初中数学函数及其图象单元检测题(含答案)

合集下载

初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)(109)

初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)(109)

初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)(109)初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)如图所示,是古代一个将军在一次护城战役中,进行的一个布阵图,在一座城池的四周设了八个哨所,每个哨所都要保证有人,其中四个角上哨所的人数相同,城池四周每条边上三个哨所的总人数都为11人.(1)当八个哨所的总人数为32人时,四个角上每个哨所的人数为多少?(2)在保证城池四周每条边上三个哨所的总人数都为11人的条件下,四个角上每个哨所的人数为a,请用含a的代数式表示八个哨所的总人数,并求出八个哨所所需的总人数的最大值与最小值,以及对应a的值.【答案】(1)当八个哨所的总人数为32人时,四个角上每个哨所的人数为3.(2)y=44-4a;当a=1时,y取最大值,最大值为40;当a=5时,y取最小值,最小值为24.【解析】【分析】(1)设四个角上每个哨所的人数为x,则城池四周每条边上中间的每个哨所的人数为(11﹣2x),根据八个哨所的总人数为32人,即可得出关于x的一元一次方程,解之即可得出结论;(2)设八个哨所需要的总人数为y,将八个哨所人数相加即可得出y关于a的一次函数关系式,利用一次函数的性质即可解决最值问题.【详解】解:(1)设四个角上每个哨所的人数为x,则城池四周每条边上中间的每个哨所的人数为(11﹣2x),根据题意得:4x+4(11﹣2x)=32,解得:x=3.答:当八个哨所的总人数为32人时,四个角上每个哨所的人数为3.(2)设八个哨所需要的总人数为y,根据题意得:y=4a+4(11﹣2a)=44﹣4a.∵11121 aa≥-≥,∴1≤a≤5.∵k=﹣4,∴当a=1时,y取最大值,最大值为40;当a=5时,y取最小值,最小值为24.【点睛】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,找出y关于a的函数关系式.102.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<k的解集.【答案】(1)y=2x;(2)P的坐标为(﹣2,0)或(8,0);(3)0<x<1或x >2.【解析】【分析】(1)利用点A在y=﹣x+3上求a,进而代入反比例函数y=kx(k≠0)求k即可;(2)设P(x,0),求得C点的坐标,则PC=|3﹣x|,然后根据三角形面积公式列出方程,解方程即可;(3)解析式联立求得B点的坐标,即可根据图象求得不等式﹣x+3<kx的解集.【详解】解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为y=2 x(2)∴一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=1|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)解32y xyx=-+=,解得:12xy==或21y==,∴B(2,1),由图象可知:不等式﹣x+3<kx的解集是:0<x<1或x>2.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.103.某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(2)何时两种收费方式费用相等?【答案】(1)10.130y x ;20.2y x =;(2)300分钟.【解析】【分析】(1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(2)根据(1)的结论列方程解答即可.【详解】解:(1)设1130y k x =+,22y k x =,由题意得:将(500,80),(500,100)分别代入即可:15003080k +=,10.1k , 2500100k =,20.2k故所求的解析式为10.130y x ;20.2y x =;(2)当通讯时间相同时12y y =,得0.20.130x x =+,解得300x =.答:通话300分钟时两种收费方式费用相等.【点睛】本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键. 104.下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?【答案】(1)两个变量;(2)用x表示年份,用y表示世界人口数,那么随着x的变化,y的变化趋势是增大.【解析】【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.105.规定:把一次函数y=kx+b的一次项系数和常数项互换得y=bx+k,我们称y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|b|))为互助一次函数,例如:y=-2x+3和y=3x-2就是互助一次函数.如图1所示,一次函数y =kx+b和它的互助一次函数的图象l1,l2交于点P,l1,l2与x轴、y轴分别交于点A,B和点C,D.(1)如图1所示,当k=-1,b=5时,直接写出点P的坐标是_________.(2)如图2所示,已知点M(-1,1.5),N(-2,0).试探究随着k,b值的变化,MP+NP的值是否发生变化,若不变,求出MP+NP的值;若变化,求出使MP+NP取最小值时点P的坐标.【答案】(1)(1,4);(2)使MP NP+取最小值时的点P坐标为(1,0.9)【解析】【分析】(1)根据互助一次函数的定义,由k=-1,b=5分别写出两个函数解析式,联立,解二元一次方程组,即可求出交点P的坐标;(2)联立y kx by bx k=+=+,解得x=1,故点P在直线1x=上运动,MP NP+的值随之发生变化;作N点关于1x=的对称点N',根据两点之间线段最短,可知连接对称点和M的线段就是MP+NP的最小值,用待定系数法求出直线MN'的函数解析式,进而求出P点坐标.【详解】(1)联立551y x y x =-+??=-?解得:14x y =??=?即P 点坐标为(1,4),故答案为:(1,4);(2)由y kx b y bx k =+??=+?解得1x y k b =??=+?,即(1,)P k b +,∴随着,k b 值的变化,点P 在直线1x =上运动,MP NP +的值随之发生变化,如图所示,作点(2,0)N -关于直线1x =的对称点(4,0)N ',连接MN '交直线1x =于点P ,则此时MP NP +取得最小值.设直线MN '的函数解析式为y cx d =+,分别将M (-1,1.5)和(4,0)N '代入解析式得:1.504c d c d =-+??=+?解得:0.31.2c d =-??=?∴直线MN '的函数解析式为:0.3 1.2y x =-+,令1x =,则0.9y =∴(1,0.9)P.+取最小值时的点P坐标为(1,0.9).∴使MP NP【点睛】本题考察一次函数综合及运用轴对称求最短路径、待定系数法求函数解析式,理解互助一次函数定义是解题关键.106.小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x 的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式.(3)直接写出两人离小华家的距离相等时x的值.【答案】(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】【分析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y 2与x 的函数图象;(2)设所求函数关系式为y 1=kx+b ,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x 的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,小新按此速度再走16分钟到达书店,则a=16×60=960米,小华到书店的时间为960÷40=24分钟,则y 2与x 的函数图象为:故小新的速度为60米/分,a=960;(2)当4≤x ≤20时,设所求函数关系式为y 1=kx+b (k ≠0),将点(4,0),(20,960)代入得:0496020k b k b =+??=+?,解得:60240k b =??=-?,∴y 1=60x ﹣240(4≤x ≤20时)(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x ,①当两人分别在小华家两侧时,若两人到小华家距离相同,则240﹣6x=40x ,解得:x=2.4;②当小新经过小华家并追上小华时,两人到小华家距离相同,则60x ﹣240=40x ,解得:x=12;故两人离小华家的距离相等时,x 的值为2.4或12.107.已知点()32,-和点()1a a +,都在一次函数1y kx =-的图象上,求a 的值.【答案】a=-1【解析】【分析】根据待定系数法,将()32,-代入解析式求得k ,然后再将()1a a +,代入解析式中,求a 的值.【详解】解:将()32,-代入1y kx =-中,得:-3k-1=2 解得:k=-1∴一次函数y=-x-1将()1a a +,代入y=-x-1中,得:-a-1=a+1,解得:a=-1.【点睛】掌握待定系数法确定待定系数k 是本题的解题关键.108.已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C 点.(1)求出A、B、C、D点坐标;(2)求出直线l2的解析式;(3)连结BC,求出S△ABC.【答案】(1)A(﹣1,1),B(﹣1.5,0),D(0,3),C (0,﹣1);(2)y2=﹣2x﹣1;(3)1.【解析】【分析】(1)根据直线及坐标的特点即可分别求解;(2)把A(﹣1,1)代入y2=kx﹣1即可求解;(3)利用S△ABC=S△ABE+S△BCE即可求解.【详解】解:(1)把x=﹣1代入y1=2x+3,得:y=1,即A(﹣1,1),对于y1=2x+3,令x=0,得到y=3;令y=0,得到x=﹣1.5,∴B(﹣1.5,0),D(0,3),把A(﹣1,1)代入y2=kx﹣1得:k=﹣2,即y2=﹣2x﹣1,令x=0,得到y=﹣1,即C(0,﹣1);(2)把A(﹣1,1)代入y2=kx﹣1得:k=﹣2,则y2=﹣2x﹣1;(3)连接BC,设直线l2与x轴交于点E,如图所示,对于y2=﹣2x﹣1,令y=0,得到x=﹣0.5,即OE=0.5,∴BE=OB﹣OE=1.5﹣0.5=1,则S△ABC=S△ABE+S△BCE=12×1×1+12×1×1=1.【点睛】本题要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长即可.109.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?【答案】(1)y 与x 的函数关系式是1080y x =-+;(2)该设备的销售单价是4万元.【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出月销售量y 与销售单价x 的函数关系式;(2)设该设备的销售单价为x 万元/台,则每台设备的利润为(2x -)万元,销售数量为(1080x -+)台,根据总利润=单台利润×销售数量,即可得出关于x 的一元二次方程,解之取其小于5的值即可得出结论.【详解】(1)∵点(3,50)和点(4,40)在函数y kx b =+的图象上,∴350440k b k b +=??+=?,解得1080k b =-??=?,∴y 与x 的函数关系式是1080y x =-+;(2)设该设备的销售单价为x 万元/台,依题意,得(2)(1080)80x x --+=,整理,得210240-+=,x x解得12==,(不合题意,舍去),x x46x=,∴4答:该设备的销售单价是4万元.【点睛】本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.110.在平面直角坐标系xoy中,抛物线2=++经过点A(0,-3),y x bx cB(4,5).(1)求此抛物线表达式及顶点M的坐标;(2)设点M关于y轴的对称点是N,此抛物线在A,B两点之间的部分=+与图象W恰一个记为图象W(包含A,B两点),经过点N的直线l:y mx n有公共点,结合图象,求m的取值范围.【答案】(1)抛物线的表达式是223=--,顶点坐标是(1,-4);y x x(2)1<m≤9或m=05【解析】【分析】(1)把两个已知点的坐标代入y=x2+bx+c得到关于b、c的方程组,然后解方程组即可确定抛物线解析式,再写出顶点坐标即可;(2)根据题意求出一次函数的解析式,当只有一个交点时,求m的取值范围;【详解】解: (1)将 A (0,-3),B (4,5)代入 2y x bx c =++ 中C=-316+4b+c=5∴c=-3 b=-2∴ 抛物线的表达式是223y x x =--顶点坐标是(1,-4)(2) 如图M 关于y 轴的对称点N(-1.-4) ,由图象知m=0符合条件又设NA 表达式y=kx+b将 A (0,-3),N (-1,-4)代入 y=kx+b 中得b=-3,-k+b=-4 得k=1 b=-3∴y=x-3 再设NB 表达式y=tx+s,得 4t+s=5-t+s=-4 得t=95 s=115 y=95x 115由图示知1<m≤9或m=05。

初一数学函数及其图像试题

初一数学函数及其图像试题

初一数学函数及其图像试题1.(11·永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()【答案】A【解析】略2.(6分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.【答案】(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.【解析】(1)甲印刷厂收费表示为:甲厂每份资料印发费×材料的份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;(2)先把x=2400代入(1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.试题解析:解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.【考点】列代数式,求代数式的值3.A、B两仓库分别有水泥15吨和35吨,C、D两工地分别需要水泥20吨和30吨.已知从A、B仓库到C、D工地的运价如表:到C工地到D工地(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)A仓库原有的20吨去掉运到C工地的水泥,就是运到D工地的水泥;首先求出B仓库运到D仓库的吨数,也就是D工地需要的水泥减去从A仓库运到D工地的水泥,再乘每吨的运费即可;(2)用x表示出A、B两个仓库分别向C、D运送的吨数,再乘每吨的运费,然后合并起来即可;(3)把x=10代入(2)中的代数式,求得问题的解.试题解析:(1)从A仓库运到D工地的水泥为:(15-x)吨,从B仓库将水泥运到D工地的运输费用为:[35-(15-x)]×9=(9x+180)元;(2)总运输费:15x+12×(15-x)+10×(15-x)+[35-(15-x)]×9=(2x+515)元;(3)当x=10时,2x+515=535.答:总运费为535元.【考点】1.列代数式;2.代数式求值.4.重庆某餐饮集团公司将沙坪坝下属一个分公司对外招商承包,有符合条件的两个企业甲、乙,分别拟定上缴利润方案如下:甲:每年结算一次上缴利润,第一年上缴利润5万元,以后每年比前一年增加5万元;乙:每半年结算一次上缴利润,第一个半年上缴利润1.5万元,以后每半年比前一半年增加1.5万元;(1)如果企业乙承包一年,则需上缴的总利润为万元.(2)如果承包4年,你认为应该承包给哪家企业,总公司获利多?为什么?(3)如果承包n年,请你用含n的代数式分别表示两企业上缴利润的总金额(单位:万元).【解析】(1)4.5;(2)该承包给企业乙,总公司获利多,理由见解析;(3)企业甲承包n年上缴的利润为:(万元),企业乙承包n年上缴的利润为:1.5n(2n+1)(万元).(1)企业乙承包一年:上半年上缴利润1.5万元,下半年上缴利润(1.5+1.5)万元;(2)根据两企业的利润方案计算即可;(3)归纳总结,根据题意列出两企业上缴利润的总金额即可.试题解析:(1)1.5+(1.5+1.5)=4.5(万元);(2)由题意,企业甲承包4年上缴的利润为:5+10+15+20=50(万元),企业乙承包4年上缴的利润为:1.5+1.5×2+1.5×3+1.5×4+1.5×5+1.5×6+1.5×7+1.5×8=1.5×(1+2+3+4+5+6+7+8)=54(万元),54-50=4(万元),即企业乙比企业甲上缴利润多4万元,所以该承包给企业乙,总公司获利多;(3)企业甲承包n年上缴的利润为:5+10+15+20+…+5n=5×(1+2+3+…+n)=(万元), 企业乙承包n年上缴的利润为:.5+1.5×2+1.5×3+1.5×4+…+1.5×2n=1.5×(1+2+3+…+2n)=1.5×=1.5n(2n+1)(万元).【考点】①列代数式;②有理数的混合运算.5.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【答案】B【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【考点】函数的概念.6.(2015秋•乳山市期末)利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60;(2)该天童装的单价是每件30元.【解析】(1)设y=kx+b,把(0,60)和(20,100)代入解答即可;(2)根据题意得出方程80=2x+60,进而解答即可.解:(1)y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60;(2)由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元.【考点】一次函数的应用.7.函数y=ax2+a与(a≠0),在同一坐标系中的图象可能是()A.B.C.D.【答案】D【解析】应分a>0和a<0两种情况分别讨论,逐一排除.解:当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为x=0,顶点坐标为(0,a),故A、C都可排除;当a<0时,二次函数y=ax2+a的图象开口向下,且对称轴为x=0,顶点坐标为(0,a),故排除A,C,函数的图象在二、四象限,排除B,则D正确.故选D.【考点】二次函数的图象;反比例函数的图象.8.如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)A(4,0),C(0,8);(2)y=﹣x+8;(3)满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【解析】(1)已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.解:(1)令y=0,则﹣2x+8=0,解得x=4,∴A(4,0),令x=0,则y=8,∴C(0,8);(2)由折叠可知:CD=AD,设AD=x,则CD=x,BD=8﹣x,由题意得,(8﹣x)2+42=x2,解得x=5,此时AD=5,∴D(4,5),设直线CD为y=kx+8,把D(4,5)代入得5=4k+8,解得k=﹣,∴直线CD的解析式为y=﹣x+8;(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图1,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=5,AP=BC=4,PD=BD=8﹣5=3,由AD×PQ=DP×AP得:5PQ=3×4,∴PQ=,∴x=4+=,把x=代入y=﹣x+8得y=,P此时P(,)③当点P在第二象限时,如图2,同理可求得:PQ=,在RT△PCQ中,CQ===,∴OQ=8﹣=,此时P(﹣,),综上,满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【考点】一次函数综合题.9.抚州市正在争创省文明城市,为了美化城市,改善人们的居住环境,我市深入开展绿化彩化美化工程,通过植草、种树、修建公园及树阵式停车位等多项措施,使城区绿地面积不断增加.请根据图中所提供的信息,回答下列问题:(1)2014年底的公园绿地面积为________公顷,比2012年底增加了________公顷;(2)在2013年,2014年,2015年这三年中,绿地面积增加最多的是________年;(3)为满足城市发展的需要,计划到2017年底使城区公园绿地总面积达到1200公顷,试求2017年底公园绿地面积对2015年底的增长率.【答案】(1)850;310;(2)2014;(3)20%.【解析】(1)观察折线图即可得出结论;(2)通过计算比较即可得出结论;(3)利用求增长率的计算公式:(增加后的-增加前的)÷增加前的,即可得出结论.试题解析:(1)观察折线图得知,2014年底的公园绿地面积为850公顷,比2012年底增加了850-540=310公顷.故答案为850;310;(2)通过计算2013年增加:650-540=110公顷,2014年增加:850-650=200公顷,2015年增加:1000-850=150公顷,故绿地面积增加最多的是2014年;(3)由题意可得,2017年底公园绿地面积对2015年底的增长率是(1200-1000)÷1000=20%.【考点】1.折线统计图分析与计算;2.增长率计算.10.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是()A.B.C.D.【答案】A【解析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短,故选A.。

2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

2019-2020学年度华东师大版数学八年级下册第十七章    《函数及其图像》(含解析)第17章  单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。

初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。

初三函数测试题目及答案

初三函数测试题目及答案

初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。

答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。

答案:013. 函数y=1/x的图象在x=2处的斜率是________。

答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。

答案:115. 函数y=2x^2-4x+1的顶点坐标是________。

答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。

答案:顶点坐标为(1, 1)。

九年级数学函数图像练习题及答案

九年级数学函数图像练习题及答案

九年级数学函数图像练习题及答案练习题一:函数图像综合练习1. 给出函数 y = x^2 的图像,请写出下列函数图像的方程和图像的特点:(1) y = -x^2(2) y = (x + 1)^2(3) y = -(x - 2)^22. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = -|x + 2|(3) y = 2|x|练习题二:函数图像的平移与伸缩1. 给出函数 y = x^3 的图像,请写出下列函数图像的方程和图像的特点:(1) y = (x - 1)^3(2) y = (x + 2)^3(3) y = -2(x - 2)^32. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = 2|x + 2|(3) y = -0.5|x|答案:练习题一:1. (1) y = -x^2,图像特点:开口向下的抛物线,顶点在原点。

(2) y = (x + 1)^2,图像特点:开口向上的抛物线,顶点在 (-1, 0) 处。

(3) y = -(x - 2)^2,图像特点:开口向下的抛物线,顶点在 (2, 0) 处。

2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。

(2) y = -|x + 2|,图像特点:折线,折点在 (-2, 0) 处。

(3) y = 2|x|,图像特点:折线,折点在原点。

练习题二:1. (1) y = (x - 1)^3,图像特点:开口向上的尖顶抛物线,顶点在 (1, 0) 处。

(2) y = (x + 2)^3,图像特点:开口向上的钝顶抛物线,顶点在 (-2, 0) 处。

(3) y = -2(x - 2)^3,图像特点:开口向下的尖顶抛物线,顶点在 (2, 0) 处。

2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。

第17章函数及其图象综合练习题-2021-2022学年华东师大版八年级数学下册(word版含答案)

第17章函数及其图象综合练习题-2021-2022学年华东师大版八年级数学下册(word版含答案)

2021-2022学年华师大版八年级数学下册《第17章函数及其图象》期中复习综合练习题(附答案)一.选择题1.点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为()A.(﹣6,2)B.(﹣2,﹣6)C.(﹣2,6)D.(2,﹣6)2.已知甲、乙两地相距720米,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:米),下列说法正确的是()A.乙先走5分钟B.甲的速度比乙的速度快C.12分钟时,甲乙相距160米D.甲比乙先到2分钟3.如图,欣欣妈妈在超市购买某种水果所付金额y(元)与购买x(千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省()元.A.4B.3C.2D.14.如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.305.如图,一次函数y=kx+b的图象与x轴交于点A(1,0),则关于x的不等式x(kx+b)>0的解集是()A.x>0B.x<0C.x>1或x<0D.x>1或x<1 6.在函数y=中,自变量x的取值范围是()A.x≥0B.x≠3C.x≥0且x≠3D.0≤x≤37.若图中反比例函数的表达式均为y=,则阴影面积为2的是()A.图1B.图2C.图3D.图48.如图,在直角坐标系中,O为坐标原点,函数y=与y=在第一象限的图象分别为曲线l1,l2,点P为曲线l1上的任意一点,过点P作y轴的垂线交l2于点A,交y轴于点M,作x轴的垂线交l2于点B,则△AOB的面积是()A.B.3C.D.4二.填空题9.若点M在第二象限,且点M到x轴的距离为1,到y轴的距离为2,则点M的坐标为.10.一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.11.将一次函数y=2x﹣4的图象沿x轴向左平移4个单位长度,所得到的图象对应的函数表达式是.12.已知直线y=x+b和y=ax+2交于点P(3,﹣1),则关于x的方程(a﹣1)x=b﹣2的解为.13.已知一次函数y=(m﹣1)x+4﹣3m(m为常数),若其图象经过第一、三、四象限,则m的取值范围为.14.疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.15.如图,在平面直角坐标系xOy中,点A,B分别在函数y=(x>0),y=(x<0)的图象上,AB∥x轴,点C是y轴上一点,线段AC与x轴正半轴交于点D.若△ABC 的面积为8,=,则k的值为.16.若一次函数y=kx+5在﹣1≤x≤4范围内有最大值17,则k=.三.解答题17.在平面直角坐标系中,有一点M(a﹣2,2a+6),试求满足下列条件的a值或取值范围.(1)点M在y轴上;(2)点M在第二象限;(3)点M到x轴的距离为2.18.小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.19.如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.(1)求A,B两点的坐标;(2)求BD的长;(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.20.一辆客车从甲地驶往乙地,同时一辆私家车从乙地驶往甲地(私家车、客车两车速度不变).图1是私家车离甲地距离为y(千米)与行驶的时间为x(小时)之间的函数图象,图2是两车之间的距离s(千米)与行驶的时间x(小时)之间的函数图象:(1)求私家车和客车的速度各是多少;(2)点P的坐标为,c的值为;(3)直接写出两车相距200千米时,两车出发的时间x(小时)的值.21.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(4,1),B(n,﹣4)两点,与y轴交于点C.(1)求一次函数和反比例函数的表达式;(2)将直线y=kx+b向上平移,平移后的直线与反比例函数y=在第一象限的图象交于点P,连接P A,PC,若△P AC的面积为12,求点P的坐标.22.如图,直线y=k1x+b与双曲线y=交于A、B两点,已知A(﹣2,1),点B的纵坐标为﹣3,直线AB与x轴交于点C,与y轴交于点D.(1)求直线AB和双曲线的解析式;(2)若点P是第二象限内反比例函数图象上的一点,△OCP的面积是△ODB的面积的2倍,求点P的坐标;(3)直接写出不等式k1x+b<的解集.参考答案一.选择题1.解:∵点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,∴点P的横坐标为﹣2,纵坐标为6,∴点P的坐标为(﹣2,6).故选:C.2.解:A.由图象可知,甲先走5分钟,故本选项不合题意;B.甲的速度为:720÷12=60(米/分),乙的速度为:720÷(14﹣5)=80(米/分),60<80,故本选项不合题意;C.12分钟时,甲乙相距:80×(12﹣5)=560(米),故本选项不合题意;D.由图象可知,甲比乙先到2分钟,故本选项符合题意.故选:D.3.根据图象可知,当x≤4时,购买的单价为:20÷4=5(元/千克),故平均分2次购买需要:6×5=30(元);当x>4时,前4千克需要20元,多于4千克部分的单价为:(44﹣20)÷(10﹣4)=4(元/千克),故一次性购买6千克需要:20+(6﹣4)×4=28(元),一次性购买可节省:30﹣28=2(元),故选:C.4.解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D 之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=5时,y开始不变,说明BC=5,x=11时,接着变化,说明CD=11﹣5=6.长方形ABCD的面积为:5×6=30.故选:D.5.解:∵不等式x(kx+b)>0,∴或,∵一次函数y=kx+b的图象与x轴交于点A(1,0),由图象可知,当x>1时,y>0;当x<1时,y<0,∴关于x的不等式x(kx+b)>0的解集是x>1或x<0.故选:C.6.解:由题意得:x≥0且x﹣3≠0,解得:x≥0且x≠3,故选:C.7.解:图1中,阴影面积为4;图2中,阴影面积为×4=2;图3中,阴影面积为2××4=4;图4中,阴影面积为4××4=8;则阴影面积为2的有1个.故选:B.8.解:如图,∵点A、B在反比例函数y=的图象上,点P在反比例函数y=图象上,∴S△AOM=S△BON=×|2|=1,S矩形OMON=|6|=6,设ON=a,则PN=OM=,BN=,∴PB=PN﹣BN=,在Rt△AOM中,∵OM•AM=1,OM=,∴AM=a,∴P A=PM﹣AM=a﹣a=a,∴S△P AB=P A•PB=×a×=,∴S△AOB=S矩形OMPN﹣S△AOM﹣S△BON﹣S△P AB=6﹣1﹣1﹣=,故选:A.二.填空题9.解:∵点M在第二象限,且到x轴的距离是1,到y轴的距离是2,∴点M的横坐标是﹣2,纵坐标是1,∴点M的坐标是(﹣2,1).故答案为:(﹣2,1).10.解:一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y (升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为:y=﹣4x+80,故答案为:y=﹣4x+80.11.解:将一次函数y=2x﹣4的图象沿x轴向左平移4个单位长度,所得到的图象对应的函数表达式是:y=2(x+4)﹣4,即y=2x+4.故答案为:y=2x+4.12.解:由(a﹣1)x=b﹣2知,x+b=ax+2.∵直线y=x+b和ax+2交于点P(3,﹣1),∴当x=3时,x+b=ax+2=﹣1,即关于x的方程(a﹣1)x=b﹣2的解为x=3.故答案为:x=3.13.解:∵一次函数y=(m﹣1)x+4﹣3m(m为常数)的图象经过第一、三、四象限,∴,解得m>.故答案为:m>.14.解:乙地接种速度为40÷80=0.5(万人/天),∴0.5a=30﹣5,解得a=50.设y=kx+b,将(50,30),(100,40)代入解析式得:,解得,∴y=x+20(50≤x≤100).把x=80代入y=x+20得y=×80+20=36,∴40﹣36=4(万人).故答案为:4.15.解:∵△ABC的面积为8,=,∴△ABD的面积为×8=5,如图,连接OA,OB,设AB与y轴交于点P,∵△AOB与△ADB同底等高,∴S△AOB=S△ADB,∵AB∥x轴,∴AB⊥y轴,∵A、B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOP=3,S△BOP=,∴S△ABD=S△AOB=S△AOP+S△BOP=3+=5.解得k=﹣4,(正值舍去)故答案为:﹣4.16.解:①当x=﹣1时,y有最大值17,则﹣k+5=17,解得k=﹣12;②当x=4时,y有最大值17,则4k+5=17,解得k=3;∴若﹣1≤x≤4时,y有最大值17,k的值为﹣12或3,故答案为:﹣12或3.三.解答题17.解:(1)由题意得,a﹣2=0,解得a=2;(2)由,解得,﹣3<a<2;(3)由|2a+6|=2,解得a=–2或–4.18.解:(1)设直线BC的解析式为y=kx+b,代入点(5,6)和(10,4)得,解得,∴直线BC的解析式为y=﹣x+8,当y=0时,x=20,故答案为:20;(2)由题知:AB段的速度为:=1.2(km/min),BC段的速度为:=0.4(km/min),4分钟行驶了2.4千米的平均速度为:2.4÷4=0.6(km/min),则小明爸爸连续的四分钟有一段在AB段有一段在BC段,设在AB段行驶时间为xmin,则在BC段行驶(4﹣x)min,由题意得1.2x+(4﹣x)×0.4=2.4,解得x=1,5﹣1=4(min),4+4=8(min),∴这4分钟的起止时间是从第4分钟到第8分钟.19.解:(1)∵把y=x的图象向下平移1个单位,∴y=x﹣1,当x=0时,y=﹣1,∴B(0,﹣1),当y=0时,x=2,∴A(2,0);(2)∵A(2,0),B(0,﹣1),∴AB=,∵C为线段AB的中点,∴C(1,﹣),∵CD⊥AB,∴∠BDC=∠BAO,∴BD=;(3)∵BD=,∴D(0,),设直线CD的解析式为y=kx+b,∴,∴,∴y=﹣2x+,当BE=AE时,E点在AB的垂直平分线上,∴E点与D点重合或E点是CD与x轴的交点,∴E(0,)或E(,0);当BA=BE时,BE=,∴E(0,﹣1+)或(0,﹣1﹣)或(﹣2,0);当AB=AE时,E(2+,0)或(0,1)或(2﹣,0);综上所述:E点坐标为(0,)或(,0)或(0,﹣1+)或(0,﹣1﹣)或(﹣2,0)或(2+,0)或(0,1)或(2﹣,0).20.解:(1)由图1可知,私家车6小时行驶600千米,∴私家车的速度是100千米/时,由图2可知,两车小时相遇,∴客车的速度是﹣100=60(千米/时),答:私家车的速度是100千米/时,客车的速度是60千米/时;(2)∵私家车的速度是100千米/时,客车的速度是60千米/时;∴私家车到达甲地用了6小时,此时客车行驶的路程是360千米,∴点P的坐标为(6,360);而客车到达乙地需要600÷60=10(小时),∴c的值为10,故答案为:(6,360),10;(3)出发x小时,客车距甲地60x千米,私家车距甲地(600﹣100x)千米,根据题意得:60x﹣(600﹣100x)=200或(600﹣100x)﹣60x=200,解得x=5或x=2.5,答:两车出发5小时或2.5小时,相距200千米.21.解:(1)∵反比例函数y=的图象经过A(4,1),∴m=4×1=4,∵B(n,﹣4)在y=上,∴﹣4=,∴n=﹣1,∴B(﹣1,﹣4),∵一次函数y=kx+b的图象经过A,B,∴,解得,∴一次函数与反比例函数的解析式分别为y=和y=x﹣3.(2)设平移后的一次函数的解析式为y=x﹣3+p,交y轴于Q,连接AQ,令x=0,则y=p﹣3,∴Q(0,p﹣3),∵S△ACQ=S△ACP=12,∴=12,解得p=6,∴平移后的一次函数的解析式为y=x+3,解得或,∴P(1,4).22.解:(1)∵点A在双曲线y=上,A(﹣2,1),∴k2=﹣2×1=﹣2,∴双曲线的解析式为y=﹣,∵点B在双曲线上,且纵坐标为﹣3,∴﹣3=﹣,∴x=,∴B(,﹣3),将点A(﹣2,1),B(,﹣3)代入直线y=k1x+b中得,,∴,∴直线AB的解析式为y=﹣x﹣2;(2)如图2,连接OB,PO,PC;∵D(0,﹣2),∴OD=2,∴S△ODB=OD•x B=×2×=,∵△OCP的面积是△ODB的面积的2倍,∴S△OCP=2S△ODB=2×=,∵直线AB的解析式为y=﹣x﹣2,令y=0,则﹣x﹣2=0,∴x=﹣,∴OC=,设点P的纵坐标为n,∴S△OCP=OC•y P=×n=,∴n=2,∵点P在双曲线y=﹣上,∴2=﹣,∴x=﹣1,∴P(﹣1,2);(3)由图象知,不等式k1x+b<的解集为﹣2<x<0或x>.。

初中八年级数学下册第十九章一次函数单元检测试卷习题十一(含答案)(33)

初中八年级数学下册第十九章一次函数单元检测试卷习题十一(含答案)(33)

初中八年级数学下册第十九章一次函数单元检测试卷习题十一(含答案)阅读理解应用待定系数法:设某一多项式的全部或局部系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解/-1.由于为三次多项式,假设能因式分解,那么可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜测/-1可以分解成Q-1)(/+〃'+.),展开等式右边得:,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:6Z — 1 = 0 , b—a = O ! Tx-1可以求出“ =1 , b = \ .所以1-1="-1),+工+1).(1)假设工取任意值,等式/+2x + 3 = J+(3-a)x + s恒成立,那么"=;(2 )多项式Y+2x + 3有因式X + 1 ,请用待定系数法求出该多项式的另一因式;(3 )请判断多项式/+/ + 1是否能分解成的两个均为整系数二次多项式的乘积,并说明理由.【答案】(1) 1 ; ( 2 ) £ -x+3 ;(3)多项式/+丁 + 1能分解成两个均为整系数二次多项式的乘积,理由详见解析.【解析】【分析】(1)根据题目中的待定系数法原理即可求得结果;(2 )f艮据待定系数法原理先设另一个多项式然后根据值等原理即可求得结论;(3)根据待定系数原理和多项式乘以多项式即可求得结论.【详解】(1)根据待定系数法原理,得3-a=2 , a=1 .故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)( x2+ax+b ) =x3+ax2+bx+x2+ax+b=x3+ ( a+1) x2+ ( a+b ) x+b/.a+l=O a=-l b=3,多项式的另一因式为x2-x+3 .答:多项式的另一因式X2-X+3.(3 )多项式x4+x2+l能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+l 能分解成①(x2+l I x2+ax+b )或②(x+11 x3+ax2+bx+c ) 或③(x2+x+l)( x2+ax+l),①(x2+l)(x2+ax+b)=x4+ax3+bx2+ax+b=x4+ax3+ ( b+1) x2+ax+b.*.a=0, b+l=l , b=l由b+l=l得b二O壬l ,故此种情况不存在.②(x+1)( x3+ax2+bx+c ),=x4+ax3+bx2+cx+x3+ax2+bx+c =x4+ ( a+1) x3+ ( b+a ) x2+ ( b+c ) x+c/.a+l=O b+a= 1 b+c=O c=l解得a=-l,b=2,c=l,又b+c=O , b=-l#2 ,故此种情况不存在.③(x2+x+l)( x2+ax+l)=x4+ ( a+l) x3+ ( a+2 ) x2+ ( a+l) x+1*** a+1=0 , a+2=l,解得a=-l.即x4+x2+l= ( x2+x+l)( x2-x+l)・•・X4 + x2 +1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式X4 + X2 + 1能分解成两个整系数二次三项式的乘积.【点睛】此题考查了因式分解的应用、多项式乘以多项式,解决此题的关键是理解并会运用待定系数法原理.102 .点48⑼及在第四象限的动点,且x+片10 ,^OPA 的面积为S(1)求S关于*的函数表达式,并直接写出〞的取值范围(2)画出函数S的图象(3) S= 12时,点.坐标为【答案】(l)S = 40-4x(0<x<10);(2)见解析;(3)(7, 3).【解析】【分析】(1)首先把X + y = 10 ,变形成y=10-X ,再利用三角形的面积求法可以得到S关于x的函数表达式;P在第一象限,故x > 0,再利用三角形的面积S>0, 可得到x的取值范围;(2 )根据函数解析式描点,画图,注意x , y的范围.(3 )把S=12代入函数解析式即可;【详解】解:(1)..・x + y = 10Ay= 10-x fAS = 8 (10-x )+2=40-4x ,V40-4x > 0 ,Ax<10 ,Ax 的取值范围是:0 < x < 10 ,即S =40-4x ( 0 < x < 10 );・•・ 12 = 40-4x ,x = 7 ,・二y = 10-7 = 3 ,As = 12 时,P 点坐标〔7,3〕.【点睛】此题主要考查了求函数解析式,以及画一次函数的图象,解题时一定要注意自变量的取值范围.103 ,正比例函数的图像过点P (3, -3).(1)求这个正比例函数的表达式;(2)点A (a2・4)在这个正比例函数的图像上,求a的值.【答案】(l)y二-x;(2)a二±2.【解析】【分析】(1)设正比例函数为)=辰,利用待定系数法,即可求出解析式;(2 )把点A代入解析式,即可求出a的值.【详解】解:(1)设正比例函数为,=辰,把点P(3, -3 )代入片",解得:k=-l ,・•.正比例函数的解析式为:y=-x ;(2)把点A( /,_4 )代入T ,那么r J = -4 ,解得:4 = ±2 .【点睛】此题考查了待定系数法求一次函数解析式,解题的关键是掌握正比例函数的定义,熟练运用待定系数法求解析式.104 .如图,A8是以.为圆心,46长为直径的半圆弧,点U是46上一定点点.是AB上一动点连接PA .PC过点.作夕146于D>4B=6cm ,设4、.两点间的距离为xcm ,只C两点间的距离为卜L cm ,只.两点间的距离为yi cm.小刚根据学习函数的经验,分别对函数卜L和度随自变量*变化而变化的规律进行了探究.下面是小刚的探究过程,请将它补充完整:(1)根据下表中自变量*的值进行取点、画图、测量,分别得到以和总与*的几组对应值:X/cm 0123456y x/cm4.003.96n3.613.272.772.00y z/cm.00.991.892.602.982.77.00经测量,用的值是;(保存一位小数)(2 )在同一平面直角坐标系小沙中,描出补全后的表中各组数值所对应的点(x, yi),点(x, yz),并画出函数的,性的图象;(3 )结合函数图象,答复以下问题:为等腰三角形时,40的长度约为【答案】(1) 3.8 ;( 2 )见解析;(3 ) 3.46或4.0【解析】【分析】(1)先在半圆的图上作出勿=x=2 ,连接P、C,用刻度尺测量出线段PC 的长度,即为m二刃的值;(2)根据表格中的数据,先描点,再用平滑的曲线连起来即可;(3 )当△ZPC为等腰三角形时,分情况讨论,那么①当PA=PC时,由图像测量得加=3.46 ;②当当PC二PC,即到=月时,由图像测量得2P=4.00.【详解】(1)由表格知x=2,先在图上作出尸4 =X=2,连接P、C,两点经过测量得:6=3.82 ,・计算结果要保存一位小数/. 777=3.8(2 )分别根据表中各组数值所对应的点(x,汝),点(x,%)描点,然后用平滑的曲线连结,作图如下:(3 )①当PA=PC ,即x =%时,由图像测量得AP = 3.46②当PC=PC,即y = %时,由图像测量得AP = 4.00综上所述,AP的长度为3.46或4.0 .【点睛】此题主要考查构成函数图像的自变量和因变量的关系,用描点法做函数图像, 以及图像与等腰三角形的综合性知识.105 .如图,在平面直角坐标系中,将一块腰长为"的等腰直角三角板ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点c的坐标为(-1,0),点B在抛物线y=ax2+ax-2 上.(1)点A的坐标为,点B的坐标为;抛物线的解析式为;(2 )设抛物线的顶点为D ,求aDBC的面积;(3 )在抛物线上是否还存在点P(点B除外),使4ACP仍然是以AC为直角边的等腰直角三角形?假设存在,请直接写出所有点P的坐标;假设不存在,请[gBJ(l)A(0,2); B( -3 ,1); y = p+lA--2 (2) y (3)P ( 1 , —1 )或(2 , 1)【解析】【分析】(1)过点B作BF±x轴于F ,先根据勾股定理求出0A的长,即可得出点A的坐标,再求出OF、BF的长即可求出B的坐标;再把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;(2 )先求出点D的坐标,再用待定系数法求出直线BD的解析式,设直线BD 与x轴交点为E ,求出CE的长,再根据S』QBC=S ACEB+S ACED进行计算即可;(3 )假设存在点P ,①假设以点C为直角顶点;那么延长BC至点Pi,使得PiC二BC ,得至IJ等腰直角三角形AACPi,过点Pi作PiMLx轴,由全等三角形的判定定理可得△MPiC^aFBC ,再由全等三角形的对应边相等可得出点Pi 点的坐标;②假设以点A为直角顶点;那么过点A作AP2±CA ,且使得AP2=AC ,得到等腰直角三角形二ACP2 ,过点P2作P2N_Ly轴,同理可证二APzNgaCAO ,由全等三角形的性质可得出点P2的坐标;点Pi、P2的坐标代入抛物线的解析式进行【详解】(1)・・・C(-1,O), AC=6 ,J 0A二AC2 -OC2 = >/5^T =2 ,-A (0,2);过点B作BF,x轴于F,垂足为F,VZACO+ZCAO=90°z NACO+NBCF=90.,・♦•NCAO二NBCF ,在△ AOC和ACFB中,ZCAO = ZBCFZAOC^ZCFB , AC = BC・♦・△AO%ACFB ,ACF=AO=2 , BF=CO=1,・・・OF=3 ,,B(-3, 1);把B(-3 f 1)代入y=ax2+ax-2 中,得:l=9a-3a-2 ,解得:a=—,・••抛物线的解析式为y二1 x2+ i x-2 ,故答案为:A ( 0,2 ); B ( -3 , 1 ); y = ^+^x-2;(2油〉,=/ + 3-2 = *+;)2-9知,抛物线的顶点坐标D(-1,-?),2 Z Z Z o Z o 设直线BD的关系式为y=kx+b ,将点B、D的坐标代入得:‘一34 + 〃 = 1k = -2 4 解得:,b =——4・•・直线BD的解析式为y = ~x~^,设直线BD与x轴交于点E ,贝妹E〔一? ,O〕,CE=1 ,.r e e 1 6 । 1 6 17 15••S ADBC=S ACEB+S ACED=-X Z X1+ T X7X V =V; 2 J Z 2> o o〔3 〕1段设存在点P ,使得AACP仍然是以AC为直角边的等腰直角三角形:①假设以点C为直角顶点;那么延长BC至点Pi,使得PiC=BC ,得到等腰直角三角形AACPi ,过点Pi作PiM_Lx轴,VCPi=BC , ZMCPi=ZBCF , NPiMC=NBFC=90 :/.△MPiC^AFBC .ACM=CF=2 , PiM = BF=l ,,-1〕;②假设以点A为直角顶点;那么过点A作AP2,CA ,且使得AP2=AC ,得到等腰直角三角形4ACP2 ,过点P2作P2N_Ly轴,同理可证△APzNgZXCAO ,r.NP2=OA=2 , AN=OC=1 ,••#2〔2 , 1〕,经检验,点Pid , -1〕与点P2〔2 , 1〕都在抛物线尸1丁+9-2上.综上所述,满足条件的P坐标为〔1 , -1 〕或〔2 , 1〕.【点睛】此题考查的是二次函数综合题,涉及到全等三角形的判定与性质、用待定系教法求一次函数及二次函数的解析式、二次函数的性质、勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.106 .甲、乙两车同时从A 城出发驶向6城,甲车到达6城后立即返回.如 图是它们离A 城的距离乂千米)与行驶时间*小时)之间的函数图象.(1) 46两城之间的距离为 ______ km.(2 )求甲车行驶过程中'与x 之间的函数解析式,并写出自变量〞的取值范围;(3 )乙用8小时到达6城,求乙车速度及他们相遇的时间.(4 )直接写出两车何时相距SOkm?【答案】(1 ) 600 ;lOO.v?(0<A ^6)<・75x + 1050(6«xM14);(3)75,7;…16 97 113 (4 )—:——:—— ' 7 5 15 15【解析】【分析】(1)由图像得28两城之间的距离为600碗; (2)y 甲(2 )设甲车行驶过程中y与x之间的函数解析式为y甲二%x+勿,分两段代入点的坐标S用待定系数法即可得出结论;(3 )根据公式“速度二路程,时间〞求出乙车速度,求出乙车行驶过程中y 与x之间的函数解析式,与甲车第二段函数解析式联立方程组即可求出相遇时间;(4 )设两车之间的距离为“(千米),根据〃="甲-y乙|得出“关于时间x的函数关系式,令“=80 ,求出x值即可.【详解】解:(1) 600;(2 )设甲车行驶过程中y与x之间的函数解析式为y甲=hx+A ,当0WA6时,将点(0,0 ), ( 6 , 600 )代入函数解析式得:0 =4 匕=1001解得?600 = 6勺+4 /丽『4=0甲=100%;当6WZ14,将点(6 , 600 ), ( 14,0 )代入函数解析式得:‘600 = 6匕+4 = -750 = 14勺+4,解得:,=1050 '•••7甲=-75x+1050 .练上得:y 甲=|-75X + I 050(6<X ^14)- (3 )乙的速度为:600 -8=75 km/h ;,乙车行驶过程中y 乙与X 之间的函数解析式为:y 乙二75x( 0^8 ).v= -75x+1050 x=l解方程组{尸75x 得:|尸525.・•・经过7小时,两车相遇.(4)设两车之间的距离为〃(千米),那么〃与x 之间的函数关系式为:〃= 1/甲乙I ='75X -(-75x +1050) = 150x-1050(7<x < 8) z600 -(-75x + 1050) = 75x-450(8<x<14)25x=80(0<x<6)-150x +1050=80 (6<x < 7) 当80时那么4m J z AJ 150x-1050=80(7<x<8)175x-450=80(8<x<14)答:当两车相距80千米时,甲车行驶的时间为冷或营或半小时. 0 , X0 【点睛】此题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次 方程等知识.解题的关键是:(1)结合图形确定两地之间距离;(2)利用待定 系数法求出函数解析式;(3)结合题意,数量关系确定相关数量;(4 )考虑 问题要周全,注意分类思想.此题属于中档题,难度不大,解决该类题型题 目时,结合函数图象中点的坐标利用待定系数法求出函数解析式是关键.107.某社区活动中央为鼓励居民增强体育锻炼,准备购置10副某种品牌100A ? (0<x2 6)100x - 75x = 25x(0 <x<6)-75x + 1050-75x = -l 50A + 1050(6<x < 7)的羽毛球拍,每副球拍配X ( x22 )个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为3.元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90% )销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购置羽毛球拍和羽毛球的费用为yA (元),在B超市购置羽毛球拍和羽毛球的费用为yB (元).请解答以下问题:(1)分别写出yA、ys与x之间的关系式;(2)假设该活动中央只在一家超市购置,你认为在哪家超市购置更划算?(3 )假设每副球拍配15个羽毛球,请你帮助该活动中央设计出最省钱的购买方案.【答案】解:(1) y A=27x+270 , y B=30x+240 ; ( 2 )当2sx < 10 时,到B超市购置划算,当x=10时,两家超市一样划算,当x > 10时在A超市购置划算;(3)先选择B超市购置10副羽毛球拍,然后在A超市购置130个羽毛球.【解析】【分析】(1)根据购置费用二单价X数量建立关系就可以表示出yA、yB的解析式;(2 )分三种情况进行讨论,当丫八二yB时,当yA>yB时,当yA<yB时,分别求出购置划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比拟就可以求出结论.【详解】解:〔1〕由题意,得yA= 〔10x30+3xl0x 〕 x0.9=27x+270 ;y B=10x30+3 〔lOx - 20 〕 =30x+240 ;〔2 〕当丫八二yB时,27x+270=30x+240,得x=20 ;当yA>yB 时,27x+270 >30x+240,得xvlO ;当yA〈yB 时,27x+270 < 30x+240 ,得x>10匚当2<x < 10时,至IJ B超市购置划算,当x=10时,两家超市一样划算, 当x > 10时在A超市购置划算.〔3〕由题意知x=15,15>10,匚选择A超市,yA=27xl5+270 = 675 〔元〕,先选择B超市购置10副羽毛球拍,送20个羽毛球,然后在A超市购置剩下的羽毛球:〔10X15 - 20 〕x3x0.9=351 〔元〕,共需要费用1030+351=651 〔元〕.匚651元< 675元,匚最正确方案是先选择B超市购置10副羽毛球拍,然后在A超市购置130 个羽毛球.【点睛】此题考查一次函数的应用,根据题意确列出函数关系式是此题的解题关键.108 .如图①,公路上有A B, C三个车站,f 汽车从A站出发以速度匕匀速驶向3站,到达3站后不停留,以速度匕匀速驶向C站,汽车行驶路程y〔千米〕与行驶时间x 〔小时〕之间的函数图象如图②所示.(1)匕=千米/小时,% =千米/小时;(2 )当汽车在B, C两站之间匀速行驶时,求)关于i的函数解析式,并写出自变量的取值范围;(3 )假设汽车在某一段路程内刚好用50分钟行驶了90千米,直接写出这段路程开始时〞的值.国①【答案】(1) 100 ; 120 ;(2) y = 120^-60(3<x<4) ;(3)-.【解析】【分析】(1 )根据题意和函数图象可以求得Vi , V2的值;(2 )根据(1)中的结果,可以求得这段路程开始时x的值;(3)根据题意和函数图象可以求得S关于x之间的函数表达式.【详解】解:(1)由题意可得,Vi=100-Fl=100 千米/时,300・100=3 ,贝!J v2= ( 420-300 ) + ( 4-3 ) =120 千米/时;(2 )设y与x之间的函数关系式为:y=mx+n ,把〔3 , 300 〕和〔4,420 〕代入得,< ■ = 120 n = -60所以,当 3 V xW4 时,y=120x-60 ;〔3 〕设汽车在A 、B 两站之间匀速行驶x 小时,那么在汽车在B 、C 两站之 间匀速行驶〔,-x 〕小时, O 由题意得,lOOx+120 〔 1-x 〕 =90 , O解得x=0.5,3-0.5=2.5 小时.答:这段路程开始时x 的值是;.【点睛】此题考查的是一次函数的应用,正确读懂函数图象、从中获取正确的信息、 掌握待定系数法求函数解析式的步骤是解题的关键,解答时,注意方程思想的灵 活运用.109.甲、乙两列火车分别从A 、B 两城同时匀速驶出,甲车开往B 城,乙 车开往A 城,由于墨迹遮盖,图中提供的是两车距B 城的路程S 甲〔千米1 S 乙〔千米〕与行驶时间t 〔时〕的函数图象的一局部.(1)分别求出S 甲、S 乙与t 的函数关系式(不必写出t 的取值范围); 3m + n = 3004〃7 + 〃 =420解得,(2 )求A、B两城之间的距离,及t为何值时两车相遇;(3 )当两车相距30.千米时,求t的值.【答案】(1) S甲=-180t+600 , S乙二120t ; ( 2 ) A、B两城之间的距离是600千米,t为2时两车相遇;(3)当两车相距300千米时,t的值是1或3 .【解析】【分析】(1)根据函数图象可以分别求得S甲、S乙与t的函数关系式;(2 )将t=0代入S甲=-180t+600 ,即可求得A、B两城之间的距离,然后将(1)中的两个函数相等,即可求得t为何值时两车相遇;(3)根据题意可以列出相应的方程,从而可以求得t的值.【详解】(1)设S甲与t的函数关系式是S甲=kt+b ,(k + t=420 (k=-1803%+f=60 '用—600 '即s甲与t的函数关系式是S甲=-180t+600 ,设S乙与t的函数关系式是S乙二at,那么120=aXl,得a=120 ,即S乙与t的函数关系式是S乙二120t;(2 )将t=0 代入S 甲二-180t+600,得S 甲=-180X0+600 ,彳导S 甲二600 ,^-180t+600=120t,解得,解2 ,即A、B两城之间的距离是600千米,t为2时两车相遇;〔3〕由题意可得/|-180t+600-120t|=300 ,解得 / h=l , t3=3 ,即当两车相距300千米时,t的值是1或3.【点睛】此题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.110 〔 2021江苏省无锡市煤公司今年如果用原线下销售方式销售一产品, 每月的销售颔可达100万元.由于该产品供不应求,公司方案于3月份开始全 部改为线上销售,这样,预计今年每月的销售额产〔万元〕与月份*〔月〕之间 的函数关系的图象如图1中的点状图所示〔5月及以后每月的销售额都相同〕, 而经销本钱"〔万元〕与销售颔y 〔万元〕之间函数关系的图象图2中线段AB 所示.〔1〕求经销本钱夕〔万元〕与销售颔y 〔万元〕之间的函数关系式;〔2〕分别求该公司3月,4月的利润;〔3〕问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改 用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少 多出200万元?(利润=销售额-经销本钱)【答案】(1) 〃 =9+ 10 ;(2)三月份利润为65万元,四月份的利润为 77.5万元;(3)最早到第5个月.【解析】【分析】(1)设户二依+6 ,,代入即可解决问题.(2 )根据利润二销售额-经销本钱,即可解决问题.(3)设最早到第x 个月止,该公司改用线上销售后所获得利润总额比同期 用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决 问题.200 175 150 1和0 1 2 3 4 5 6 0〔月〕图 1出〔万元〕【详解】100k+Z? = 60(1 )设斤Zx+6,,代入得:^200;: + /? = 110,k」解得:{ 2 ,b = 10/. p = ;x + 10 .(2) □二150时,尸85 ,口三月份利润为150 - 85=65万元.□*二175 时,夕二97.5 ,口四月份的利润为175 - 97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元匚5月份以后的每月利润为90万元,C65+77.5+90 ( x - 2 ) - 40启200 ,匚应4.75 ,匚最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元考点:一次函数的应用.。

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题每道都是经典(内含答案)

28道初中数学函数及其图像检测题,每道都是经典(内含答
案)
函数是初中数学中的一个基本概念,也是代数学里面最重要的概念之一。

函数就是设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。

我们将自变量x取值的集合叫做函数的定义域,和自变量x 对应的y的值叫做函数值,函数值的集合叫做函数的值域。

函数对于很多初中同学还说都是一个重难点,下面是小编今天带来的28道初中数学函数及其图像检测题,同学们赶紧练习一下,看自己掌握的如何。

初中数学对函数的学习只是基本的知识学习,进入高中后还会更深入的学习函数知识。

同学们在初中学习的时候一定要掌握好,打好基础,不然高中学习函数的时候就无法跟上老师的进度!如果您的孩子在学科知识点记忆上存在问题、学习效率不高,。

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。

2.在图中,当x>2时,y2>y1,因此结论③正确。

由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。

而k<0,因此结论①错误。

因此选项C正确。

3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。

4.本题为选择题,无需改写。

5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。

6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。

因此选项C正确。

7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。

8.函数y=2x+3的斜率为2,截距为3,应该是选项A。

9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。

10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。

11.由于b1<b2,因此直线y1在直线y2的下方。

由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。

因此选项B正确。

12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。

13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。

14.本题为选择题,无需改写。

15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。

16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。

18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。

19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

第17 章测试卷(时间:90分钟满分:120分)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,满分36分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A. Q和x是变量B. Q是自变量C.50和x是常量D. x是Q的函数中,自变量x的取值范围是( )2.函数y=√x2A. x>0B. x≥0C. x<0D. x≤03.下面说法错误的是( )A.点(0,-2)在 y轴的负半轴上B.点(3,2)与(3,-2)关于x轴对称C.点(-4,-3)关于原点的对称点是(4,3)D.点(−√2,−√3)在第二象限(其中k是不等于0的常数)在同一平面直角坐标系中的大致图4.如图,函数y=k(x-10)和函数y=kx象可能为( )A.①③B.①④C.②③D.②④5.下列图形中,阴影部分的面积相等的是( )A.①②B.②③C.③④D.①④6.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x-2与y =kx+k的交点为整点时,k的值可以取( )A.4个B.5个C.6个D.7个7.已知一次函数y=x+2与y=-2+x,下面说法正确的是( )A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行的图象如图所示,当y₁<y₂时,x的8.一次函数y₁=ax+b与反比例函数y2=kx取值范围是( )A. x<2B. x>5C.2<x<5D.0<x<2或x>59.已知关于x、y的函数y=(m+3)x m2−10是反比例函数,则m的值为( )A.3B. -3C.±3D.010.已知A,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时,若用x表示行走的时间(时),y表示余下的路程(千米),则y关于x的函数表达式是( )A. y=4x(x≥0)B.y=4x−3(x≥34)C. y=3-4x(x≥0)D.y=3−4x(0≤x≤34)11.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N和0.5m,则动力 F(单位:N)关于动力臂l(单位:m)的函数表达式正确的是( )A.F=1200l B.F=600lC.F=500lD.F=0.5l12.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为.A(x+a,y+b),B(x,y),下列结论正确的是( )A. a>0B. a<0C. b=0D. ab<0二、填空题(本大题共6个小题,每小题3分,满分18分)13.在平面直角坐标系中,若点M(1,3)与点 N(x,3)的距离是8,则x的值是 .14.一次函数y=kx+1的图象经过点(1,2),反比例函数.y=kx 的图象经过点(m,12),则m= .15.如果函数y=kx的图象经过点(1,-1),则函数y=kx-2的图象不经过第象限.16.如图,A,C分别是正比例函数y=x的图象与反比例函数.y=4x的图象的交点,过点A 作AD⊥x 轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD 的面积为 .17.如图,过x轴正半轴上的任意一点P 作y轴的平行线交反比例函数y=2x 和y=−4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为 .18.如图,点A,C在反比例函数y=ax 的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,,AB 与CD 间的距离为6,则a-b的值是.三、解答题(本大题有6个小题,满分66分)19.(12分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B 的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.x−3.20.(10分)已知一次函数y=32(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.21.(12分)如图,已知A(n,-2),B(1,4)是一次函数.y=kx+b的图象和反比例函数y=m的图象的两个交点,直线AB 与y轴交于点C.x(1)求反比例函数和一次函数的表达式;(2)求△AOC的面积.22.(10分)如图,在平面直角坐标系xOy中,一次函数.y=−ax+b的图象与反比例的图象相交于点A(-4,-2),B(m,4),与y轴相交于点C.函数y=kx(1)求反比例函数和一次函数的表达式;(2)求点 C的坐标及△AOB的面积.23.(10分)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6 元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程.24.(12 分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35 千瓦时时汽车已行驶的路程;当(0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第17 章测试卷1. A2. B3. D4. C5. C6. A7. D8. D9. A10. D 11. B 12. B 13.9或一7 14.2 15.一 16.8 17.3 18.319.解(1)当x=0时,y=4;当y=0时,x=-2.图象如图所示.(2)由(1)知,A(-2,0)、B(0,4).(3)S AOB=12×2×4=4.(4)当y<0时,x的取值范围为x<-2.20.解(1)函数图象如图所示:(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.21.解(1)将B(1,4)的坐标代入y=mx 中,得m=4,所以y=4x.将A(n,-2)的坐标代入y=4x中,得n=-2.将A(-2,-2),B(1,4)的坐标分别代入y=kx+b中,得{−2k+b=−2,k+b=4,解得{k=2,b=2.所以y=2x+2.(2)对于y=2x+2,令x=0,则y=2,所以OC=2,所以S AOC=12×2×2=2.22.解(1)∵点A(-4,-2)在反比例函数y=kx的图象上,∴k=-4×(-2)=8,∴反比例函数的表达式为y=8x.∵点B(m,4)在反比例函数y=8x的图象上,∴4m=8,解得m=2,∴点B(2,4).将A(-4,-2),B(2,4)代入y=-ax+b,得{−2=4a+b,4=−2a+b,解得{a=−1,b=2.∴一次函数的表达式为y=x+2.(2)令x=0,则y=x+2=2,∴点C的坐标为(0,2),∴S XOB=12OC⋅(x B−x A)=12×2×[2−(−4)]=6.23.解(1)∵当0<x≤3时,y=8,又∵当x>3时,行驶路程超过3千米的部分是((x−3)千米,∴y=8+1.6(x−3),综上:出租车收费y(元)与行驶路程x(千米)的函数关系式是y={8(0<x≤3),1.6x+3.2(x⟩3).(2)∵14.4元>8元,∴乘车路程超过3千米,由(1)得:1.6x+3.2=14.4,解得x=7.答:当付车费14.4元时,乘车路程为7千米.24.解(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150千米.1千瓦时的电量汽车能行驶的路程为15060−35=6(千米).(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得{150k+b=35,200k+b=10,cot2+cot=−0.5,b=110,∴y=−0.5x+110.当x=180时,y=−0.5×180+110=20.答:当150≤x≤200时,y关于x 的函数表达式为.y=−0.5x+110,当汽车已行驶180 千米时,蓄电池的剩余电量为20千瓦时.。

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、若点(1,2)同时在函数y=ax+b和y=的图象上,则点(a,b)为()A.(-3,-1)B.(-3,1)C.(1,3)D.(-1,3)2、如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B. C. 或 D.或3、反比例函数y= 的图象经过的象限是()A.第一二象限B.第一三象限C.第二三象限D.第二四象限4、两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()A. B. C. D.5、如图,点M是反比例函数(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定6、若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限;C.第三象限D.第四象限7、过和两点的直线一定 ( )A.垂直于轴B.与轴相交但不平行于轴C.平行于轴 D.与轴、轴都不平行8、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮9、甲、乙两名运动员同时从地出发前往地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程(千米)与行驶时间(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,或.其中正确的个数有( )A.1个B.2个C.3个D.4个10、如图,已知两点的坐标分别为,点分别是直线和x轴上的动点,,点D是线段的中点,连接交y轴于点E;当⊿ 面积取得最小值时,的值是()A. B. C. D.11、一次函数y1=kx+b和反比例函数y2= 的图象如图,则使y1>y2的x范围是()A.x<﹣2或x>3B.﹣2<x<0或x>3C.x<﹣2或0<x<3 D.﹣2<x<312、一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A.9B.16C.25D.3613、如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,),则该坐标系的原点在()A.G点处B.F点处C.E点处D.EF的中点处14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:①甲车行驶40千米开始休息②乙车行驶3.5小时与甲车相遇③甲车比乙车晚2.5小时到到B地④两车相距50km时乙车行驶了小时其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一次函数与正比例函数的图象交于点P(-2,-1),则关于的方程的解是________.17、写出一个一次函数,使该函数图像经过第一,二,四象限和点(0, 5),则这个一次函数可以是________.18、剧院里5棑2号可用(5,2)表示,则(7,4)表示________ .19、如图,矩形ABCD中,AB=2,BC=4,点A,B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是________.20、某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费元,如果乘客白天乘坐出租车的路程为千米,乘车费为元,那么与之间的关系为________.21、如图,在直角坐标系中,正方形的中心在原点,且正方形的一组对边与轴平行,点是反比例函数的图象上与正方形的一个交点.若图中阴影部分的面积等于,则这个反比例函数的解析式为________.22、如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点的对应点落在直线上……,依次进行下去,若点的坐标是(0,1),点的坐标是,则点的横坐标是________.23、三角形的面积公式中S=ah其中底边a保持不变,则常量是________ ,变量是________ .24、函数有意义,则自变量x的取值范围是________.25、已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.28、在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.29、请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x …﹣3 ﹣2 ﹣1 0 1 2 3 …y ……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)写出函数y=|x|与y=|x+2|图象的平移关系.30、一次函数y=kx+b中(k、b为常数,k≠0),若-3≤x≤2,则-1≤y≤9,求一次函数的解析式.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、A6、A8、D9、B10、B11、B12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

八年级数学上册试题 6.3一次函数的图象同步练习-苏科版(含答案)

八年级数学上册试题 6.3一次函数的图象同步练习-苏科版(含答案)

6.3一次函数的图象一、选择题.1. 在平面直角坐标系x0y 中,函数y=-3x+1 的图象经过( ) A. 第一、二、 三象限 B. 第一、二、 四象限 C. 第一、三、 四象限 D. 第二、三 、四象限2. 已知一次函数y=kx+b 的图象如图所示,则y=-2kx-b 的图象可能是( )..C. D.3. 下列图象中,可以表示一次函数 y =kx+b 与正比例函数 y =kbx(k,b 为常数,且kb≠0) 的图象的是( )....4. 点 P (a,b) 在函数y=3x+2 的图象上,则代数式6a-2b+1 的值等于( ) A.5 B.3 C.-3 D.- 1D CB A B A5. 一次函数y=ax-a(a≠0) 的大致图象是( )....6. 如图,四个一次函数y=ax,y=bx,y=cx+1,y=dx-3 的图象如图所示,则 a,b,c,d 的大小关系是( )A. b>a>d>cB.a>b>c>dC. a>b>d>cD. b>a>c>d 7. 一次函数y=mx+n 与 y =mnx(mn ≠0), 在同一平面直角坐标系的图象是( )....8.1975年中国登山队成功登顶珠穆朗玛峰,如图是当年5月18~28日珠峰海拔8km,9km 处风速变化的真实记录,从图中可得到的正确结论是( ) ①同一天中,海拔越高,风速越大; ②从风速变化考虑,27日适合登山; ③海拔8km 处的平均风速约为20m/s.D B C A D C B AA.①②B.①③C.②③D.①②③9. 一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是( )离家的时间(分钟)A.0 个B.1 个C.2 个D. 3 个10. 小明同学利用计算机软件绘制函数、b 为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足 ( )A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题11. 在平面直角坐标系中,函数 y=kx+b 的图象如图所示,则 kb 0(填“>”、“=” 或“<”).12.当直线 y =(2-2k)x+k-4 经过第二、三、四象限时,则 k 的取值范围是 13. 已知一次函数y=(2-2k)x+k-3 的图象经过第二、三、四象限,则k 的取值范围是 , 14. 匀速行驶的一列火车穿过一个隧道,车在隧道内的长度y(m) 与火车行驶时间 x (s) 之间的关系可用如图所示的图象描述,则该隧道的长度等于 .15. 一次函数 y =2x- 116. 一次函数 y=ax+b一定不经过第 象限 . 在直角坐标系中的图象如图所示,则化简a-b-|a+b|的是,17. 关 于x 的一次函数y=(k+2)x-2k+1, 其 中k 为常数且k≠-2 ①当k=0 时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过 (m,a),(m+3,a²-2)(m,a 为常数),则④无论 k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有18. 已知一次函数 y =(11-a)x-7+a(a≠11) 的图象不经过第四象限,若关于 x 的不等式有且只有4个整数解,则满足条件的所有整数a 的和为三、解答题19. 已知,一次函数y=(1-3k)x+2k-1, 试回答:(1)k 为何值时,y 是x的正比例函数?(2)当函数图象不经过第一象限时,求k 的取值范围.20 .(1)直线y=2x-3 经过第象限;(2)若直线y=mx+n 经过第一、二、三象限,请直接写出m,n 的取值范围;(3)若直线y=mx+n 不经过第一象限,请直接写出m,n 的取值范围.21. (西丰县期末)已知一次函数y=3x+3 的图象与x 轴交于点A, 与y轴交于点B.( 1 )求A,B 两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3 的图象.-3),C(-2,m) 三点,22. 如图,在平面直角坐标系中,一条直线经过A(1,1),B(3, (1 )求m的值;(2)设这条直线与y 轴相交于点D, 求△OCD的面积. Array23. 已知y-2 与x成正比例,当x=2 时,y=6. (1 )求y 与x之间的函数解析式.(2)在所给直角坐标系中画出函数图象.(3)此函数图象与x 轴交于点A, 与y 轴交于点B, 点C在x 轴上,若S=3, 请直接写出点C的坐标.24. 根据学习函数的经验,对经过点(0,1)和点(2,3)的函数y=- |kx-2 |+b 的图象与性质进行如下探究.(1)求函数的表达式;(2)用合理的方式画出函数图象,并写出这个函数的一条性质 ;(3)若关于x的方程- |kx-2 |+b=mx+4 有实数解,则m 的取值范围是,答案一、选择题,B. C. A.C.A.B.C.A.B.C.二、填空题11.<12. 1<k<4.13. 1<k<3.14. 900.15. 二 .16.-2b.17.②③④.18.27.三、解答题19. (1)∵y是x的正比例函数,∴2k- 1=0,解得:,∴当时,y 是x 的正比例函数.(2)当函数图象经过第二、四象限时,解得:;当函数图象经过第二、三、四象限时,解得:∴当函数图象不经过第一象限时,k 的取值范围20.(1) ∵k=2>0,b=-3<0,所以直线y=2x-3 经过第一、三、四象限;故答案为:一、三、四.(2)∵直线y=mx+n 经过第一、二、三象限,∴m>0,n>0,(3)∵直线y=mx+n 不经过第一象限,∴直线y=mx+n 经过第二、三、四象限,∴m<0,n≤0.21 . (1)在y=3x+3 中,令y=0, 则x=- 1; 令x=0, 则y=3,所以,点A 的坐标为( -1,0),点B 的坐标为(0,3);(2)如图:22. (1)设直线的解析式为y=kx+b, 把A(1,1),B(3,-3) 代入,可得:解得:,所以直线解析式为:y=-2x+3,把C(-2,m) 代入y=-2x+3 中,得: m=7;( 2 ) 令x=0, 则y=3,所以直线与y 轴的交点坐标为(0,3),由 ( 1)得点C 的坐标为(-2,7),所以△OCD的面23. (1)∵y-2 与x 成正比例,∴设y-2=kx(k≠0),∵当x=2 时,y=6,∴6-2=2k,解得k=2,∴y-2=2x,函数关系式为:y=2x+2;( 2)当x=0 时,y=2,当y=0 时,2x+2=0, 解得x=- 1,所以,函数图象经过点B(0,2),A(-1,0),函数图象如图:( 3)∵点C 在x轴上,若S △w=3,∴AC=3,由图象得:C(-4,0) 或 ( 2,0).24 . (1)∵函数y=-|kx-2|+b 的图象经过点(0,1)和点(2,3),*解∴函数的表达式为y=- |x-2 |+3;(2)列表:描点、连线画出函数图象如图:函数的一条性质:函数有最大值3.故答案为函数有最大值3.(3)把点(2,3)代入y=mx+4 得,3=2m+4,解得事由图象可知,关于x 的方程- |kx-2|+b=mx+4 有实数解,则m的取值范围是m> 1,故答案为或m>1.。

初三数学函数与图像练习题及答案

初三数学函数与图像练习题及答案

初三数学函数与图像练习题及答案一、选择题1. 下列函数中,是奇函数的是()A. y = x^2 + 1B. y = |x|C. y = x^3 + 2xD. y = sin(x)答案:B2. 函数y = 2x - 5在x = 3处的函数值为()A. -1B. 1C. -5D. 1答案:A3. 若函数的定义域为[-2, 2],则函数y = |x| + 1的值域为()A. [0, 3]B. [1, 2]C. [-1, 2]D. [1, 3]答案:D4. 数集S = {x | -3 ≤ x ≤ 3},则数集S的平均数为()A. 3B. 0C. -3D. 1答案:B二、填空题1. 设函数y = f(x),若f(-2) = 4,f(0) = 1,则f(x)的导数f'(x) =_______。

答案:-32. 若函数y = f(x)的图像关于x轴对称,则f(x)是一个_________函数。

答案:偶3. 函数y = ax^2 + bx + c的图像与x轴交于两个点,且这两个点的横坐标之和为-3,则a + b + c = _______。

答案:-3三、计算题1. 设函数y = f(x) = 2x^2 - 3x + 1,求f(-1)的值。

解:将x = -1代入函数y = 2x^2 - 3x + 1中,得到:f(-1) = 2(-1)^2 - 3(-1) + 1= 2 - (-3) + 1= 2 + 3 + 1= 6所以f(-1)的值为6。

2. 函数y = f(x)的图像经过点P(1, 3),且过点P的切线斜率为4,求函数f(x)的表达式。

解:由题意得,函数f(x)在点P(1, 3)处的导数为4,即f'(1) = 4。

设f'(x) = a,则有f'(1) = a = 4。

对f(x)进行求导,得到f'(x) = 4,则f(x) = 4x + b。

将点P(1, 3)代入函数f(x)中,得到:3 = 4(1) + b= 4 + b∴ b = 3 - 4 = -1所以函数f(x)的表达式为f(x) = 4x - 1。

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)

2024-2025学年北师大版数学八上 第四章 一次函数 单元试卷(含答案)
13.<5
14.−4
15.<
1
1
16.k=2或−2.
17. = 2 + 10 (−5 < < 0)
18.(1) = 20−2 (2)5 < < 10
19.(1) = 1.5 + 5(0 < < 15);
(2)当弹簧长度为23cm时,所挂物体的质量为 12kg.
20.(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买 10 张票时,两种优惠方案付款

时,y 随 x 的增大而增大.
14.已知正比例函数 = −2的图象经过点(2,),则 m 的值为
15.已知点(−2,1),(2,2)都在直线 = 2−3上,则1


2.(填“<”或“>”或“=”)
16.若直线 ykx2 与坐标轴围成的三角形的面积是 4,则 k 的值为
.
17.已知点(−4,0)及第二象限的动点(,),且− = 5.设的面积为,则关于的
10.已知一次函数 y=kx+b(k,b 为常数,k≠0)的图象经过一、三、四象限,则下列结论
正确的是(
A.kb>0
)
B.kb<0
C.k+b>0
D.k+b<0
二、填空题
11.一次函数 = 2 + 1与轴的交点坐标是
12.请写出一个当 > 1时,随的增大而减小的函数表达式:
13.已知一次函数 = (5−) + 2,当 m
B. = + 1
6.一次函数 = −2−1的图象大致是(
A.
C. = −−2

2020年华师大新版数学下册八年级《第17章 函数及其图象》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第17章 函数及其图象》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第17章函数及其图象》单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)2.已知点P(m,1)在第二象限,则点Q(﹣m,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.下列各图中反映了变量y是x的函数是()A.B.C.D.6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+1+n C.y=2n+n D.y=2n+n+1 7.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 8.下列函数中,y是x的正比例函数的是()A.y=2x﹣1B.y=C.y=2x2D.y=﹣2x+1 9.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.10.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x11.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.12.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)二.填空题(共8小题)13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为.14.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.15.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.16.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.17.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.18.若函数y=(k﹣1)x|k|是正比例函数,则k=.19.将x=代入反比例函数y=﹣中,所得的函数值记为y1,又将x=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,又将x=y2+1代入反比例函数y=﹣中,所得的函数值记为y3,…如此继续下去,则y2008=.20.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为.三.解答题(共8小题)21.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)22.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(,);B→C(,);C→(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.23.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.24.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.25.已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?26.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?27.有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值.x﹣2﹣﹣1﹣1234…y0﹣﹣1﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.28.已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.2020年华师大新版数学下册八年级《第17章函数及其图象》单元测试卷参考答案与试题解析一.选择题(共12小题)1.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.【解答】解:由题中y轴上的点P得知:P点的横坐标为0;∵点P到原点的距离为5,∴点P的纵坐标为±5,所以点P的坐标为(0,5)或(0,﹣5).故选:B.【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.2.已知点P(m,1)在第二象限,则点Q(﹣m,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标是负数判断出m<0,再根据各象限内点的坐标特征解答.【解答】解:∵点P(m,1)在第二象限,∴m<0,∴﹣m>0,∴点Q(﹣m,3)在第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)【分析】先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可.【解答】解:如图,“炮”位于点(﹣1,1).故选:B.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.【点评】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.5.下列各图中反映了变量y是x的函数是()A.B.C.D.【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+1+n C.y=2n+n D.y=2n+n+1【分析】根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,即可得到答案.【解答】解:根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,故选:C.【点评】本题考查了函数关系式和规律型:图形的变化类,正确找出规律,进行猜想归纳即可.7.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m﹣2≠0,n﹣1=1,可得答案.【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.【点评】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.8.下列函数中,y是x的正比例函数的是()A.y=2x﹣1B.y=C.y=2x2D.y=﹣2x+1【分析】根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【解答】解:根据正比例函数的定义可知选B.故选:B.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.9.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.10.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x【分析】根据反比例函数的定义回答即可.【解答】解:A、是反比例函数,故A符合题意;B、不是反比例函数,故B不符合题意;C、是一次函数,故C不符合题意;D、是正比例函数,故D不符合题意.故选:A.【点评】本题主要考查的是反比例函数的定义,掌握反比例函数的定义是解题的关键.11.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.【分析】首先利用待定系数法算出反比例函数k的值,再根据k的值确定反比例函数所在象限,根据k的值确定一次函数解析式,根据一次函数解析式确定一次函数图象所在象限,即可选出答案.【解答】解:∵反比例函数的图象经过点A(,﹣2),∴k=×(﹣2)=﹣1,∴反比例函数解析式为:y=﹣,∴图象过第二、四象限,∵k=﹣1,∴一次函数y=x﹣1,∴图象经过第一、三、四象限,联立两函数解析式可得:﹣=x﹣1,则x2﹣x+1=0,∵△=1﹣4<0,∴两函数图象无交点,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,以及一次函数与反比例函数图象的性质,关键是根据k的值正确确定函数图象所在象限.12.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.【点评】本题考查了反比例函数图象的对称性.关于原点对称的两点的横纵坐标互为相反数.二.填空题(共8小题)13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为(﹣4,3).【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限,且到x轴的距离为3,到y轴的距离为4,∴点P的横坐标为﹣4,纵坐标为3,∴点P的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).【点评】此题主要考查了点的坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.15.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.故答案是:温度、时间、时间、温度.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.16.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.17.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.18.若函数y=(k﹣1)x|k|是正比例函数,则k=﹣1.【分析】根据正比例函数的定义,可得k﹣1≠0,|k|=1,从而求出k值.【解答】解:∵根据正比例函数的定义,可得:k﹣1≠0,|k|=1,∴k=﹣1.故答案为:﹣1.【点评】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件,正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.19.将x=代入反比例函数y=﹣中,所得的函数值记为y1,又将x=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,又将x=y2+1代入反比例函数y=﹣中,所得的函数值记为y3,…如此继续下去,则y2008=﹣.【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2008=669×3…1,即可得到y2008=y1,继而得出答案.【解答】解:当x=时,y1=﹣;当x=﹣+1=﹣时,y2=2,当x=2+1=3时,y3=﹣,当x=﹣+1=时,y4=﹣;按照规律,y5=2,…,我们发现,y的值三个一循环20,8÷3=669…1,∴y2008=y1=﹣.故答案为:﹣.【点评】本题考查了反比例函数的定义,按照题目的叙述计算一下y的值,从中观察得到规律,是解决本题的关键.20.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为k1<k2<k3.【分析】本题考查反比例函数与的图象特点.【解答】解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=的图象距原点较远,故有:k1<k2<k3;综合可得:k1<k2<k3.故填k1<k2<k3.【点评】反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.且图象距原点越远,k的绝对值越大.三.解答题(共8小题)21.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)【分析】(1)根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标;(2)首先把四边形ABCD分割成规则图形,再求其面积和即可.【解答】解:(1)A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);=3×3+2××1×3+×2×4=16.(2)S四边形ABCD【点评】此题主要考查了点的坐标,以及求不规则图形的面积,关键是把不规则的图形正确的分割成规则图形.22.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→A(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.【分析】(1)根据标记的第一个数字表示左、右方向,第二个数字表示上、下方向依次写出即可;(2)根据运动路线列式计算即可得解;(3)在图中依次表示出各位置,然后确定出点E的位置即可.【解答】解:(1)A→C(+3,+4);B→C(+2,0);C→A(﹣3,﹣4);故答案为:+3,+4;+2,0;A;(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;根据题意得:|+1|+|+4|+|+2|+|0|+|+1|+|﹣2|=10m.(3)妮妮的位置E点如图所示.【点评】本题考查了坐标确定位置,读懂题目信息,理解标记的两个数的实际意义是解题的关键.23.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.【分析】根据总价=单价×数量,可得函数关系式.【解答】解:由题意得:y=2x,常量是2,变量是x、y,x是自变量,y是x的函数.【点评】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.24.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为2;②该函数的一条性质:该函数有最大值.【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.【解答】解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.25.已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案【解答】解:(1)根据一次函数的定义,得:2﹣|m|=1,解得:m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得:m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.【点评】此题主要考查了一次函数以及正比例函数的定义,正确把握次数与系数的关系是解题关键.26.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?【分析】(1)根据描点法,可得函数图象;(2)根据自变量与函数值的对应关系,可得答案;(3)根据勾股定理,可得答案;(4)根据三角形的面积公式,可得答案;(5)根据一次还是的性质即可求得.【解答】解:(1)如图:;(2)当y=0时,﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);当x=0时,y=﹣2,即B(0,﹣2);(3)由勾股定理得AB==;=×1×2=1;(4)S△AOB(5)由一次函数y=﹣2x﹣2的系数k=﹣2<0可知:y随着x的增大而减小.【点评】本题考查了一次函数图象和一次还是的性质,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.27.有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≥﹣2且x≠0;(2)下表是y与x的几组对应值.x﹣2﹣﹣1﹣1234…y0﹣﹣1﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:当﹣2≤x<0或x>0时,y随x增大而减小.【分析】(1)根据被开方数非负以及分母不为0即可得出关于x的一元一次不等式组,解之即可得出结论;(2)将x=2代入函数解析式中求出m值即可;(3)连点成线即可画出函数图象;(4)观察函数图象,根据函数图象可寻找到函数具有单调性.【解答】解:(1)由题意得:,解得:x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.(2)当x=2时,m==1.(3)图象如图所示.(4)观察函数图象发现:当﹣2≤x<0或x>0时,y随x增大而减小.故答案为:当﹣2≤x<0或x>0时,y随x增大而减小.【点评】本题考查了函数自变量的取值范围以及函数图象,连点成曲线画出函数图象是解题的关键.28.已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.【分析】(1)把点A的坐标代入函数解析式,利用待定系数法求解即可;(2)根据反比例函数图象的性质得到:k﹣1<0,由此求得k的取值范围;(3)把点B、C的坐标代入函数解析式进行一一验证.【解答】解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.【点评】本题考查了反比例函数的性质,待定系数法求反比例函数解析式.注意:反比例函数的增减性只指在同一象限内.。

2020中考数学 函数及其图象综合训练(含答案)

2020中考数学 函数及其图象综合训练(含答案)

2020中考数学函数及其图象综合训练(含答案)一、选择题(本大题共6道小题)1. 已知A,B两地相距3千米,小黄从A地到B地,平均速度为4千米/时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x-3x≥34C.y=3-4x(x≥0)D.y=3-4x0≤x≤342. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大3. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()4. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限5. 已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是() A.a<2 B.a>-1 C.-1<a≤2D.-1≤a<26. 已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<-1<2<x2B.-1<x1<2<x2C.-1<x1<x2<2D.x1<-1<x2<2二、填空题(本大题共6道小题)7. 若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).8. 如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=.9. 如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.10. 已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.11. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.12. 已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…-1 0 1 2 3 …y… 3 0 -1 0 m…(1)观察上表可求得m的值为;(2)这个二次函数的解析式为;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,则n的取值范围为.三、解答题(本大题共5道小题)13. 点P(1,a)在反比例函数y=kx的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.14. 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元) …190 200 210 220 …y(间) …65 60 55 50 …(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?15. 如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,的图象经过点B和D,顶点C的纵坐标是-4,▱ABCD的面积是24.反比例函数y=kx求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.16. 如图,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D,C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.17. 如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A,B两点,其中点A的坐标为(-1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP∶S△BOP=1∶2,求点P的坐标.2020中考数学函数及其图象综合训练-答案一、选择题(本大题共6道小题)1. 【答案】D2. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.3. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.4. 【答案】D [解析]m 2是非负数,m 2+1一定是正数,所以点P (-3,m 2+1)在第二象限.关于原点对称的两个点横、纵坐标都互为相反数.由此得点P 关于原点的对称点在第四象限.5. 【答案】D[解析]y=(x -a -1)(x -a +1)-3a +7=x 2-2ax +a 2-3a +6,∵抛物线与x 轴没有公共点,∴Δ=(-2a )2-4(a 2-3a +6)<0,解得a<2. ∵抛物线的对称轴为直线x=--2a 2=a ,抛物线开口向上,而当x<-1时,y 随x 的增大而减小,∴a ≥-1,∴实数a 的取值范围是-1≤a<2.故选D .6. 【答案】A[解析]关于x 的一元二次方程(x +1)(x -2)-m=0的解为x 1,x 2,可以看作二次函数m=(x +1)(x -2)的图象与x 轴交点的横坐标,∵二次函数m=(x +1)(x -2)的图象与x 轴交点坐标为(-1,0),(2,0),如图: 当m>0时,就是抛物线位于x 轴上方的部分,此时x<-1,或x>2. 又∵x 1<x 2, ∴x 1<-1,x 2>2, ∴x 1<-1<2<x 2, 故选A .二、填空题(本大题共6道小题) 7. 【答案】<8. 【答案】2[解析]考查一元一次方程与一次函数的关系,即关于x 的方程ax +b=0的解就是一次函数y=ax +b 的图象与x 轴交点(2,0)的横坐标2.9. 【答案】x>3[解析]当x=3时,13x=13×3=1,∴点A 在一次函数y=13x 的图象上,且一次函数y=13x 的图象经过第一、三象限,∴当x>3时,一次函数y=13x 的图象在y=kx +b 的图象上方,即kx +b<13x.10. 【答案】74[解析]∵抛物线y=ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点, ∴m+n 2=-4a2a =-2.∵线段AB 的长不大于4,∴4a +1≥3,∴a ≥12,∴a 2+a +1的最小值为:122+12+1=74. 11. 【答案】8 [解析]由{y =x ,y =4x,得{x =2,y =2或{x =-2,y =-2,, ∴A 的坐标为(2,2),C 的坐标为(-2,-2).∵AD ⊥x 轴于点D ,CB ⊥x 轴于点B ,∴B (-2,0),D (2,0),∴BD=4,AD=2, ∴四边形ABCD 的面积=12AD ·BD ×2=8.12. 【答案】解:(1)3[解析]观察表格,根据抛物线的对称性可得x=3和x=-1时的函数值相等,∴m 的值为3,故答案为:3.(2)y=(x -1)2-1 [解析]由表格可得,二次函数y=ax 2+bx +c 图象的顶点坐标是(1,-1),∴y=a (x -1)2-1.又当x=0时,y=0,∴a=1,∴这个二次函数的解析式为y=(x -1)2-1.(3)n>0 [解析]∵点A (n +2,y 1),B (n ,y 2)在该抛物线上,且y 1>y 2,∴结合二次函数的图象和性质可知n>0.三、解答题(本大题共5道小题)13. 【答案】解:点P(1,a )关于y 轴的对称点是(-1,a ). ∵点(-1,a )在一次函数y =2x +4的图象上, ∴a =2×(-1)+4=2.∵点P(1,2)在反比例函数y =kx 的图象上,∴k =2.∴反比例函数的解析式为y =2x .14. 【答案】解:(1)如图所示.(2)设y=kx +b (k ≠0),把(200,60)和(220,50)代入, 得{200k +b =60,220k +b =50,解得{k =-12,b =160.∴y=-12x +160(170≤x ≤240).(3)w=x ·y=x ·-12x +160=-12x 2+160x.∴函数w=-12x 2+160x 图象的对称轴为直线x=-1602×(-12)=160,∵-12<0,∴在170≤x ≤240范围内,w 随x 的增大而减小. 故当x=170时,w 有最大值,最大值为12750元.15. 【答案】解:(1)∵AD ∥x 轴,AD ∥BC ,∴BC ∥x 轴. ∵顶点A 的坐标是(0,2),顶点C 的纵坐标是-4, ∴AE=6,又∵▱ABCD 的面积是24, ∴AD=BC=4, 则D (4,2), ∴k=4×2=8,∴反比例函数的表达式为y=8x . (2)由题意知B 的纵坐标为-4, ∴其横坐标为-2,则B (-2,-4). 设AB 所在直线的表达式为y=k'x +b , 将A (0,2),B (-2,-4)的坐标代入, 得:{b =2,-2k '+b =-4,解得:{k '=3,b =2,所以AB 所在直线的函数表达式为y=3x +2.16. 【答案】解:(1)因为OB=4,且点B 在y 轴正半轴上, 所以点B 的坐标为(0,4).设直线AB 的函数关系式为y=kx +b , 将点A (-2,0),B (0,4)的坐标分别代入, 得{b =4,-2k +b =0,解得{b =4,k =2,所以直线AB 的函数关系式为y=2x +4. (2)设OB=m ,因为△ABD 的面积是5,所以12AD ·OB=5.所以12(m +2)m=5,即m 2+2m -10=0. 解得m=-1+√11或-1-√11(舍去). 因为∠BOD=90°,所以点B 的运动路径长为14×2π×(-1+√11)=-1+√112π.17. 【答案】解:(1)x<-1或0<x<4.(2)把A (-1,4)的坐标代入y=k2x ,得k 2=-4.∴y=-4x .∵点B (4,n )在反比例函数y=-4x 的图象上,∴n=-1.∴B (4,-1).把A (-1,4),B (4,-1)的坐标代入y=k 1x +b , 得{-k 1+b =4,4k 1+b =-1,解得{k 1=-1,b =3.∴y=-x +3.(3)设直线AB 与y 轴交于点C , ∵点C 在直线y=-x +3上,∴C (0,3). S △AOB =12OC ·(|x A |+|x B |)=12×3×(1+4)=7.5, 又∵S △AOP ∶S △BOP =1∶2, ∴S △AOP =13×7.5=2.5,S △BOP =5. 又S △AOC =12×3×1=1.5,1.5<2.5, ∴点P 在第一象限.∴S △COP =2.5-1.5=1. 又OC=3,∴12×3×x P =1,解得x P =23. 把x P =23代入y=-x +3,得y P =73. ∴P23,73.。

初一数学函数及其图像试题答案及解析

初一数学函数及其图像试题答案及解析

初一数学函数及其图像试题答案及解析1.小明一出校门先加速行驶,然后匀速行驶一段后,在距离家门不远的地方开始减速,到最后停下. 这一过程中,小明行驶的速度与时间的关系可以近似地刻画为A. B. C. D.【答案】C【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0.故选C2.在平面直角系中,已知直线与坐标轴交于A、B (0,-5)两点,且直线与坐标轴围成的图形面积为 10,则点A的坐标为.【答案】【解析】设点A坐标为(x,0),所以,所以,所以,所以点A的坐标为.【考点】点的坐标.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的图象,那么符合小明行驶情况的大致图象是()【答案】C.【解析】此题是分段函数,图像分3部分,故排除A,修自行车这段平行x轴,故排除B,D.所以选C.【考点】一次函数的实际应用.4.梯形的上底长为8,下底长为x,高是6,那么梯形面积y与下底长x之间的关系式是.【答案】y=3x+24.【解析】根据梯形的面积公式即可得梯形面积y与下底长x之间的关系式是y=(x+8)×6=3x+24.【考点】函数关系式.5.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场每次购物累计超过100元后,超出100的部分按折收费;在乙商场每次购物累计超过50元后,超过50元的部分按95%收费,若王老师有次到甲商场购物150元,实际支付145元.(1)求的值;(2)请你分析顾客到哪家商场购物更合算?【答案】(1)9;(2)参见解析.【解析】(1)由题意可知在甲商场每次购物累计超过100元后,超出100的部分按a折收费,王老师到甲商场购物150元,有100元不打折,50元打折,实际支付145元.也就说50元实际花了45元,于是得到方程(150-100)×=145-100,求出a值;(2)因为乙商场超过50元开始打折,甲超过100元开始打折,所以分几种情况讨论:当每次购物累计不超过50元时,都不打折,到两商场购物花费一样;每次购物累计超过50元而不超过100元时,甲不打折,乙打折,当然到乙商场购物花费少;当每次购物累计超过100元时,设购物x(x>100)元,列代数式,到甲商场购物需付:100+0.9(x﹣100)元,到乙商场购物需付:50+ 0.95(x﹣50)元,建立一元一次方程和一元一次不等式求解.试题解析:(1)到甲商场购物150元,打折的是(150-100)元部分,于是得到:(150-100)×=145-100,解得:a=9;(2)分几种情况讨论:当每次购物累计不超过50元时,到两商场购物花费一样.当每次购物累计超过50元而不超过100元时,到乙商场购物花费少.当每次购物累计超过100元时,设购物x(x>100)元,则到甲商场购物需付:100+0.9(x﹣100)元,到乙商场购物需付:50+ 0.95(x﹣50)元,①若到两商场购物花费一样:列方程:100+ 0.9(x﹣100)=" 50+" 0.95(x﹣50),解得:x=150,所以当每次购物累计150元时,到两商场购物花费一样.②若到甲商场购物花费少:列不等式:100+ 0.9(x﹣100)< 50+ 0.95(x﹣50),解得:x>150,所以每次购物累计超过150元时,到甲商场购物合算.③若到乙商场购物花费少:列不等式: 100+ 0.9(x﹣100)>50+ 0.95(x﹣50),解得:x<150,所以每次购物累计超过100元且不到150元时,到乙商场购物合算.【考点】1.二元一次方程组的实际应用;2.运用一元一次方程与一元一次不等式解决实际问题.6.(10分)直线EF、GH之间有一个直角三角形ABC,其中∠BAC = 90°,∠ABC =.(1)如图1,点A在直线EF上,B、C在直线GH上,若∠=60°,∠FAC =30°.求证:EF∥GH;(2)将三角形ABC如图2放置,直线EF∥GH,点C 、B分别在直线EF、GH上,且BC平分∠ABH,直线CD平分∠FCA交直线GH于D.在取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化指出其变化范围.【答案】(1)参见解析;(2)不变,45°.【解析】(1)要想求得两条直线平行,我们先要确定题中的内错角相等,即证明∠EAB=∠ABC,由题知∠ABC=60º,∠FAC=30º,所以∠EAB=∠ABC=1800-∠BAC-∠FAC=180°-90°-30°=60º,所以EF∥GH.(2)过点A作AM平行EF和GH,本题利用平行线间的同旁内角互补,∠A=90º,求得∠FCA+∠ABH=270º,在利用已知条件中的两个角平分线,得到∠FCD+∠CBH=135º,再利用两直线平行,内错角相等,可知∠CBH=∠ECB,即∠FCD+∠ECB =135º,所以可以求得∠BCD的度数.试题解析:(1)先要确定题中的内错角相等,即证明∠EAB=∠ABC,∵∠EAB=1800-∠BAC-∠FAC,∠BAC = 90°,∠FAC =30°∴∠EAB=600,又∵∠ABC =600,∴∠EAB=∠ABC ,∴ EF∥GH;(2)经过点A作AM∥GH,又EF∥GH,∴AM∥EF∥GH,∴∠FCA+∠CAM=1800,∠MAB+∠ABH=1800,∠CBH=∠ECB ,又∵∠CAM+∠MAB=∠BAC = 90°,∴∠FCA+∠ABH=2700,又∵BC平分∠ABH,CD平分∠FCA,∴∠FCD+∠CBH=1350,又∠CBH=∠ECB,即∠FCD+∠ECB =1350,∴∠BCD=1800-(∠FCD+∠ECB) =180°-135°=450.【考点】1.平角定义;2.平行线性质与平行公理推论的应用.7.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【答案】C【解析】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.【考点】函数的图象8.为提供节约用水,某市按如下规定每月收取水费,若一户居民每月用水不超过20立方米,则每立方米按3元收费;若超过20立方米,前20立方米收费标准不变,超过部分每立方米按5元收费,若某户居民某月用水x立方米.(1)试用含x的代数式表示这户居民该月应缴的水费(分两种情况).(2)已知该市小李家1月份用水13立方米,2月份用水22立方米,3月份用水17立方米,求他家一季度应缴纳水费多少元?【答案】(1)当x≤20时,该月应缴的水费时3x元;当x>20时,该月应缴的水费时3×20+5(x-20)=(5x-40)元;(2)160元.【解析】(1)分别按照:水不超过20立方米,则每立方米按3元收费;超过20立方米,前20立方米收费标准不变,超过部分每立方米按5元收费两种方式列出代数式即可;(2)把不同数值代入(1)中的代数式求得答案即可.试题解析:(1)当x≤20时,该月应缴的水费时3x元;当x>20时,该月应缴的水费时3×20+5(x-20)=(5x-40)元;(2)当x=13,x=22,x=17时,3×13+5×22-40+3×17=160元答:他家一季度应缴纳水费160元.【考点】1.列代数式;2.代数式求值.9.(6分)某空调器销售商,今年四月份销出空调(a﹣1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.(1)用代数式表示该销售商今年第二季度共销售空调多少台?(2)若a=220,求第二季度销售的空调总数.【答案】(15a﹣15)台;3285台【解析】(1)四月份销出空调(a-1)台,五月份售出空调比四月份的2倍少1台,即为2(a-1)-1,六月份销售空调比前两个月的总和的4倍还多5台,即为4[(a-1)+(2a-3)]+5,根据题意把三个月的台数相加即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其图象
一、填空题(每题2分,共28分)
2.已知a是整数,点A(2a+1,2+a)在第二象限,则a =________.
3.点A(1,m)在函数y=2x的图象上,则点A关于x轴的对称点的坐标是_ __.
8.盛满10千克水的水箱,每小时流出0.5千克的水,写出水箱中的剩余水量y(千克)与时间t(时)之间的函数关系是_____________,自变量t的取值范围是___ _____.
9.写出如图所示的直线解析式_______________,回答当x___ ____时,y<0.
10. 无论m为何实数,直线y=x+m与y=-x+4的交
点不可能在第______象限.
11.已知函数y=mx+2x-2,要使函数值y随自变量x
的增大而增大,则m取值范围是____________.
12.已知直线y=2x+1,则它与y轴的交点坐标是
_________,若另一直线y=kx+b与已知直线y=2x+1关于y轴对称,则
k=___________,b=_________.
13.一次函数y=kx+b的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤
-2,则这个函数的解析式是___________.
14.如果一次函数y=(k-1)x+b-2的函数图象不经过第一象限,则k的范围是_________, b的
范围是_________.
二、选择题(每题3分,共24分)
18.一次函数y=3x-k的图象不经过第二象限,则k的取值范围( ).
(A))k<0 (B)k>0 (C)k≥0 (D)k≤0
则y1、y2、y3的大小关系是( ).
(A)y2< y3< y1 (B) y1< y2< y3 (C) y3< y1< y2 (D) y3< y2< y1
16. 若函数y= m x+2x-2,要使函数值y随自变量x的增大而增大,则m的取值范围是
( ).
(A)m≥-2 (B)m>-2 (C) m≤-2 (D)m<-2
17.已知正比例函数y=(m-1) x的图象上两点A(x1, y1),B(x2, y2),当x1 < x2时,有y1>y2,
那么m的取值范围是( ).
(A)m<1 (B)m>1 (C)m <2 (D)m> 0
22.已知一次函数y=x+2与y=-2+ x,下面说法正确的是( ).
(A)两直线交于点(1,0) (B)两直线之间的距离为4个单位
(C)两直线与x轴的夹角都是30° (D)两条已知直线与直线y= x都平行
三、计算题(23小题6分,其他各小题7分,共48分)
23.已知直线y=-x+b过点(3,4).
(1)求b的值;(2)当x取何值时,y>0?
27.如图表示甲乙两船沿相同路线从A港出发到B港行驶过程中路程随时间变化的图象,根
据图象解答下列问题:
(1)请分别求出表示甲船和乙船行驶过程的函数解析式.
(2)问乙船出发多长时间赶上甲船?
28.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每
个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.
(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式.
(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式.
(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司?.
26.如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y= kx+b(k≠0)经过点C(1, 0),且把△AOB分成两部分.
(1)若△AOB被分成的两部分面积相等,求k和b的值;
(2)若△AOB被分成的两部分面积比为1:5,求k和b的值;
27.国家为了鼓励居民合理用电,采用分段计费的方法计算电费:每月用电不超过100千瓦·时,按每千瓦·时0.57元计费;每月用电超过100千瓦·时,其中100千瓦·时按原标准收费,超过部分按每千瓦·时0.50元计费.
(1)设月用电x千瓦·时,应交电费y元,当x≤100和x>100时,
分别写出y关于x的函数解析式;
(2)小红家第一季度缴纳电费情况如下:
问小红家第一季度共用电多少千瓦·时?。

相关文档
最新文档