Twist Boundary Conditions of Quantum Spin Chains near the Gaussian Fixed Points

合集下载

量子力学索引英汉对照

量子力学索引英汉对照

21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。

Quantum Sails Ensign Tuning Guide

Quantum Sails Ensign Tuning Guide

Ensign Tuning GuideQuantum Sails has used our years of experience building and racing Ensign sails to develop a fast set of Class sails, geared for performance in all racing conditions. Together with the industry’s most rigorous quality standards of Cloth Selection, Cutting Accuracy, and Craftsmanship, we have created a unique combination of speed, quality, and long lasting performance sails.We hope this guide will help you take your Ensign campaign all the way to the Grand Prix level. We believe that a successful racing campaign is a combination of many elements. While one of the most dramatic improvements to any Ensign is a new suit of Quantum sails, we cannot over emphasize the importance of raising the level of all the other components of your campaign to that of your new Quantum sails.Before Your Boat Hits The WaterClean and sand your bottom to 600 finish, flattening any bumps. It is important to make sure to keep your bilge as dry as possible at all times, especially before the boat is put away for the offseason. There is a fiberglass shell surrounding the Lead Ballast of your keel. Water will seep into this area and contract and expand in the heat or freezing cold respectively, cracking the shell. Cracks in the outer shell are slow, creating drag. Large cracks are potentially dangerous and should be brought to the attention of a professional boat shop.The other major reason for meticulous water concern is that the boats are constructed with a large amount of Balsa wood. Although lightweight, Balsa absorbs water quickly like a sponge and will aid in rot, especially in the deck and cabinhouse. The RudderThe Ensign Rules state the Rudder Specifications thoroughly. Before glassing the rudder please consult your rule book. We prefer the fiberglass rudders over wood ones for better performance. Fiberglass is easier to fair to the rules and will not absorb water as easily.RiggingWe recommend your set up your headstay close to the Ensign Class maximum length (26’ 3 3/4”). The best All-Purpose length is 26’3”. This allows you to set up the rig with the proper rake and prebend required for Quantum Ensign sails. Refer to our Trim/Tuning Chart for specifics on the shroud tensions. (below)Mast ButtWhere the mast butt is located is at the heart of rig tuning. Because mast step locations vary from boat to boat, we do not have a concrete measurement of where your own butt should be located. What you want to look for is 1 ½ - 2” of prebend in the mast when the uppers and forward lower shrouds are tensioned properly (~40/40 units) with the rig centered and the backstay hooked up and reading 0-5 units of measure on the tuning gauge (using the gauge on the forestay). We usually recommend shimming your mast forward at the deck, if there is room to do so. If you have less than 2” of prebend, un-screw the shrouds and move the butt aft a little, or forward a little if the mast has too much bend. Re-tension the rig. This is an important step and if you are not confident with the pre-bend amount repeat these steps until you see this 2” of pre-bend. I usually just sight up the mast when looking for this.See Chart Included to help locate your Mast Butt in the proper position (last page).Upwind SailingGet the crew dialed into the trim/tuning chart. By changing gears in the varying conditions, big gains can be made. The sails are very versatile. In the lulls, move trim to the lower breeze settings in the main and genoa. In the puffs, trim the genoa and main for speed. If over-powered, ease the traveler down to flatten the boat and relieve weather helm.The Quantum Mainsail gives lots of kick for pointing. By bringing the top batten to parallel and then to windward a few degrees, the boat will point 3-6︒ higher. When the boat slows in speed, change from “point” back to “speed” mode by easing the mainsheet and bringing the traveler up, keeping the boom in centerline of the boat. This versatility in the main is very desirable for squeezing off competition behind you and not getting sucked in to competition in front of you.The mainsail needs the sheet to be eased hard to fall off at the weather mark and during “Ducking” other boats on the beat.Set up the genoa leads for the prevailing breeze and then play the sheet through the puffs and lulls. Have the crew sit forward and to leeward in light air. Then move them to the benches as the boat speeds up around 7 knots of wind and more. In lighter air the Genoa will be about 3” off the spreader and just touching the shr ouds at the foot. As the wind build the foot should be pulled in tighter on the foot and still about 2 - 3” off the spreader. You will want to move the genoa lead car aft as the wind builds and this will aid in twisting the genoa and de-powering.Downwind SailingTry to keep the top batten parallel to the boom by adjusting the vang. In reaching under genoa, allow the main to twist similar to the genoas Leech. Trim the Pole just aft of square to the apparent wind in light/medium and medium to heavy breezes. In light air square the pole to 90︒, in drifters try the pole just forward of square.The spinnaker should be flown with the clews relatively even to having the guy slightly higher by 2 - 3”. The chute performs best with a 4 - 6” curl in the wi ndward leech shoulder. When reaching hard try pulling the pole down more, this will pull the draft of the chute forward and aid in turning the symmetric spinnaker into more of an asymmetric.Heel the boat to weather when running dead downwind in a moderate breeze. In lighter wind heel the boat according to the helm feel – usually flat to slight leeward heel.Try to steer the boat with the crew weight instead of the rudder downwind. You want to minimize the water flow disturbance past the rudder, minimizing drag. Move the crew to weather to go down or fall off, and move the crew to leeward to come up. Crew weight is most effective moving around in the middle and forward of the companionway.OverallGood Luck and feel free to contact us with any questions and input. We realize that the boats can be setup quite differently, so we have endeavored to provide simple, general numbers for you to shoot for. Have a great season.Doug Burtner Randy Shore Allen Terhune Terry Flynn585-342-5200 401-849-7700 410-268-1161 281-474-4168 dburtner@... rshore@... aterhune@... tflynn@...…@ENSIGN Trim & Tuning Chart***NOTE- The stays are 5/32” diameter, and we use “Loos Gauge” 91-model A (not B)。

材料常用英语词汇

材料常用英语词汇

专业词汇列表晶体结构(structure of crystal)原子质量单位Atomic mass unit (amu)原子量Atomic weight键能Bonding energy共价键Covalent bond电子构型electronic configuration正电的Electropositive氢键Hydrogen bond同位素Isotope摩尔Mole泡利不相容原理Pauli exclusion principle原子atom分子量molecule weight量子数quantum number范德华键van der waals bond点群point group各向异性anisotropy体心立方结构body-centered cubic (BCC)布拉格定律bragg’s law晶体结构crystal structure晶体的crystalline中子衍射neutron diffraction晶界grain boundary鲍林规则Pauling’s rulesCsCl型结构Caesium Chloride structure纤锌矿型结构Wurtzite structure萤石型结构Fluorite structure尖晶石型结构Spinel-type structure岛状结构Island structure层状结构Layer structure滑石talc高岭石kaolinite长石feldspar各向同性的isotropic晶格lattice密勒指数miller indices多晶的polycrystalline原子数Atomic number波尔原子模型Bohr atomic model库仑力Coulombic force分子的构型molecular configuration负电的Electronegative基态Ground state离子键Ionic bond金属键Metallic bond分子Molecule元素周期表Periodic table极性分子Polar molecule价电子valence electron电子轨道electron orbitals对称要素symmetry elements原子堆积因数atomic packing factor(APF)面心立方结构face-centered cubic (FCC)配位数coordination number晶系crystal system衍射diffraction电子衍射electron diffraction六方密堆积hexagonal close-packed (HCP)NaCl型结构NaCl-type structure闪锌矿型结构Blende-type structure金红石型结构Rutile structure钙钛矿型结构Perovskite-type structure硅酸盐结构Structure of silicates链状结构Chain structure架状结构Framework structure叶蜡石pyrophyllite石英quartz美橄榄石forsterite各向异性的anisotropy晶格参数lattice parameters非结晶的noncrystalline多晶形polymorphism单晶single crystal电位electron states电子electrons金属键metallic bonding极性分子polar molecules衍射角diffraction angle粒度,晶粒大小grain size显微照相photomicrograph透射电子显微镜transmission electron microscope (TEM)四方的tetragonal配位数coordination number晶胞unit cell(化合)价valence共价键covalent bonding离子键Ionic bonding原子面密度atomic planar density合金alloy显微结构microstructure扫描电子显微镜scanning electron microscope (SEM) 重量百分数weight percent单斜的monoclinic晶体结构缺陷(defect of crystal structure) 缺陷defect, imperfection线缺陷line defect, dislocation体缺陷volume defect位错线dislocation line螺位错screw dislocation晶界grain boundaries小角度晶界tilt boundary,位错阵列dislocation array位错轴dislocation axis位错爬移dislocation climb位错滑移dislocation slip位错裂纹dislocation crack位错密度dislocation density间隙原子interstitial atom间隙位置interstitial sites弗伦克尔缺陷Frenkel disorder主晶相the host lattice缔合中心Associated Centers.电子空穴Electron Holes克罗各-明克符号Kroger Vink notation固溶体solid solution化合物compound置换固溶体substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体ordered solid solution固溶强化solid solution strengthening点缺陷point defect面缺陷interface defect位错排列dislocation arrangement刃位错edge dislocation混合位错mixed dislocation大角度晶界high-angle grain boundaries 孪晶界twin boundaries位错气团dislocation atmosphere位错胞dislocation cell位错聚结dislocation coalescence位错核心能量dislocation core energy位错阻尼dislocation damping原子错位substitution of a wrong atom晶格空位vacant lattice sites杂质impurities肖脱基缺陷Schottky disorder错位原子misplaced atoms自由电子Free Electrons伯格斯矢量Burgers中性原子neutral atom固溶度solid solubility间隙固溶体interstitial solid solution金属间化合物intermetallics转熔型固溶体peritectic solid solution无序固溶体disordered solid solution取代型固溶体Substitutional solid solutions过饱和固溶体supersaturated solid solution非化学计量化合物Nonstoichiometric compound 表面结构与性质(structure and property of surface)表面surface同相界面homophase boundary晶界grain boundary小角度晶界low angle grain boundary共格孪晶界coherent twin boundary错配度mismatch重构reconstuction表面能surface energy扭转晶界twist grain boundary共格界面coherent boundary非共格界面noncoherent boundary应变能strain energy惯习面habit plane界面interface异相界面heterophase boundary表面能surface energy大角度晶界high angle grain boundary晶界迁移grain boundary migration驰豫relaxation表面吸附surface adsorption倾转晶界titlt grain boundary倒易密度reciprocal density半共格界面semi-coherent boundary界面能interfacial free energy晶体学取向关系crystallographic orientation非晶态结构与性质(structure and property of uncrystalline) 熔体结构structure of melt玻璃态vitreous state粘度viscosity介稳态过渡相metastable phase淬火quenching玻璃分相phase separation in glasses 过冷液体supercooling melt软化温度softening temperature表面张力Surface tension组织constitution退火的softened体积收缩volume shrinkage扩散(diffusion)活化能activation energy浓度梯度concentration gradient菲克第二定律Fick’s second law稳态扩散steady state diffusion扩散系数diffusion coefficient填隙机制interstitalcy mechanism短路扩散short-circuit diffusion下坡扩散Downhill diffusion扩散通量diffusion flux菲克第一定律Fick’s first law相关因子correlation factor非稳态扩散nonsteady-state diffusion 跳动几率jump frequency晶界扩散grain boundary diffusion上坡扩散uphill diffusion互扩散系数Mutual diffusion渗碳剂carburizing浓度分布曲线concentration profile驱动力driving force自扩散self-diffusion空位扩散vacancy diffusion扩散方程diffusion equation扩散特性diffusion property达肯方程Dark equation本征热缺陷Intrinsic thermal defect离子电导率Ion-conductivity浓度梯度concentration gradient扩散流量diffusion flux间隙扩散interstitial diffusion表面扩散surface diffusion扩散偶diffusion couple扩散机理diffusion mechanism无规行走Random walk柯肯达尔效应Kirkendall equation本征扩散系数Intrinsic diffusion coefficient 空位机制Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应Oxidation reaction还原反应Reduction reaction价电子Valence electron腐蚀介质Corroding solution电动势Electric potential推动力The driving force腐蚀系统Corroding system腐蚀速度Corrosion penetration rate电流密度Current density电化学反应Electrochemical reaction 极化作用Polarization过电位The over voltage浓差极化Concentration polarization电化学极化Activation polarization极化曲线Polarization curve缓蚀剂Inhibitor原电池galvanic cell电偶腐蚀galvanic corrosion电位序galvanic series应力腐蚀Stress corrosion冲蚀Erosion-corrosion腐蚀短裂Corrosion cracking防腐剂Corrosion remover腐蚀电极Corrosion target隙间腐蚀Crevice corrosion均匀腐蚀Uniform attack晶间腐蚀Intergranular corrosion焊缝破坏Weld decay选择性析出Selective leaching氢脆损坏Hydrogen embitterment阴极保护Catholic protection穿晶断裂Intergranular fracture固相反应和烧结(solid state reaction and sintering) 固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction烧结sintering合金alloy二次再结晶Secondary recrystallization结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heat treatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment相变(phase transformation)过冷supercooling晶核nucleus形核功nucleation energy均匀形核homogeneous nucleation形核率nucleation rate热力学函数thermodynamics function临界晶核critical nucleus枝晶偏析dendritic segregation平衡分配系数equilibrium distribution coefficient 成分过冷constitutional supercooling共晶组织eutectic structure伪共晶pseudoeutectic表面等轴晶区chill zone中心等轴晶区equiaxed crystal zone急冷技术splatcooling单晶提拉法Czochralski method位错形核dislocation nucleation斯宾那多分解spinodal decomposition马氏体相变martensite phase transformation 成核机理nucleation mechanism过冷度degree of supercooling形核nucleation晶体长大crystal growth非均匀形核heterogeneous nucleation长大速率growth rate临界晶核半径critical nucleus radius局部平衡localized equilibrium有效分配系数effective distribution coefficient 引领(领先)相leading phase层状共晶体lamellar eutectic离异共晶divorsed eutectic柱状晶区columnar zone定向凝固unidirectional solidification区域提纯zone refining晶界形核boundary nucleation晶核长大nuclei growth有序无序转变disordered-order transition马氏体martensite成核势垒nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图phase diagrams组分component相律Phase rule浓度三角形Concentration triangle成分composition相平衡phase equilibrium热力学thermodynamics吉布斯相律Gibbs phase rule吉布斯自由能Gibbs free energy吉布斯熵Gibbs entropy热力学函数thermodynamics function过冷supercooling杠杆定律lever rule相界线phase boundary line共轭线conjugate lines相界反应phase boundary reaction相组成phase composition金相相组织phase constentuent相衬显微镜phase contrast microscope相分布phase distribution相平衡图phase equilibrium diagram相分离phase segregation相phase组元compoonent投影图Projection drawing冷却曲线Cooling curve自由度freedom化学势chemical potential相律phase rule自由能free energy吉布斯混合能Gibbs energy of mixing吉布斯函数Gibbs function热分析thermal analysis过冷度degree of supercooling相界phase boundary相界交联phase boundary crosslinking相界有限交联phase boundary crosslinking 相变phase change共格相phase-coherent相衬phase contrast相衬显微术phase contrast microscopy相平衡常数phase equilibrium constant相变滞后phase transition lag相序phase order相稳定性phase stability相稳定区phase stabile range相变压力phase transition pressure同素异晶转变allotropic transformation显微结构microstructures不混溶性immiscibility相态phase state相变温度phase transition temperature同质多晶转变polymorphic transformation 相平衡条件phase equilibrium conditions。

有关量子力学的英语作文

有关量子力学的英语作文

有关量子力学的英语作文Quantum mechanics, a fundamental theory in physics, has been a subject of fascination and debate since its inception in the early 20th century. It describes the behavior of matter and energy at the smallest scales, where the classical laws of physics no longer apply. This essay aims to explore the key principles of quantum mechanics, its implications for our understanding of the universe, and the ongoing challenges it presents to scientists and philosophers alike.Firstly, the concept of wave-particle duality is central to quantum mechanics. This principle posits that all particles, such as electrons, can exhibit both wave-like and particle-like properties. This duality is demonstrated in the famous double-slit experiment, where particles create aninterference pattern when not observed, but act as discrete entities when measured. The act of observation, therefore, plays a critical role in determining the state of a quantum system.Secondly, the superposition principle is another cornerstone of quantum mechanics. It states that a quantum system can exist in multiple states simultaneously until it is measured. This is exemplified by the thought experiment known asSchrödinger's cat, where a cat in a sealed box is considered to be both alive and dead until the box is opened and thecat's state is observed.Entanglement, a phenomenon where particles become interconnected and the state of one instantaneously influences the state of another, regardless of the distance between them, is another intriguing aspect of quantum mechanics. This has led to the development of quantum computing, which promises to revolutionize information processing by performing calculations at speeds unattainable by classical computers.However, quantum mechanics also presents significant challenges. The interpretation of quantum theory is a subject of ongoing debate. The Copenhagen interpretation suggeststhat the act of measurement collapses the wave function, determining the outcome, while the many-worlds interpretation proposes that all possible outcomes of a quantum event exist in separate, non-interacting parallel universes.Moreover, the reconciliation of quantum mechanics with general relativity, the theory of gravity, remains an unsolved problem in physics. The two theories operate under fundamentally different principles, and finding a unified theory that encompasses both has been a holy grail for physicists.In conclusion, quantum mechanics has reshaped our understanding of the microscopic world and has profound implications for technology, philosophy, and the very fabric of reality. As research continues, it is likely that the mysteries of quantum mechanics will continue to inspire awe and provoke thought about the nature of existence itself.。

材料专业英语常见词汇

材料专业英语常见词汇

材料专业英语常见词汇The saying "the more diligent, the more luckier you are" really should be my charm in2006.材料专业英语常见词汇一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane晶面 Crystallographic direction 晶向 Property性质 Miller indices米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜 Cadmium 镉 Coordinate system 坐 Point defec点缺陷Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law 菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector 柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small or low angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽 acidBessemerconverter 酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料acid clay酸性粘土 acid cleaning同pickling酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler沉浸式酸洗装置 aciddiptank酸液浸洗槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料漆acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点渗碳体析出温度acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效或工作开口度active state活性状态active surface有效表面activity coefficient激活系数、活度系数actual diameter钢丝绳实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit amu 原子数 Atomic number 原子量 Atomic weight波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factorAPF 体心立方结构 body-centered cubic BCC 面心立方结构 face-centered cubic FCC布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure晶系 crystal system 晶体的 crystalline 衍射 diffraction 中子衍射 neutron diffraction电子衍射 electron diffraction 晶界 grain boundary 六方密堆积 hexagonal close-packed HCP 鲍林规则 Paulin g’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的 anisotropy 晶格 lattice 晶格参数 lattice parameters 密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell电位 electron states化合价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope SEM透射电子显微镜 transmission electron microscope TEM 重量百分数 weight percent四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence 位错滑移 dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation相平衡条件 phase equilibrium conditions 显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子 correlation factor 稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient有效分配系数 effective distribution coefficient 成分过冷 constitutional supercooling引领领先相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering 烧成 fire 合金 alloy 再结晶 Recrystallization 二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction 固溶处理 solution heat treatment。

Twisted Quantum Affine Superalgebra $U_q[sl(22)^{(2)}]$, $U_q[osp(22)]$ Invariant R-matrice

Twisted Quantum Affine Superalgebra $U_q[sl(22)^{(2)}]$, $U_q[osp(22)]$ Invariant R-matrice

becomes sl(2|2) invariant. Using this R-matrix, we will derive a new Uq [osp(2|2)] invariant
affine superalgebra sl(2|2)(2) and its quantized version Uq [sl(2|2)(2) ], respectively. The
Abstract We describe the twisted affine superalgebra sl(2|2)(2) and its quantized version Uq [sl(2|2)(2) ].
We investigate the tensor product representation of the 4-dimensional grade star represen-
model of strongly correlated electrons which is integrable on a one dimension lattice. This model has different interaction terms from the ones in the models [3, 4, 5]. This paper is organized as follows. In section 2 and section 3, we study the twisted tensor product representation of the 4-dimensional grade star representation for the fixed
subsuperalgebra Uq [osp(2|2)] is also investigated in details, and basis and its dual for this

二苯乙烯光致顺反异构化反应

二苯乙烯光致顺反异构化反应

研究论文Article* E-mail: cyzhu@.twReceived April 21, 2012; published August 6, 2012.Project supported by the National Natural Science Foundation of China (Nos. 21003100, 21033001, 21103136, 21173166. 项目受国家自然科学基金(Nos. 21003100, 21033001, 21103136, 21173166资助.化学学报ACTA CHIMICA SINICA改进的半经典动力学模拟二苯乙烯光致顺反异构化反应雷依波a ,b 朱超原*,b 文振翼a,b 林聖聖b(a 合成与天然功能分子化学教育部重点实验室西北大学化学与材料科学学院西安 710069(b 西北大学现代物理研究所西安 710069摘要发展了一种改进的半经典动力学模拟方法, 并将其程序化用于气相二苯乙烯光致顺反异构化反应的机理研究. 新的方法不仅采用e 指数模型改进了原有Zhu-Nakamura 理论中计算电子非绝热跃迁几率的计算方法, 而且将约束哈密顿方法用于限制性分子动力学模拟过程中. 计算结果表明, 采用此方法得到的统计平均的量子产率及反应机理与以前的实验与理论结果吻合较好, 从而可以应用于全量子动力学方法无法进行的大分子体系的动力学研究. 关键词改进的半经典动力学模拟; 约束哈密顿系统; Zhu-Nakamura 理论; 二苯乙烯顺反异构化; 二维解析势能面New Implementation of Semi-classical Dynamic Simulation on the Photoisomerization of cis- and trans-Isomers of Free StilbeneLei, Yibo a ,b Zhu, Chaoyuan *,b Wen, Zhenyi a ,b Lin, Sheng-Hsien b(a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , The College of Chemis-try & Materials Science , Shaanxi Key Laboratory of Physico-Inorganic Chemistry , Northwest University , Xi'an 710069(b Institute of Modern Physics , Northwest University , Xi'an 710069 Abstract New implementation of semi-classical trajectory surface hopping dynamic simulation has been developed and applied to the photoisomerization of cis- and trans- isomers on the gas phase. This method not only uses the exponential model to the modification of the originally analytical non-adiabatic transition probability formula, but also involves the con-strained Hamiltonian system into the constrained molecular dynamic simulation. Two-dimensional potential energy surfaces of ground S 0 and excited S 1 states are constructed analytically fitting to ab initio calculations in terms of torsion angle and one dihedral angle around the central ethylenic C =C bond as variables, and the other internal coordinates are all fixed at configuration of one-bond flip conical intersection. The analytical PESs are quite accurate and the mean abs olute error is less than 2.4 kcal •mol -1, and much less than 1.0 kcal •mol -1 around conical intersection region. A straight seam line is found on potential energy surfaces that simply separates the cis-area with the trans-area. The constrained Hamiltonian system is em-ployed to run trajectories in the Cartesian coordinate system and surface hopping in terms of the two internal dihedral angles. Typical trajectories are found in which the torsion angle changes monotonically for both cis- to trans- and trans- to cis- isomerizations. This is an exact picture of one-bond flip mechanism of photoisomerization around the conical intersection. Quantum yield for trans- to cis- isomerization is simulated as 60.45% in very good agreement with experimental value 55.0%, while quantum yield for cis- to trans- isomerization is simulated as 42.3% in comparison with experimental value 35.0%. As the S 1 energy inlocal minimum of cis-area is higher than that in trans-area, and thus cis- to trans- isomerization is quite possible to access to another Hula-Twist conical intersection. These simulation results demonstrate that the computed cumulative quantum yield and reaction mechanism are consistent with the previously experimental and theoretical results. This means that the present trajectory surface hopping method would be good at the dynamic simulation on the large system with or without constraint Hamiltonian in comparison with the quantum molecular dynamics.Keywords new implementation of semi-classical dynamic simulation; constrained Hamiltonian system; Zhu-Nakamura theory; isomerization of cis- and trans-stilbene; two dimensional analytical potential energy surfaces1 引言众所周知, 二苯乙烯在光照下可以从其顺式构型转变为反式构型, 也可以从反式结构异构化到顺式结构, 其中反式二苯乙烯分子构型示于图 1. 反应过程中电子首先受光照从基态激发到激发态, 再经过无辐射跃迁回到分子基态. 一般情况下, 电子跃迁主要集中在第一激发态S 1和基态S 0之间[1], 其中S 1对应电子从S 0的最高占据分子轨道(HOMO到最低未占据轨道(LUMO的跃迁.大量的实验数据表明光照下二苯乙烯从顺式转换到反式和从反式到顺式的量子产率分别约为35%和55%(或52%[2~5], 其中顺式到反式产率较低的原因是有DOI: 10.6023/A1204013910%的顺式二苯乙烯经过环化反应生成一个副产物4a, 4b-二氢菲(DHP[6~8]. 理论分析认为反应过程很有可能经过一个能量相对较低的圆锥相交点(标记为OBF-CI[1], 当受激反应物靠近此相交点时, 电子就从激发态跃迁到达产物或者返回到基态. 此前的理论和实验报道倾向于反应坐标主要由苯环及氢原子绕着中心乙烯双键的旋转所决定[9], 具体对应图1中的两个二面角D1和D2. 而Fu β等认为此顺反异构化过程中还应该考虑苯环自身转动的影响, 此结论得到了一些实验的证实[10~12]. 以上这些反应机理大多数只是依靠对圆锥相交点的分析. 为了更好地研究反应的动力学过程, 豆育升及其合作者通过实时激光诱导的动力学模拟对反应机理进行了研究, 模拟结果证实反应过程中描述苯环或氢原子绕中心烯键扭转的二面角的变化较大, 而苯环自身转动的二面角的变化较小[13]. 此动力学模拟过程中只考察了一个典型反应轨迹的运动, 没有考虑动力学中的相效应, 因此无法得到反应的统计平均的量子产率. 另外一维和两维的势能面也被构建用于研究反应的机理, 但其中有些势能面只考虑苯环绕中心烯键扭转[14]; 有些通过实验数据拟合得到[15]; 有些势能面虽然通过从头算方法计算得到, 但所选反应坐标非独立坐标, 无法用于动力学研究[1].图1 反式二苯乙烯的几何构型图Figure 1 Structure and standard numbering of trans-stilbene鉴于此, 本文首先采用态平均多组态的自洽场方法(SA-CASSCF在6-31G 的基组水平上构建新的二维势能面[16,17], 所选独立变量为图1所述二面角D1和D2的线性组合二面角DD1和DD2. 其中DD1为D1和D2的平均值(D2+D1/2; DD2表示D2相对D1的扭转大小, 即(D2-D1/2. 为了简化计算量, 我们拟合了势能面的解析表达式, 并用于提供经典轨迹中原子核运动所需的力. 由于此分子体系较大, 无法构建3N -6维的全维势能面(其中N 为原子数, 因此本文采用约束Hamilton 系统限制部分核坐标的运动, 例如在动力学模拟过程中每个苯环将始终作为一个刚体运动. 在此基础上将最新改进的Trajectory Surface Hopping (TSH方法用于半经典动力学模拟二苯乙烯的光致顺反异构化过程中. TSH 方法由Tully 和Preston [18]首先提出, 其基本思想是反应轨迹总是在单一势能面上演化, 电子的非绝热跃迁几率可以由Laudau-Zener 公式或数值求解含时耦合方程得到. 20世纪90年代, 朱超原与Nakamura 共同提出的Zhu-Nakamura 理论简化了非绝热跃迁几率的计算[19~25]. 此理论分别采用Landau-Zener 和nonadiabatic tunneling 两种模型推出两种类型的几率计算公式[19,20]. 采用哪一种模型取决于非绝热区两个电子态的势能的梯度的符号是否相同, 前者对应同向, 后者对应反向, 因此在计算跃迁几率时需要首先确定势能面的类型. 最近, 我们基于此理论进一步采用e 指数模型推出了非绝热跃迁几率的新公式, 避免了预先确定势能面类型的工作. 下面将简要介绍新的计算方法和程序化过程, 并详细报道基于此方法所做的动力学模拟的结果与讨论.2 理论背景如前所述, TSH 方法中核运动采用约束Hamilton 系统进行经典计算, 而电子是否发生无辐射跃迁取决于非绝热跃迁几率的大小. 下面我们简要介绍一下这两部分内容的理论背景. 2.1 约束系统Hamilton约束系统Hamilton 量:23(,,((2CN Ni k k i ki p H q p V q g q m λλ∑∑=++(1应该满足约束条件(0k g q =(2从而保持体系能量守恒. 此Hamilton 系统所对应的正则方程可以描述为[26~29]: (,,i i ii p H q p q p m λ∂∂ == (3((,,(C N uc cki i i k ki i i g q H q p V q p f f q q q λλ∂∂∂∂∂∂∑ =-=+=--(4 其中m i , q i 和p i 分别对应原子i 的质量、坐标和动量. g k (q 和λk (t 分别对应第k 个约束条件(包括键长、键角和二面角约束及所对应的拉格朗日乘子. 式(4中uc i f 所对应的是体系势场所提供的力, 而c i f 是用来约束核运动的力, 其贡献来自于约束方程关于核坐标的微分(/k i g q q ∂∂. 我们采用拉格朗日乘子法求解满足约束方程式(2的λk (t . 首先确定t 时刻的核坐标及动量, 然后数值积分式(3得到t +Δt 时刻的坐标[27]1212(((((((Cuc c i i i i N uc k i i kkiq t t q t t m t f t g q q t t m t q λ−−ΔΔΔ∂ΔΔ∂∑+=++=+- (5其中(uc i q t t Δ+是t +Δt 时刻未受约束的核坐标. 将q i (t +Δt 带入式(2从而构造包括键长、键角和二面角约束的非线性方程组. 求解这些关于λk (t 的非线性方程组需要采用Powell’s Dog Leg 方法[30]. 此方法通过如下公式00(||k k g J g λλλ===-(6逐步更新λk , 直至2-范数k g 小于预先设定的阈值τ. 其中J g 为约束方程g k (q 所对应的雅克比矩阵. 此方法已经收录在免费程序包MINPACK [31,32]中, 只需将预先得到的g k (q 和J g 输入此程序中即可得到所需求解的λk (t . 将其代入式(3和(4应用数值积分方法四阶龙格-库塔方法(RK4[33,34], 即可求解t +Δt 时刻体系的约束坐标及动量. 将此作为起始可以得到经过下一个时间步长Δt 后体系的坐标及动量. 这样沿着固定时间步长数值运算核坐标及其动量时间的过程对应体系的动力学模拟过程. 2.2 非绝热跃迁几率在一维透热模型的势能曲线上, 体系的无辐射跃迁与两个参数有关, 分别是有效耦合常数a 2和有效碰撞能b 2 [24]. 它们分别表示为:22213(28xF F F a m V =-= (7a221((2x xF F b E E FV -=-(7b其中m 是体系的约化质量, F i (i =1, 2是透热势能的斜率, F . V x 代表透热势能耦合项, E x 是透热势能. 一般情况下, 电子跃迁是在绝热表象下进行. 基于e 指数模型, 参数a 2和b 2在此表象可以表示为:0222301[((]16(x x a W x W x m x E +−=∂⎡⎤⎢⎥∂Δ⎣⎦==+ (8a 22xE E b E Δ-=(8b其中W +(x 和W ―(x 分别是能量较高和较低的电子态的能量, 此时的(( 2x W x W x E +-+=, 而0E Δ=((2W x W x+--. 其中式(8b中E 为体系能量. 基于此模型, 非绝热跃迁几率可以表示为:0ZN 1exp 4exp ((]x x P ab W x W x π−+−=⎛⎞⎜⎟⎝⎠⎡⎤⎢⎥⎢⎥⎣⎦=-=+(9众所周知, 电子的无辐射跃迁沿着非绝热耦合向量最强的方向进行. 为了计算电子非绝热跃迁几率P ZN 需要首先确定此向量的方向. 对于大分子体系来说, 计算此向量非常耗时, 而实践证明势能面上的接缝线与非绝热耦合向量基本垂直[35], 所以找到此接缝线就意味着确定了电子跃迁的方向. 朱超原等报道称此接缝线可以在运行经典轨迹之前预先确定, 并将体系在此线所处的区域分为三部分, 分别为透热区、绝热区和非绝热区. 划分的标准由参数a 2决定, 当a 2>103时, 体系处于透热区, 此时确定跃迁发生; 当a 2<10-2, 体系处于绝热区, 此时无跃迁发生; 当103≥a 2≥10-2, 体系处于非绝热区, 此时电子跃迁发生与否取决于此时P ZN 是否大于一个0和1之间随机数[35].由式(8a可知, 计算a 2需要势能面的信息. 如图2所示, 我们在SA-CASSCF/6-31G 水平上[16,17]构建了二维势能面, 其中所选活性空间包括2个活性电子及2个活性轨道HOMO 和LUMO, 势能变化沿着二面角DD1和DD2进行. 采用线性最小二乘法[36]拟合得到了此势能面的解析表达式(10.图2 二苯乙烯围绕圆锥相交点OBF-CI 的基态与第一激发态的二维解析势能面,其中变量为组合的二面角DD1和DD2Figure 2 Analytical two-dimensional PESs around OBF-CI for the ground state and the first excited state with respect to the combined inter-nal coordinates DD1 and DD222010101234567891011121314(,exp[(x(]cos(/2cos(/2cos(cos(cos(2cos(2cos(3cos(3sin[(/2]sin[(2/2]sin[(2/2]sin(sin(2sin(2W x y c a x b y y c x c y c x c y c x c y c x c y c x y c x y c x y c x y c x y c x y =----++++++++++++++++++++1516171819202122232425262728sin(22sin(3sin(3sin(32sin(23sin(3 3cos[(/2]cos[(2/2]cos[(2/2]cos(cos(2cos(2cos(22cos(3c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c+++++++++++++++++++++++++++++29303132cos(3cos(32cos(23cos(33x y c x y c x y c x y +++++++(10其中, x 0=-103.3°和y 0=43.3°为相交点OBF-CI 的DD1和DD2值, 而其他的系数a 1, b 1和c 0~c 32在表1中. 解析势能面与计算势能面的对比表明, 无论S 0还是S 1的平均偏差都小于2.4 kcal •mol -1, 而且最小偏差出现在相交点OBF-CI 附近, 此处平均偏差小于1.0 kcal •mol -1, 即最重要的相交区域的计算结果也最为精确, 这为此后的动力学计算打下良好基础.表1 二苯乙烯围绕圆锥相交点OBF-CI 关于DD1和DD2的基态与第一激发态的二维解析势能面的拟合参数(其中c 0~c 32单位为eVTable 1 The fitted coefficients of two-dimensional S 0 and S 1 PESs around OBF-CI with respect to the combined internal angles DD1 and DD2 (c 0~c 32 in units of eV Index a 1 b 1c 0c 1c 2c 3 c 4c 5c 6S 0 35 3.5 0.495231 364.2436 166.2537 -63.2233-228.305 -12.7773 25.79321 S 1 39 3.9 -0.52219 256.2847 -18.8715-74.255 -85.6398 -4.51131 16.61385 Index c 7 c 8c 9c 10 c 11 c 12 c 13 c 14c 15 S 0 -3.78713 -3.97288 9.467412 106.3829 -36.167 -72.9472 5.205437 -0.08421 -4.58729S 1 -1.65933 -2.44485 -219.158 171.3529 98.32809 -110.7899.156298 -4.96308 -1.1299 Index c 16 c 17 c 18c 19 c 20 c 21 c 22c 23 c 24 S 0 5.134825 3.857498 -6.20916 0.171133 2.090849 -538.156-56.4412 254.7531 157.3086 S 1 0.059523 4.654567 -1.20414 -1.738630.658395 -277.52987.56788 112.7934 47.53832 Index c 25 c 26 c 27 c 28 c 29 c 30 c 31 c 32 S 017.19558 -58.19 -8.161 7.267131 4.132838 -3.08607 1.734321 0.088946 S 1 -7.42468-41.53027.9652671.253993.375719-0.42815-0.71119-0.09718结合解析势能面表达式(10与式(8a, 得到了如图3所示的a 2值. 由此图可知, 沿着DD1约等于-103.35°的直线(即接缝线方向上, a 2都相对较大, 最大值在圆锥相交点OBF-CI 处.当反应轨迹接近此线时, 通过此时的a 2判断体系所处的区域, 可以判断电子是否发生跃迁, 即电子跃迁只可能发生在此接缝线上, 而势能面上的其他区域无需考虑电子是否跃迁. 此方法大大简化了非绝热跃迁几率的计算量, 特别是高维势能面上跃迁几率的计算.图3 关于组合的二面角DD1和DD2的有效耦合参数a 2的三维图 Figure 3 The effective coupling parameter a 2 with respect to the com-bined internal coordinates DD1 and DD23 动力学模拟程序化基于以上所述改进的TSH 方法, 我们实现了半经典动力学模拟的程序化. 此程序适用于任意约束与未约束的分子体系, 特别是那些无法构建全维势能面的大分子体系, 如本文中的二苯乙烯. 因体系不同所需要重新设定的只有动力学过程的初始条件、时间步长、最长模拟时间、模拟完成判据及非绝热跃迁几率等. 这些需要修改的量相对整个模拟程序来说, 工作量很小, 所以相对全量子的动力学程序, 此动力学模拟程序普适性较好. 此程序的流程图如图式1.为了达到可以与全量子动力学模拟相近的计算结果, 半经典动力学模拟过程中需考虑反应的相效应, 即波包演化过程的平均效应. 此效应需要考虑大量的反应轨迹的加权平均. 因此模拟反应动力学过程时, 每一条图式1 新的TSH 程序流程图Scheme 1 Flow chart of new implementation of TSH method反应轨迹的初始坐标q i (0及动量p i (0需要首先在一定范围内随机确定. 初始时间设定为t =0, 体系下一个时刻t +Δt 满足约束条件的坐标q i (t +Δt 及动量p i (t +Δt 可按如下步骤计算:(1计算t 时刻势能所提供的力(/i V q q ∂∂和约束力(/k i g q q ∂∂.(2将上述两种力代入式(5, 计算t +Δt 时刻未满足约束条件的核坐标q i (t +Δt .(3将q i (t +Δt 代入约束方程式(2, 得到非线性方程组式(2, 其中未知量为λk (t , 并计算其所对应的雅克比矩阵J g .(4将g k (q 和J g 作为输入文件, 应用软件MINPACK [31,32]中求解非线性方程组的解λk (t . 此方法中需要不断更新λk (t , 直至约束方程式(2成立.(5将λk (t 代入式(3和(4, 并采用RK4方法求解得到t +Δt 时刻满足约束方程式(2的q i (t +Δt 和p i (t +Δt .(6如果此时反应轨迹满足模拟完成的条件, 或动力学演化时间已经超过设定的模拟时间, 程序终止.(7如果步骤(6的条件不满足时, 基于式(9计算此时体系的非绝热跃迁几率P ZN , 并与一个0到1之间的随机数进行对比. 如果P ZN 大于此随机数时, 电子发生跃迁, 并重新分配体系的动能, 从而调整动量p i (t +Δt .(8将此时的坐标q i (t +Δt 及改变的p i (t +Δt 作为下一个时间步的初始坐标及动量, 重复以上计算, 直至模拟完成.如上所述, 不同的体系需要重新选定体系的初始坐标和动量以及模拟完成的条件. 由图2与其所对应的解析表达式(10可知, 二苯乙烯基态顺式构型的稳定点在DD1和DD2分别为-39.2473º和50.9041°的位置. 本文设定初始的DD1为DD1=-39.2473°±ΔD 之间任意值, 而DD2的取值范围是DD2=50.9041°±ΔD , 其中ΔD =20°.反式构型的稳定点在DD1和DD2分别为-164.3473°和36.7041°的位置. 类似地, 初始设定的DD1的取值范围为DD1=-164.3473°±ΔD, 而DD2为DD2=36.7041°±ΔD 之间的值. 所选坐标基本都在Frank-Condon(FC区域内. 初始动量方面, 设定坐标所选范围内S 1能量的最大值为体系总能量, 即此处体系的总能只有势能的贡献, 而其他初始坐标所对应激发态的势能小于总能, 则其具有初始动能, 并可以按照比例分配到图1所示D1和D2所对应原子C(1, C(2, C(8, C(9, C(10和C(11的动能部分.二苯乙烯从初始的顺式或反式构型激发到第一激发态后, 反应轨迹既可通过电子跃迁回到基态的反应物, 又可生成基态产物. 本文设定模拟完成的条件是: 从顺式的激发态到反式的基态时, 顺式到反式的异构化反应完成; 从反式的激发态到顺式的基态时, 反式到顺式的转变完成; 从顺式的激发态回到顺式的基态或从反式的激发态回到反式基态时, 异构化反应未发生. 模拟完成时, 反应轨迹进入到的顺式或反式构型的收集区域与初始坐标选取范围一致, 也为FC 区域.4 结果与讨论如前所述, 化学反应的量子产率需要从大量反应轨迹的统计平均得到. 所需反应轨迹数目的大小取决于模拟得到的量子产率是否收敛, 即直至增加反应路径不会改变反应的平均量子产率. 如前所述, 我们选定初始的总能为所选初始坐标所对应的最大垂直激发能. 基于此, 表2中提供了100, 500, 1000及2000条反应轨迹模拟的量子产率. 模拟2000条反应轨迹时, 所得量子产率与500条所得结果基本一致, 因此可以确定2000条轨迹足以模拟二苯乙烯的顺反异构化反应. 我们定义反应物(cis-或trans-、未反应轨迹(unreact及产物(trans-或cis-三部分轨迹. 由于此二维势能面关于DD1和DD2坐标的变化满足周期性特点, 未反应轨迹在未能进入反应物或产物收集区域时, 就已经跑出我们所选势能面边界, 因此这部分轨迹与反应物轨迹都归于未生成产物的反应轨迹.表2 二苯乙烯光致顺反异构化统计平均的量子产率Table 2 Cumulative quantum yields with respect to cis- and trans-stilbene photoinduced isomerizationsOBF-CI a cis- to trans- trans- to cis-Trajectories cis-/%Unreact/%trans-/% trans-/% Unreact/%cis-/%100 22.00 18.00 60.00 24.00 10.00 66.00 500 19.40 20.00 60.60 25.80 12.60 61.60 1000 17.40 21.40 61.20 25.20 13.80 61.00 2000 17.25 22.30 60.45(42.3c 25.65 13.90 60.45Exp.b55.0 35.0 45.0 55.0aTotal energy of either cis- or trans- classical trajectory is equal to the maxi-mal vertical excitation energy among all the initial positions. DD1=-39.2473°±ΔD , DD2=50.9041°±ΔD for cis- to trans- isomerization, while DD1=-164.3473°±ΔD , DD2=36.7041°±ΔD for trans- to cis- deforma-tion, where ΔD =20°. b ref. 2~5. c Corrected by taking into account the branch ratio to side reaction DHP [14].由表2可知, 模拟得到反式至顺式的量子产率为60.45%, 与实验值55%基本吻合[2~5]. 另一方面, 顺式至反式的量子产率为60.45%, 明显不同于实验值35%[2]. 以前的报道[14]称, 与反式的二苯乙烯只经过一条反应路径无需修正不同, 当顺式的二苯乙烯从初始稳定点激发到S 1态后, 会经过两条反应路径. 其中一条反应路径经过本文报道的圆锥相交点OBF-CI, 顺式二苯乙烯经过此反应路径的几率为70%. 另一条反应路径对应有30%的几率经过其它圆锥相交点, 其中包括可以生成副产物DHP 的圆锥相交点[2~8]. 因此, 模拟的顺式到反式的量子产率需要经过修正, 即60.45%×0.7=42.3%. 经过修正的结果42.3%与实验值35%基本一致[2~5].为了测试初始条件的敏感性, 我们分别在原有体系总能量的基础上加上0.25 eV 和0.50 eV 的动能, 并在选定的坐标范围内随机选取初始坐标, 模拟2000条反应轨迹. 表3给出了未加初始动能及加入0.25 eV 和0.50 eV 的动能, 三种不同初始条件下顺反异构化反应的量子产率. 对比结果表明, 加入初始动能并没有明显改变所得量子产率, 我们发展的改进的TSH 方法对初始条件的选择并不敏感, 即此模拟方法可靠性较高, 可以很化学学报好地应用于如二苯乙烯这样的中等大小分子体系的动力学模拟. 表3 二苯乙烯光致顺反异构化 2000 经典轨迹模拟的统计平均量子产率 Table 3 Cumulative quantum yields with respect to cis- and trans-stilbene photoinduced isomerizations from the simulations of 2000 classical trajectories OBF-CIa Eplus/eV 0.00 0.25 0.50 Exp.b a 研究论文 cis- to transtrans- to ciscis-/% Unreact/% trans-/% trans-/% Unreact/% 17.25 22.30 60.45(42.3c 25.65 13.90 17.35 23.55 59.10(41.4c 25.65 16.25 16.70 24.35 58.95(41.3c 25.70 16.95 55.0 35.0 45.0 cis-/% 60.45 58.10 57.35 55.0 Total energy of either cis- or trans- classical trajectory is equal to the sum of Eplus and the maximal vertical excitation energy among all the initial positions. DD1=-39.2473°±ΔD, DD2=50.9041°±ΔD for cis- to trans- isomerization, while DD1=-164.3473°±ΔD, DD2=36.7041°±ΔD for t rans- to cisdeformation, where ΔD=20°. b ref. 2~5. c Corrected by taking into account the branch ratio to side reaction DHP[14]. 为了研究反应的机理, 我们选取 100 条典型经典轨迹考察反应过程中二苯乙烯的动力学信息. 图 4 给出了顺反异构化过程中二面角 DD1 随时间的变化. 由图 4a 可知, 顺式二苯乙烯的电子受激激发后, 大多数反应轨迹的 DD1 都逐渐振荡接近最小值-180°, 此时的 DD1 已经满足反应完成的条件, 生成反式二苯乙烯. 另一方面 , 此异构化过程中也存在少量轨迹逐渐振荡增大到-40°左右. 此时的 DD1 在反应初始坐标设定的范围, 生成基态的顺式二苯乙烯, 对应未发生顺式到反式的异构化反应. 反式到顺式的转化过程中, DD1 的变化基本与顺式到反式反应时的变化相反 . 可以在图4b 看出 , DD1 的主要变化是振荡增大 , 而其它少数反应轨迹振荡减小到接近-150°. 类似地, 反式二苯乙烯激发后既可以生成产物顺式构型也可以转变到基态反式构型. 反式激发态到基态对应未发生反式到顺式的异构化反应. 本文也研究了二面角 DD2 随时间的变化. 由图 5 可以看出 , 无论顺式还是反式 , 大多数的反应轨迹中 DD2 的变化呈现近似周期性振荡. 其中顺式反应平衡位置约为 40°, 反式异构化过程中 DD2 的平均值约为 45°. 相比 DD1 的变化, DD2 的变化相对较小, 因此对于反应坐标贡献也较小. 另一方面, 有少量的反应轨迹中顺式的 DD2 振荡平衡位置上移到 60°左右, 而部分反式到顺式的异构化过程中, DD2 的平均值则既有增大又有减小. 相对 DD1 的变化, 此部分反应轨迹中 DD2 的变化也相对较小, 同样说明 DD2 对反应路径的贡献较小. 图 4 100 条二苯乙烯异构化的典型轨迹中组合二面角 DD1 随时间的变化。

材料专业英语常见词汇

材料专业英语常见词汇

材料专业英语常见词汇(一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic 体心立方Hexagonal close-packed 密排六方Copper 铜Aluminum 铝Chromium 铬Tungsten 钨Crystallographic Plane 晶面Crystallographic direction 晶向Property 性质Miller indices 米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜Cadmium 镉Coordinate system 坐Point defec点缺陷Lattice 点阵Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law菲克第一定律Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector柏氏矢量Perpendicular 垂直于Surfacedefect 面缺陷Grain boundary 晶界Twin boundary 晶界Shear force 剪应力Deformation 变形Small ( or low) angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix 基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid 过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum 铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering 回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽acid(Bessemer)converter酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料 acid clay酸性粘土 acid cleaning(同pickling)酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler(沉浸式) 酸洗装置 acid(dip)tank酸液(浸洗)槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料(漆)acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash 酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm 转变点(渗碳体析出温度)acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效(或工作)开口度active state活性状态active surface 有效(表)面activity coefficient激活系数、活度系数actual diameter(钢丝绳)实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit (amu) 原子数 Atomic number 原子量 Atomic weight 波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factor(APF)体心立方结构 body-centered cubic (BCC) 面心立方结构 face-centered cubic (FCC) 布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure 晶系crystal system 晶体的crystalline 衍射diffraction 中子衍射neutron diffraction电子衍射electron diffraction 晶界grain boundary 六方密堆积hexagonal close-packed (HCP)鲍林规则Pauling’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的anisotropy晶格lattice 晶格参数lattice parameters 密勒指数miller indices 非结晶的noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell 电位 electron states(化合)价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope (SEM)透射电子显微镜 transmission electron microscope (TEM) 重量百分数 weight percent 四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation 面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement 位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell 位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons 电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation 中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution 金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary 倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation 相平衡条件phase equilibrium conditions 显微结构microstructures 低共熔体eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient 菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子correlation factor稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient 浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force 间隙扩散interstitial diffusion 自扩散self-diffusion 表面扩散surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation 扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk 达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient 离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation 非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate 热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient 有效分配系数effective distribution coefficient 成分过冷constitutional supercooling引领(领先)相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition 马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering 烧成fire 合金alloy 再结晶Recrystallization二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction固溶处理 solution heat treatment。

保偏光纤光栅应变传感器的研究

保偏光纤光栅应变传感器的研究

保偏光纤光栅应变传感器的研究孙宇丹【摘要】针对光纤布拉格光栅(FBG)温度和应变的交叉敏感问题,设计了一种带熔点保偏光纤光栅(PMFBG)结构.该结构通过将2段保偏光纤带加大推进量熔接,形成中间凸起结构,然后在熔点位置写入光栅.文中首先采用熊猫保偏光纤设计制作了该结构,并搭建实验装置测试其在(0~2)N轴向应力作用下的反射光谱,发现PMFBG 快轴和慢轴的反射谱均分裂成2个峰值,随着轴向应力的增加,反射谱整体产生红移,同时分裂的2个峰值强度的比值单调减小,且不受温度的影响.随后,采用有限元法分析了该结构的轴向应变分布,并基于传输矩阵法仿真分析了该PMFBG反射光谱随应力的变化特性,仿真与实验结果的一致性较好.证实可利用PMFBG反射光谱的峰值之比消除轴向应变与温度的交叉敏感性,实现轴向应变的测量.【期刊名称】《应用光学》【年(卷),期】2018(039)006【总页数】5页(P942-946)【关键词】保偏光纤光栅;应变传感器;熔点;温度不敏感【作者】孙宇丹【作者单位】大庆师范学院机电工程学院,黑龙江大庆163712【正文语种】中文【中图分类】TN253;O439引言光纤光栅(FBG)作为一种重要的传感器件具有体积小、重量轻、耐腐蚀、抗电磁干扰等优点,并且能够实现准分布式测量,已经广泛应用于桥梁、大坝等建筑物的健康监测[1-3]。

然而,在实际应用过程中往往需要克服温度与应变的交叉敏感问题[4-5],为此研究人员提出很多解决方法,如采用双FBG法[6],FBG和长周期光纤光栅结合法[7],以及特殊结构光纤光栅法[8-10]。

保偏光纤作为一种特种光纤已经得到广泛应用,当在保偏光纤上写入光栅时,其反射谱包含2个布拉格共振峰。

并且,这2个Bragg反射波长对温度和应变的敏感系数不同,可直接解决普通FBG的温度与应变交叉敏感问题。

然而,慢轴和快轴布拉格反射波长的相对漂移量随温度和应变的变化差别较小,导致同时测量温度和应变时灵敏度较低[11]。

纳米材料专业词汇要点

纳米材料专业词汇要点

第一章 晶体结构克罗各 - 明克符号 Kroger Vink notation 原子质量单位 Atomic mass unit (amu) 原子数 Atomic number 原子量 Atomic weight 波尔原子模型 Bohr atomic model键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型 electronic configuration 负电的 Electronegative 正电的 Electropositive 基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope 金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table原子 atom 分子 molecule 分子量 molecule weight 极性分子 Polar molecule 量子数 quantum number 价电子 valence electron 范德华键 van der waals bond 电子轨道 electron orbitals点群 point group 对称要素 symmetry elements各向异性 anisotropy 原子堆积因数 atomic packing factor(APF)体心立方结构 body-centered cubic (BCC) 面心立方结构 face-centered cubic (FCC)缺陷 defect, imperfection点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement 位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation 混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array 位错气团 dislocation atmosphere位错轴 dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence位错滑移 dislocation slip 位错裂纹 dislocation crack 位错核心能量 dislocation core energy位错阻尼 dislocation damping位错密度 dislocation density 原子错位 substitution of a wrong atom间隙原子 interstitial atom 晶格空位 vacant lattice sites间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder主晶相 the host lattice 缔合中心 Associated Centers. 电子空穴 Electron Holes错位原子 misplaced atoms 自由电子 Free Electrons 伯格斯矢量 Burgers 中性原子 neutral atom布拉格定律 晶体结构 晶体的 中子衍射 晶界 bragg 's law crystal structure crystalline 衍射 neutron diffraction grain boundary 六方密堆积 鲍林规则 CsCl 型结构 纤锌矿型结构 萤石型结构 尖晶石型结构 岛状结构 Island structure 链状结构 层状结构 Layer structure 架状结构 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite 石英 长石 feldspar 美橄榄石 各向同性的 isotropic 晶格 lattice 晶格参数 密勒指数 miller indices 多晶的 单晶 电位 电子 金属键 极性分子 衍射角 粒度 , 晶粒大小 grain size 显微照相 photomicrograph 透射电子显微镜Transmission electron microscope (TEM) 重量百分数 weight percentPauling ' s rules NaCl 型结构 Caesium Chloride structure配位数 coordination number 晶系 crystal system diffraction 电子衍射 electron diffraction hexagonal close-packed (HCP) NaCl - type structure 闪锌矿型结构 Blende-type structure Wurtzite structure Fluorite structure Spinel-type structure Island structure polycrystalline single crystal electron states 共价键 metallic bonding polar molecules diffraction angle electrons 四方的 配位数 第二章 金红石型结构 Rutile structure 钙钛矿型结构 Perovskite-type structure 硅酸盐结构 Structure of silicates Chain structure Framework structure quartz forsterite 各向异性的 anisotropy lattice parameters 非结晶的 noncrystalline 多晶形 polymorphism 晶胞 unit cell ( 化合 ) 价 valence covalent bonding 离子键 Ionic bonding 原子面密度 atomic planar density 合金 alloy 显微结构 microstructure 扫描电子显微镜 scanning electron microscope (SEM)tetragonal 单斜的 monoclinic coordination number 晶体结构缺陷 - 固溶体 固溶度 间隙固溶体 金属间化合物 转熔型固溶体 无序固溶体 取代型固溶体 非化学计量化合物 solid solubility interstitial solid solution intermetallics peritectic solid solution disordered solid solution Substitutional solid solutions Nonstoichiometric compound 第三章 熔体结构熔体结构 structure of melt 过冷液体 supercooling melt 玻璃态 vitreous state 软化温度 softening temperature粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching 退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage第四章 固体的表面与界面 表面 surface 界面 interface同相界面 homophase boundary 异相界面 heterophase boundary重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy 倾转晶界 titlt grain boundary扭转晶界 twist grain boundary 倒易密度 共格界面 coherent boundary 半共格界面 非共格界面 noncoherent boundary 界面能 晶体学取向关系 crystallographic orientation第五章 相图 相图 phase diagrams 相 phase组分 component 组元 compoonent 相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle 冷却曲线 Cooling curve 成分 composition 自由度 freedom 相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics 相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling 杠杆定律 lever rule 相界 phase boundary相界线 phase boundary line 相界交联 phase boundary crosslinking 共轭线 conjugate lines 相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction 相变 phase change 相组成 phase composition 共格相 phase-coherent 金相相组织 phase constentuent 相衬 phase contrast晶界 grain boundary 表面能小角度晶界 low angle grain boundary共格孪晶界 coherent twin boundary错配度 mismatch 驰豫 relaxationsurface energy 大角度晶界 high angle grain boundary 晶界迁移 grain boundary migration reciprocal density semi-coherent boundaryinterfacial free energy应变能 strain energy惯习面 habit plane相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 渗碳剂 carburizing 浓度梯度 concentration gradient 浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force 间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation第七章 相变过冷 supercooling 过冷度 degree of supercooling晶核 nucleus 形核 nucleation 形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation 非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function临界晶核 critical nucleus 临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation 局部平衡 localized equilibrium平衡分配系数 equilibrium distributioncoefficient 有效分配系数 effective distribution coefficient成分过冷 constitutional supercooling 引领(领现相) leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic相分布 phase distribution 相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram 相变滞后 phase transition lag相分离 phase segregation 相稳定性 phase stability 相稳定区 phase stabile range相序 phase order 相态 phase state 相变温度 phase transition temperature 相 变 压 力 phase transition pressure 同 质 多 晶 转 变 polymorphic transformation同素异晶 转变 allotropic transformationconditions 相平 衡条件 phase equilibrium显微结构 microstructures不混溶性 immiscibility低共熔体 eutectoid 第六章 扩散下坡扩散 Downhill diffusion 互扩散系数 Mutual diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation 扩散机理 diffusion mechanism 扩散特性 diffusion property无规行走 Random walk 本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient 离子电导率 Ion-conductivity 空位机制 Vacancy concentration伪共晶 pseudoeutectic 离异共晶 表面等轴晶区 chill zone 柱状晶区 中心等轴晶区 equiaxed crystal zone 急冷技术 splatcooling 区域提纯 divorsed eutecticcolumnar zone定向凝固 unidirectional solidification zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition 有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering烧成fire 合金alloy再结晶Recrystallization 二次再结晶Secondary recrystallization成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation异质核化heterogeneous nucleation 均匀化热处理homogenization heat treatment铁碳合金iron-carbon alloy 渗碳体cementite铁素体ferrite 奥氏体austenite共晶反应eutectic reaction 固溶处理solution heat treatment。

夸克禁闭和渐近自由-USTC,ICTS

夸克禁闭和渐近自由-USTC,ICTS
• 1977年发现了b夸克,1995年发现了t夸克。
三代费米子
夸 uc t

e
克 ds b

e
一直到1995年,费米实验室发现顶夸克 总共发现了三代夸克、三代轻子(48)。 在它们之间传递相互作用的是规范玻色子(12)
九十年代末美国和日本化巨资建造了B 介子工厂就是为了寻找在B介子中CP不守恒 现象。此后几年来两个B介子工厂的实验(美 国的BaBar和日本的Belle)证实了他们提出的 CKM矩阵(KM是 Kobayashi-Maskawa的缩 写,C是意大利科学家Nicola Cabibbo的代 称)。
19
20
物质结构的层次
原子→原子核物理→粒子物理(高能 物理)
粒子物理就是研究物质结构的最小组成成份 (夸克、轻子)及其基本相互作用(电磁、弱、
强相互作用)规律的科学。
21
二.渐近自由--量子色动力学理论 (Quantum Chromodynamics (QCD))
• 色自由度引入 1972 color Gell-Mann 1964 Greenberg Para统计 1965-66 层子模型
• 夸克禁闭 • 渐近自由
6
内容
一. 夸克模型和三代夸克 二. 渐近自由--量子色动力学理论 三. 渐近自由的实验验证 四. 夸克禁闭难题 五. 展望
7
一. 夸克模型和三代夸克
六十年代 发现了大量强子态, 1960 反Σ粒子发现, 王淦昌等。 1961 SU(3) 八重态方案,对称性分类。 Neeman,Gell-Mann 1964 Ω-发现 1964年 Gell-Mann提出Quark model。
56
微扰量子色动力学理论是建立 在微扰真空的基础上,而量子色动 力学物理真空完全不同于微扰真空。 在物理真空中真空不空,它充满着 夸克、反夸克对以及胶子,物质与 真空中的夸克、反夸克对和胶子不 断发生相互作用造成新的强子结构 图像。因此揭示真空的本质将导致 找到夸克囚禁疑难解。

Quantum Mechanics

Quantum Mechanics

Quantum MechanicsQuantum Mechanics is a branch of physics that deals with the behavior of matter and energy at the smallest scales, such as atoms and subatomic particles. It is a complex and fascinating field of study that has revolutionized our understanding of the world around us. However, it is also a subject that can be difficult to grasp, with concepts that challenge our intuition and require us to think in new ways. In this essay, I will explore the basics of Quantum Mechanics, its implications for our understanding of reality, and some of the controversies surrounding it.One of the key principles of Quantum Mechanics is the idea of wave-particle duality. This means that particles, such as electrons, can exhibit both wave-like and particle-like behavior, depending on the context. For example, when an electron is observed, it appears as a particle, but when it is not observed, it behaves like a wave. This concept challenges our everyday understanding of the world, where objects are either particles or waves, but not both.Another important principle of Quantum Mechanics is uncertainty. Thisprinciple states that it is impossible to know both the position and momentum of a particle with absolute certainty. The more precisely we know one of these values, the less precisely we can know the other. This principle has profound implications for our understanding of causality and determinism, as it suggests that the behavior of particles is inherently unpredictable.Quantum Mechanics also introduces the concept of superposition, which is the idea that a particle can exist in multiple states at the same time. For example, an electron can exist in two different energy states simultaneously. This concept is difficult to grasp, as it challenges our everyday experience of the world, where objects are either in one state or another, but not both.One of the most famous experiments in Quantum Mechanics is the double-slit experiment. In this experiment, a beam of particles, such as electrons, is fired at a screen with two slits. When the particles pass through the slits, they create an interference pattern on a detector behind the screen, as if they had behaved like waves. This experiment demonstrates the wave-particle duality of particles and the concept of superposition.The implications of Quantum Mechanics for our understanding of reality are profound. It suggests that the world is fundamentally uncertain and that particles can exist in multiple states at the same time. This challenges our everyday experience of the world, where things are either one way or another, but not both. It also raises questions about the nature of causality and determinism, asparticles seem to behave in unpredictable ways.There are also controversies surrounding Quantum Mechanics. One of the most famous is the Einstein-Podolsky-Rosen (EPR) paradox. This paradox suggests that if two particles are entangled, meaning they have a correlated quantum state, then measuring one particle will instantaneously affect the state of the other particle, even if they are separated by large distances. This concept challenges our understanding of causality and suggests that information can travel faster thanthe speed of light, which is not allowed by relativity.Another controversy is the interpretation of Quantum Mechanics. There are several interpretations of Quantum Mechanics, each with its own strengths and weaknesses. The most popular interpretation is the Copenhagen interpretation,which suggests that the act of observation collapses the wave function of a particle, causing it to behave like a particle rather than a wave. However, this interpretation has been criticized for being too anthropocentric and for not providing a clear explanation of how the act of observation causes the collapse.In conclusion, Quantum Mechanics is a complex and fascinating field of study that challenges our understanding of the world around us. Its principles of wave-particle duality, uncertainty, and superposition have profound implications forour understanding of reality. However, there are also controversies surrounding Quantum Mechanics, such as the EPR paradox and the interpretation of the theory. Despite these challenges, Quantum Mechanics has revolutionized our understandingof the world and continues to be an active area of research and discovery.。

量子力学的英语

量子力学的英语

量子力学的英语Quantum mechanics is a fascinating branch of physics that explores the behavior of particles at the smallest scales. It delves into the realm of atoms and subatomic particles, revealing a world where the laws of classical physics no longer apply.At its core, quantum mechanics challenges our everyday understanding of reality. It introduces concepts such as superposition, where particles can exist in multiple states simultaneously, and entanglement, a mysterious connection between particles that Einstein famously referred to as "spooky action at a distance."The implications of quantum mechanics are profound, impacting not just our understanding of the universe but also the development of technologies like quantum computing. It's a field that continues to push the boundaries of what we know and how we think about the world around us.Despite its complexity, the principles of quantum mechanics can be grasped even by those new to the subject.It's a testament to the beauty of science that such intricate concepts can be understood and appreciated by curious minds of all ages.In essence, quantum mechanics is more than just a scientific theory; it's a window into the very fabric of ourexistence, offering a glimpse into the fundamental nature of reality that is both humbling and awe-inspiring.。

量子纠缠 双缝干涉 英语 范例

量子纠缠 双缝干涉 英语 范例

量子纠缠双缝干涉英语范例Engaging with the perplexing world of quantum entanglement and the double-slit interference phenomenon in the realm of English provides a fascinating journey into the depths of physics and language. Let's embark on this exploration, delving into these intricate concepts without the crutchesof conventional transition words.Quantum entanglement, a phenomenon Albert Einstein famously referred to as "spooky action at a distance," challengesour conventional understanding of reality. At its core, it entails the entwining of particles in such a way that the state of one particle instantaneously influences the stateof another, regardless of the distance separating them.This peculiar connection, seemingly defying the constraints of space and time, forms the bedrock of quantum mechanics.Moving onto the enigmatic realm of double-slit interference, we encounter another perplexing aspect of quantum physics. Imagine a scenario where particles, such as photons or electrons, are fired one by one towards a barrier with twonarrow slits. Classical intuition would suggest that each particle would pass through one of the slits and create a pattern on the screen behind the barrier corresponding tothe two slits. However, the reality is far more bewildering.When observed, particles behave as discrete entities, creating a pattern on the screen that aligns with the positions of the slits. However, when left unobserved, they exhibit wave-like behavior, producing an interferencepattern consistent with waves passing through both slits simultaneously. This duality of particle and wave behavior perplexed physicists for decades and remains a cornerstoneof quantum mechanics.Now, let's intertwine these concepts with the intricate fabric of the English language. Just as particles become entangled in the quantum realm, words and phrases entwineto convey meaning and evoke understanding. The delicate dance of syntax and semantics mirrors the interconnectedness observed in quantum systems.Consider the act of communication itself. When wearticulate thoughts and ideas, we send linguistic particles into the ether, where they interact with the minds of others, shaping perceptions and influencing understanding. In this linguistic entanglement, the state of one mind can indeed influence the state of another, echoing the eerie connectivity of entangled particles.Furthermore, language, like quantum particles, exhibits a duality of behavior. It can serve as a discrete tool for conveying specific information, much like particles behaving as individual entities when observed. Yet, it also possesses a wave-like quality, capable of conveying nuanced emotions, cultural nuances, and abstract concepts that transcend mere words on a page.Consider the phrase "I love you." In its discrete form, it conveys a specific sentiment, a declaration of affection towards another individual. However, its wave-like nature allows it to resonate with profound emotional depth, evoking a myriad of feelings and memories unique to each recipient.In a similar vein, the act of reading mirrors the double-slit experiment in its ability to collapse linguistic wave functions into discrete meanings. When we read a text, we observe its words and phrases, collapsing the wave of potential interpretations into a singular understanding based on our individual perceptions and experiences.Yet, just as the act of observation alters the behavior of quantum particles, our interpretation of language is inherently subjective, influenced by our cultural background, personal biases, and cognitive predispositions. Thus, the same text can elicit vastly different interpretations from different readers, much like the varied outcomes observed in the double-slit experiment.In conclusion, the parallels between quantum entanglement, double-slit interference, and the intricacies of the English language highlight the profound interconnectedness of the physical and linguistic worlds. Just as physicists grapple with the mysteries of the quantum realm, linguists navigate the complexities of communication, both realmsoffering endless opportunities for exploration and discovery.。

量子是一种玄学方法英语

量子是一种玄学方法英语

量子是一种玄学方法英语Quantum physics is a branch of science that has captivated the minds of scientists and non-scientists alike. It is a field filled with strange and counterintuitive phenomena that challenge our understanding of how the world works. Quantum mechanics, in particular, is known for its mind-bending concepts such as superposition, entanglement, and wave-particle duality. This branch of science is often referred to as a "mysterious" and "magical" method due to its puzzling and unpredictable nature.Quantum mechanics is based on the principles that govern the behavior of particles at the atomic and subatomic levels. Unlike classical physics, which deals with the macroscopic world, quantum mechanics focuses on the quantum realm, where particles exhibit wave-like properties and can exist in multiple states simultaneously until measured.One of the key features of quantum mechanics is superposition. This concept states that particles can exist in multiple states or locations at the same time until obser ved. Schrödinger's famous thought experiment, in which a cat inside a box is simultaneously alive and dead until the box is opened, illustrates this phenomenon. This mind-boggling idea challenges our intuition and raises questions about the nature of reality. Another intriguing aspect of quantum mechanics is entanglement. When two particles become entangled, their properties becomeinterdependent, regardless of the distance between them. This means that measuring the state of one particle instantaneously determines the state of the other, no matter how far apart they are. Einstein famously called this phenomenon "spooky action at a distance." The concept of entanglement has led to the development of quantum teleportation and quantum cryptography, which have the potential to revolutionize communication and computing.Furthermore, quantum mechanics challenges the classical concept of particles having definite properties. According to wave-particle duality, particles can behave as both waves and particles depending on the experimental setup. This means that particles can exhibit characteristics of both particles and waves simultaneously, adding to the mystery of quantum mechanics.Despite its success in explaining the behavior of atoms and subatomic particles, quantum mechanics is still not fully understood. It has been described as a "magical" and "mysterious" method due to its ability to produce unexpected and counterintuitive results. The probabilistic nature of quantum mechanics, where predictions are made based on the likelihood of outcomes rather than definitive results, adds to its enigmatic nature.The potential applications of quantum mechanics are vast. Quantum computers, currently in their infancy, have the potential to performcomplex calculations exponentially faster than classical computers. Quantum cryptography promises unbreakable encryption, ensuring secure communication in a world where digital security is crucial. Furthermore, quantum sensors have the ability to detect incredibly small changes in physical quantities, making them invaluable in fields like medicine, defense, and environmental monitoring.In conclusion, quantum mechanics is a field that continues to perplex and fascinate scientists and laypeople alike. Its counterintuitive concepts, such as superposition, entanglement, and wave-particle duality, make it appear as a mysterious and magical method. Despite its challenges, quantum mechanics holds immense potential for technological advancements and deeper understanding of the fundamental workings of the universe. As we continue to explore and unravel the mysteries of quantum physics, we embark on a thrilling journey into the unknown.。

材料英语词汇

材料英语词汇

材料英语词汇专业词汇列表晶体结构(structure of crystal)原子质量单位Atomic mass unit (amu)原子量Atomic weight键能Bonding energy共价键Covalent bond电子构型electronic configuration正电的Electropositive氢键Hydrogen bond同位素Isotope摩尔Mole泡利不相容原理Pauli exclusion principle原子atom分子量molecule weight量子数quantum number范德华键van der waals bond点群point group波尔原子模型Bohr atomic model库仑力Coulombic force分子的构型molecular configuration负电的Electronegative基态Ground state离子键Ionic bond金属键Metallic bond分子Molecule元素周期表Periodic table极性分子Polar molecule价电子valence electron电子轨道electron orbitals对称要素symmetry elements原子堆积因数atomic packing factor(APF)面心立方结构face-centered cubic (FCC)配位数coordination number晶系crystal system衍射diffraction电子衍射electron diffraction六方密堆积hexagonal close-packed (HCP)NaCl型结构NaCl-type structure闪锌矿型结构Blende-type structure金红石型结构Rutile structure钙钛矿型结构Perovskite-type structure硅酸盐结构Structure of silicates链状结构Chain structure架状结构Framework structure叶蜡石pyrophyllite石英quartz美橄榄石forsterite各向异性的anisotropy晶格参数lattice parameters非结晶的noncrystalline多晶形polymorphism单晶single crystal电位electron states电子electrons金属键metallic bonding极性分子polar molecules衍射角diffraction angle粒度,晶粒大小grain size显微照相photomicrograph透射电子显微镜transmission electron microscope (TEM)四方的tetragonal配位数coordination number 晶胞unit cell(化合)价valence共价键covalent bonding离子键Ionic bonding 原子面密度atomic planar density合金alloy显微结构microstructure扫描电子显微镜scanning electron microscope (SEM)重量百分数weight percent单斜的monoclinic 晶体结构缺陷(defect of crystal structure)缺陷defect, imperfection线缺陷line defect, dislocation体缺陷volume defect位错线dislocation line螺位错screw dislocation晶界grain boundaries小角度晶界tilt boundary,位错阵列dislocation array位错轴dislocation axis位错爬移dislocation climb位错滑移dislocation slip位错裂纹dislocation crack位错密度dislocation density间隙原子interstitial atom间隙位置interstitial sites弗伦克尔缺陷Frenkel disorder主晶相the host lattice缔合中心Associated Centers.电子空穴Electron Holes克罗各-明克符号Kroger Vink notation固溶体solid solution化合物compound置换固溶体substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体ordered solid solution固溶强化solid solution strengthening点缺陷point defect面缺陷interface defect位错排列dislocation arrangement刃位错edge dislocation混合位错mixed dislocation大角度晶界high-angle grain boundaries孪晶界twin boundaries位错气团dislocation atmosphere位错胞dislocation cell位错聚结dislocation coalescence位错核心能量dislocation core energy位错阻尼dislocation damping原子错位substitution of a wrong atom晶格空位vacant lattice sites杂质impurities肖脱基缺陷Schottky disorder错位原子misplaced atoms自由电子Free Electrons伯格斯矢量Burgers中性原子neutral atom固溶度solid solubility间隙固溶体interstitial solid solution金属间化合物intermetallics转熔型固溶体peritectic solid solution无序固溶体disordered solid solution取代型固溶体Substitutional solid solutions过饱和固溶体supersaturated solid solution非化学计量化合物Nonstoichiometric compound表面结构与性质(structure and property of surface)表面surface同相界面homophase boundary晶界grain boundary小角度晶界low angle grain boundary共格孪晶界coherent twin boundary 错配度mismatch重构reconstuction表面能surface energy扭转晶界twist grain boundary共格界面coherent boundary非共格界面noncoherent boundary 应变能strain energy惯习面habit plane界面interface异相界面heterophase boundary表面能surface energy大角度晶界high angle grain boundary晶界迁移grain boundary migration驰豫relaxation表面吸附surface adsorption倾转晶界titlt grain boundary倒易密度reciprocal density半共格界面semi-coherent boundary界面能interfacial free energy晶体学取向关系crystallographic orientation非晶态结构与性质(structure and property ofuncrystalline)熔体结构structure of melt玻璃态vitreous state粘度viscosity介稳态过渡相metastable phase淬火quenching玻璃分相phase separation in glasses 过冷液体supercooling melt软化温度softening temperature表面张力Surface tension组织constitution退火的softened体积收缩volume shrinkage扩散(diffusion)活化能activation energy浓度梯度concentration gradient 菲克第二定律Fick’s second law 稳态扩散steady state diffusion扩散系数diffusion coefficient填隙机制interstitalcy mechanism 短路扩散short-circuit diffusion 下坡扩散Downhill diffusion扩散通量diffusion flux菲克第一定律Fick’s first law相关因子correlation factor非稳态扩散nonsteady-state diffusion 跳动几率jump frequency晶界扩散grain boundary diffusion 上坡扩散uphill diffusion互扩散系数Mutual diffusion渗碳剂carburizing浓度分布曲线concentration profile 驱动力driving force自扩散self-diffusion空位扩散vacancy diffusion扩散方程diffusion equation扩散特性diffusion property达肯方程Dark equation本征热缺陷Intrinsic thermal defect 离子电导率Ion-conductivity浓度梯度concentration gradient扩散流量diffusion flux间隙扩散interstitial diffusion表面扩散surface diffusion扩散偶diffusion couple扩散机理diffusion mechanism无规行走Random walk柯肯达尔效应Kirkendall equation本征扩散系数Intrinsic diffusion coefficient 空位机制Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应Oxidation reaction还原反应Reduction reaction价电子Valence electron腐蚀介质Corroding solution电动势Electric potential推动力The driving force腐蚀系统Corroding system腐蚀速度Corrosion penetration rate 电流密度Current density电化学反应Electrochemical reaction 极化作用Polarization过电位The over voltage浓差极化Concentration polarization 电化学极化Activation polarization 极化曲线Polarization curve缓蚀剂Inhibitor原电池galvanic cell电偶腐蚀galvanic corrosion 电位序galvanic series应力腐蚀Stress corrosion冲蚀Erosion-corrosion腐蚀短裂Corrosion cracking 防腐剂Corrosion remover腐蚀电极Corrosion target隙间腐蚀Crevice corrosion 均匀腐蚀Uniform attack晶间腐蚀Intergranular corrosion焊缝破坏Weld decay选择性析出Selective leaching氢脆损坏Hydrogen embitterment阴极保护Catholic protection穿晶断裂Intergranular fracture固相反应和烧结(solid state reaction and sintering)固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction烧结sintering合金alloy二次再结晶Secondary recrystallization结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heat treatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment相变(phase transformation)过冷supercooling晶核nucleus形核功nucleation energy均匀形核homogeneous nucleation形核率nucleation rate热力学函数thermodynamics function 临界晶核critical nucleus枝晶偏析dendritic segregation平衡分配系数equilibrium distribution coefficient成分过冷constitutional supercooling共晶组织eutectic structure伪共晶pseudoeutectic表面等轴晶区chill zone中心等轴晶区equiaxed crystal zone急冷技术splatcooling单晶提拉法Czochralski method位错形核dislocation nucleation斯宾那多分解spinodal decomposition马氏体相变martensite phase transformation 成核机理nucleation mechanism过冷度degree of supercooling形核nucleation晶体长大crystal growth非均匀形核heterogeneous nucleation长大速率growth rate临界晶核半径critical nucleus radius局部平衡localized equilibrium有效分配系数effective distribution coefficient引领(领先)相leading phase层状共晶体lamellar eutectic离异共晶divorsed eutectic柱状晶区columnar zone定向凝固unidirectional solidification区域提纯zone refining晶界形核boundary nucleation晶核长大nuclei growth有序无序转变disordered-order transition 马氏体martensite成核势垒nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图phase diagrams组分component相律Phase rule浓度三角形Concentration triangle成分composition相平衡phase equilibrium热力学thermodynamics吉布斯相律Gibbs phase rule吉布斯自由能Gibbs free energy吉布斯熵Gibbs entropy热力学函数thermodynamics function 过冷supercooling杠杆定律lever rule相界线phase boundary line共轭线conjugate lines相界反应phase boundary reaction相组成phase composition金相相组织phase constentuent相衬显微镜phase contrast microscope 相分布phase distribution相平衡图phase equilibrium diagram相分离phase segregation相phase组元compoonent投影图Projection drawing冷却曲线Cooling curve自由度freedom化学势chemical potential相律phase rule自由能free energy吉布斯混合能Gibbs energy of mixing 吉布斯函数Gibbs function热分析thermal analysis过冷度degree of supercooling相界phase boundary相界交联phase boundary crosslinking相界有限交联phase boundary crosslinking 相变phase change共格相phase-coherent相衬phase contrast相衬显微术phase contrast microscopy相平衡常数phase equilibrium constant相变滞后phase transition lag相序phase order相稳定性phase stability相稳定区phase stabile range相变压力phase transition pressure同素异晶转变allotropic transformation显微结构microstructures不混溶性immiscibility相态phase state相变温度phase transition temperature同质多晶转变polymorphic transformation 相平衡条件phase equilibrium conditions。

关于物理现象的英文作文

关于物理现象的英文作文

关于物理现象的英文作文The Dance of Physics: Exploring the Symphony of Natural Laws.The world around us is a tapestry of physical phenomena, an intricate symphony of natural laws that orchestrate the dance of matter and energy. From the grand cosmic ballet of celestial bodies to the subatomic waltz of elementary particles, each aspect of our universe is governed by the immutable laws of physics.Gravity's Grand Symphony.A celestial conductor, gravity orchestrates the motionof planets, stars, and galaxies. As massive objects exert their gravitational pull, they dance around each other inan elegant cosmic waltz. This symphonic ballet is responsible for the formation of star systems, thespiraling of galaxies, and the structure of the universe itself.The Electrical Tango.Like an electric quartet, charged particles engage in an energetic dance of attraction and repulsion. Positively charged ions chase after negatively charged electrons, whirling and swirling in a subatomic tango. This interplay of electric forces weaves the fabric of atoms, molecules, and the very essence of matter.The Magnetic Rondo.A magnetic maestro guides the movement of charged particles, weaving intricate patterns in their swirling dance. Magnetic fields twist and turn like celestial ribbons, influencing the trajectories of particles and shaping the behavior of materials. From the aurora borealis to the operation of electric motors, magnetic forces play a vital role in the physical world.The Thermal Minuet.Heat, a manifestation of molecular motion, dances an energetic minuet throughout the universe. As temperature rises, molecules become more excited, swaying and colliding with greater vigor. This thermal symphony drives everything from the warmth of a campfire to the currents of the ocean.The Quantum Cadenza.In the realm of the smallest particles, the laws of physics take on a new and enigmatic form. Quantum mechanics, the conductor of this microscopic dance, dictates the probabilistic behavior of subatomic entities. Particles become waves, probabilities become realities, and the dance of nature takes on a mystifying cadence.Conservation's Eternal Waltz.Throughout the physical universe, energy and momentum dance an eternal waltz, their existence conserved in an unwavering rhythm. Energy cannot be created or destroyed, but merely transformed from one form to another. Similarly, momentum flows through the system, carried by objects asthey move and interact.Entropy's Rhythmic Decay.As the symphony of time unfolds, entropy emerges as a poignant melody, an inevitable march towards disorder. Systems tend to degrade over time, losing their order and increasing their randomness. Entropy's rhythmic decay whispers the tale of the universe's ultimate fate.Conclusion.From the celestial to the subatomic, the interplay of physical phenomena weaves a tapestry of natural laws that governs the dance of our universe. Gravity, electromagnetism, magnetism, heat, quantum mechanics, conservation, and entropy are the conductors of this symphony, orchestrating the motion, interactions, and destiny of everything that exists. By unraveling the secrets of these laws, we uncover the hidden harmonies and rhythms that shape our world, bridging the gap between the known and the unknown.。

《人类群星闪耀时》梗概600字英语作文

《人类群星闪耀时》梗概600字英语作文

《人类群星闪耀时》梗概600字英语作文全文共3篇示例,供读者参考篇1"Humans, Shining Like Stars" by the acclaimed author Emi Rousseau is a captivating work of science fiction that explores the depths of the human spirit amidst the vastness of space. This novel weaves a intricate tapestry of storytelling, blending elements of adventure, discovery, and philosophical contemplation that will leave readers both enthralled and deeply pensive.The narrative follows the journey of a diverse crew aboard the starship Odysseus, tasked with a perilous mission to establish the first human colony on the distant planet Kepler-186f. As they embark on this pioneering expedition, the characters must confront not only the harsh realities of deep space travel but also the complexities of their own emotions, beliefs, and interpersonal dynamics.At the heart of the story lies Captain Samantha Delgado, a brilliant and determined leader whose unwavering commitment to the mission is matched only by her compassion for her crew.Alongside her is the enigmatic scientist Zahi Bashir, a man driven by an insatiable thirst for knowledge and a deep-rooted fascination with the mysteries of the universe.As the Odysseus hurtles through the vast expanse of space, the crew encounters a myriad of challenges that test their resilience and ingenuity. From navigating treacherous asteroid fields to grappling with life-threatening system failures, each obstacle serves as a crucible that forges their collective resolve and strengthens the bonds that hold them together.Yet, amidst the harrowing trials, the novel also delves into the profound philosophical questions that have captivated humanity since the dawn of consciousness. What does it truly mean to be human in the face of such cosmic grandeur? How do our beliefs, traditions, and cultural identities shape our perception of the universe around us? And perhaps most importantly, what is our role and responsibility as explorers and potential colonizers of new worlds?Through the deeply introspective inner dialogues of the characters, Rousseau skillfully weaves these existential musings into the very fabric of the narrative, inviting readers to ponder the profound implications of our species' reach for the stars.As the Odysseus draws ever closer to its destination, the tension mounts, and the stakes grow higher. Unexpected revelations and heart-wrenching sacrifices further test the crew's solidarity, forcing them to confront the harsh realities of their mission and the weight of their choices.In the end, "Humans, Shining Like Stars" is not merely a tale of cosmic exploration; it is a poignant exploration of the human condition itself. Rousseau's masterful storytelling and impeccable world-building transport readers to the farthest reaches of the galaxy, while simultaneously inviting them to embark on an introspective journey into the depths of their own hearts and minds.Through the triumphs and tribulations of the Odysseus crew, we are reminded of the indomitable spirit that has propelled our species forward, the unwavering curiosity that drives us to seek out the unknown, and the profound connections that bind us together, even in the face of the infinite unknown.In a world where humanity's future seems increasingly uncertain, "Humans, Shining Like Stars" stands as a powerful testament to our capacity for wonder, our resilience in the face of adversity, and our enduring quest to unlock the secrets of the cosmos. It is a poignant reminder that even in the vast expanseof the universe, the true essence of what it means to be human can shine brighter than any star.篇2When Human Stars Shine - Plot SummaryHave you ever wondered what it would be like to live in a world where people have actual star power? Like, they can glow and shine like the celestial bodies in the night sky? Well, let me tell you all about the wild ride that is the movie "When Human Stars Shine."It's set in a not-so-distant future where a small percentage of humans, dubbed "Luminants," develop the ability to generate their own light and energy. At first, it seemed like a weird mutation, but it quickly became clear that these Luminants had legit superpowers. We're talking flight, laser beams from their hands, and the ability to charge electronics just by being near them. Crazy, right?The story follows a group of teenagers who all manifest different Luminant abilities. There's Eva, the shy bookworm who can create protective force fields. Her best friend Noah is a lighthearted prankster with the power of illusion - he can literally bend light to create mirages and holograms. Then you've got thebrooding rebel Jake, who can absorb and redirect energy blasts. Let's just say he's got a bit of a temper.At first, they're just stoked to have these rad new powers. But it's not all fun and games for long. The government starts cracking down on Luminants, seeing them as a threat to national security. Eva's parents, who are scientists, get hauled away for experimenting on Luminant kids. It's a whole mess.The crew decides they have to fight back against the oppressive regime that's persecuting their kind. They team up with a ragtag group of rebel Luminants led by the fierce Zara, whose power is basically being a human battery. With her leading the charge, they go on a mission to expose the government's shady dealings and free the imprisoned Luminants.But of course, nothing is ever that easy. They face one hurdle after another - rogue Luminants with less-than-noble motivations, shadowy figures pulling strings behind the scenes, and a climactic showdown that will determine the fate of Luminants everywhere. Will our plucky heroes triumph against the odds? You'll have to watch and find out!What I loved most about this movie was the creative twist on the classic superhero story. Instead of a random accident orgenetic experiment gone wrong, the Luminants' powers have an almost spiritual, mystical quality. Their abilities seem to be connected to their emotional states and life force energy. When they learn to harness that inner light, they become totally unstoppable forces.It's also refreshingly diverse in its cast of characters. You've got people of all backgrounds developing these powers, not just the typical all-American heroes you'd expect. The movie explores how different cultures might view and interpret the rise of Luminants based on their myths and beliefs. Dope stuff.Ultimately though, at its core, "When Human Stars Shine" is about embracing what makes you unique instead of hiding it away. Our heroes have to learn that their powers aren't something to be feared or ashamed of - they're a gift to be celebrated. And when they finally do shine their light for all to see? Well, that's when the real magic happens.So if you're looking for a fun, empowering sci-fi adventure with relatable characters and a uplifting message, check this one out. "When Human Stars Shine" is an illuminating experience that'll leave you glowing from the inside out!篇3Summary (600 words):When Human Stars Shone by Andy Weir is an epic science fiction novel set in the late 22nd century. It follows the incredibly journey of the crew of the starship Enduring Hope as they embark on an audacious mission to colonize a distant Earth-like exoplanet.The story begins with the Enduring Hope launching from Earth's orbit with over 10,000 cryogenically frozen colonists aboard. It's commanded by the unflappable Captain Emily Rhodes and her crew of experts in fields like engineering, xenobiology, and astrogation. Their destination is the habitable exoplanet Kepler-3654c, over 500 light years away. It will take them centuries to arrive using their experimental quantum drive.Not long into their voyage, disaster strikes - the quantum drive fails catastrophically, stranding them in the void between galaxies with no way to slow down or stop. They're doomed to simply fly through the universe forever unless they can find a solution.Desperation drives the crew to make a crazy gambit - using the ship's powerful but unstable quantum drive in short, controlled bursts to slowly change their trajectory towards thenearest star system with potentially habitable planets. It's a hugely risky plan that could just as easily tear the ship apart.After perilous months of precisely timed quantum burns, they manage to get on course to a promising star system. But their problems are far from over - their entry into the system doesn't go as planned and they end up on a collision course with a gas giant planet. More desperate maneuvers are required to get into orbit around a terrestrial moon that scanners identify as potentially life-bearing.The battered crew and colonists take stock as they prepare to begin settling their new home. It's clearly inhabitable but also obviously alien, with unpredictable terrain, atmosphere, and potentially hazardous biochemistries. Their epic struggle to understand this strange new world and establish a permanent colony on its surface is just beginning.Full Essay (2000 words):When Human Stars Shone by Andy Weir is truly an epic tale of humanity's drive to explore and colonize the cosmos, no matter how staggering the challenges. It follows the crew of the starship Enduring Hope as they attempt the extraordinary feat of establishing a permanent human colony around a distant Earth-like exoplanet over 500 light years from our home world.Right from the gripping opening chapters, Weir immerses readers in the ship's desperate plight and the astronauts' heroic efforts to overcome one crisis after another.The novel begins by depicting the launch of the Enduring Hope from Earth's orbit on a multi-century journey across the galaxy. With a massive gene bank and over 10,000 colonists kept in cryogenic stasis, it represents humanity's most ambitious attempt yet to seed life on another world. We're introduced to the brilliant but flawed individuals comprising the ship's crew - people like the steely Captain Emily Rhodes, gruff but brilliant engineer Sergei Balkov, astrobiologist Claire Sorokin, and many others. All are at the top of their respective fields, having undergone years of specialized training and screening. But even they aren't prepared for the catastrophic failures that besiege their mission from the very start.Early on, the Enduring Hope's experimental quantum drive - which is fundamental to achieving faster-than-light travel - suffers a total malfunction, leaving the massive colony ship stranded and unable make course corrections. Worse, it's now locked into its faster-than-light velocity, dooming it to simply fly through the void between galaxies forever unless the crew can find a way to decelerate. This is just the first of many crises, bothtechnological and ethical, they'll confront on their long and perilous journey.What follows is a nail-biting struggle for survival that had me constantly wondering how the crew could possibly overcome the escalating obstacles. Working with the limited resources and tools onboard, they conceive of an audacious plan to save themselves and hopefully complete their mission - using precisely timed bursts from the unstable quantum drive to alter their trajectory and eventually aim them towards an Earth-like planet around another star. But riding the quantum drive is extremely hazardous, risking the total destruction of the ship if the notoriously finicky calculations are even slightly off.Weir's mastery of hard science fiction really shines here, as he walks readers through the complex physics and engineering challenges the crew has to grapple with. At every turn, potential solutions are hamstrung by the realities of Einstein's thought experiments playing out in full. Time dilation effects, insane energy requirements, and extreme distances all loom as nearly impassible barriers. But the crew's determination to survive and find a new home for humanity powers them through even as the odds seem impossibly stacked against them.After overcoming seemingly insurmountable obstacles in deep space, the crew faces a whole new set of challenges as they arrive in a distant star system and attempt to set up a colony on a terrestrial moon. While confirmed as having conditions amenable to human life, not everything is as it first appears. Claire Sorokin becomes one of the novel's most compelling voices as she and her team grapple with contending with an utterly alien biochemistry and ecosystems unlike anything ever encountered. Everything from the chemical makeup of the atmosphere to the fundamental biology of plant and animal life needs to be painstakingly catalogued, understood, and then counteracted. intervention and terraforming on a grand scale is required to make this world even nominally hospitable to terrestrial life. But a rift emerges between those that want to reshape and subjugate the alien environment to suit human needs versus those who feel it must be protected and passively adapted to. Weir does an excellent job not taking sides, but showing the merits and hazards of both viewpoints in a way that feels universally relatable regardless of one's position on environmentalism and colonization in the real world.Beyond just hard science and terraforming logistics, the novel also poignantly examines the psychology and social dynamics of the colonists as generations live and die during thecenturies-long journey and struggle to establish a foothold on their new home. How does the burden and legacy of upholding humanity's greatest achievements shape the choices of individuals and societies? Is the goal of survival necessarily compatible with ethical conduct and free will? These fascinating philosophical quandaries constantly bubble under the surface amongst the book's rich cast of characters.In particular, the coming-of-age arc of Nadia, a girl born during the interstellar voyage, emerges as one of the most emotionally compelling storylines. Now in her late teens as the crew finally nears their destination, she embodies the hopes and uncertainties of a generation never meant to set foot on Earth. Experiencing the wonders and hostilities of the alien moon firsthand through her perspective acts as a powerful metaphor for humanity's drive to overcome, adapt, and persevere in even the most daunting circumstances.While the novel deals with reams of hard science and epochal events, Weir's inclusion of such personal, intimate storylines and compelling characters is what elevates it from a dry thought experiment into a timelessly resonant work of art. He wisely never loses sight of the innately human elements - the frailties, virtues, ambitions, and emotions - that are just asfundamental to the success or failure of this grand endeavor as any physical constraint or technological limit.Overall, When Human Stars Shone is an astounding achievement in speculative fiction precisely because of how grounded and plausible Weir makes the events and science within it feel. This is no lazy space opera but a meticulously researched and richly developed vision of how humanity may truly one day travel across the unimaginable gulfs of interstellar space to seed life on new worlds. It's an endlessly thrilling tale of people pushing the boundaries of innovation, determination, and our very conception of what it means to be human. I can't recommend this seminal work enough to anyone looking for smart, thought-provoking science fiction grounded in deep authenticity.。

带你去看书的作文英语

带你去看书的作文英语

带你去看书的作文英语Title: A Journey to the World of Books。

Introduction:In today's fast-paced world, where technology dominates every aspect of our lives, the art of reading seems to be fading away. However, the enchanting world of books still holds the power to captivate our minds and transport us to realms beyond imagination. Join me on a journey to explore the magic of books, where every page is a doorway to adventure, knowledge, and self-discovery.Body:Imagine strolling through the aisles of a vast library, each shelf laden with books waiting to be explored. As we wander through the labyrinth of literature, the scent of aging paper and ink fills the air, igniting a sense of curiosity within us. With each book we pick up, we embarkon a new adventure, whether it's delving into the realms of fantasy, unraveling the mysteries of history, or exploring the depths of human emotion through poetry and prose.One of the most enchanting aspects of reading is its ability to transport us to distant lands and different eras. As we flip through the pages of a historical novel, we are transported back in time, witnessing grand events and intimate moments through the eyes of characters long gone. Similarly, works of fantasy and science fiction open doorsto fantastical worlds inhabited by creatures beyond imagination, where the laws of reality bend and twist with every turn of the page.Beyond mere entertainment, books also serve asinvaluable sources of knowledge and wisdom. Whether it's delving into the intricacies of quantum physics or unraveling the secrets of the human psyche, books provide a gateway to understanding the world around us and ourselves. Through reading, we have the opportunity to learn from the greatest minds of past and present, expanding our horizons and enriching our lives with new perspectives and insights.Moreover, reading fosters empathy and understanding by allowing us to step into the shoes of others and experience life from different perspectives. As we immerse ourselvesin the lives of characters from diverse backgrounds and cultures, we develop a deeper appreciation for the complexities of the human experience, fostering empathy and compassion in our own hearts.In addition to its intellectual and emotional benefits, reading also offers a sanctuary for the soul in today's chaotic world. In the quiet solitude of a cozy reading nook, we can escape the stresses and pressures of everyday life, finding solace and renewal within the pages of a beloved book. Whether it's the soothing rhythm of poetry or the gripping suspense of a thriller, books have the power to uplift our spirits and rejuvenate our minds.Conclusion:In a world inundated with distractions and fleeting pleasures, the art of reading remains a timeless pursuit,offering solace, inspiration, and enlightenment to all who seek it. So, let us embark on this journey together, hand in hand, as we explore the boundless wonders of the written word and discover the true magic of books.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:c ond-ma t/967161v123J ul1996Twist Boundary Conditions of Quantum Spin Chains near the Gaussian Fixed Points A.Kitazawa Department of Physics,Tokyo Institute of Technology,Oh-okayama,Meguro-ku,Tokyo 152,Japan February 1,2008Abstract Duality transformation,which relates a high-temperature phase to a low-temperature one,is used exactly to determine the critical point for several models (2D Ising,Potts,Ashkin-Teller,8-vertex),as the self dual condition.By changing boundary condition,numerically we can determine the self-dual(critical)point of the Ashkin-Teller(or Gaus-sian)model.This is the first explicit application of the duality to the numerical calculation,with the use of boundary conditions.In this short note,we propose a new method to determine the 2D Gaus-sian critical point of quantum spin chains.Although the finite-size scaling method is a powerful tool to determine the critical point,difficulty may occur for some cases.This difficulty comes from the structure of scaling operators.By changing the boundary condition,we have the other struc-ture of operators.Therefore,selecting boundary conditions,we can use the preferable structure to determine the critical point.The obtained resultsare summarized in eq.(20)and Fig.2.As an effective theory of the 1D quantum spin systems,the following sine-Gordon model (in Euclidean space-time)has been studiedS =12πα2 dτdx cos √We make the identificationφ≡φ+√2π.There exists the U(1)symmetry for thefieldθbut the second term of eq.(1)violates the U(1)symmetry forφ.For the freefield theory,the scaling dimensions of the vertex operators exp(±in√2φ)are n2/2K and Km2/2, where the integer variables n and m are electric and magnetic charges in the Coulomb gas picture.After the scaling transformation a→e dl a,we have the following renor-malization group equationsdK−18y2,dy2)y.These are the famous recursion relations of Kosterlitz.Up to thefirst orderof y,wefind that y is an irrelevantfield for K>4and relevant for K<4.There is a separatrix32K−1−8ln K−1−y2=0which separates the infrared unstable region from the infrared stable region,and on this separatrix,theBerezinskii-Kosterlitz-Thouless transition occurs.The2D Gaussianfixedline lies on y=0.For K<4and y=0,yflows to infinity.For y>0, φis renormalized toπ/√L x n+2πλC n1n2πz h1αin which h1and¯h1are the conformal weights of O1(x1=h1+¯h1).From eq.(4),we have the following RG equationdλ2cos√2are not allowed.)Thus the OPE coefficient in eq.(4)is zero.This indicates that we cannot expect the simple behavior of thefinite size scaling method.In addition,for the irrelevant scalingfield(x>2),the system is in the massless phase,so thefinite size scaling method does not work to determine thefixed points.If we put artificially half magnetic charges m=±1/2in the system,theOPE relations areO1(z,¯z)O e1/2(0,0)=√2 α¯zK/4O e1/2(0,0)+···,O1(z,¯z)O o1/2(0,0)=−√2 α¯zK/4O o1/2(0,0)+···,(6)whereO1=√2φ,O e1/2=√√O o 1/2=√√2π.(8)Hence when the twist angle Φis π,halfodd integer magnetic charges appear.Recently Fukui and Kawakami[3]studied this model analytically and their results are consistent with eq.(8).However,since their studies were based on the integrability,the off-critical behaviors were not treated.To see what happens when the boundary condition is changed in the Coulomb gas picture,we review the case of the following action[4]S =1√2L ,then we can eliminate the second term of eq.(9)with the additional constant term Φ2K/2πL ,but the boundarycondition is changed as θ(τ,L )=θ(τ,0)−Φ/√2πK ∞−∞dτ L0dx (∂µφ)2+i √2π ∞−∞dτ∂τφ(τ,0).(10)4This shows that there exist magnetic charges∓Φ/2πatτ=±∞.Thus we obtain the ground state energy as[2]2π2 Φ2π 2K.(12) We denote the state corresponding to the vertex operator V n,m=e i√2mφas|n,m .Since there exists a magnetic chargeΦ/2πatτ=−∞,wefind the change of this state as|n,m Φ=|n,m+Φ/2π Φ=0,(13) and because there exists a magnetic charge−Φ/2πatτ=∞,the conjugate state isΦ n,m|=0 n,m+Φ/2π|.(14) Hence we obtain[2]E n,m(Φ)−E0(0)=2π2K+K2π 2,(15)orE n,m(Φ)−E0(Φ)=2π2K+K2π .(16)From this equation,wefind that the state|n,0 Φcorresponds to|n,Φ/2π 0 which has the excitation energy E n,0(Φ)−E0(Φ)=E n,0(0)−E0(0),and the momentum nΦ/L.Note that Dotsenko and Fateev[5]considered the similar situationS=12 Φ′asΦ n,m|=0 n,m+Φ′/2π|(which is consistent to eq.(16)),but in(9) the conjugate relation does not change.This may be only the difference of picture.In the case ofΦ=π,we have half odd integer magnetic charges effec-tively.In this case,|0,−1 π(=|0,−1/2 0)and|0 π(=|0,1/2 0)are degen-erate for freefield theory.Introducing the perturbation term of eq.(1)and using thefirst order perturbation theory,we obtain the hybridized states|ψ1 π=12(|0,−1 π+|0 π)(18) whose parity is even,and|ψ2 π=12i(|0,−1 π−|0 π)(19)whose parity is odd.(Note that only whenΦ=0andπ,parity is a good quantum number.)Using the OPE(6),we obtain thefinite size dependence of energy up to thefirst order perturbation asE1(π)−E0(0)=2π8+2πλ√2 2πL K2LK/2−2+··· .(20)Thus wefind that the energy eigenvalues of these states cross linearly at λ=0.In this stage we consider the symmetry of the states(18),(19).In the Ashkin-Teller language,the half magnetic charge operator√2 (√2)corresponds to the operator˜P=σ1µ2(˜P∗=µ1σ2)[6].The sine-Gordon model(1)is invariant under the transformationφ→φ+π2,θ→θ,and y→−y,(21)and the operators√2and√2are transformed as√2→−√2,√2→√2,(22) thus at the point y=0the system has the self-duality[7].6To verify the above things numerically,we study the following S=1 quantum spin chain,H=Lj=1(1−δ(−1)j)(S x j S x j+1+S y j S y j+1+∆S z j S z j+1).(23)The effective action of this model is described as eq.(1).The whole phasediagram was shown in ref.[8].The transition between the dimer and theHaldane phases is of the2D Gaussian ing the Lanczos method,wecalculate energy eigenvalues offinite systems(L=8,10,12,14).Figure1shows the scaled gap behavior of L=10,12,14systems with the periodicboundary condition for∆=0.5.We can see a minimum of the scaledgap.In Fig.2,we show two low lying energies of the subspace S z= 0with the boundary condition S x L+1=−S x1,S y L+1=−S y1,S z L+1=S z1,which correspond to E1(π)and E2(π).We see the expected behavior(20)for this twisted boundary condition.The obtained Gaussianfixed pointsagree with those obtained by the other method[9].The conformal anomalynumber is calculated as c=0.998for the periodic boundary condition andc(π)=−3.185for theΦ=πtwisted boundary condition.In table1,weshow some extrapolated scaling dimensions.These numerical values areconsistent with eqs.(11),(12),(15),(20).With this method,we can alsodetermine the Gaussianfixed line in the massless XY phase[10]and applyto the S=1spin chains with the single ion anisotropy[11,12].Lastly we remark the case of the following sine-Gordon model,S=12πα2 dτdx cos√2φ(z1)√8φ(z2)e±i√√References[1]J.L.Cardy,Nucl.Phys.B270[FS16],186(1986).[2]F.C.Alcaraz,M.N.Barber,and M.T.Batchelor,Phys.Rev.Lett.58,771(1987),and Ann.Phys.(N.Y.)182,280(1988).[3]T.Fukui and N.Kawakami,preprint cond-mat/9606190[4]H.W.J.Bl¨o te,J.L.Cardy,and M.P.Nightingale,Phys.Rev.Lett.56,742(1986).[5]Vl.S.Dotsenko and V.A.Fateev,Nucl.Phys.B240[FS12],312(1984),B251[FS13],691(1985).[6]L.P.Kadanoffand A.C.Brown,Ann.Phys.(N.Y.)121,318(1979).[7]M.Kohmoto,M.den Nijs,and L.P.Kadanoff,Phys.Rev.B24,5229(1981).[8]A.Kitazawa,K.Nomura,and K.Okamoto,Phys.Rev.Lett.76,4038(1996).[9]K.Nomura and A.Kitazawa,preprint cond-mat/9606127[10]A.Kitazawa and K.Nomura,in preparation[11]J.S´o lyom and T.A.L.Ziman,Phys.Rev.B30,3980(1984).[12]H.J.Schulz and T.A.L.Ziman,Phys.Rev.B33,6545(1986).[13]K.Nomura and K.Okamoto,J.Phys.A:Math.Gen.27,5773(1994).[14]T.Giamarchi and H.J.Schulz,Phys.Rev.B39,4620(1989).x1,0=1/2K x0,1/2(=x0(π))0.17860.34972.7992.798Figure captionsFig.1:The scaled gap behavior of L=10(△),L=12(2)and L=14(3) systems with the periodic boundary condition for∆=0.5.Fig.2:The low lying energies of the L=14system with theΦ=πboundary condition for∆=0.5.Parity even state(E1(π))is denoted as solid line and parity odd state(E2(π))is denoted as dashed line.The crossing point is the critical point and its estimated value isδc=0.2524.9。

相关文档
最新文档