往复运动偏心齿条-齿轮复合机构设计
齿轮机构
齿轮机构(Gears)是现代机械中应用最广泛的一种传动机构,与其它传动机构相比,齿轮机构的优点是:结构紧凑,工作可靠,效率高,寿命长,能保证恒定的传动比,适用的范围广。
齿轮机构可以分为定传动比齿轮机构和变传动比齿轮机构。
本章仅讨论定传动比的齿轮机构。
齿轮机构的类型很多,根据其传动轴线的相对位置,它可分为三类:1、平行轴齿轮机构(Gears with Parallel Axes)两齿轮的传动轴线平行,这是一种平面齿轮机构,如表5-1所示。
它可分为:外啮合齿轮机构(有直齿轮、斜齿轮和人字齿轮传动三类)内啮合齿轮机构(有直齿轮和斜齿轮传动两类)齿轮齿条机构(有直齿条和斜齿条传动两类)点击表中图形,观察各类齿轮传动的运动特点和齿形。
表5-1 平行轴齿轮机构2、相交轴齿轮机构(Gears with Intersecting Axes)两齿轮的传动轴线相交于一点,这是一种空间齿轮机构,如表5-2所示。
它有直齿圆锥齿轮传动、斜齿圆锥齿轮传动和曲线齿圆锥齿轮传动。
表5-2 相交轴齿轮机构ff3、交错轴齿轮机构(Gears with Skew Axes)两齿轮的传动轴线为空间任意交错位置,它也是空间齿轮机构,如表5-3所示。
表5-3 交错轴齿轮机构此外,还有实现变传动比运动的非圆齿轮机构(Non-circular Gear),如下图所示。
图5-2一、斜齿圆柱齿轮齿廓曲面的形成渐开线直齿齿廓曲面的生成原理如图5-33a 所示,发生面S在基圆柱上作纯滚动时,其上与基圆柱母线平行的直线KK所展成的渐开面即为直齿轮的齿面。
(a) (b) (c)图5-33斜齿轮的齿面形成原理如图5-34a所示,发生面S 沿基圆柱纯滚动时,其上一条与基圆柱母线呈βb角的直线KK所展成的渐开螺旋面就是斜齿轮的齿廓曲面。
(a) (b) (c)图5-34一对直齿轮啮合时,齿面的接触线与齿轮的轴线平行(图5-33b),而一对斜齿轮啮合时,齿面接触线是斜直线(图5-34b),接触线先由短变长,而后又由长变短,直至脱离啮合。
采用齿轮齿条棘轮机构的全自动装车切坯机[实用新型专利]
[19]中华人民共和国国家知识产权局[12]实用新型专利说明书[11]授权公告号CN 2562951Y[45]授权公告日2003年7月30日[21]ZL 专利号02268528.6[21]申请号02268528.6[22]申请日2002.07.29[73]专利权人李凯岭地址250061山东省济南市历下区经十路73号机械学院共同专利权人孙乃坤张月蓉[72]设计人李凯岭 孙乃坤 张月蓉 李庆岭 袁涛朱连富 [51]Int.CI 7B28B 11/14权利要求书 1 页 说明书 4 页 附图 7 页[54]实用新型名称采用齿轮齿条棘轮机构的全自动装车切坯机[57]摘要一种采用齿轮齿条和棘轮机构全自动装车切坯机,它主要是由机架台面、动力变速装置、偏心轮摆杆机构、齿轮齿条机构、摆动式齿轮箱、棘轮间歇传动机构、板簧涨紧挂丝切坯装置、制动装置、运坯车辆、车辆驱动机构、泥坯推头装置等构成。
本实用新型克服了其它切坯机生产效率低、结构复杂、浪费大量人力和物力的缺点,实现了制砖坯生产流程中的切坯装车工序内容,能同时完成切坯并自动装车,并具有机械结构简单、传动路线短、机构工作可靠性高、生产效率高、维护调整方便快捷、制造成本低的特点。
该实用新型能够在多种生产场合下工作,并且操作简单,使用方便,可减轻工人的劳动强度,提高生产效率。
02268528.6权 利 要 求 书第1/1页一、一种采用齿轮齿条和棘轮机构全自动装车切坯机,它主要是由主机架(10)、原动力变速装置(17)、偏心轮往复运动机构(11)、板簧挂丝切坯装置(5)、制动装置(19)、运坯车辆(1)、车辆驱动装置(13)、泥坯推头装置(6)、棘轮间歇传动机构(36)、滑台面板(33)、机架台面(20)等构成,其特征在于:(一)在离合器传动轴(35)上装有偏心轮(59)、偏心滑块(55)、车辆齿条摆杆(56)、 推头齿条摆杆(52)组成的偏心轮往复运动机构(11)。
(二)在工作台面上装有齿条推杆(60)、齿轮(51)、齿轮罩(45、48)、齿轮同步轴(47)、 推头(61)组成的泥坯推头装置(6);(三)在工作台前端装有板簧板(63)、手柄(65)、支架(68)、钢丝位置定位套(66)、钢 丝挂钩(64)等组成的板簧挂丝切坏装置(5);(四)通过导轨托架(72)导向支撑的车辆驱动装置(13)由棘轮(74)、棘爪(41)、 驱动链条(70)、涨紧轮(73)、支撑轮(69、78)、主动轮(76)、传动轴(75)等构成;(五)由齿条摆杆(52、56)、摆动式齿轮箱体(49)、支座(44)组成的摆动式齿轮箱(39)装置;(六)由原动机(28)、减速机(14)、被动带轮(25)、主动带轮(27)、传动皮带(26)组成的原动力变速装置(17);(七)在机架一侧装有制动装置(19),它由离合拨销(29)、制动拉杆(30)、操纵杆(7)、拉簧(23)、离合器(22)等组成。
齿轮齿条传动机构设计说明书
专业资料齿轮齿条传动机构的设计和计算1. 齿轮1,齿轮2与齿轮3基本参数的确定由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即,/5003s mm V =又()160d 333n V π=,取,25,25.3202131mm B B mm m Z Z =====,由此可得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 211212===n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+⨯=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+⨯=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径mmmz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=⨯===⨯===ββ齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===⨯===αα 法向齿厚为mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=⨯⎪⎭⎫⎝⎛⨯⨯+=⎪⎭⎫ ⎝⎛+===παπ端面齿厚为mm m x s s t t t t t t 94.632.3367.0cos 7.022tan 22s 2321=⨯⎪⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎭⎫⎝⎛+===βπαπ齿距 mm m p p 205.1025.314.3p 321=⨯====π 3. 齿轮材料的选择及校核齿轮选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上。
机械设计基础 第4章 齿轮机构
b. 模数的意义 ◆ 模数的量纲 mm m=
p ,确定模数 m 实际上就是确定周节 p ,也就是确
p
定齿厚和齿槽宽e。模数m越大,周节p越大,齿厚s和齿槽 宽e也越大。 模数越大,轮齿的抗弯强度越大。
c. 确定模数的依据 根据轮齿的抗弯 强度选择齿轮的 模数
一组齿数相同,模数不同的齿轮。
(3)分度圆压力角(齿形角)
p 0.5p 0.5p ha=m m c
上各点具有相同的
压力角,即为其齿 形角,它等于齿轮
F V
分度圆压力角。
b. 与齿顶线平行的任一直线上具有相同的齿距p= p m。
c. 与齿顶线平行且齿厚s等于齿槽宽e的直线称为分度线,
它是计算齿条尺寸的基准线。
三、参数间的关系
表5-5渐开线标准直齿圆柱齿轮几何尺寸公式表 名 称
式
齿根圆直径
周 节 齿 厚 基圆周节 中心距
df
p s pb a
P= p m s= p m/2
Pb= p m cosa
a=m(z1 ±z2)/2
注:上面符号用于外齿轮或外啮合传动,下面符号用于内齿轮或内啮合传动。
一对标准齿轮:
1 1 a ( d 2 d 1 ) m ( z 2 z1 ) 2 2 ①m、z决定了分度圆的大小,而齿轮的大小主要
取决于分度圆,因此m、z是决定齿轮大小的主要
参数 * ha , ②轮齿的尺寸与 m,
c*
有关与z无关
③至于齿形, rb r cos
mz cos ,与m,z, 2
有关
可见,m影响到齿轮的各部分尺寸, ∴又把这种以模数为基础进行尺寸计算的齿轮称m制齿轮。 欧美:径节制 P
章4 往复运动结构设计
第四章、往复、间歇运动机构设计
4.1概述 4.2往复运动机构 4.3间歇运动机构
4.1、概述
一、往复运动机构
往复运动从形式上有往复直线运动、往复摆动、往复曲线运动 和往名,实现往复运动的常用机构有凸轮机构、 曲柄滑块机构、曲柄摇杆机构等。
图4-30所示的外槽轮 是槽轮机构的最简单 和基本形式。
图4-31为内槽轮的 结构,其工作原理 与外槽轮相似。
外槽轮主要用于转速较高、间歇短及机构负荷比较重的场合。 内槽轮机构运动内冲击小、动力性能好,适于要求运转平稳的 场合。特殊槽轮主要用于对转、停时间比例有特殊要求及不等 速间歇转动等场合。
利用电磁原理也可实现 往复移动和摆动,在现 代电子产品特别是数字 控制产品中,使用电磁 原理的机构可实现精密 的运动控制,图4-1为 计算机硬盘结构,其寻 道机构的运动控制就是 利用电磁原理实现的。
往复曲线运动通常由连杆机构实现,主要用于有特殊执行动作 要求的连续循环工作机械,如缝纫机的缝纫引线动作、织布机 的编织动作等。
图4-44为一种 适合于加工、 组装等作业自 动机或生产线 的启动棘轮步 进传送机构。 其中,气缸通 过齿条、齿轮 驱动棘轮机构 间歇运动,棘 轮再场将运动 传给同轴链 轮,从而使固 于链条上的工 件存放架进行 间歇直线移动。
图4-45为另一种 常见于轻工、包 装自动生产线的 直线转位机构。 其中,气缸为驱 动源,棘轮4上有 摩擦止回装置, 链轮系统有尼龙 张紧滚轮。
齿轮设计
第十章 齿轮机构及其设计§10-1 齿轮机构的应用及分类 一、应用及优点齿轮是工业的象征。
99%的机器具有回转运动,其中齿轮占了很大一部分。
带轴的轮子是一大发明,它的出现使机械进入了高速时期,所以机械的发展史可以看作是利用回转运动的历史。
一般的机器中几乎所有的机构要求主动件是匀速转动,最大优点――连续高速目前没有更好的机构来代替它。
从现实来讲,用的最多的仍是齿轮机构。
深入到空中地面海底,以至家庭个人每个人都离不开。
齿轮机构是回转运动中速度最高,η最高。
优点:1 i=c 平稳工作 2 i 范围大3 速度高,功率传递范围大 4 效率η高5 结构紧凑,适于近距离传动 二、类型按传动比i ⎩⎨⎧==非圆齿轮机构圆形齿轮)(αf i ci按传递运动⎩⎨⎧相错轴空间齿轮--相交轴、平面齿轮--平行轴平面⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧人字齿轮斜齿圆柱齿轮、斜齿轮、重点直齿圆柱齿轮、直齿轮齿向齿轮齿条外啮内外啮外啮合啮合方式⎪⎪⎪⎩⎪⎪⎪⎨⎧︒︒9090双曲线回转体--相错,大传动比蜗杆蜗轮--相错螺旋齿轮--相错轴直齿、斜齿、曲齿圆维--相交轴空间§10-2齿轮的齿廓曲线――齿轮最重要的部分共轭齿廓――主从动轮能实现预定的传动比(2112/ωω=i ),则互相接触的齿廓称为共轭齿廓。
12j (或i 12)PO P O 1221==ωω齿廓啮合基本定律:互相啮合的一对齿轮在任何位置时的传动比都与其连心线21O O 被齿廓在接触点的公法线所分成的两段成反比。
啮合节点(节点)——P 定传动比——P点固定节圆——P在两轮上的轨迹(定传动比)节圆对滚——传动时特点,节圆处线速度v 相等。
节线——变传动比时P点轨迹(非圆)或齿轮、齿条传动,在齿条上是节线。
三.共轭齿廓的确定给定2112,,O O const i 及=轮1齿廓C1求共轭齿廓C2。
1.作图法(直观)由i 求出P点,作节圆j 1,j 2,在C1上任取一点k (1)过k 作C1之法线交j 1于P1 (2)把k 1转过φ1得啮合点k 。
往复运动偏心齿条-齿轮复合机构设计
第1章概述1.1 引言针对现有各种抽油机难以同时满足可靠性高和节能效果好两种要求的现状,开发了带有往复运动齿轮齿条复合机构的抽油机。
这种抽油机采用了往复运动齿轮齿条齿条复合机构,由小齿轮的单向旋转驱动长环形齿条上下运动,并带动滑块做上下往复运动,从而实现基本的抽油动作。
通过简单的结构和尺寸改变,能实现不同冲程和冲次,并可设计成重型抽油机。
这种抽油机具有节能效果好、可靠性高、运行平稳、维护方便等特点,具有较高的推广应用价值。
本往复运动偏心齿轮齿条运动机构的驱动与换向机构,包括电机、部分齿齿轮、齿条,电机通过传动机构和部分齿齿轮连接,在部分齿齿轮两侧分别设置有与部分齿齿轮啮合的齿条,两根齿条相对位置固定的连接在齿条架上,齿条架与导轨组成滑块结构。
通过部分齿齿轮分别和两侧的齿条啮合,带动齿条架在导轨上往复运动。
这种直线往复式运动的驱动与换向机构,通过部分齿齿轮分别与两边的齿条啮合,从而带动齿条架往复运动,在往复运动中,无需限位开关,电动机也无需换向,即以无换向停留达到运动机械全动程的等速往复运动,还具有动程范围大、速度均匀、传动精度高、震动小、结构简洁等特点。
1.2 往复运动偏心齿条-齿轮复合机构的认识复合运动偏心齿轮齿条机构在传动的过程中是相当稳定的,所以在相似的技术当中算是比较稳定的一种,它自身也拥有自身的特点。
一、齿轮传动的特点:齿轮传动是应用最为广泛的一种传动形式,与其它传动相比,具有传递的功率大、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定传动比;缺点是制造及安装精度要求高,成本高,不适于两轴中心距过大的传动。
其中,齿轮传动分类:1、按轴线相互位置:平面齿轮传动和空间齿轮传动。
平面齿轮传动:按轮齿方向:直齿轮传动,斜齿轮传动和人字齿轮传动;按啮合方式:外啮合、内啮合和齿轮齿条传动;空间齿轮传动:锥齿轮传动、交错轴斜齿轮传动和蜗杆蜗轮传动。
2、按齿轮是否封闭:开式和闭式齿轮传动。
实验三机构组合创新实验指导书
机构运动创新设计实验一、 实验目的:1、培养学生对机械系统运动方案的整体认识,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。
2、通过机构的拼接,在培养工程实践动手能力的同时,可以发现一些基本机构及机械设计中的典型问题,通过解决问题,可以对运动方案设计中的一些基本知识点融会贯通,对机构系统的运动特性有一个更全面的理解。
3、加深学生对平面机构的组成原理、结构组成的认识,了解平面机构组成及运动特性,进一步掌握机构运动方案构型的各种创新设计方法。
二、实验设备及工具:1、创新组合模型一套,包括组成机构的各种运动副、构件、动力源及一套实验工具。
设备名称:ZBS-C 机构运动创新设计方案实验台,实验台组件清单如下:序号 名称示意图规格数 量备注1 齿 轮M=2,α=20° Z=28、35、42、56 各3共12 D=56㎜;70㎜; 84㎜;112㎜ 2 凸轮基圆半径R=20㎜升回型; 行程30㎜ 33 齿条M=2 α=20°34槽轮4槽15拨盘双销,销回转半径R=49.5㎜ 1 6主动轴15㎜ 30㎜ 45㎜60㎜ 75㎜ 4 4 3 2 2序号名 称 示意图 规 格 数 量 备 注7 从动轴(形成回转副)15㎜ 30㎜ 45㎜60㎜ 75㎜8 6 6 4 4L= L=8 从动轴(形成移动副)15㎜ 30㎜ 45㎜60㎜ 75㎜8 6 6 4 49转动副轴(或滑块)L=5㎜3210复合铰链Ⅰ(或滑块)L=20㎜811复合铰链Ⅱ(或滑块)L=20㎜812 主动滑块插件40㎜55㎜1113 主动滑块座114 活动铰链座Ⅰ螺孔M816可在杆件任意位置形成转-移副15活动铰链座Ⅱ螺孔M516可在杆件任意位置形成移动副或转动副 16 滑块导向杆(或连杆)L=330㎜417 连杆Ⅰ100㎜ 110㎜ 150㎜160㎜ 240㎜ 300㎜ 12 12 8 8 8 8 序号名 称 示意图 规 格数 量备 注 18 连杆ⅡL 1=22㎜ L 2=138㎜819 压紧螺栓M564L= L= L=20 带垫片螺栓M54821 层面限位套4㎜ 7㎜ 10㎜ 15㎜30㎜ 45㎜ 60㎜ 6 6 20 40 20 20 1022紧固垫片(限制轴回转)厚2㎜孔¢16,外径¢222023 高副锁紧弹簧324 齿条护板625 T 型螺母20用于电机座和行程开关座的固定 26 行程开关碰块127 皮带轮628 张紧轮329 张紧轮支承杆330 张紧轮销轴3序号名 称 示意图规 格数 量备 注31 螺栓ⅠM10×15632 螺栓ⅡM10×206L=33 螺栓ⅢM8×15 1634 直线电机10㎜/s 1 带电机座及安装螺栓/螺母35 旋转电机10r/min 3 带电机座及安装螺栓/螺母36 实验台机架机架内可移动立柱5根,每根立柱上可移动滑块3块。
齿轮机构及其设计
5.齿轮与齿条啮合传动
特点 啮合线切于齿轮基圆并垂直于齿条齿廓 标准安装或非标准安装 d = d =
分度圆、节圆、压力角、啮合角
分度圆与节线相切
连续传动条件
重合度 分析:1) =1 表示在啮合过程中,始终只有一对齿工作; 1 2 表示在啮合过程中,有时是一对齿啮合, 有时是两对齿同时啮合。 重合度传动平稳性承载能力。
21 25
26 34
35 54
55 134
135
每把刀的刀刃形状,按它加工范围的最少齿数齿轮的齿形来设计。
§6 渐开线齿廓的切制原理、根切和最少齿数
2.范成法
1
切削 (沿轮坯轴向) 进刀和让刀 (沿轮坯径向) 范成运动 (模拟齿轮啮合传动)
2
刀具与轮坯以i12=1/2=Z2 /Z1回转
3
用同一把刀具,通过调节i12 ,就可以加工相同模数、相同压力角 ,不同齿数的齿轮。
渐开线方程:{
rK = ———
rb
cosaK
inv aK = tg aK - aK .
aK
aK
qK
K
rK
rb
O
N
A
四、渐开线齿廓的啮合特点
1.啮合线为一直线
啮合线—
啮合点 (在固定平面上) 的轨迹线.
两齿廓所有接触点的公法线均重合, 传动时啮合点沿两基圆的内公切线移动。
3. 侧隙为零的中心距
无侧隙啮合条件:
S1' = e2' ; e1' = S2'
S1= e2 = e1= S2
标准齿轮: S = e = m/2
▲当两标准齿轮按分度圆相切来安装, 则满足传动条件。 正确安装
机械原理课程设计设计说明书
HUNAN UNIVERSITY 课程设计报告课程设计题目:螺母自动安装机课程设计时间:2012.6.25-2012.6.29 组长:组员:专业班级:指导老师:学院名称:螺母自动安装机说明书人们在长期的生产实践和社会生活中,为了节省劳动,提高效率,不断改进所使用的工具从而创造和发明了机械和机械科学。
然而在当今社会,使用机器进行生产的水平已成为衡量一个国家生产技术水平和现代化程度的标志之一,其中机械原理的设计扮演着很重要的角色。
机械原理课程设计是我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的.这是我们在进行工作之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们二年的大学生活中占有重要的地位。
它使我对所学知识进行一次比较系统地复习,使理论水平得以提高,培养了分析技能和解决实际问题的能力。
通过机械原理课程设计,我学会了搜集和整理资料,使我熟悉了有关国家的标准,锻炼了设计计算、数据处理、CAD绘制、技术文件编写等综合工作能力及实际操作技能。
另外,使我初步掌握从事生产实践的步骤和方法,培养了正确和科学的设计思想,严谨的科学态度和实事求是的工作作风。
就我个人而言,我希望能通过这次课程设计,了解并认识一般机器零件的生产工艺过程,巩固和加深已学过的技术基础课和专业课的知识,理论联系实际,对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后的工作打下一个良好的基础,并且为后续课程的学习大好基础。
总之,通过这次课程设计,对自己今后将从事的工作,进行训练,锻炼了自己分析问题、解决问题的能力,为我今后学习和工作打下一个坚实而良好的基础。
由于能力所限,设计尚有许多不足之处,恳请老师给予指导!工作计划安排:学时安排为1周。
同组设计者及分工:本设计组由4人组成,协作完成设计任务小组先一起制定各个运动机构的执行方案,然后每人负责一个运动机构的具体参数的制定,最后一起对其进行协调配合,形成最终的螺母自动安装机。
齿轮齿条传动机构设计说明书
专业资料齿轮齿条传动机构的设计和计算1. 齿轮1,齿轮2与齿轮3基本参数的确定由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即,/5003s mm V =又()160d 333n V π=,取,25,25.3202131mm B B mm m Z Z =====,由此可得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 211212===n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+⨯=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+⨯=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径mmmz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=⨯===⨯===ββ齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===⨯===αα 法向齿厚为mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=⨯⎪⎭⎫⎝⎛⨯⨯+=⎪⎭⎫ ⎝⎛+===παπ端面齿厚为mm m x s s t t t t t t 94.632.3367.0cos 7.022tan 22s 2321=⨯⎪⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎭⎫⎝⎛+===βπαπ齿距 mm m p p 205.1025.314.3p 321=⨯====π 3. 齿轮材料的选择及校核齿轮选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上。
机械原理课程设计任务书模板
平台印刷机主传动系统一.平台印刷机的功能及设计要求[1]1.1机器的功能要求及工作原理(1)总功能要求实现将往复直线运动的铅版上凸出的痕迹借助于油墨压引导作圆周运动的滚筒表面的纸上,从而实现在平台上的印刷功能,与其一并存在的机构还有送纸机构与切纸机构,主传动系统为版台往复运动与滚筒的圆周运动。
(2)工作原理及工艺动作分解平台印刷机的工作原理及工艺动作分解如图1-1所示。
机器由一台电动机驱动。
运动有点动机经过减速装置i后分成两路,一路经传动机构1带动版台作往复直线移动,另一路经传动机构2带动滚筒作回转运动。
当版台与滚筒接触时,在纸张上压出字迹或图形。
图1-1 机构运动简图1.2机器的原始数据及设计要求(1)选择合适的机构方案实现平台印刷机的主运动:版台作往复直线运动,滚筒作连续或间歇运动。
(2)为了保证印刷质量,要求在压印过程中,滚筒于版台之间无相对滑动,即在压印区段,滚筒表面点的线速度与版台移动速度相等。
(3)为了保证整个印刷幅面上的印痕浓淡一致,要求版台在压印区内的速度变化限制在一定的范围内(应尽可能小)。
(4)设计参数为:印刷生产率2000张/h,版台行程长度730mm,压印区段长度440mm,滚筒直径232mm,电动机功率1.5kw,转速为940r/min。
(5)要求机构传动性能良好,结构紧凑,制造方便。
二.机构运动循环图的确定[2][3]根据工艺动作顺序和协调要求拟定机构的运动循环图。
对于平台印刷机的主传动系统,主要是版台的往复直线运动与滚筒的间歇圆周运动,其中为了将版台与滚筒分开,还有一个分离装置,因此运动循环图为次三个机构的运动先后顺序与协调配合。
如图1-1所示,以版台在最左边为起点,来回往复为一个周期,分为360度为横坐标,各构件的位移为纵坐标,绘制出机构的运动循环图。
图2-1。
图2-1 机构运动循环图上图为平台印刷机主传动系统的运动循环图,此图中版台作往复直线运动,印刷时速度较慢,且具有急回特性,滚筒在版台推程时转动,回程时停止转动,分离机构在版台推程结束时开始运动,三种机构相互协调完成整个主传动系统的工作三.课程设计的方案及方案的选择3.1平台印刷机版台运动机构方案设计平台印刷机的版台运动机构是作往复的直线运动。
章4 往复运动结构设计
将凸轮机构从动构件 解除导向限制,自由 端用活动铰链连接固 定,从动件可实现往 复摆动,如图4-8所示。
图4-9所示的凸轮 机构属于一类特殊 的凸轮机构,称为 圆柱分度凸轮机 构,其输出为间歇 转动,运动准确、 可靠,可实现高速 、精确分度定位。
利用凸轮机构可由简单的转动、移动获得复杂的往复移动、往 复摆动和间歇运动,从动构件的运动规律取决于凸轮曲线形式。 凸轮的应用很广,以下列举几个实例。
图4-12为自动 车床刀架进给 的机械控制机 构。
图4-13为包装 机上纸盒折叠 成形机构应用 凸轮的例子。
图4-14、图415为另外两个 凸轮在机械设 备上的应用实 例。
二、连杆机构
往复运动的常用连杆机构主要有曲柄滑块机构、曲柄摇块机构 和曲柄摇杆机构,分别可实现往复直线运动和摆动。
如图4-16所示,曲柄滑块机构将来自曲柄1的连续转动转换为滑块3的直线往复运动。反过 来,若滑块3作为原动件,曲柄滑块机构可用于将直线移动转化为曲柄1的转动。
图4-37为一种采用槽 轮机构的重型回转台。 动力由驱动轴1经蜗杆 5同时传递给蜗轮2及 15,两蜗轮分别带动 驱动臂14与凸轮3,凸 轮3经过滚子4控制定 位锁栓6,当6脱开工 作台时,驱动臂带动 驱动销13使槽轮分度 经齿轮传动工作台转 位。
图4-38为录音磁带盒自动包装机中使用的内槽轮步进输送机构。动力传给曲柄5,带动内槽 轮4,经齿轮3使回转盘2作间歇回转。
专业资料第四章往复间歇运动机构设计41概述42往复运动机构43间歇运动机构专业资料41概述一往复运动机构往复运动从形式上有往复直线运动往复摆动往复曲线运动和ተ መጻሕፍቲ ባይዱ歇运动机构设计
4.1概述 4.2往复运动机构 4.3间歇运动机构
4.1、概述
连续转动到往复摆动的运动变换与实现机构
3连续转动到王复摆动的运动变换与实现机构及其的工作机构部分是往复摆动的例子也是比较多的。
实现连续转动到往复摆动的运动变换机构主要有曲柄摇杆机构、曲柄摇块机构、摆动从动件凸轮机构等。
图2-27为简图,对其进行机构设计后,可得到多种执行机构。
特别是图2-28所示鄂式破碎机是一个曲柄摇杆机构,运动由电动机传给带轮5,带动与带轮固联在一起的偏心轴2绕回转中心A旋转,偏心轴2带动鄂3运动。
由于在鄂3与机架1之间装有肘板4,从而使动鄂作复杂的摆动,不断挫挤矿石,完成碎矿工作。
鄂式破碎机是一个由机架1、主动件偏心轴2、从动件鄂3和肘板4组成的曲柄摇杆机构,当曲柄2为主动件时,曲柄2转一周,可使摇杆3往复摇动1次,即将原动机输出的来连续转动变成了工作机的往复摆动。
鄂式破碎机简图如2-29所示。
4连续转动到往复直线移动的运动变换与实现机构有很多机器都是以电动机作动力源的,二电动机输出的运动形式是连续的转动,当执行机构要求作直线运动时,这就需要将转动变成直线运动。
如图2-30所示,实现连续转动到往复直线移动的运动变换机构有曲柄滑块机构、正弦机构、凸轮机构、代或链传动机构、齿轮条传动机构、螺旋传动机构以及一些机构的组合。
(1)螺旋传动机构如图2-30g所示螺旋传动由螺杆和螺母组成,螺杆置于螺母中。
当转动螺杆时,螺杆上的螺旋沿着螺母的螺旋槽运动,从而将旋转运动变换为直线运动,同时传递运动及动力。
螺旋传动按其用途可分为三类:1)传力螺旋。
传力螺旋以传递动力为主,通常的紧固螺钉、螺母属于这一种。
它要求用较小的转矩螺旋(或螺母),从而使螺母(或螺旋)产生轴向运动和较大的轴向力,这个轴向力可以把两个物体牢固地连接在一起,也可以用来做各种施力的工作,如图2-31所示的千斤顶和压力机都是传力螺旋。
2)传导螺旋。
传导螺旋以传递运动为主,要求具有较高的运动精度,如机床刀架或工作台的进给机构。
3)调整螺旋。
调整螺旋用以调整移动构件和固定零部件间的相对位置,如车床尾座螺旋、螺旋测微器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章概述1.1 引言针对现有各种抽油机难以同时满足可靠性高和节能效果好两种要求的现状,开发了带有往复运动齿轮齿条复合机构的抽油机。
这种抽油机采用了往复运动齿轮齿条齿条复合机构,由小齿轮的单向旋转驱动长环形齿条上下运动,并带动滑块做上下往复运动,从而实现基本的抽油动作。
通过简单的结构和尺寸改变,能实现不同冲程和冲次,并可设计成重型抽油机。
这种抽油机具有节能效果好、可靠性高、运行平稳、维护方便等特点,具有较高的推广应用价值。
本往复运动偏心齿轮齿条运动机构的驱动与换向机构,包括电机、部分齿齿轮、齿条,电机通过传动机构和部分齿齿轮连接,在部分齿齿轮两侧分别设置有与部分齿齿轮啮合的齿条,两根齿条相对位置固定的连接在齿条架上,齿条架与导轨组成滑块结构。
通过部分齿齿轮分别和两侧的齿条啮合,带动齿条架在导轨上往复运动。
这种直线往复式运动的驱动与换向机构,通过部分齿齿轮分别与两边的齿条啮合,从而带动齿条架往复运动,在往复运动中,无需限位开关,电动机也无需换向,即以无换向停留达到运动机械全动程的等速往复运动,还具有动程范围大、速度均匀、传动精度高、震动小、结构简洁等特点。
1.2 往复运动偏心齿条-齿轮复合机构的认识复合运动偏心齿轮齿条机构在传动的过程中是相当稳定的,所以在相似的技术当中算是比较稳定的一种,它自身也拥有自身的特点。
一、齿轮传动的特点:齿轮传动是应用最为广泛的一种传动形式,与其它传动相比,具有传递的功率大、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定传动比;缺点是制造及安装精度要求高,成本高,不适于两轴中心距过大的传动。
其中,齿轮传动分类:1、按轴线相互位置:平面齿轮传动和空间齿轮传动。
平面齿轮传动:按轮齿方向:直齿轮传动,斜齿轮传动和人字齿轮传动;按啮合方式:外啮合、内啮合和齿轮齿条传动;空间齿轮传动:锥齿轮传动、交错轴斜齿轮传动和蜗杆蜗轮传动。
2、按齿轮是否封闭:开式和闭式齿轮传动。
1.3 往复运动偏心齿条-齿轮复合机构运用运用复合运动偏心齿轮齿条机构的抽油机是油田采油所用的抽油机技术领域中的抽油机,它以运用了复合运动偏心齿轮齿条机构和传统机构组合成,复合运动偏心齿轮齿条机构,可以节省能量为25-30%,节省成本为80%。
另外在海洋石油勘探开发中,自升式海洋平台是使用数量最多的平台。
自升式平台主要采用复合运动偏心齿轮齿条机构系统。
自升式平台齿轮齿条强度是我国自主研发自升式平台升降系统的关键技术之一。
复合运动偏心齿轮齿条机构在内燃机中也发挥了重要作用。
它可以延长往复的行程以此来提高内燃机的做功。
其好处是:1 降低了内燃机的转速,2 增大了缸体的空间,3 更多的空气可以进入缸体,4 燃油可以充分燃烧,5 排出的高温废气不存在压力,6 增大了缸体的散热面积,7 活塞的惯性力可以完全转换到动力轴上,8 材料的磨损和要求的强度都可以减少。
因本机构基本不做无用功发动机的怠速可以减少到现在的十分之一以下。
1.4 本章小节通过对复合运动偏心齿轮齿条机构的学习研究,我们明白了复合运动偏心齿轮齿条机构在工业生产中的重要地位。
比如在抽油机,内燃机,送料机及一些重型机械中都得到了广泛的应用。
复合运动偏心齿轮齿条机构在传动的过程中是相当稳定的,具有极高的可靠性。
在实际生产工作中,复合运动偏心齿轮齿条机构具有节能效果好、可靠性高、运行平稳、维护方便、速度均匀、传动精度高、震动小、结构简洁等特点,具有较高的推广应用价值。
所以,研究复合运动偏心齿轮齿条机构是油田生产中必不可少的项目。
在如今石油资源日渐减少的大背景下,对复合运动偏心齿轮齿条机构的研究及应用也是日渐重要,应该向节能化,高效化,环保化发展,在发展经济生产的同时,注意将环境保护与生产效益相得益彰。
虽然复合运动偏心齿轮齿条机构的稳定性还有待加强,但这定然不会是不可克服的。
另外,通过对复合运动偏心齿轮齿条机构的初步了解以及建立模型,我们懂得了创新设计的意义所在以及团队合作在生产工作中的重要性。
加强了我们的团队合作意识,对今后学习、工作生活具有深远意义。
第2章往复运动偏心齿条-齿轮复合机构设计2.1 机构设计2.1.1 机构设计过程设计过程是指从明确设计任务到编制技术文件所进行的整个设计工作流程。
2.1.2 机构设计过程的四个阶段(1) 产品规划——明确机械设计任务,提出设计任务书。
(2) 原理方案设计——确定功能原理和机械运动方案,画出机械运动简图。
(3) 技术方案设计。
(4) 评估,改进与决策。
2.1.3 机构及其系统运动方案设计(1)机构及其系统运动方案设计的主要内容功能原理方案设计:功能原理设计和工艺动作过程设计。
(2)运动规律设计(3)机构系统运动方案设计根据功能原理方案中提出的工艺动作过程及各工艺动作的运动规律要求,选择相应的若干执行机构的形式,按某种方式将其组合成一个机构系统,以确保上述工艺动作过程的实现。
机构选型、组合、创新——机构系统简图。
(4)机构系统运动简图设计机构系统简图——运动协调设计——机构运动循环图——尺度综合——机构系统运动简图2.1.4 机构选型的基本要求(1)满足工艺动作及其运动规律的要求。
高副机构、低副机构、注意约束在机构中的作用、适当设置调整环节。
(2)机构的运动链要短。
(3)机构的传力性能要好。
传动角(压力角)、防止自锁、惯性力平衡。
(4)动力源的选择应有利于简化机构和改善运动质量。
电机(交流电机、直流电机、伺服电机、步进电机、交流变频电机)、内燃机、液压马达、气动马达。
2.2往复运动偏心齿条-齿轮复合机构的结构设计结构示意简图结构组成——往复运动链轮-齿条复合机构由1主动齿轮、2从动齿轮、3连杆、4齿条、5、滚动轴承、6、齿轮组成。
工作原理——主动齿轮1通过联轴器、减速器与驱动电机相连,进行动力输入;主动齿轮1、从动齿轮2、输出齿轮3均为定轴,并一起相对固定的机架(未画出)转动;齿轮2上有一缓冲作用的孔,当从动齿轮2转动时,连杆3带动齿条4水平运动,此时齿条4便带动齿轮6运动,齿条的水平运动由轴承5支撑控制,由于齿轮2 、连杆3、齿条4与机架构成四杆机构,存在极位夹角,故齿条存在急回运动。
条件——输出齿轮6上的外扭矩为20kN.m;试确定各部件尺2.3本章小结通过了解机构设计的过程,首先确定设计的四个阶段:产品规划;原理方案设计;技术方案设计;评估,改进与决策。
认真分析设计的任务书,根据机械设计原理,根据任务书里的要求初步确定整个往复运动偏心齿条-齿轮复合机构的运动简图,但应该明确机构简图不代表现实机构的外形,应该考虑到选材以及将来工件的尺寸,再设计机构简图时要留有足够的余量,以防将来带来不必要的麻烦。
可见,在机构简图的设计是要考虑的问题有很多,考虑的越全面,我们的后期工作就会越顺利。
通过一天的机构设计,收获挺多,深刻明白了平时知识的积累有多么重要,同时也了解到很多相关的知识,我们初步的对我们将来从事设计工作需要做的事,相信在通过大三专业课的学习后,我们会有更进一步的认识,这次的创新设计也提高了我们对本专业的学习兴趣。
第3章传动计算3.1传动计算3.1.1输出齿轮扭矩T=20KN •m ,模数m=14,齿数Z=18,其分度圆直径D=252mm 齿条受水平方向的力F=T/(D/2)=158.73kN经计算得连杆在齿轮最上最下是与水平方向夹角分别为9.05°和49.21°。
则可以计算连杆(二力杆)最大力 F max =F ×cos9.05°=156.754kN最小力 F min =F ×cos49.21°=103.696kN在齿轮2上的两个极限位置上的水平分力分别为F 1=F max ×cos9.05°=154.802kNF 2=F min ×cos49.21°=67.743kN连杆与齿轮2连接处的直径为d=690mm ,故可以算出齿轮的最大扭 m kN d ⋅=⨯=40.532F T 1齿轮1(主动轮)与齿轮2传动比为19:62,则可知齿轮1的扭矩为16.37kN •m 。
根据查表得知齿轮间的传递效率为0.96。
最终算的通过减速器传给齿轮1的扭矩为17.76kN •m 。
由公式9550000×P=T •n 可得齿轮1的功率为P 1=24 kW齿轮2的功率为P 2=23.3kW,齿轮6的功率为P 3=8.4kW3.1.2齿条长度不得小于790mm,为了保证齿条在极限位置不与齿轮2接触发生碰撞,考虑齿轮2与齿轮6的水平距离,拟定齿条长1200mm ,齿条行程,拟定齿条行程为 790mm 。
3.1.3齿轮2与齿轮6水平距离1550mm 。
四杆机构中曲柄长345mm ,,连杆长1150mm (由作图得出尺寸),连杆设计为方形杆,材料为45号钢。
由 s AF σσ≤=得出方形杆的边长a=21mm 。
3.1.4根据输出齿轮1所需的功率选定电动机的型号。
电机选:200L 1型,功率30KW ,转速1000r/min,减速器减速比:1000/13=77,选择ZXY 型(低速级)。
3.2 本章小结根据上述的计算,确定相关数据后即可进行下一步的工作。
在这些计算的过程中,让我们对此机构的工作原理有了进一步的加深。
也加深了对课本知识的理解。
将理论知识与实践设计相结合,才能更好的理解设计理念。
第4章 主要零部件的分析与校核4.1 电机和减速器的选择及其主要参数电机的选择:根据主动齿轮1所需的功率24 kW选定电动机为Y2系列三相异步电机Y2-200L1-2型号减速器的选择:根据所需的减速比:1000/13=77 确定减速器的类型为ZSY型齿轮减速器其具体参数如下4.2 齿轮1和2的分析与校核齿轮1与齿轮2啮合,模数定为14,传动比i=3.25传递功率 P=24(kW)齿轮1转速 n1=13(r/min)齿轮2转速 n2=4.00(r/min)齿轮1齿数Z 1= 19齿轮1齿宽 B 1=145(mm)齿轮1齿宽系数 φd 1=0.545齿轮2齿数 Z 2=62齿轮2齿宽 B 2=130(mm)齿轮2齿宽系数 φd 2=0.1509标准中心距 A 0=567.00000(mm)实际齿数比 U=3.26316端面重合度 αε=1.66676纵向重合度 βε=0.00000总重合度 ε=1.66676齿轮1与齿轮2强度校核(选定材料均为34CrNiMo6) 齿轮1与齿轮2:齿轮1接触强度极限应力 1Hlim σ=1288.0(MPa) 齿轮1抗弯疲劳基本值 1FE σ=740.0(MPa)齿轮1接触疲劳强度许用值 [1H σ]=11479.6(MPa)齿轮1弯曲疲劳强度许用值 [1F σ]1766.2(MPa)齿轮2接触强度极限应力 2Hlim σ=1288.0(MPa)齿轮2抗弯疲劳基本值 2FE σ=740.0(MPa)齿轮2接触疲劳强度许用值 [2H σ]21479.6(MPa)接触强度用安全系数 S Hmin =1.00弯曲强度用安全系数 S Fmin =1.40接触强度计算应力H σ= 1468.3(MPa)接触疲劳强度校核 H σ≤[H σ]满足齿轮1弯曲疲劳强度计算应力 1F σ=556.7(MPa)齿轮2弯曲疲劳强度计算应力 2F σ=500.5(MPa)齿轮1弯曲疲劳强度校核 1F σ≤[1F σ] 满足齿轮2弯曲疲劳强度校核2F σ≤[2F σ]满足4.3 花键的分析与校核齿轮1:矩形花键连接(静连接)校核计算结果传递的转矩 T = 24000000 N ·mm键系列 R = 中系列花键参数 N ×d ×D ×B = 10×82×92×12 mm 倒角 c = 0.6 mm不均匀系数 ψ = 0.75键的长度 L = 145 mm使用和制造情况 PType = 良好齿面热处理 W = 齿面经热处理许用挤压应力范围 σpp = 120~200 MPa许用应力 [σp] = 160.0 MPa计算应力 σp = 133.509 MPa校核计算结果 σp ≤[σp] 满足齿轮2:矩形花键连接校核计算结传递的转矩 T = 54000000 N ·mm键系列 R = 中系列花键参数 N ×d ×D ×B = 10×112×125×18 mm 倒角 c = 0.6 mm不均匀系数 ψ = 0.75键的长度 L = 130 mm使用和制造情况 PType = 良好齿面热处理 W = 齿面经热处理许用挤压应力范围σpp = 120~200 MPa许用应力[σp] = 180 MPa计算应力σp = 176.370 MPa校核计算结果:σp≤[σp] 满足齿轮6:矩形花键连接校核计算结果传递的转矩 T = 20000000 N·mm键系列 R = 中系列花键参数 N×d×D×B = 10×82×92×12 mm倒角 c = 0.6 mm不均匀系数ψ = 0.75键的长度L = 120 mm使用和制造情况PType = 良好齿面热处理W = 齿面经热处理许用挤压应力范围σpp = 120~200 MPa许用应力[σp] = 160 MPa计算应力σp = 134.436 MPa校核计算结果σp≤[σp] 满足。