,为系统设计和优化提供有效的依据。
三、量化研究方法在计算机体系结构中的应用1. 性能评估与优化在计算机体系结构研究中,性能评估与优化是一个重要的课题。
量化研究方法可以帮助我们通过实验数据和分析来评估系统的性能,找到系统瓶颈并进行相应的优化。
通过量化分析,我们可以发现系统运行过程中的性能瓶颈,提出优化方案并验证其有效性。
2. 硬件设计与验证在计算机体系结构的硬件设计与验证中,量化研究方法同样具有重要作用。
通过收集和分析硬件指标、延迟统计、能耗数据等信息,我们可以对硬件设计方案进行量化评估,验证设计的可行性和性能表现。
3. 架构模拟与分析在计算机体系结构的研究中,架构模拟与分析也是一个重要的方向。
量化研究方法可以为架构模拟和分析提供数据支持,帮助我们对系统进行深入分析、研究和验证,从而发现系统的特性和行为规律。
四、量化研究方法在实际工作中的挑战与应对1. 数据收集的难点在实际工作中,数据收集往往是一个比较困难的环节。
不同的计算机系统、应用场景、工作负载等因素都会对数据收集产生影响,因此如何有效地进行数据收集是一个需要仔细考虑和处理的问题。
高等无机化学第四章-金属原子簇
1993,x-ray测定其结构,证实铁钼辅因子含 MFe3S3(M=Fe or Mo),为不完整类立方烷的二聚体, p原子簇含Fe4S4原子簇二聚体.同时还有一单个 Fe4S4原子簇和另一组铁蛋白结合在一起.
多面体骨架电子对理论 PSEPT or Wade Rule or Wade-Mingos Rule
硼烷,碳硼烷原子簇骨架主要由BH or CH结构单元共同组 成, BH→2个价电子,3个价轨道
Os: Os3(CO)12, [Os10(CO)24C]2-···· Ir: Ir(CO) 12, [Ir(CO)22]2-··· Pt: [Pt3(CO)6]2-, [Pt12(CO)24]2-, [Pt38(CO)44H2]2-···
簇化合物中均含有金属原子直接键合组成的多面体骨架 . 最低三核原子簇均具有三角型骨架. 四核有几种不同骨架:
4.5 金属原子簇的结构规则
关于金属原子簇的结构规则已提出多种,有经验的、半 经验的和纯理论计算的。主要着眼于原子簇骨架的电子数与 几何构型之间的内在关系。
Wade and Mingos 从其提出的硼烷结构规则推广应用 到金属原子簇中——多面体骨架电子理论(PSEPT)
(Polyhedral Skeletal Electron Pair Theory). Lauher的过渡金属原子簇成键能力规则(The Bonding Capabilities of Transition Metal Clusters): 主要是通过半 经验的分子轨道法计算出簇价分子轨道数来说明原子簇的成 键能力,同时预示其骨架的几何构型。
电化学二电子氧还原制备过氧化氢研究进展
物 理 化 学 学 报Acta Phys. -Chim. Sin. 2024, 40 (2), 2304001 (1 of 11)Received: April 3, 2023; Revised: May 16, 2023; Accepted: May 17, 2023; Published online: May 29, 2023. *Correspondingauthors.Emails:**************.cn(N.H.);*****************.cn(Y.L.)The project was supported by the National Natural Science Foundation of China (U2002213, 52161160331, 2227090515). 国家自然科学基金(U2002213, 52161160331, 2227090515)资助项目© Editorial office of Acta Physico-Chimica Sinica[Perspective] doi: 10.3866/PKU.WHXB202304001 Recent Progress towards the Production of H 2O 2 by Electrochemical Two-Electron Oxygen Reduction ReactionZhaoyu Wen 1, Na Han 1,*, Yanguang Li 1,2,*1 Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu Province, China.2 Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078,Macau SAR, China.Abstract: Hydrogen peroxide (H 2O 2) is an important chemical and has been extensively used in various industrial and manufacturing applications, such as wastewater treatment, sterilization, energy storage, and oxidation of small molecules. With increasing demand in various fields, the global hydrogen peroxide market is expected to grow to $8.9 billion by 2031. Currently, over 90% of H 2O 2 is industrially synthesized by the anthraquinone process, which requires complex infrastructure and expensive catalysts. Additionally, the anthraquinone process is energy intensive and leads to increased levels of environmental pollution. Although the direct synthetic process, which involves mixing hydrogen and oxygen, can achieve high atomicutilization, its development is limited due to explosion risk and high cost. Thus, there is a pressing need for a safe, cost-effective, and efficient industrial method for the production of H 2O 2. The electrochemical synthesis of H 2O 2 via a two-electron oxygen reduction reaction (2e − ORR) has emerged as an attractive method for the decentralized production of H 2O 2, which could effectively address the issues associated with the indirect anthraquinone and direct synthetic processes. However, sluggish reaction kinetics and poor selectivity decrease the energy efficiency of electrochemical H 2O 2 synthesis. In this regard, developing electrocatalysts with high 2e − ORR selectivity is vital for the efficient production of H 2O 2. In the past decades, extensive efforts have been devoted to developing effective 2e − ORR electrocatalysts such as noble metals/alloys, carbon-based materials, single-atom catalysts, and molecular complexes. However, the reported catalysts still have unsatisfactory catalytic performances. Therefore, there is still a long way to realize the large-scale production of H 2O 2 via electrochemical 2e − ORR pathway. In this perspective, we systematically summarize recent developments regarding the direct production of H 2O 2 through electrochemical two-electron oxygen reaction. First, the fundamental aspects of electrochemical 2e − ORR are discussed, including their reaction mechanisms, possible reaction pathways, testing techniques and performance figures of merit. This introduction is followed by detailed discussions on the different types of 2e − ORR electrocatalysts, with an emphasis on the underlying material design principles used to promote reaction activity, selectivity, and stability. Subsequently, the applications of electrosynthetic hydrogen peroxide in various fields are briefly described, including pollutant degradation, water sterilization, energy storage, and small-molecule synthesis. Finally, potential future directions and prospects in 2e − ORR catalysts for electrochemically producing H 2O 2 are examined. Key Words: Electrochemical; 2e − oxygen reduction reaction; Hydrogen peroxide; Catalyst; Selectivity电化学二电子氧还原制备过氧化氢研究进展文兆宇1,韩娜1,*,李彦光1,2,*1苏州大学功能纳米与软物质研究院,江苏苏州 2151232澳门科技大学材料科学与工程研究院,澳门氹仔岛 999078摘要:利用电化学二电子氧还原(2e− Oxygen Reduction Reaction,2e− ORR)方法实现过氧化氢(H2O2)的分散式制备,被认为是具有广阔发展前景的技术之一。
electron paramagnetic resonance analysis
electron paramagnetic resonance analysisElectron paramagnetic resonance (EPR) analysis, also known as electron spin resonance (ESR), is a spectroscopic technique used to study the properties of unpaired electrons in various systems. This technique allows scientists to investigate the electronic structure and dynamics of paramagnetic species, including free radicals, transition metal ions, and other species with unpaired electrons.EPR analysis involves the application of a magnetic field to the sample, which causes the unpaired electrons to align their spins with the field, resulting in a split energy level system. By manipulating the magnetic field strength and frequency, the absorption and emission of electromagnetic radiation by the unpaired electrons can be measured. This absorption spectrum provides information about the electronic transitions and magnetic properties of the sample.The main applications of EPR analysis include:1. Determination of chemical structure: EPR spectroscopy can provide valuable information about the coordination environment of transition metal ions in complex molecules or materials. By studying the splitting patterns and g-values of EPR signals, scientists can gain insights into the coordination geometry, electronic structure, and bonding properties of paramagnetic compounds.2. Study of free radicals and reactive intermediates: EPR analysis is widely used to investigate the formation, stability, and reactivity of free radicals in chemical reactions, biological systems, andmaterials science. By measuring the intensity and shape of EPR signals, researchers can determine the concentration, spin density, and spin relaxation properties of free radicals, which are crucial for understanding their role in various processes.3. Investigation of magnetic materials: EPR spectroscopy can be used to characterize magnetic materials, such as metal oxides, nanoparticles, and magnetic clusters. By examining the magnetic properties and interactions of unpaired electrons in these materials, scientists can study phenomena such as superparamagnetism, spin crossover, and magnetic ordering.4. Biomedical applications: EPR analysis has important applications in biomedical research and diagnostics. For example, it can be used to measure the concentration of oxygen and other paramagnetic species in biological tissues, monitor oxidative stress, and study the redox properties of biomolecules. EPR imaging techniques, such as electron spin resonance imaging (ESRI), are also being developed for non-invasive imaging of tissues and organs.In summary, electron paramagnetic resonance analysis is a powerful technique for investigating the electronic structure, magnetic properties, and dynamics of paramagnetic species. Its applications range from fundamental research in chemistry and physics to practical applications in materials science, biology, and medicine.。
electron-capturedetector
Electron capture detector. Gas chromatography with HiQ ®specialty gases.3Application sheet , Specialty gas Gas chromatographyElectron capture detectorAnalysis using the ECDGasesHiQ ®product program Information about gas chromatography in general can be found in the application sheet “Gas chromatography” (GC). Environmental measurements of deposits, water and air are becoming more and more important in all parts of the world. One group of environmental threats are polyhalogenated organic compounds, such as polychlorinated biphenyls (PCBs), pesticides and other halogenated organics. Even small concentrations are causing damages and it is of great importance to be able to analyze those compounds correctly at low concentrations (ppm and ppb).GC using an electron capture detector (ECD) is a very sensitive method and is well suited for analysis of such polyhalogenated organic compounds.In the electron capture detector, a beta emitter, such as radioactive tritium or 63Ni, is used to ionize the carrier gas. Fast beta particles generated by the radioactive source collide with the molecules of the carrier or make-up gas. By impact ionization, free slow-moving electrons are produced, which generate a measurable and steady current. If the GC effluent contains organic molecules with electronegative functional groups, such as halogens,phosphorous and nitro groups, electrons will be captured and the current will be reduced. In comparison to a signal without sample compounds, the reduction in electron flow is proportional to the quantity of electrophile sample components.An important facet of GC with an ECD is the carrier gas. The carrier gas transfers the sample from the injector,through the column and into the ECD. As for all GC techniques, the carrier gas must be inert and may not be a dsorbed by the column material. Because the ECD is sensitive to water, the carrier gas must be dry. Besides,the halocarbon content must be as small as possible, since halocarbons are the typical compounds to be a nalyzed with the ECD. Halocarbon-free helium or nitrogen are therefore recommended as carrier gases for the ECD.To generate free slow-moving electrons, the ECD requires nitrogen or methane, where methane is used in a form of a methane/argon mixture. Both nitrogen and the methane mixture are used as detector gases as well as carrier gases.Like all chromatographic analytical processes, gas chromatography is a relative method, i.e. calibration with a standard mixture is required. In a first analysis, a certified standard mixture is measured. By comparable meas-urements, the sample components can be identified and their proportion, and thereby their concentration, de-termined.The selection of gases, fittings and pipes as well as the installation is crucial to preserve the sensitivity, detec-tion limits and reproducibility of a detector. Particular attention should be paid to these choices.The HiQ ®specialty gas product program offers a wide range of pure gases, calibration mixtures and equipmentas well as components that fulfill the requirements in terms of analytical techniques, such as GC using an ECD.SignalDetector gasNi-plated surfaceCathodeGas inletfrom columnTo obtain optimal analytical results, Linde recommends the following gas qualities for analysis using an ECD:Halocarbon-free helium 5.0 Product code 6008Halocarbon-free nitrogen 5.5Product code 6014Halocarbon-free Halocarbon-freeHalocarbon-free nitrogen 5.5Product code 6014or Halocarbon-free Halocarbon-freeFor calibration mixtures, please look into the HiQ ®product catalog or ask your local sales representative.REDLINE ®central specialty gas supply systems for inert and non-reactive gases.Group green for single gas supply panels designed for pure gases and mixtures.Group blue for single stage supply panels with internal purging designed for high-purity gases and mixtures including flammable gases.The REDLINE ®single stage regulator C200/1 for carrier and auxiliary gases. For calibration gases, the REDLINE ®two stage regulator C200/2 provides a stable secondary outlet pressure. C200 regulators can be plain or equipped with a shut-off valve (type A) or a needle valve (type B). For GC using an ECD, we recommend a C200 regulator in brass with a shut-off valve.Please look into our HiQ ®catalog ‘Biotech, chemical, petrochemical & pharmaceutical’, visit our website or contact your local Linde sales representative.Blending toleranceAnalysis uncertaintyShelf life2 of 23Electron capture detector.Gas chromatography with HiQ ®specialty gases.1207 – 1.1 G D P S u b j e c t t o c h a n g e .Carrier and detector gasesCarrier gasesSpecificationsDetector gasCalibration mixturesRecommendedcentral gas supplyRecommendedcylinder regulatorMore information。
俄歇电子能谱仪在氧化铜定量分析中的应用
俄歇电子能谱仪在氧化铜定量分析中的应用将基体效应修正引入到俄歇电子能谱仪定量分析中,基于Monte Carlo模拟和TPP-2M模型进行了氧化铜样品中各元素背散射因子和非弹性平均自由程的计算,对氧化铜标样在相同条件下重复10次进行俄歇能谱试验。
将修正因子引入到氧化铜标样的俄歇定量分析中,基体效应修正后,氧化铜中各元素含量的相对误差大大减小,俄歇定量分析的精
确度有很大提高。
俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。
这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。
虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析手段了。
它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。
俄歇效应虽然是在1925年时发现的,但真正使俄歇能谱仪获得应用却是在1968年以后。
1。
一种基于里德堡原子ac stark效应的连续频率电场测量装置和方法
一种基于里德堡原子ac stark效应的连续频
率电场测量装置和方法
近年来,电场测量技术在许多领域中得到了广泛的应用,包括生
物学、医学、环境监测和物理学等领域。
然而,目前常用的电场测量
技术存在诸多缺陷,例如需要直接接触物体、测量结果受到环境干扰
等问题。
为解决这些问题,科学家们提出了一种基于里德堡原子AC Stark效应的连续频率电场测量装置和方法。
里德堡原子AC Stark效应是指当原子受到某一频率的电场作用时,原子内部的电子会被电场势能矩阵改变,导致原子内部能级的能
量发生偏移。
基于此效应,可以通过测量原子内部能级的偏移量来确
定外部电场的强度。
该装置由激光光源、光学元件和探测器构成。
在实验中,激光光
源产生一束激光,通过光学元件分为两束并照射在原子上。
一束激光
与原子共振,在原子内部产生激发,另一束激光则偏离共振频率,作
为参考光。
外部电场对产生激发光的原子内部能级产生干扰,导致共
振频率偏移,最终导致光强的变化。
探测器测量光强的变化,根据变
化的大小可以计算出外部电场的强度。
与传统的电场测量技术相比,该装置具有诸多优点。
首先,装置
无需与测量对象直接接触,可以在远距离测量目标电场的强度;其次,对装置的外部环境条件要求不高,不会受到环境干扰;最后,该装置
具有高精度、高分辨率的特点,可以实现对微小电场的测量。
综上所述,基于里德堡原子AC Stark效应的连续频率电场测量
装置和方法,为电场测量技术的发展带来了新的思路和方法,其在生
物学、医学等领域中的应用前景非常广泛。
electron probe analysis
electron probe analysis电子探针分析是一种用电子束照射材料并测量产生的各种信号来分析样品成分的高级技术。
它是一种精密而强大的分析方法,广泛应用于材料科学、地质学、生命科学等领域。
本文将深入探讨电子探针分析的原理、应用和发展趋势。
原理及仪器:电子探针分析的核心原理是基于电子与物质相互作用的过程。
当高能电子束照射到样品表面时,电子会与原子中的电子发生相互作用,导致样品发射出多种信号,包括X射线、二次电子、和退火电子。
通过测量这些信号的性质和数量,可以确定样品中的元素、结构和组分。
电子探针分析的仪器主要由电子枪、样品室、X射线谱仪和控制系统等组成。
电子枪产生高能电子束,照射到样品表面;样品室用于支持和定位样品;X射线谱仪检测和分析样品发射的X射线。
控制系统则负责调整仪器参数,以获取准确的分析结果。
应用领域:电子探针分析广泛应用于材料科学、地质学、金属学等多个领域。
在材料科学中,它常用于分析金属、陶瓷、半导体等材料的成分和微观结构。
在地质学中,电子探针分析可用于研究岩石和矿物的成分,提供关于地质过程和历史的重要信息。
在金属学中,电子探针分析可用于质量控制和材料研究,确保金属产品符合特定的标准。
技术优势:与传统的化学分析方法相比,电子探针分析具有许多技术优势。
首先,它具有极高的空间分辨率,能够在微米尺度上进行分析。
其次,电子探针分析不需要样品的特殊制备,适用于各种形状和尺寸的样品。
此外,它具有多元素分析的能力,可以同时检测多个元素,提高了分析的效率。
发展趋势:随着科技的不断进步,电子探针分析技术也在不断发展。
未来的发展趋势包括提高空间分辨率、降低分析的检测限、推动样品制备技术的创新等。
同时,与其他先进的分析技术结合,如扫描电子显微镜和能谱技术,将进一步拓展电子探针分析在科学研究和工业应用中的应用范围。
电子探针分析作为一种强大而高效的分析技术,对于材料研究和质量控制具有重要意义。
通过深入了解其原理、仪器、应用和未来发展趋势,我们可以更好地理解这一技术的优势和局限性,促进其在不同领域的广泛应用。
EELS&STEM
N
Si
0.5 nm/point step, 0.5 nm probe
Line scan position
O
Si N
Survey image
33
Example: EFTEM
பைடு நூலகம்FTEM of TiN/SiN stack acquired at 120 keV
(LaB6) on Philips CM120 Twin+GIF Acquisition time: ~11 minutes
Excitation of core level electrons
S-like Ef
3p 3s M1-edge absorption 2p 2s L1-edge absorption M2,3-edge absorption 3d
P-like
D-like
L2,3-edge absorption
1s K-edge absorption
projecting spectra or energy planes from spectrum image
x
y
Current drift Detector artifacts Energy drift
Spatial drift
E
EELS&STEM
Di Wu, Nanjing University
x
EELS spectrum image schematic:
x, y E Spatial dimensions Energy-loss dimension
y
Vertical columns are spectra Horizontal planes are energy filtered images E EELS&STEM Di Wu, Nanjing University
ENICA扩展
世界上第一台电子计算机其实是ABC(Atanasoff-Berry Computer,阿塔纳索夫-贝瑞计算机)ENIAC是第二台。
以前的资料声称第一台电子计算机叫ENIAC(中文名:埃尼阿克)(电子数字积分计算机的简称,英文全称为Electronic Numerical Integrator And Computer),它于1946年2月15日在美国宣告诞生。
承担开发任务的“莫尔小组”由四位科学家和工程师埃克特、莫克利、戈尔斯坦、博克斯组成,总工程师埃克特在当时年仅24岁。
在美国宾夕法尼亚大学的莫尔电机学院揭幕典礼。
它,就是世界上第一台现代电子计算机“埃尼阿克”(ENIAC)。
这个庞然大物占地面积达170平方米,重达30吨。
在揭幕仪式上,“埃尼阿克”为来宾表演了它的“绝招”----—分别在1秒钟内进行了5000次加法运算和500次乘法运算,这比当时最快的继电器计算机的运算速度要快1000多倍。
这次完美的亮相,使得来宾们喝彩不已。
ENIAC:长30.48米,宽1米,占地面积约63平方米,30个操作台,约相当于10间普通房间的大小,重达30吨,耗电量150千瓦,造价48万美元。
它包含了17,468 真空管7,200水晶二极管, 1,500 中转, 70,000 电阻器, 10,000 电容器,1500继电器,6000多个开关,每秒执行5000次加法或400次乘法,是继电器计算机的1000倍、手工计算的20万倍。
冯诺依曼不是ENIAC的主要制造者,他当时正在忙于另一个巨大的科研计划----曼哈顿计划(原子弹)原子弹之父—奥本海默(美籍犹太人)ENICA不是冯.诺依曼机,没有遵循3原则真正的3原则机是在ENICA之后,冯诺依曼带领着ENICA团队制造的EDVAC现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.。
【材料日报】下一代超级计算机多相流研究,涂料表面防污染处理解决方案,橡胶片快速龟裂现象机械原理
国家能源技术实验室利⽤下⼀代超级计算机进⾏多相流研究2017年8⽉14⽇,美国国家能源技术实验室(N E T L )官⽹公布消息称其正在与劳伦斯伯克利国家实验室、科罗拉多⼤学波德分校合作开发⼀套专业的计算流体动⼒学代码(MF IX -E x a ),将有助于推动⽓体、液体或固体材料同时流动⽅⾯的研究。
计算流体动⼒学可以更好地帮助研究⼈员了解⽓相和固相之间的相互作⽤以及设备性能。
▲下⼀代超级计算基于多相流的反应器在设计、扩⼤和运⾏⽅⾯都存在困难。
指导该过程的物理实验也变得越来越昂贵,并且有些实验甚⾄不具备可操作性。
因此,开发⾼精度计算⼯具⾄关重要,可以应⽤多相流精确地模拟系统。
计算⼯具可以⼤⼤地缩短开发新能源转换技术所需的时间和成本。
⽬前,MF IX -D E M 可以追踪数百万个颗粒,可以对粒⼦和⽓相之间的质量、动量和能量传递作出解释。
MF IX -E x a 项⽬将⼤⼤提⾼这⼀能⼒,可以在全环路反应器中跟踪数⼗亿个反应颗粒,从⽽可以完成对中试规模化学循环反应器的模拟。
这种模拟可以帮助研究⼈员在开发过程中尽早确定影响化学循环反应器系统设计的因素,从⽽控制成本并降低风险。
该项⽬由E x a s c a l e 计算项⽬(E x a s c a l e C o mp u ti n g P ro j e c t ,E C P )提供资⾦⽀持。
1德国⽡克将展⽰⽤于涂料表⾯防污染处理的解决⽅案据2017年8⽉14⽇德国⽡克官⽹报道,⽡克将在2017年巴西国际涂料展览会(A B R A F A T )展⽰⼏种⽤于涂料表⾯防污染处理的解决⽅案。
P R IMIS ® S A F 9000分散体因组成成分独特⽽同时具有憎⽔性和憎油性,可⽤来配制对茶、咖啡、唇膏、芥末、彩⾊铅笔等⼀系列物质具有抗污⼒的易清洁型室内涂料,只需主基料⽤量的10%⾄20%,便可轻松使⽤清洁海绵将污渍从墙⾯清除。
此外,该分散体还能提⾼涂料配⽅的抗粘连性,使⼲燥后的表⾯即便挤压在⼀起也不会粘结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
with quantum-mechanical coherent states. PACS numbers: 72.10.Bg, 73.50.Fq, 73.50.Td
Typeset using REVTEX
Contents
I II
Introduction Measuring electric current Spin 1/2 as a galvanometer Single-channel conductor. General formalism Equilibrium fluctuations
transport [2]. Fluctuations of electric current due to the discreteness of electric charge are intrinsic to quantum transport [3–5]. It has been found that current fluctuations have interesting properties reflecting profound aspects of underlying quantum dynamics [6–9]. For example, the quantum noise caused by a dc current is reduced below classical shot noise level [3–9]. This suppression has been understood as an effect of enhanced regularity of transmission events due to Fermi statistics [10]. Besides theoretical interest, such phenomena may lead to applications. Given the development of nano-technologies, the transmission of signals by single- or few-electron pulses will become common, and then one will see the quantum statistics of current working. In this paper we update the theory of quantum measurement of electric current [11]. Our goal is a complete description of charge fluctuations, rather than developing measurement theory (see Secs. II, III). We shall derive a microscopic formula for electron counting distribution (see Sec. III, Eq. (11), and Sec. IV, Eq. (26)) that can be used for any system, e.g., with an interaction or with a time-dependent potential [12]. As an application, we test the method on the statistics in a single channel ideal conductor for non-equilibrium and equilibrium noise at finite temperature, and for zero-point equilibrium fluctuations (Secs. IV, V). In particular, the fluctuations of a dc current at zero temperature are found to be binomial (Sec. VI) with the probabilities of outcomes related with transmission coefficients of elastic scattering in the system, and with the number of attempts N = eV t/h, where V is applied voltage, and t is the time of measurement. Another property of quantum noise that does not have classical analog is its phase sensitivity [13,14]. For the current correlator j (t1 )j (t2 )
IX
Conclusions
33 33 34
APPENDIXES A Larmor clock measurement of tunneling time
B
Bosonization calculation of counting statistics
38
I. INTRODUCTION
Quantum transport in nanostructures has been a subject of many recent studies [1]. Transport properties like Ohmic conductivity can be understood in terms of the quantum scattering problem in the conductor, which provides a theory of quantum coherence of
e ∞ ¯ −∞ h
V (t)dt = 2πn. On the other hand, for ϕ = 2πn the fluctuation of
the transmitted charge is finite (Sec. VII). This result has simple interpretation in terms of the Anderson orthogonality catastrophe theory, since the flux ϕ enters the time dependent scattering matrix of the conductor through the forward scattering amplitude. With this, one is led to address the issue of current states that minimize the current fluctuations at fixed mean transmitted charge [17,16]. It is found in Sec. VIII that such states are produced by time-dependent voltage of the form h V (t) = ± πe τk , τk > 0 , 2 2 k =1 (t − tk ) + τk
+
it results in a periodic sinusoidal
t2 t1
dependence on Faraday’s flux due to applied voltage, Φ = c
V (t)dt, with the period
Φ0 = hc/e. The phase sensitivity manifests in singularities of the low frequency noise power in a junction driven by ac and dc signals together [15]. Even more remarkable is the behavior of current fluctuations due to a pulse of voltage [13,16]. Total charge that flows through the conductor due to a voltage pulse fluctuates in such a way that the mean square fluctuation diverges whenever the flux of the pulse is not an integer: ϕ =
Gordey B. Lesovik
The Institute for Solid State Physics, Chernogolovka, Moscow region, Russia
Abstract
A theory of electron counting statistics in quantum transport is presented. It involves an idealized scheme of current measurement using a spin 1/2 coupled to the current so that it precesses at the rate proportional to the current. Within such an approach, counting charge without breaking the circuit is possible. As an application, we derive the counting statistics in a single channel conductor at finite temperature and bias. For a perfectly transmitting channel the counting distribution is gaussian, both for zero-point fluctuations and at finite temperature. At constant bias and low temperature the distribution is binomial, i.e., it arises from Bernoulli statistics. Another application considered is the noise due to short current pulses that involve few electrons. We find the time-dependence of the driving potential that produces coherent noise-minimizing current pulses, and display analogies of such current states