自身具有阻滞作用的食饵--捕食者模型简单分析

合集下载

数学建模 具有自身阻滞作用的食饵-捕食者模型 论文

数学建模 具有自身阻滞作用的食饵-捕食者模型 论文

《数学建模》课程教学论文题目:具有自身阻滞作用的食饵-捕食者模型专业:班级:学号:学生姓名:完成日期:⇒,,,>⎪⎪⎩⎪⎪⎨⎧+-=-=d b a r bxy dy dtdy axy rx dt dx ()⎩⎨⎧+-=-=)()()(bx d y t y ay r x t x 研究具有自身阻滞作用的食饵-捕食者模型摘要:讨论具有作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数意义,然后进行稳定性分析,解释平衡点稳定性的实际意义,对模型进行相轨线分析来验证理论的正确性。

研究自身阻滞作用的两种群食饵-捕食者,目的是延迟或阻止自身反应过程的发生和发展,运用Volterra 模型和Logsitic 规律的功能研究自身阻滞作用,由稳定性和相轨线来论证。

关键词: 食饵-捕食者系统 自身阻滞 平衡点稳定性 符号说明:;食饵的数量--x 捕食者的数量;--y;)(时刻的数量食饵在t t x --时刻的数量;捕食者在t t y --)(r --食饵独立生存时的增长率;a --捕食者掠取食饵的能力b --食饵对捕食者的供养能力;d --捕食者独自存在时的死亡率; 1r --食饵的固有增长率;2r --捕食者的固有增长率; 1N --食饵最大容量;2N --捕食者最大容量;1σ--食饵自身的竞争能力;2σ--捕食者自身的竞争能力基本假设:(1 )食饵由于捕食者的数量增长使得食饵数量减少,即r 与捕食者数量y 成正比,即;y r x =∙(2)捕食者没有食饵的存在就会死亡,死亡率为d ,即;dy y -=∙(3)对于食饵有)1(11N xx r x -=∙,其中11N x -是由于食饵对资源的消耗导致自身的增长阻滞作用。

建立模型:1.模型一 没有考虑食饵和捕食者自身的阻滞该模型反映了在没有捕获时食饵--捕食者之间的制约关系,没有考虑食饵和捕食者自身的阻滞作用,是V olterra 提出的最简单的模型[]1。

具时滞和食物补贴的捕食者—食饵模型的分支研究

具时滞和食物补贴的捕食者—食饵模型的分支研究

具时滞和食物补贴的捕食者—食饵模型的分支研究为了保护物种的多样性,维护生态平衡,需要对种群动力学模型进行深入研究,揭示出种群之间的相互作用关系。

在种群动力学中,捕食者-食饵模型因其重要性一直受到各界学者的关注。

在描述种群数量变化时,需要考虑到物种的成熟期和能量的转化时间,因此有必要在系统中引入时滞,以便更好地反应实际情况。

所以本文讨论了一类具时滞的捕食者-食饵模型,并在模型中引入了食物补贴项的影响。

首先,讨论了系统正平衡点的存在唯一性,在此基础上利用特征方程根的分布分析方法分析其稳定性,得到了在正平衡点处存在局部Hopf分支的充分条件。

又由中心流形定理和规范型理论,分析了正平衡点处Hopf分支的性质,包括分支的方向、分支周期解的稳定性以及周期解周期的变化等。

其次,在局部Hopf分支的基础上进一步研究系统周期解的大范围存在性问题。

由全局Hopf分支定理可以得到每个连通分枝是无界的,接着证明了系统的解具有正性,又利用常微分方程高维Bendixson定理证明系统没有非常值?-周期解,进而得到了周期解的全局存在性结论。

最后,本文分为两部分进行数值模拟。

第一部分以时滞为参数,观察系统在不同时滞处的稳定性和全局Hopf分支的存在性,对之前的理论结果给予了算例支撑;第二部分分别以食物补贴投放率、环境承载量、捕食者消耗食饵的最大速率和转换因子为参数。

通过模拟观察其对第一个分支值的影响,从而得到各参数对系统稳定区间的影响,同时解释了各种情况下的生物学意义。

建模——捕食者

建模——捕食者

食饵——捕食者模型摘要:建立具有自身阻滞作用的两个种群食饵-捕食者模型,并结合模型的数值解和相轨线,对模型的稳定性进行了分析。

关键词:种群,数值解,平衡点,相轨线,Volterra 模型(一)模型准备自然界中不同种群之间还存在着这样一种制约的生存方式:种群甲靠有限的自然资源生存,而种群乙靠掠取甲为生。

就像生活在草原上的狼与羊,种群之间捕食与被捕食的关系普遍存在,这样两个肉弱强食的种群,它们的发展和演进又会遵循一些什么样的规律呢?(二)模型假设有羊和狼两个种群,记食饵(羊群)和捕食者(狼群)在时刻t 的数量分别为)(t x ,)(t y ,1r 为羊群的固有增长率,1N 为环境容许的最大羊群量,2N 为环境容许的最大狼群量。

1、假设羊群可以独立生存,而可被其直接利用的自然资源有限,设总量为“1”。

羊群数量的增长率可以分为两部分考虑:其一,因为草原上的资源有限,所以它的增长服从Logistic 规律,即)1(11.N xx r x -=, 其二,当两个种群在同一个自然环境中生存时,由于狼群以掠取羊群为生,所以它对羊群的增长产生了负面影响,可以合理地在因子)1(1N x-中再减去一项,该项与狼群的数量y (相对于2N 而言)成正比,于是得到羊群增长的方程为:)1()(2111.N y N x x r t x σ--= (1) 1σ的意思是:单位数量的狼(相对2N 而言)掠取1σ倍的羊(相对1N 而言)。

2、假设狼群没有羊群的存在会灭亡,设其死亡率为2r ,则狼群独自存在时,有:y r t y 2.)(-=,又因为羊群的存在为狼群提供了食物,所以它对狼群的增长产生了促进作用,而狼群的增长又受到自身的阻滞作用,于是得到狼群增长的方程为:)1()(1222.N x N y y r t y σ+--= (2) 2σ的意思是:单位数量的羊(相对1N 而言)供养2σ倍的狼(相对2N 而言)。

(三)模型建立根据模型假设中的方程(1)、(2),可得到如下的数学模型:⎪⎪⎩⎪⎪⎨⎧+--=--=)1()()1()(1222.2111.N x N y y r t y N y N x x r t x σσ (四)模型求解利用数学软件求微分方程的数值解,通过对数值结果和图形的观察,猜测它的解析解的构造,然后从理论上研究其平衡点,验证前面的猜测。

捕食者-被捕食者模型稳定性分析报告

捕食者-被捕食者模型稳定性分析报告

被捕食者—捕食者模型稳定性分析【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。

本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟方法验证理论分析的正确性。

【关键词】食饵—捕食者模型相轨线平衡点稳定性一、问题重述在自然界中,存在这种食饵—捕食者关系模型的物种很多。

下面讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。

二、问题分析本文选择渔场中的食饵(食用鱼)和捕食者(鲨鱼)为研究对象,建立微分方程,并利用数学软件MATLAB 求出微分方程的数值解,通过对数值结果和图形的观察,猜测出它的解析解构造。

然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。

三、模型假设1.假设捕食者(鲨鱼)离开食饵无法生存;2.假设大海中资源丰富,食饵独立生存时以指数规律增长;四、符号说明)(t x /)(1t x ——食饵(食用鱼)在时刻t 的数量;)(t y /)(2t x ——捕食者(鲨鱼)在时刻t 的数量;1r ——食饵(食用鱼)的相对增长率;2r ——捕食者(鲨鱼)的相对增长率;1N ——大海中能容纳的食饵(食用鱼)的最大容量;2N ——大海中能容纳的捕食者(鲨鱼)的罪的容量;1σ——单位数量捕食者(相对于2N )提供的供养食饵的实物量为单位数量捕食者(相对于1N )消耗的供养甲实物量的1σ倍;2σ——单位数量食饵(相对于1N )提供的供养捕食者的实物量为单位数量捕食者(相对于2N )消耗的供养食饵实物量的2σ倍;d ——捕食者离开食饵独立生存时的死亡率。

具阶段结构、密度制约的捕食者—食饵模型

具阶段结构、密度制约的捕食者—食饵模型

具阶段结构、密度制约的捕食者—食饵模型本文的主要目的是建立几个捕食者-食饵模型并研究这些模型的渐近性态以及阶段结构、密度制约对种群的影响。

本文第一章,我们将捕食者种群分为未成年与成年两个阶段,并且假使只有成年个体捕食食饵,而未成年个体不捕食食饵;同时假设捕食种群中未成年个体成熟为成年个体的转化率是未成年种群密度的函数;建立了具有阶段结构的捕食者-食饵模型。

得到了系统持续生存的条件,并得到了渐近稳定的周期解。

这说明阶段结构可能是种群数量周期扰动的原因,从而使得种群模型的性态更加复杂。

本文第二章,我们对比率依赖型的捕食者-食饵模型进行了研究。

对于捕食者的死亡率,我们不仅考虑了捕食者的自然死亡因素,而且还考虑了由于种内之间争夺资源及其它原因引起的死亡等因素,即考虑捕食者之间密度制约因素。

对系统在原点的性态,我们作了全面的分析。

原点是一个高阶奇点,在它的邻域内存在多种拓扑结构。

我们得到了系统稳定性的条件,并通过分支理论得到了极限环的存在性。

对退化的唯一正平衡点进行研究,得到了Bogdanov-Takens分支,分支出同宿圈。

并进行了数值模拟。

本文第三章,首先假设捕食者的死亡率依赖于捕食者与食饵的比率,接着分别考虑了捕食者的功能性反应为双线性型的与比率依赖型的捕食者-食饵模型。

对于功能性反应为双线性型的模型,我们得到了正平衡点的全局稳定性。

对于功能性反应为比率依赖型的捕食者-食饵模型,通过分支理论得到了极限环的存在性。

并进行了数值模拟。

一类具有时滞的捕食者-食饵模型的稳定性和Hopf分支

一类具有时滞的捕食者-食饵模型的稳定性和Hopf分支

一类具有时滞的捕食者-食饵模型的稳定性和Hopf分支一类具有时滞的捕食者-食饵模型的稳定性和Hopf分支摘要:捕食者-食饵模型可用于研究生态系统中的捕食行为和食物链稳定性。

在现实生态系统中,许多因素会对捕食者与食饵之间的相互作用产生影响,其中一个重要因素就是时滞。

本文通过引入时滞因素,研究了一类具有时滞的捕食者-食饵模型的稳定性和Hopf分支。

通过数学模型的建立与分析,我们得到了该系统的平衡点存在以及Hopf分支发生的条件,并利用MATLAB软件进行了数值模拟。

结果表明,时滞对系统的稳定性和动态性质具有重要影响,适当的时滞引入可以使系统产生周期性振荡。

1. 引言生态系统中的捕食者-食饵关系是一个重要而复杂的生态现象,其研究可以揭示自然规律并帮助我们更好地了解生态系统的运行机制。

捕食者-食饵模型在生态学中被广泛应用,其中Lotka-Volterra模型是最经典的一种。

2. 模型的建立我们考虑一个具有时滞的捕食者-食饵模型,其中食饵种群用x表示,捕食者种群用y表示。

模型可以表示为以下方程组:dx/dt = ax(1 - bx) - cxy(t - τ)dy/dt = -fy + hxy(t - σ)其中a, b, c, f, h是正常数,τ和σ是时滞参数。

3. 平衡点的存在性首先,我们研究该模型的平衡点的存在性。

设平衡点为(x0, y0),即dx/dt = 0,dy/dt = 0。

通过求解方程组,我们可以得到平衡点的表达式。

4. 稳定性分析接下来,我们研究平衡点的稳定性。

通过线性稳定性分析,我们可以判断平衡点的稳定性。

当α = β = 0时,模型简化为传统Lotka-Volterra模型,它的平衡点为(0, 0)和(1/b, 0)。

根据稳定性分析,我们得到当r < 1时,平衡点(0, 0)是稳定的;当r > 1时,平衡点(1/b, 0)是稳定的。

其中r = ah/(bf)。

5. Hopf分支的发生条件在本文的模型中,我们引入了时滞参数τ和σ。

食饵捕食者模型

食饵捕食者模型

食饵捕食者模型Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】楚雄师范学院数学系《数学模型》课程食饵—捕食者模型3. 讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性,并用matlab 软件画出图形。

自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生长,而种群乙靠捕食甲为生,形成鱼和鲨鱼,美洲兔和山猫,落叶松和蚜虫等等都是这种生存方式的典型,生态学称种群甲为食饵,种群乙为捕食者。

二者共同组成食饵—捕食者系统。

一食饵—捕食者选用食饵(食用鱼)和捕食者(鲨鱼)为研究对象,设)(t x /)(1t x 为食饵(食用鱼)在时刻t 的数量,)(t y /)(2t x 为捕食者(鲨鱼)在时刻t 的数量,1r 为食饵(食用鱼)的相对增长率,2r 为捕食者(鲨鱼)的相对增长率;1N 为大海中能容纳的食饵(食用鱼)的最大容量,2N 为大海中能容纳的捕食者(鲨鱼)的最大容量,1σ为单位数量捕食者(相对于2N )提供的供养食饵的实物量为单位数量捕食者(相对于1N )消耗的供养甲实物量的1σ倍;2σ为单位数量食饵(相对于1N )提供的供养捕食者的实物量为单位数量捕食者(相对于2N )消耗的供养食饵实物量的2σ倍;d 为捕食者离开食饵独立生存时的死亡率二模型假设1.假设捕食者(鲨鱼)离开食饵无法生存;2.假设大海中资源丰富,食饵独立生存时以指数规律增长;三模型建立食饵(食用鱼)独立生存时以指数规律增长,且食饵(食用鱼)的相对增长率为1r ,即rx x =',而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者数量成正比,于是)(t x 满足方程axy rx ay r x t x -=-=')()( (1)比例系数a 反映捕食者掠取食饵的能力。

食饵捕食者模型

食饵捕食者模型
食饵——捕食者模型
摘要
自然界中不同种群之间存在着一种有趣的既有依存,又有制约的生存方式: 种群甲靠丰富的自然资源生长,而种群乙靠捕食种群甲为生。生态学上称种群甲 为食饵 (Pr ey ) ,种群乙为捕食者 (Pr edator ) ,二者共处组成食饵——捕食者系统 (简称 P P 系统) 。为了对食饵、捕食者的数量关系做出分析和预测,建立了食 饵——捕食者模型:根据微分方程稳定性理论辅之以相轨线分析,对具有自身阻 滞作用的两种群的数量关系做出分析和预测。
第 8 页
共 8 页
(t ) rx(1 x
其中因子 (1 用,
x ) N
x ) 反映由于甲对有限资源的消耗导致的对它本身增长的阻滞作 N
x 可解释为相对于 N 而言单位数量的甲消耗别的供养甲的食物量(设食物 N 总量为 1) 。 当两个种群在同一自然环境中生存时, 考察由于乙消耗同一种有限资源对甲 x 的增长产生的影响,可以合理的在因子 (1 ) 中再减去一项,该项与种群乙的 N
MATLAB 代码为: function xdot=shier(t,x) r=1;d=0.5;a=0.2;b=0.01;n=0.01;m=0.1; xdot=[(r-n*x(1)-a*x(2)).*x(1);(-d+b*x(1)-m*x(2)).*x(2)]; >> clear; >> ts=0:0.1:25; >> x0=[25,2]; >> [t,x]=ode45('shier',ts,x0); >> plot(t,x),grid,gtext('x(t)'),gtext('y(t)'), >> pause, >> plot(x(:,1),x(:,2)),grid,

自身具有阻滞作用的食饵--捕食者模型简单分析[1]

自身具有阻滞作用的食饵--捕食者模型简单分析[1]

具有自身阻滞作用的食饵—捕食者模型简单分析【摘要】种群之间的食饵—捕食者模型由于在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。

对其进行平衡点的稳定性分析,验证在自然界中的两种种群构成食饵—捕食者系统的相互关系。

【关键字】食饵—捕食者自身阻滞作用平衡点稳定性一、问题重述对于V olterra模型,多数食饵—捕食者系统观察不到那种周期动荡,而是趋于某种平衡状态,即系统存在稳定的平衡点。

在V olterra模型中考虑自身阻滞作用的Logistic项建立具有自身阻滞作用的食饵—捕食者模型,并对模型的稳定性进行分析。

二、问题背景和分析自然界中不同种群之间存在着既有依存、又有制约的生存方式:种群甲靠丰富的自然资源生长,而种群已靠捕食种群甲为生,食用于和鲨鱼、美洲兔和山猫、落叶松和蚜虫等都是这种生存方式的典型。

生态学称甲为食饵(Prey),种群已为捕食者(Predator),二者构成了食饵—捕食者系统。

然而在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。

三、模型假设食饵在自然界中生存若没有捕食者情况下独立生存,自身增长符合Logistic 增长,而捕食者在离开食饵没有其他的食饵,在有食饵的情况自身增长亦符合Logistic增长。

五、模型建立、求解与分析5.1模型建立当某个自然环境中只有一个种群生存时,可以同Logistic模型(阻滞增长)述这个种群的演变过程,即:.(1)xx rx N=-。

对于食饵种群在自然环境中生存时他不受捕食者捕食的增长为:.11111()(1)x x f x r x N ==-, 在有捕食者的情况下食饵还受到捕食者的捕食,故其还受到捕食者的干预从使食饵增长率减小,在此情况下食饵的增长为:.12111112()(1)x xx f x r x N N σ==--。

具有恐惧效应的时滞捕食者-食饵模型

具有恐惧效应的时滞捕食者-食饵模型

第61卷 第3期吉林大学学报(理学版)V o l .61 N o .32023年5月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )M a y2023d o i :10.13413/j .c n k i .jd x b l x b .2022285具有恐惧效应的时滞捕食者-食饵模型王 灵 芝(陕西师范大学数学与统计学院,西安710119)摘要:考虑一类具有恐惧效应的时滞捕食者-食饵模型.先利用特征方程和L y a p u n o v -L a S a l l e 不变性原理,证明当R (τ)ɤ1时边界平衡点的全局渐近稳定性;再利用时滞微分方程H o pf 分支理论,讨论当R (τ)>1时共存平衡点的稳定性和全局H o pf 分支的存在性,得到了恐惧效应与时滞会影响系统稳定性的结果;最后通过数值模拟验证理论结果的正确性.关键词:恐惧效应;时滞;L y a p u n o v -L a S a l l e 不变性原理;H o p f 分支中图分类号:O 175 文献标志码:A 文章编号:1671-5489(2023)03-0449-10D e l a y e dP r e d a t o r -P r e y Mo d e l w i t hF e a rE f f e c t WA N GL i n gz h i (S c h o o l o f M a t h e m a t i c s a n dS t a t i s t i c s ,S h a a n x iN o r m a lU n i v e r s i t y ,X i a n 710119,C h i n a )A b s t r a c t :T h e a u t h o r c o n s i d e r e dac l a s so f d e l a y e d p r e d a t o r -p r e y m o d e lw i t hf e a r e f f e c t .F i r s t l y ,b y u s i n g t h ec h a r a c t e r i s t i ce q u a t i o na n d L y a p u n o v -L a S a l l ei n v a r i a n c e p r i n c i p l e ,t h e g l o b a la s y m p t o t i c s t a b i l i t y o f t h eb o u n d a r y e q u i l i b r i u m w a s p r o v e d w h e n R (τ)ɤ1.S e c o n d l y ,b y u s i n g t h e H o pf b i f u r c a t i o n t h e o r y o f d e l a y d i f f e r e n t i a l e q u a t i o n ,t h ea u t h o rd i s c u s s e d t h e s t a b i l i t y of t h e c o e x i s t e n c e e q u i l i b r i u m p o i n t a n d t h ee x i s t e n c eo f t h eg l o b a lH o pfb i f u r c a t i o nw h e n R (τ)>1,a n do b t a i n e dt h e r e s u l t s t h a t f e a r e f f e c t a n dd e l a y a f f e c t e d t h es t a b i l i t y o f t h es y s t e m.F i n a l l y,t h ec o r r e c t n e s so f t h e t h e o r e t i c a l r e s u l t sw a s v e r i f i e db y nu m e r i c a l s i m u l a t i o n s .K e y w o r d s :f e a r e f f e c t ;d e l a y ;L y a p u n o v -L a S a l l e i n v a r i a n c e p r i n c i p l e ;H o p f b i f u r c a t i o n 收稿日期:2022-06-27.作者简介:王灵芝(1999 ),女,汉族,硕士研究生,从事生物数学时滞微分方程的研究,E -m a i l :w a n g l z 0114@163.c o m.基金项目:国家自然科学基金(批准号:11971285).0 引 言捕食者和食饵之间的相互作用是数学生态学和进化生物学的一个核心问题.研究表明,捕食者通过直接杀戮可对食饵的种群数量产生直接影响[1-4],但每个物种也会对感知到的捕食风险作出各种反捕食反应[5-11],包括栖息地㊁觅食㊁警惕性和生理的变化等.基于文献[11-12]的工作,本文考虑具有恐惧效应㊁种内竞争和捕食后生物量从食饵转化到捕食者的时间延迟以及在转化过程中捕食者的死亡率等因素的捕食者-食饵模型:̇u (t )=r f (k ,v )u (t )-d u (t )-a u 2(t )-g (u )v (t ),̇v (t )=βe -s τg (u (t -τ))v (t -τ)-μv (t )-αv 2(t ),(1)其中:u (t )和v (t )分别表示食饵和捕食者t 时刻的种群密度;r 为食饵的出生率;d 和μ分别为食饵和捕食者的自然死亡率;a 和α分别为食饵和捕食者因种内竞争而导致的死亡率;f (k ,v )为恐惧因子,表示由于恐惧而导致的反捕食行为成本,k 反映了驱动食饵反捕食行为的恐惧程度;β和τ分别为捕食Copyright ©博看网. All Rights Reserved.后生物量从食饵转化到捕食者的转化率和时间延迟;e-s τ为捕食者在生物量转化过程中的存活率;g (u )为功能反应函数,且∀u ȡ0,g (u )ɪC (ℝ),g (0)=0,gᶄ(u )>0.根据k 和f (k ,v )的生物学意义,本文做如下合理假设[10-11]:(H 1)f (0,v )=1,f (k ,0)=1,l i m k ңɕf (k ,v )=0,l i m v ңɕf (k ,v )=0,∂f (k ,v )∂k <0,∂f (k ,v )∂v<0.由文献[10]可知,当r <d 时,无论恐惧效应和捕食机制如何,食饵和捕食者都趋向于灭绝.因此,考虑到其实际生物意义,本文做如下假设:(H 2)r >d .1 适定性与可行平衡点当τ>0时,记C ʒ=([-τ,0],ℝ),其中C 为从[-τ,0]映射到ℝ的连续函数全体构成的B a n a c h 空间.对∀ϕɪC ,定义范数 ϕ =s u p -τɤθɤ0ϕ(θ).记C +ʒ=([-τ,0],ℝ+)为C 的非负锥.当t =0时,系统(1)的初始条件为ϕɪX ʒ=C +ˑC +.(2) 定理1 在初始条件(2)下,系统(1)的解具有非负性和最终有界性.即所有轨线最终进入并保持在如下有界不变区域中:Γ=(u ,v )ɪC +ˑC +: u ɤr -d a , v ɤβe -s τ(r -d )2a m i n {r -d ,μ{}}. 证明:由系统(1)的第一个方程得d u (t )d t=r f (k ,v )-d -a u -g (u )u æèçöø÷v u ,从而可得u (t )=u (0)e x pʏt0r f (k ,v (θ))-d -a u (θ)-g (u (θ))v (θ)u (θéëêêùûúú)d {}θȡ0.对于v 的非负性,可利用反证法.假设t 1>0是使得v (t )第一次为0的时刻,即v (t 1)=0.由系统(1)的第二个方程可知v ᶄ(t 1)=βe -s τg (u (t 1-τ))v (t 1-τ)>0,故存在ε>0,使得当t ɪ(t 1-ε,t 1)时,有v (t )<0.与当t ɪ[0,t 1)时,v (t )>0矛盾,故v (t )ȡ0.下证最终有界性.由系统(1)的第一个方程及条件(H 1)可知,u ᶄ(t )ɤr f (k ,v )u -d u -a u 2ɤ(r -d )u -a u 2,由比较原理得l i ms u pt ң+ɕu (t )ɤr -d a .将系统(1)的两个方程相加可得(βe -s τu (t )+v (t +τ))ᶄ=βe -s τ[rf (k ,v )u -d u -a u 2-g (u )v ]+βe -s τg (u )v -μv (t +τ)-αv 2(t +τ)=βe -s τu (rf (k ,v )-d -a u )-μv (t +τ)-αv 2(t +τ)ɤβe -s τr -d a (r -d -a u )-μv (t +τ)ɤβe -s τ(r -d )2a-βe -s τ(r -d )u -μv (t +τ)ɤβe -s τ(r -d )2a-δ(βe -s τu (t )+v (t +τ)),其中δ=m i n {r -d ,μ}.故l i ms u p t ң+ɕ(βe -s τu (t )+v (t +τ))ɤβe -s τ(r -d )2δa,从而l i ms u pt ң+ɕv (t )ɤβe -s τ(r -d )2δa.因此系统(1)的所有解最终进入并保持在Γ中.系统(1)的动力学行054 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.为将在有界可行域Γ内进行分析.显然,系统(1)总存在两个边界平衡点E 0=(0,0)和E b =r -d a ,æèçöø÷0.若存在共存平衡点E *=(u *,v *),则共存平衡点满足的方程为r f (k ,v )u -d u -a u 2-g (u )v =0,βe -s τg (u )-μ-αv =0{.(3)由式(3)的第二个方程得v *=βe -s τg (u *)-μα,因此v *>0当且仅当u *>g -1μβe s æèçöø÷τ,由文献[11]及条件(H 1)易知,当且仅当R (τ)ʒ=βe -s τg ((r -d )/a )μ>1即0ɤτ<τm a x ʒ=1s l n βg ((r -d )/a )æèçöø÷μ时,系统(1)存在共存平衡点E *=(u *,v *).2 边界平衡点的全局稳定性下面讨论边界平衡点E b =r -d a ,æèçöø÷0的稳定性.系统(1)在E b 处的特征方程为[λ+(r -d )]λ+μ-βe -s τg r -d æèçöø÷a e -éëêêùûúúλτ=0.(4) 定理2 1)若R (τ)ɤ1,则E b 是局部渐近稳定的,进一步,E b 在Γ\{u =0}内是全局渐近稳定的;2)若R (τ)>1,则E b 是不稳定的.证明:1)显然特征方程(4)有一个特征根λ1=-(r -d )<0,其他根由方程λ+μ-βe -s τg r -d æèçöø÷a e -λτ=0(5)决定,由文献[13]中引理6可知,当βe -s τg r -d æèçöø÷a <μ,即R (τ)<1时,式(5)的所有特征根均具有严格负实部,则E b 局部渐近稳定.对于临界情形βe -s τg r -d æèçöø÷a =μ,即当R (τ)=1时,0是式(5)唯一的实特征根,其余根均具有严格负实部.进一步,利用规范型理论[14]可得时滞微分方程(1)限制在中心流形上的规范型为η1+τβe -s τg r -d æèçöø÷éëêêùûúúa ̇z =-ηβe -s τg ᶄr -d æèçöø÷a +αηéëêêùûúú2z 2+O (z 3),其中η=r -d gr -d æèçöø÷a -r (r -d )a ∂f (k ,v )∂v v =0>0.由条件(2)有z (0)ȡ0,故系统(1)的边界平衡点E b 局部渐近稳定.若R (τ)ɤ1,则有ρʒ=βe -s τg r -d æèçöø÷a ɤμ,因此由系统(1)的第二个方程得v ᶄ(t )=βe -s τg (u (t -τ))v (t -τ)-μv (t )-αv 2(t )ɤβe -s τg r -d æèçöø÷a v (t -τ)-μv (t )=ρv (t -τ)-μv (t ). 考虑L y a p u n o v 泛函[12]:F (v (t ))=12v 2(t )+ρ2ʏtt -τv 2(θ)d θ,计算其沿系统(1)的导数为F ᶄ(1)=v (t )v ᶄ(t )+ρ2[v 2(t )-v 2(t -τ)]ɤρv (t )v (t -τ)-μv 2(t )+ρ2[v 2(t )-v 2(t -τ)]ɤρ2[v 2(t )+v 2(t -τ)]-μv 2(t )+ρ2[v 2(t )-v 2(t -τ)]=(ρ-μ)v 2(t )ɤ0,当且仅当u (t )=r -d a,v (t )=0时等号成立,则F ᶄ=0的最大不变集为单点集{E b }.由于当u =0时,154 第3期 王灵芝:具有恐惧效应的时滞捕食者-食饵模型 Copyright ©博看网. All Rights Reserved.系统(1)的解趋向于E 0,因此由L a S a l l e s 不变原理[15]知,E b =r -d a ,æèçöø÷0在Γ\{u =0}内全局吸引,又E b 是局部渐近稳定的,从而E b 在Γ\{u =0}内全局渐近稳定.2)若R (τ)>1,则由文献[13]中引理6可知式(5)存在一个正实部特征根,从而E b 是不稳定的.3 共存平衡点的稳定性与局部H o pf 分支基于文献[11-12],选取线性功能反应函数g (u )=c u 以及恐惧因子f (k ,v )=11+k v,则系统(1)可写为如下时滞微分方程:̇u (t )=r u (t )1+k v (t )-d u (t )-a u 2(t )-c u (t )v (t ),̇v (t )=βe -s τc u (t -τ)v (t -τ)-μv (t )-αv 2(t ).(6) 下面讨论当R (τ)>1时系统(6)共存平衡点E *=(u *,v *)的稳定性.共存平衡点E *满足的方程为r1+k v-d -au -c v =0,(7)βe -s τc u -μ-αv =0.(8)由式(8)得u *=αv *+μc βe s τ,代入式(7)可知v *满足如下一元二次方程:a 2v 2+a 1v +a 0=0,(9)其中a 2=k (a αe s τ+c 2β)>0, a 1=a e s τ(α+μk )+c β(d k +c )>0, a 0=a μe s τ+c β(d -r )<0.故式(9)仅有唯一的正根v *=-a 1+Δ2a 2,其中Δ=a 21-4a 2a 0>0.从而系统(6)存在唯一的共存平衡点E *=(u *,v *).在共存平衡点E *处的特征方程为λ2+b 1λ+b 0+(c 1λ+c 0)e -λτ=0,(10)其中b 1=μ+2αv *+a u *>0, b 0=a u *(μ+2αv *)>0,c 1=-(μ+αv *)<0, c 0=(αv *+μ)2c v *+d -r (1+k v *)éëêêùûúú2.由于b 0+c 0=a αu *v *+c βe -s τu *v *r k (1+k v *)2+éëêêùûúúc >0,故0不是方程(10)的特征根.当τ=0时,系统(6)变为如下常微分方程:̇u (t )=r u (t )1+k v (t)-d u (t )-a u 2(t )-c u (t )v (t )췍P (u ,v ),̇v (t )=βc u (t )v (t )-μv (t )-αv 2(t )췍Q (u ,v ).(11) 定理3 当τ=0且R (0)>1时,共存平衡点E *=(u *,v *)在 Γʒ=Γ\{u =0或v =0}内全局渐近稳定.证明:当τ=0时,在共存平衡点E *处的特征方程(10)变为λ2+(b 1+c 1)λ+(b 0+c 0)=0,(12)其中b 1+c 1=a u *+αv *>0, b 0+c 0>0.由R o u t h -H u r w i t z 准则可知式(12)的根均具有严格负实部,即当τ=0时,E *=(u *,v *)是局部渐近稳定的.取D u l a c 函数[12]B (u ,v )=1u v,经计算可知对∀(u ,v )ɪ Γ,均有254 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.∂(P B )∂u +∂(Q B )∂v=-αu +a æèçöø÷v <0,从而由D u l a c -B e n d i x s o n 判别法可知,系统(6)不存在全部位于 Γ内的周期轨.进一步,当τ=0且R (0)>1时,E *是位于 Γ内的唯一平衡点.又共存平衡点E *是局部渐近稳定的,于是可知共存平衡点E *在 Γ内全局渐近稳定.下面考虑当τ>0时,特征方程(10)纯虚根的存在性.假设λ=i ω(ω>0)是方程(10)的一个根,将λ=i ω代入方程(10)并分离实部和虚部可得ω2-b 0=c 1ωs i n (ωτ)+c 0c o s (ωτ),(13)b 1ω=c 0s i n (ωτ)-c 1ωc o s (ωτ).(14)对方程(13)和(14)两端取平方再相加,可得G (ω,τ)=ω4+(b 21-2b 0-c 21)ω2+(b 0+c 0)(b 0-c 0)=0,(15)其中b 21-2b 0-c 21=(2μ+3αv *)αv *+a 2u *2>0, b 0+c 0>0,b 0-c 0=a u *(2μ+3αv *)-c βe -s τv *r k u *(1+k v *)2+c u éëêêùûúú*. 记J (τ)=b 0(τ)-c 0(τ), I -={τɪ(0,τm a x ):J (τ)<0}, I +={τɪ(0,τm a x ):J (τ)ȡ0}.若I -=Ø,则对∀τɪ(0,τm a x ),均有b 0ȡc 0,即式(15)不存在正根,因此对∀τɪ(0,τm a x )没有纯虚特征根穿过虚轴,且式(10)的根始终保持在虚轴左侧,故∀τɪ[0,τm a x ),共存平衡点E *是局部渐近稳定的.若I -ʂØ,则∃τ*ɪI -,使得b 0(τ*)<c 0(τ*),所以式(15)有唯一的正根ω(τ*)=-(b 21-2b 0-c 21)+(b 21-2b 0-c 21)2-4(b 20-c 20)2.(16)从而特征方程(10)存在纯虚特征根λ=i ω(τ*),且纯虚特征根需满足s i n (ω(τ)τ)=ω(τ)[c 1ω(τ)2+b 1c 0-b 0c 1]c 20+c 21ω(τ)2췍g 1(τ),c o s (ω(τ)τ)=(c 0-b 1c 1)ω(τ)2-b 0c 0c 20+c 21ω(τ)2췍g 2(τ).(17)记θ(τ)ɪ(0,2π]是满足s i n (θ)=g 1,c o s (θ)=g 2的唯一解.经计算可得ω(τ*)2ɤb 0-b 1c 0c 1,所以θ(τ)=a r c c o s (g 2(τ)).根据文献[16]中关于判断系数依赖时滞的超越方程发生稳定性开关的几何准则S n (τ)=τ-θ(τ)+2n πω(τ), τɪI -,n ɪℕ,(18)可知i ω*(τ*)是特征方程(10)的纯虚根当且仅当τ*为函数S n 的零解.由文献[16]有S i g n d R e λ(τ)d ττ=τæèçöø÷*=S i g n ∂G ∂ω(ω*(τ*),τ*æèçöø÷)S i g n (S ᶄn (τ*)),注意到∂G ∂ω(ω*(τ*),τ*)=4ω*(τ*)3+2(b 21-2b 0-c 21)ω*(τ*)>0,因此关于横截条件的结论如下:引理1 若∃τ*ɪI -满足S n (τ*)=0(n ɪℕ),则当τ=τ*时,式(10)具有一对共轭纯虚根λ(τ*)=ʃi ω*(τ*).进一步,若S i g n d R e λ(τ)d ττ=τæèçöø÷*>0,则在复平面上这对纯虚根随着τ的变化从左至右穿过虚轴;反之,若S i g n d R e λ(τ)d ττ=τæèçöø÷*<0,则其从右至左穿过虚轴,其中S i g n d R e λ(τ)d ττ=τæèçöø÷*=S i g n (S ᶄn (τ*)).354 第3期 王灵芝:具有恐惧效应的时滞捕食者-食饵模型 Copyright ©博看网. All Rights Reserved.由式(18)可知S n (0)<0,且对∀τɪI -,有S n (τ)>S n +1(τ),其中n ɪℕ.记^τ=s u p I -ʒ=s u p {τɪ(0,τm a x ):b 0<c 0},则有b 0(^τ)-c 0(^τ)=0,因此当τң^τ时,ω(τ)ң0.再结合式(17)可得l i m τң^τ-s i n (θ(τ))=0且l i m τң^τ-c o s (θ(τ))=-1,从而l i m τң^τ-θ(τ)=π,l i m τң^τ-S n (τ)=-ɕ.为简化,本文做如下假设:(H 3)s u p τɪ[0,^τ)S 0(τ)>0,且对n ɪℕ+,S n (τ)最多存在两个根(包括重数).假设(H 3)可保证存在一个K ɪℕ+,使得当0ɤi ɤK -1(i ɪℕ)时每个S i (τ)存在两个单根,记为τi 和τ2K -i -1,且当i ȡK 时,S i (τ)没有零点,则对于所有的n ɪℕ,S n (τ)只有2K 个简单的零点τi ,且0<τ0<τ1< <τ2K -1<^τ.进一步,引理1表明,对于每个0ɤi ɤK -1(i ɪℕ),有S ᶄi (τi )>0,S ᶄi (τ2K -i -1)<0.从而一对纯虚特征根ʃi w (τi )从左至右穿过虚轴,另一对纯虚特征根ʃi ω(τ2K -i -1)从右至左穿过虚轴.因此当τ=τj (0ɤj ɤ2K -1,j ɪℕ)时,系统(6)在E *处经历了H o p f 分支.进一步,当τɪ[0,τ0)ɣ(τ2K -1,^τ)时E *是局部渐近稳定的,当τɪ(τ0,τ2K -1)时E *是不稳定的.记T j 为在τj 处分支出周期解的周期,对于0ɤi ɤK -1(i ɪℕ),有T i =2πω(τi )=2πτi θ(τi )+2i π, T 2K -i -1=2πω(τ2K -i -1)=2πτ2K -i -1θ(τ2K -i -1)+2i π,考虑到θɪ(0,2π],可得T 0>τ0,T 2K -1>τ2K -1,τn n +1ɤT n <τn n ,τ2K -n -1n +1ɤT 2K -n -1<τ2K -n -1n,其中1ɤn ɤK -1,n ɪℕ+.因此,利用时滞微分方程H o p f 分支理论[15],可得如下关于E *的稳定性和局部H o pf 分支的存在性结论.定理4 对于系统(6),如果R (τ)>1且I -ʂØ,则下列结论成立:1)如果s u p τɪ[0,^τ)S 0(τ)ɤ0,则∀τɪ[0,τm a x ),共存平衡点E *是局部渐近稳定的;2)如果假设(H 3)成立,则存在2K 个局部H o p f 分支点,即0<τ0<τ1< <τ2K -1<^τ,使得当τ=τj (0ɤj ɤ2K -1)时,系统(6)在E *处经历H o p f 分支;当τɪ[0,τ0)ɣ(τ2K -1,τm a x )时,E *是局部渐近稳定的;当τɪ(τ0,τ2K -1)时,E *是不稳定的.进一步,在τn 处分支出周期解的周期T n 满足T 0>τ0,T 2K -1>τ2K -1,T n ɪτn n +1,τn æèçöø÷n ,T 2K -n -1ɪτ2K -n -1n +1,τ2K -n -1æèçöø÷n ,其中1ɤn ɤK -1,n ɪℕ+.4 全局H o pf 分支下面利用W u [17]提出的全局H o p f 分支定理讨论系统(6)的全局H o pf 分支.令x (t )=(u (τt ),v (τt ))T,则系统(6)可写成如下泛函微分方程:x ᶄ(t )=F (x t ,τ,T ), (t ,τ,T )ɪℝ+ˑ[0,^τ)ˑℝ+,(19)其中x t (θ)=x (t +θ),θɪ[-1,0],且x t ɪX ʒ=C ([-1,0],ℝ2+),F (x t ,τ,T )=τr x 1t (0)1+k x 2t (0)-τd x 1t (0)-τa x 21t (0)-τc x 1t (0)x 2t (0)τc βe -s τx 1t (-1)x 2t (-1)-τμx 2t (0)-ταx 22t (0æèçççöø÷÷÷),(20)x t =(x 1t ,x 2t )ɪX .将F 限制在X 常值映射的子空间ℝ2+上,可得췍F (x ,τ,T )ʒ=F ℝ2+ˑ[0,^τ)ˑℝ=τrx 11+k x 2-τd x 1-τa x 21-τc x 1x 2τc βe -s τx 1x 2-τμx 2-ταx æèçççöø÷÷÷22,显然췍F 二阶连续可微,即文献[17]中条件(A 1)成立.设系统(19)的驻解集合为E (F )={( x , τ,췍T )ɪℝ2+ˑ[0,^τ)ˑℝ+:췍F ( x , τ,췍T )=0},则E (F )中任意一个驻解( x , τ,췍T)的特征方程为Δ(췍x ,τ,T )(λ)=λI d -D F ( x ,τ,T )(e -λI d ).(21)454 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.当R (τ)>1时,0不是系统(19)任何驻解的特征值,故文献[17]中条件(A 2)成立.由式(20)知文献[17]中光滑性条件(A 3)成立.由上述讨论可知,∀j ɪ[0,2K -1],驻解为(E *,τj ,2π/(ωj τj )),其中j ɪℕ是系统(19)的孤立中心[17],ωj =ω(τj )是G (ω,τ)=0的唯一正根,如式(16)所示,且只有一对形式为i m (2π/췍T )的纯虚特征根,其中m =1,췍T =2π/(ωj τj ).由引理1可得每个中心处的横截数[17]为γ1E *,τj ,2πωj τæèçöø÷j =-S i g n (R e λᶄ(τj))=-S i g n (S ᶄj (τj ))=-1,0ɤj ɤK -1,-S i g n (S ᶄ2K -j -1(τj ))=1,K ɤj ɤ2K -1{.(22)故文献[17]中条件(A 4)成立.定义一个紧子集Σ(F )⊂X ˑ[0,^τ)ˑℝ+为Σ(F )=C l {(x ,τ,T )ɪX ˑ[0,^τ)ˑℝ+:x 是方程(19)的非平凡T -周期解}.记C (E *,τj ,2π/(ωj τj ))⊂Σ(F )是过(E *,τj ,2π/(ωj τj ))的连通分支,其中j ɪ[0,2K -1],j ɪℕ.由局部H o p f 分支定理4可知,C (E *,τj ,2π/(ωj τj ))是Σ(F )的非空子集.为进一步给出存在周期解的τ区间,需证明系统(19)的一些性质.引理2 系统(19)的所有非平凡非负周期解x (t )一致有界.即对∀t ȡ0,有0<x (t )ɤM ,其中M =m a x r -d a ,βe -s τ(r -d )2a m i n {r -d ,μ{}}.(23) 证明:系统(19)是由系统(6)经无量纲变化所得,因此系统(19)的所有非平凡非负周期解x (t)等价于系统(6)的非平凡非负周期解u (t ),v (t ).下证系统(6)的非平凡非负周期解u (t ),v (t ),对∀t ȡ0有0<u (t ),v (t )ɤM ,其中M 如式(23)所示.因为u (t )是非平凡非负的周期解,故存在t 0>0,使得u (t 0)>0.对u ᶄ(t )积分可得u (t )=u (t 0)e x p ʏt t 0r 1+k v (ξ)-d -a u (ξ)-c v (ξéëêêùûúú)d {}ξ>0, t >t 0,则∀t >t 0,u (t )>0.又因为u (t )具有周期性,故∀t >0,u (t )>0.再由u (t ),v (t )是非平凡非负的周期解,可得̇v =βe -s τc u (t -τ)v (t -τ)-μv -αv 2ȡ-μv -αv 2,并存在t 1>0,使得v (t 1)>0.考虑初值问题̇y =-μy -αy 2,y (t 1)=v (t 1{),(24)问题(24)的解为y (t )=1y -1(t 1)e μ(t -t 1)+ʏtt 1αeμ(t -θ)d θ>0,由比较原理知当t >t 1时,v (t )ȡy (t )>0,又因为v (t )具有周期性,故∀t >0,v (t )>0.由定理1得l i ms u p t ңɕu (t )ɤM .断言∀t ȡ0,有u (t )ɤM .否则,存在t 1>0,使得u (t 1)>M ,则l i m n ңɕu (t 1+n T )=u (t 1)>M ,其中T 是周期解的周期,与u (t )最终有界矛盾,因此M 为u (t )的一致上界.同理,M 为v (t)的一致上界.引理3 系统(19)不存在周期为1的非平凡周期解.证明:反证法.设x (t )是系统(19)周期为1的非平凡周期解,则(u (t ),v (t ))为系统(6)周期为τ的非平凡周期解,故u (t -τ)=u (t ),v (t -τ)=v (t ),因此(u (t ),v (t ))也为常微分方程(11)的周期解,但由定理3知系统(11)不存在周期解,矛盾.从而系统(19)不存在周期为1的非平凡周期解.定理5 对∀j ɪ[1,2K -2](j ɪℕ+),关于系统(19)下列结论成立:1)所有的连通分支C (E *,τj ,2π/(ωj τj ))是有界的;2)两个全局H o p f 分支C (E *,τn ,2π/(ωn τn ))和C (E *,τ2K -n -1,2π/(ω2K -n -1τ2K -n -1))相连,连接一对H o p f 分支值τn 和τ2K -n -1.进一步,对于每个τɪ(τn ,τ2K -n -1),系统(19)至少存在一个周期属于554 第3期 王灵芝:具有恐惧效应的时滞捕食者-食饵模型 Copyright ©博看网. All Rights Reserved.(1/(n +1),1/n )的周期解,其中1ɤn ɤK -1,n ɪℕ+.证明:根据引理2可知C (E *,τj ,2π/(ωj τj ))在X 上的投影有界.又因为系统(19)不存在周期为1的周期解,故对∀m ɪℕ+,系统(19)不存在周期为1/m 或1/(m +1)的周期解.由定理4可知,对∀n ɪ[1,K -1],n ɪℕ+,在连通分支C (E *,τn ,2π/(ωn τn ))(r e s p .C (E *,τ2K -n -1,2π/(ω2K -n -1τ2K -n -1)))上周期解的周期T n 满足1n +1<T n <1n r e s p .1n +1<T 2K -n -1<1æèçöø÷n .故对∀j ɪ[1,2K -2](j ɪℕ+),C (E *,τj ,2π/(ωj τj ))在T -空间上的投影有界.又因为τɪ[0,^τ)为有界区间,所以对∀j ɪ[1,2K -2](j ɪℕ+),C (E *,τj ,2π/(ωj τj ))在X ˑ[0,^τ)ˑℝ+上有界.易知当R (τ)>1时,对任意的τ和周期T ,驻解(E 0,τ,T )和(E b ,τ,T )都不是中心,所以不需要考虑两个边界平衡点.记E 1(F )={(E *,τ,T );(τ,T )ɪ[0,^τ)ˑℝ+},则由文献[17]中的全局H o p f 分支定理可知E ʒ=C (E *,τj ,2π/(ωj τj ))ɘE 1(F )是有限的,且ð(췍x ,τ,T )ɪEγ1(x ,τ,T )=0.(25)由式(25)和式(22)知,任何全局H o p f 分支必须包含至少两个H o p f 分支值τn (1ɤn ɤK -1)和τ2K -r -1(1ɤr ɤK -1).断言每个全局H o p f 分支精确地连接一对H o p f 分支值τn 和τ2K -n -1(1ɤn ɤK -1).否则,存在一个全局H o p f 分支连接τn 和τ2K -r -1(n ʂr ).在连通分支C (E *,τn ,2π/(ωn τn ))中,周期T n ɪ1n +1,1æèçöø÷n ;在另一个分支C (E *,τ2K -r -1,2π/(ω2K -r -1τ2K -r -1))中,周期T 2K -r -1ɪ1r +1,1æèçöø÷r .如果这两个分支相连,则相连时的周期应相同,但注意到n ʂr ,1n +1,1æèçöø÷n ɘ1r +1,1æèçöø÷r =Ø,所以两者周期范围的分离排除了连接的可能性.因此对任意的正整数1ɤn ɤK -1,H o pf 分支C (E *,τn ,2π/(ωn τn ))(r e s p .C (E *,τ2K -n -1,2π/(ω2K -n -1τ2K -n -1)))连接了一对H o p f 分支值τn 和τ2K -n -1.图1 函数S 0,S 1,S 2在区间[0,^τ)上的图像(A )和系统(19)所有的全局H o pf 分支(B )及其周期解的周期(C )F ig .1 I m a g e s o f f u n c t i o n s S 0,S 1,S 2o n [0,^τ)(A ),a l l g l o b a lH o pf b i f u r c a t i o n s o f s ys t e m (19)(B )a n d p e r i o d s o f p e r i o d i c s o l u t i o n s (C )5 数值模拟下面利用MA T L A B 软件和D D E -B I F T O O L 工具包进行数值模拟,演示在可行区间τɪ[0,^τ)上全局H o p f 分支的理论结果.基于文献[11-12]的数值模拟,选择如下一组参数:r =3,k =0.3,d =0.03,a =0.01,c =0.8,β=0.5,s =0.21,μ=0.08,α=0.2.直接计算可得^τʈ20.1719<τm a x ʈ34.778.因此存在唯一的共存平衡点E *.S n (τ)在[0,^τ)上的图像如图1(A )所示,根据定理4知,存在4个(K =2)局部H o p f 分支值:0<τ0ʈ0.3956<τ1ʈ6.8935<τ2ʈ19.2090<τ3ʈ20.0799<^τʈ20.1719.相应地,有ω0ʈ0.9992>ω1ʈ0.9753>ω2ʈ0.4179>ω3ʈ0.1328.当分支参数τ在更大范围内变化时,全局H o p f 分支由局部H o p f 分支从H o pf 分支值延拓而得.图1(B )为两个全局H o p f 分支C (E *,τk ,2π/(ωk τk ))(0ɤk ɤ1),且每个全局H o p f 分支连接了一对H o p f 分支值.图1(C )为全局H o p f 分支中周期解的周期.由图1(C )可知,∀τɪ(τ1,τ2),系统(19)至654 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.少在全局H o p f 分支C (E *,τ1,2π/(ω1τ1))上存在一个周期为T 1ɪ(τ/2,τ)的周期解,因此与定理5结论相符.图2(A )为两个全局H o p f 分支上周期解F l o qu e t 乘子的最大模,以反映周期解的稳定性.由图2(A )可见,第一支全局H o p f 分支C (E *,τ0,2π/(ω0τ0))上的周期解随着τ的增加呈现 稳定-不稳定-稳定 的状态变化,第二支全局H o p f 分支C (E *,τ1,2π/(ω1τ1))上的周期解均为不稳定状态.图2(B )为以τ为分支参数的分支图,进一步验证了定理4以及图2(A )中周期解的性质.当τɪ[0,τ0)ɣ(τ3,τm a x )时,唯一的共存平衡点E *是局部渐近稳定的;当τɪ(τ0,τ3)时,E *是不稳定的,并产生H o p f 分支,且H o p f 分支上的周期解从稳定状态转入混沌状态又恢复稳定状态.此外,当τ>τm a x ʈ34.778时,系统(19)不存在共存平衡点,此时边界平衡点E b 全局渐近稳定.图2 H o p f 分支上周期解F l o qu e t 乘子的最大模(A )及以τ为分支参数的分支图(B )F i g .2 M a x i m u m m o d u l u s o f F l o q u e tm u l t i p l i e r s o f p e r i o d i c s o l u t i o n s o nH o pf b i f u r c a t i o n s (A )a n db i f u r c a t i o nd i a gr a m w i t h τa s b i f u r c a t i o n p a r a m e t e r (B )为分析恐惧程度k 和时滞τ对系统(19)的综合影响,基于文献[10-11]的数值模拟选择如下一组参数:r =0.6,d =0.05,a =0.05,c =0.4,β=0.5,s =0.16,μ=0.08,α=0.05.利用D D E -B I F T O O L 工具包绘制双参数H o pf 分支,如图3(A )所示.由图3(A )可见,在区域S 中共存平衡点E *局部渐近稳定,在区域U 中共存平衡点不稳定,且在E *附近发生H o p f 分支,存在周期解.由图3(A )可知:当时滞τ较小(τɪ[0,τ4))或较大(τɪ(τ7,τm a x ))时,恐惧程度k 对系统(19)的稳定性无影响,当时滞τɪ(τ4,τ7)时,系统(19)的稳定性将受食饵对捕食者恐惧的影响,当捕食者引起的恐惧处于低水平时,E *不稳定,产生H o pf 分支,当捕食者引起的恐惧处于高水平时,E *为稳定状态.图3(B )为在选取τ=2.3ɪ(τ5,τ6)时,k 作为分支参数的分支图.由图3(B )可见:当k 较小时,E *不稳定,在其附近产生稳定的周期解;当k 较大时,E *又恢复稳定状态.对这种现象的合理生物学解释[18]是:当食饵非常害怕捕食者时,它们会减少觅食活动并适应不同的防御机制以避免被捕食.恐惧效应可极大地帮助捕食者物种增加其生物量,因此,从长远来看,还有助于捕食者物种的持久性并提高整个系统的稳定性.图3 以k ,τ为分支参数的双参数H o pf 分支图(A )及当τ=2.3ɪ(τ5,τ6)时k 作为分支参数的分支图(B )F ig .3 T w o p a r a m e t e r sH o p f b i f u r c a t i o nd i a gr a m w i t h k a n d τa s b i f u r c a t i o n p a r a m e t e r s (A )a n db i f u r c a t i o nd i a gr a m w i t h k a s b i f u r c a t i o n p a r a m e t e rw h e n τ=2.3ɪ(τ5,τ6)(B )754 第3期 王灵芝:具有恐惧效应的时滞捕食者-食饵模型 Copyright ©博看网. All Rights Reserved.854吉林大学学报(理学版)第61卷参考文献[1] C R E E LS,C H R I S T I A N S O N D.R e l a t i o n s h i p s b e t w e e nD i r e c t P r e d a t i o n a n dR i s kE f f e c t s[J].T r e n d s i nE c o l o g y&E v o l u t i o n,2008,23(4):194-201.[2] L I MASL.P r e d a t o r s a n d t h eB r e e d i n g B i r d:B e h a v i o r a l a n dR e p r o d u c t i v eF l e x i b i l i t y u n d e r t h eR i s ko fP r e d a t i o n[J].B i o l o g i c a lR e v i e w s,2009,84(3):485-513.[3] C R E S S W E L L W.P r e d a t i o n i nB i r dP o p u l a t i o n s[J].J o u r n a l o fO r n i t h o l o g y,2011,152(1):251-263.[4]姚佳佳,沈维.一类食饵-捕食模型的稳定性和H o p f分支的存在性[J].吉林大学学报(理学版),2022,60(2):225-230.(Y A OJJ,S H E N W.S t a b i l i t y o f aC l a s so fP r e y-P r e d a t o r M o d e l a n dE x i s t e n c eo fH o p fB i f u r c a t i o n [J].J o u r n a l o f J i l i nU n i v e r s i t y(S c i e n c eE d i t i o n),2022,60(2):225-230.)[5] P E A C O RSD,P E C K A R S K YBL,T R U S S E L LGC,e t a l.C o s t so fP r e d a t o r-I n d u c e dP h e n o t y p i cP l a s t i c i t y:AG r a p h i c a lM o d e l f o r P r e d i c t i n g t h eC o n t r i b u t i o n o fN o n c o n s u m p t i v e a n dC o n s u m p t i v eE f f e c t s o f P r e d a t o r s o nP r e y[J].O e c o l o g i a,2013,171(1):1-10.[6] Z A N E T T ELY,WH I T E AF,A L L E N M C,e t a l.P e r c e i v e dP r e d a t i o nR i s kR e d u c e s t h eN u m b e r o fO f f s p r i n gS o n g b i r d sP r o d u c eP e rY e a r[J].S c i e n c e,2011,334:1398-1401.[7] S A R K A R K,K HA J A N C H I S.I m p a c t o f F e a rE f f e c t o n t h eG r o w t ho f P r e y i n aP r e d a t o r-P r e y I n t e r a c t i o nM o d e l[J].E c o l o g i c a l C o m p l e x i t y,2020,42:100826-1-100826-17.[8] L A ILY,Z HU Z L,C H E N F D.S t a b i l i t y a n dB i f u r c a t i o ni naP r e d a t o r-P r e y M o d e lw i t ht h eA d d i t i v eA l l e eE f f e c t a n d t h eF e a rE f f e c t[J].M a t h e m a t i c s,2020,8(8):1280-1-1280-21.[9] WA N G Y,Z O U XF.O n aP r e d a t o r-P r e y S y s t e m w i t hD i g e s t i o nD e l a y a n dA n t i-p r e d a t i o nS t r a t e g y[J].J o u r n a lo fN o n l i n e a r S c i e n c e,2020,30(4):1579-1605.[10] D A S B K,S A HO O D,S AMA N T A G P.I m p a c to f F e a ri n a D e l a y-I n d u c e d P r e d a t o r-P r e y S y s t e m w i t hI n t r a s p e c i f i cC o m p e t i t i o nw i t h i nP r e d a t o rS p e c i e s[J].M a t h e m a t i c sa n dC o m p u t e r s i nS i m u l a t i o n,2022,191:134-156.[11] WA N G X Y,Z A N E T T EL,Z O U XF.M o d e l l i n g t h eF e a rE f f e c t i nP r e d a t o r-P r e y I n t e r a c t i o n s[J].J o u r n a l o fM a t h e m a t i c a l B i o l o g y,2016,73(5):1179-1204.[12] L IM Y,L I N X H,WA N G H.G l o b a lH o p fB r a n c h e sa n d M u l t i p l eL i m i tC y c l e s i naD e l a y e dL o t k a-V o l t e r r aP r e d a t o r-P r e y M o d e l[J].D i s c r e t e a n dC o n t i n u o u sD y n a m i c a l S y s t e m sS e r i e sB,2014,19(3):747-760.[13] S HU H Y,HU X,WA N G L,e ta l.D e l a y I n d u c e dS t a b i l i t y S w i t c h,M u l t i t y p eB i s t a b i l i t y a n d C h a o si na nI n t r a g u i l dP r e d a t i o n M o d e l[J].J o u r n a l o fM a t h e m a t i c a l B i o l o g y,2015,71(6/7):1269-1298.[14]魏俊杰,王洪滨,蒋卫华.时滞微分方程的分支理论及应用[M].北京:科学出版社,2012:61-68.(W E I J J,WA N G H B,J I A N G W H.B i f u r c a t i o nT h e o r y a n d A p p l i c a t i o no fD e l a y D i f f e r e n t i a lE q u a t i o n s[M].B e i j i n g: S c i e n c eP r e s s,2012:61-68.)[15] HA L EJ K,V E R D U Y N L U N E L S M.I n t r o d u c t i o nt o F u n c t i o n a l-D i f f e r e n t i a lE q u a t i o n s[M].N e w Y o r k:S p r i n g e r-V e r l a g,1993:1-464.[16] B E R E T T A E,K U A N G Y.G e o m e t r i c S t a b i l i t y S w i t c h C r i t e r i ai n D e l a y D i f f e r e n t i a l S y s t e m s w i t h D e l a yD e p e n d e n tP a r a m e t e r s[J].S I AMJ o u r n a l o n M a t h e m a t i c a lA n a l y s i s,2015,33(5):1144-1165.[17] WUJH.S y mm e t r i cF u n c t i o n a l-D i f f e r e n t i a lE q u a t i o n sa n d N e u r a lN e t w o r k sw i t h M e m o r y[J].T r a n s a c t i o n so ft h eA m e r i c a n M a t h e m a t i c a l S o c i e t y,1998,350(12):4799-4838.[18] X I EBF,Z HA N G N.I n f l u e n c e o fF e a rE f f e c t o naH o l l i n g T y p eⅢP r e y-P r e d a t o r S y s t e m w i t h t h eP r e y R e f u g e[J].A I M S M a t h e m a t i c s,2022,7(2):1811-1830.(责任编辑:李琦)Copyright©博看网. All Rights Reserved.。

自身阻滞作用的食耳捕食者模型的差分方程

自身阻滞作用的食耳捕食者模型的差分方程

自身阻滞作用的食耳捕食者模型引言生物群落中存在着各种各样的食物链关系,其中包括捕食者与被捕食者之间的关系。

在某些情况下,被捕食者能够通过一种自身阻滞作用来影响食物链的稳定性。

本文将介绍自身阻滞作用的食耳捕食者模型,并给出相应的差分方程模型,解释模型的含义。

自身阻滞作用的概念自身阻滞是指被捕食者通过某种方式抑制自己的数量增长或降低自己的生存率,以减少捕食者的数量。

这种自我调控机制可以帮助被捕食者在资源有限的环境中生存下去,从而维持整个食物链的平衡。

食耳捕食者模型食耳捕食者模型是一种用于描述捕食者和被捕食者之间相互作用的数学模型。

在自身阻滞作用的食耳捕食者模型中,被捕食者通过减少自身的繁殖能力来限制捕食者的数量。

模型假设在自身阻滞作用的食耳捕食者模型中,我们假设以下条件: 1. 被捕食者种群的增长率正比于被捕食者种群的数量,即被捕食者数量越多,增长率越快。

2. 捕食者种群的增长率正比于被捕食者种群的数量和捕食者种群的数量的乘积,即两者数量越多,增长率越快。

3. 被捕食者的繁殖率与其自身数量呈负相关,即被捕食者数量越多,繁殖率越低。

4. 被捕食者的死亡率与其自身数量呈正相关,即被捕食者数量越多,死亡率越高。

模型表达式根据以上假设,我们可以得到自身阻滞作用的食耳捕食者模型的差分方程表达式如下:其中,N表示被捕食者的数量,P表示捕食者的数量,r1表示被捕食者的增长率,r2表示捕食者的增长率,a表示被捕食者的繁殖减少系数,b表示被捕食者的死亡增加系数。

模型解析通过分析差分方程,我们可以得到以下结论和解释: 1. 当没有捕食者时,被捕食者的数量会以r1的速率增长。

这是因为没有捕食者时,被捕食者没有受到外部的控制,可以自由地繁殖。

2. 当捕食者的数量增加时,被捕食者的繁殖率会下降,即被捕食者的数量增长被限制。

这是因为捕食者的存在对被捕食者造成了威胁,被捕食者会通过减少繁殖来抑制自己的数量增长,从而逃避被捕食的风险。

自身阻滞作用下的食饵—— 捕食者模型

自身阻滞作用下的食饵—— 捕食者模型

楚雄师范学院数学系《数学模型》课程教学论文自身阻滞作用下的食饵—捕食者模型题目:专业:数学与应用数学班级:数学系09级01班学号: 20091021135学生姓名:韩金伟完成日期: 2011 年 12 月楚雄师范学院数学系09级01班韩金伟学号:20091021135楚雄师范学院数学系09级01班 韩金伟 学号:20091021135自身阻滞作用下的食饵——捕食者模型V olterra (Logistic )考虑自身阻滞作用的食饵——捕食者模型一、模型要求讨论具有自身阻滞作用的两种群食饵——捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性,并用matlab 软件画出图形。

二、问题叙述针对两种群的生存关系食饵(食用鱼)和捕食者(鲨鱼)的V olterra 模型,我们在实际的生态系统中观察不到V olterra 模型显示的那种周期性震荡,而是趋向于某种平衡状态,即系统存在稳定平衡点。

在V olterra 模型中,我们看到他并没有考虑种群的自身阻滞作用对模型的影响。

为此,我们现在就在V olterra 模型中加入考虑种群自身阻滞作用Logistic 项重新建立模型对食饵(食用鱼)和捕食者(鲨鱼)的关系加以分析。

三、建立模型食饵(食用鱼)和捕食者(鲨鱼)在时刻t 的数量分别记作)(),(21t x t x ,因为大海中资源丰富,假设在它们生存的空间里容纳食饵和捕食者的最大容纳量分别为21N N ,,当食饵独立存在时以指数规律增长,(相对)增长率为1r ,即11x r x= ,而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者的数量成正比,即22N x ,食饵数量的增长对自身也有一定的阻滞作用,阻滞率为11N x,于是)(1t x 满足方程)1(r )(2211111N xN x x t xσ--= (1) 1σ反映单位数量的乙(相对于甲)捕食单位数量甲(相对于乙)的能力。

斑马的种群分析 食饵与捕食者

斑马的种群分析 食饵与捕食者

B 题:斑马的种群分析摘要本文针对斑马与草场种群的相互影响这一自然界最常见的食饵—捕食者问题,在Volterra 模型的基础上,提出了完善方案,使之更切合实际。

本文共建立三个模型:模型一假设草的生长遵从Logistic 规律,斑马的增长不受限制,建立了单阻滞模型;模型二假设斑马的增长也遵从Logistic 规律,建立了双阻滞模型。

同时,运用MATLAB 软件画出不同情况下草场密度和斑马数量随着时间变化的图像以及草场密度和斑马数量变化的相轨线。

模型三则是把线性功能反应函数替换为Holling Ⅱ功能反应函数下的Leslie 捕食者-食饵模型,定性的讨论了其长久性及稳定性。

针对问题一,模型一中考虑到食饵自身的阻滞作用,建立了单阻滞模型112.()(1).()()m m m y x x t xr x y x y t y d x σσ∙∙⎧=--⎪⎪⎨⎪=-+⎪⎩;模型二进一步考虑捕食者的自身阻滞作用,建立了双阻滞模型1122()(,)(1)()(,)(1)m m m m x y x t f x y r x x y y x y t g x y r y y x σσ∙∙⎧==--⎪⎪⎨⎪==--+⎪⎩。

然后,分别求出平衡点,进行稳定性分析,再运用MATLAB 软件分析验证,并且通过图像分析,对比模型一和模型二的不同点。

针对问题二,在模型一、二中适当改变参数r ,d ,m x ,观察各参数变化对两个种群数量的影响,得出结论。

但通过作图只能直观地描述其变化趋势,缺乏说服力。

因此建立模型三:()(1)/()()(/)x t x x xy ay x y t y y x δβ∙∙⎧=--+⎪⎨⎪=-⎩,以进行定性分析。

当1αββ+>,2(2)(1)(1)αββδβαβ+<++时,捕食者和食饵最终能达到平衡状态,种族能持续生存。

当1αββ+>,2(2)(1)(1)αββδβαβ+>++时,平衡点不稳定,围绕平衡点出现极限环,且极限环唯一,捕食者和食饵振荡共存。

气味干扰下带有避难所的食饵-捕食者模型分析

气味干扰下带有避难所的食饵-捕食者模型分析

气味干扰下带有避难所的食饵-捕食者模型分析申佩娴;薛亚奎【摘要】建立了一类考虑避难所和捕食者气味干扰的食饵-捕食者模型,研究了避难所对在捕食者气味干扰下的食饵种群的影响,并分析了系统的动力学性态,运用Dulac-Bendixson原理证明了正平衡点的全局稳定性。

分析发现:当捕食者气味干扰是一个常数时,可以有效地控制食饵及捕食者种群的数量,同时促进食饵种群加入避难所,有利于食饵种群的正常繁衍,避免因食饵种群灭绝而对捕食系统造成不良影响,并且对生态自然保护区的建立也有一定的指导作用。

【期刊名称】《重庆理工大学学报》【年(卷),期】2018(032)001【总页数】7页(P205-211)【关键词】避难所;气味;食饵-捕食者模型;平衡点;稳定性【作者】申佩娴;薛亚奎【作者单位】中北大学理学院,太原030051;中北大学理学院,太原030051【正文语种】中文【中图分类】O175.1随着人类活动对自然界的污染日益加深以及人为的乱捕滥猎,造成大量物种濒临灭绝,因而建造生态自然保护区为这些物种提供避难所[1-4]已经成为保护濒危物种的重要措施。

近几年,许多学者研究了具有避难所的食饵捕食者模型[5-9],也取得了很好的研究成果,但是忽略了捕食者自身散发的气味会对食饵的出生率造成影响。

在文献[10]中讨论了艾鼬气味对根田鼠繁殖率的影响,实验数据表明:艾鼬气味能强烈地影响根田鼠的婚配行为,在艾鼬气味的干扰下,雌性根田鼠体内的黄体酮降低,进而减低繁殖率。

因此,在研究带有避难所的食饵捕食者模型时,应当考虑捕食者气味对食饵出生率的影响。

根据实验结论[10],只有当食饵感知到捕食者散发出的气味时才会减低其自身的繁殖率,造成种群整体数量的减少,进而影响捕食者种群的数量。

假设捕食者只能捕食避难所之外的食饵,并且捕食者散发出的气味只对避难所之外的食饵的出生率造成影响,由此考虑避难所保护食饵的数量对模型的影响:当避难所保护食饵的数量逐渐增多时,会导致捕食者可捕食的食饵数量减少。

一类具有时滞的食饵-捕食者模型的时空斑图

一类具有时滞的食饵-捕食者模型的时空斑图

一类具有时滞的食饵-捕食者模型的时空斑图解博丽;王志军【摘要】Dynamics behavior of a predator-prey model with time delay and reaction-diffusion was consid-ered.By mathematical analysis,two different types of instability were found and the conditions for Tur-ing instability were given in detail.Under the condition of instability which caused by reaction-diffusion, the rich Turing structures in parameter space were obtained via a series of numerical simulations such as spotspatterns,stripe-like patterns,and coexistence of both patterns respectively.Under the condition of instability which caused by time delay,through numerical simulation,black-eye patterns were got. The results show that this model influenced by time delay and reaction-diffusion has rich dynamics and it is useful in the real life.%研究了一类具有时滞和反应扩散的食饵-捕食者模型的动力学行为。

通过数学分析,发现了两种不同类型的不稳定性,并且详细给出了图灵不稳定的条件。

食饵捕食模型

食饵捕食模型

楚雄师范学院数学系《数学建模》课程教学论文题目:具有自身阻滞作用的两种群食饵—捕食模型专业:信息与计算科学班级:08级3班学号:20081022152学生姓名:罗文枢完成日期:2011 年 6 月具有自身阻滞作用的两种群食饵—捕食模型摘要:在自然界中,更多的生物是杂居在一起的,各种生物根据其生理特点、食物来源分成了不同的层次,各层次之间及同一层次的生物种群之间有着各样的联系,尤其是相互之间影响非常大的生物种群,需要放在一起讨论,在这里,我们一两种群为例进行建模和讨论,具有自身阻滞作用的两种群食饵—捕食者模型。

捕食—食饵模型是数学生态学研究的重要内容,影响种群波动的因素很多,自身阻滞作用就是其中重要的一种因素。

因为资源环境是有限的,相互竞争是不可避免的,所以自身阻滞也是影响平衡位置的不稳定性和周期波动现象的主要因素。

时滞可以对生态系统的性质产生相当大的影响,理论生态学家们普遍认为在种群的相互作用中,自身阻滞作用是不可避免的。

本文主要通过对两类具有自身阻滞作用的典型的捕食-食饵模型的研究,通过分析发现时滞对模型的稳定性有非常重要的作用。

事实上只要在Volterra模型加入考虑自身阻滞作用的Logsitic项就可以得到这种现象了。

关键字:自身阻滞,稳定性分析,相轨线分析,平衡点分析,Logistic模型;一.问题重述:讨论具有自身阻滞作用的两种群食饵—捕食者模型,首先根据两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。

二.问题分析:本论文主要是讨论具有自身阻滞作用的食饵—捕食者模型。

我们用Logistic模型来描述这个种群数量的演变过程,即食饵会受到自然界中的资源所限制,它不仅会无限的增大,而且捕食者也会受到食饵的数量的影响。

此种情况下会出现以下的3种现象:1.当捕食者灭绝时,食饵也不会无限的增长,即指数函数型增长,因为有自身的阻滞作用,它达到某个数量就不在会增长而趋于稳定了;2.当食饵受到自然资源的影响的灭绝时,捕食者也会因食物而灭绝;3.当两种群都不灭绝时,它们会趋于某个非零的有限值,从而达到稳定状态。

食饵捕食者阻滞模型差分方程

食饵捕食者阻滞模型差分方程

食饵捕食者阻滞模型差分方程
食饵捕食者阻滞模型是描述捕食者和食饵之间相互作用的一种数学模型。

其差分方程形式可以表示为:
N(t+1) = N(t) + r*N(t)[1 - N(t)/K] - c*N(t)*P(t)
P(t+1) = P(t) + e*c*N(t)*P(t) - d*P(t)
N(t)表示食饵的数量在时间t的时候,P(t)表示捕食者的数量在时间t的时候。

参数r表示食饵的自然增长率,K表示食饵的环境容纳量,c表示食饵与捕食者之间的捕食率,e表示捕食者将食饵转化为自身的效率,d表示捕食者的自然死亡率。

差分方程描述了食饵和捕食者之间的交互作用。

第一行的方程表示食饵的数量根据自然增长率和环境容纳量的限制而变化,同时受到捕食者的捕食率的影响。

第二行的方程表示捕食者的数量根据食饵的消耗和转化效率而变化,同时受到自然死亡率的影响。

通过解析这个差分方程,可以得到在不同参数条件下食饵和捕食者数量的变化规律,从而对生态系统中食饵和捕食者之间的相互作用进行定量分析和预测。

食饵或捕食者具有疾病的食饵—捕食系统的分析的开题报告

食饵或捕食者具有疾病的食饵—捕食系统的分析的开题报告

食饵或捕食者具有疾病的食饵—捕食系统的分析的开题报告一、研究背景在生态系统中,食物链起着重要的作用。

生物通过食物链传递能量和物质,维持着生态环境的平衡。

与此同时,疾病也是生态系统中一个重要的因素,它会影响动植物的生存和繁衍。

然而,在食饵—捕食系统中,食饵携带疾病对捕食者的影响却鲜有研究。

二、研究意义疾病在生态系统中的作用已经被广泛研究,但对于食饵—捕食系统中的疾病影响却鲜有人研究。

此次研究旨在探讨食饵携带疾病对捕食者生存和繁殖的影响,有助于更好地理解生态系统中的相互作用和生态平衡。

三、研究内容本研究将以一个简单的模型为基础,模拟疾病在食饵和捕食者之间的传播过程,进一步研究疾病对捕食者的影响。

1. 建立模型本研究将建立一个传染疾病在食饵—捕食者系统中的传播模型,包括食饵种群和捕食者种群。

2. 模拟传染过程通过模拟传染过程,研究疾病在食饵和捕食者之间的传播特征,分析其对捕食者种群的影响。

同时,研究疾病在食饵和捕食者之间的不同传播途径和不同传染力的影响。

3. 分析结果分析模型仿真结果,研究疾病对捕食者种群数量、生长和繁殖的影响,分析食饵、捕食者和疾病三者之间的关联。

四、研究方法本研究采用基于差分方程的模型进行仿真,利用MATLAB软件进行大量仿真实验,通过计算机模拟得到食饵—捕食者系统的传染过程和疾病对捕食者的影响。

五、预期结果通过本研究我们将了解固定的捕食者数量和食饵的繁殖和死亡如何影响疾病在食饵和捕食者间的传播和不同疾病强度的影响。

预计该研究将有助于更好地理解生态系统中食饵—捕食者系统的结构和演化,对生态环境保护和农业生产管理等方面具有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具有自身阻滞作用的食饵—捕食者模型简单分析
【摘要】种群之间的食饵—捕食者模型由于在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。

对其进行平衡点的稳定性分析,验证在自然界中的两种种群构成食饵—捕食者系统的相互关系。

【关键字】食饵—捕食者自身阻滞作用平衡点稳定性
一、问题重述
对于V olterra模型,多数食饵—捕食者系统观察不到那种周期动荡,而是趋于某种平衡状态,即系统存在稳定的平衡点。

在V olterra模型中考虑自身阻滞作用的Logistic项建立具有自身阻滞作用的食饵—捕食者模型,并对模型的稳定性进行分析。

二、问题背景和分析
自然界中不同种群之间存在着既有依存、又有制约的生存方式:种群甲靠丰富的自然资源生长,而种群已靠捕食种群甲为生,食用于和鲨鱼、美洲兔和山猫、落叶松和蚜虫等都是这种生存方式的典型。

生态学称甲为食饵(Prey),种群已为捕食者(Predator),二者构成了食饵—捕食者系统。

然而在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。

三、模型假设
食饵在自然界中生存若没有捕食者情况下独立生存,自身增长符合Logistic 增长,而捕食者在离开食饵没有其他的食饵,在有食饵的情况自身增长亦符合Logistic增长。

五、模型建立、求解与分析 5.1模型建立
当某个自然环境中只有一个种群生存时,可以同Logistic 模型(阻滞增长)述这个种群的演变过程,即:
.
(1)x x rx N
=-。

对于食饵种群在自然环境中生存时他不受捕食者捕食的增长为:
.
1
1111
()(1)x x f x r x N ==-
, 在有捕食者的情况下食饵还受到捕食者的捕食,故其还受到捕食者的干预从使食饵增长率减小,在此情况下食饵的增长为:
.
12111112
()(1)x x
x f x r x N N σ==-
-。

对于捕食者在自然环境中生存没有食饵其死亡导致数量减少,从而为:
.
2
2222
()(1)x x g x r x N ==--
, 在有食饵的情况下,食饵降低了捕食者的死亡率是捕食者的增长模型为:
.
21
222221
()(1)x x x g x r x N N σ==--+。

得到自身具有阻滞作用的食饵—捕食者模型:
.
12111112
()(1)x x
x f x r x N N σ==-
-。

.
21222221
()(1)x x
x g x r x N N σ==--
+ 5.2模型平衡点求解
根据以上模型设()0f x =和()0g x =,解其方程组即可得到平衡点。

121111221222
2
1()(1)0()(1)0
x x f x r x N N x x g x r x N N σσ⎧
=--=⎪⎪⎨⎪=--+=⎪⎩
解得平衡点有:
1(0,0)p =、21(,0)P N =、1122312
12
(1)(1)(,)11N N P σσσσσσ+-=++。

5.3模型稳定性分析
5.3.1稳点点求解
根据微分方程平衡点的稳定性分析先求出方程的系数矩阵A ,其中:
1
21
2'''
'x x x x f f A g g ⎡⎤
=⎢⎥⎢⎥⎣⎦
带入()f x 和()g x 得到:
121
1
11111
12
2
22122222212122r x x r x r r N N N A x r x r r x r N N N σσσσ⎡

---⎢⎥⎢

=⎢
⎥--+⎢⎥



将平衡点带入A 中计算相应的p 和q ,其中12
''
()|i x x P p f g =-+、det(|)i P q A =(1,2,3)i =,当0,0p q >>时稳定。

经计算得到在各个平衡点稳定性如
表1
根据表1,当21σ<时,由于食饵不能够为捕食者提供足够的食物,2
1(,0)
P N =
点稳定,即捕食者将灭绝,食饵趋向环境最大容量;当21σ>时,由于食饵能够为捕食者提供足够的食物,112231212
(1)(1)
(
,)11N N P σσσσσσ+-=++点稳定,二者共存下去,
分别趋向非零的有限值,这也是食饵—捕食者保持共存的最大数量。

两者不会共
同走向灭绝。

5.3.2 相轨线分析
设1 1.0r = 、2 1.8r =、 10.5σ= 、2 1.6σ=、 1 6.0N = 、2 4.0N =得到()f x 、
()g x 的图像(图1)和相轨线(图2)。

05101520253035404550
图121σ>的()f x 与()g x 的图像
510152025
图2 21σ>的()f x 与()g x 相轨线
由图1可以看出,当
21.61
σ=>是食饵和捕食者会保持相对稳定并且捕食者不会趋近0。


11.0
r=、
21.8
r=、
10.5
σ=、
20.8
σ=、
11.6
N=、
21.0
N=得到()
f x、()
g x的图像(图3)和相轨线(图4)。

05101520253035404550
图3
21
σ<的()
f x与()
g x的图像
0510152025
图4
21
σ<的()
f x与()
g x相轨线
由图3可以看出,当
20.81
σ=<是食饵和捕食者会保持相对稳定但捕食者会趋近0即灭绝。

由以上两种模拟计算可得到所得的模型的稳定性分析合理。

六、模型优化与推广
两种群之间的关系还有相互依存关系,他们也会趋近与某种稳定状态,模型与本模型相似,只是在自身增长来自另一种群的约束。

本模型在V olterra模型的基础上加入了自身的阻滞作用更加符合自然界时间情况,但在食饵—捕食者系统中可能还有其他因素导致食饵—捕食者系统不一定趋于如上所述的稳定点,结果可能存在一定的误差。

【参考文献】
【1】姜启源谢金星叶俊,《数学模型(第三版)》,北京高等教育出版社【2】姜启源谢金星叶俊,《数学模型(第三版)》习题解答参考,北京高等教育出版社
[附录]
shier1.m
function x=shier1(t,x)
r1=1;r2=1.8;a=0.5;b=1.6;N1=6;N2=4;
x=[r1*x(1)*(1-x(1)/N1-a*x(2)/N2);r2*x(2)*(-1+b*x(1)/N1-x(2)/N2)]; end
>> ts=0:0.1:50;
>> x0=[25 2];
>> [t,x]=ode45('shier1',ts,x0);
>> plot(t,x)
>> grid;gtext('x(t)');gtext('y(t)')
>> plot(x(:,1),x(:,2));grid
shier2.m
function x=shier2(t,x)
r1=1;r2=1.8;a=0.5;b=0.8;N1=1.6;N2=1.0;
x=[r1*x(1)*(1-x(1)/N1-a*x(2)/N2);r2*x(2)*(-1+b*x(1)/N1-x(2)/N2)]; end
>> ts=0:0.1:50;
>> x0=[25 2];
>> [t,x]=ode45('shier2',ts,x0);
>> plot(t,x)
>> grid;gtext('x(t)');gtext('y(t)'
>> plot(x(:,1),x(:,2));grid。

相关文档
最新文档