《弹塑性力学》第十一章 塑性力学基础.ppt
合集下载
弹塑性力学PPT
P
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
弹塑性力学课件-塑性基本概念
五种简化模型的应力应变关系曲线及相应的机械形态 模型。
机械模型中,力和位移分别 对应于材料的应力和应变。力和 位移的线性关系用弹簧给出,而 干摩擦表示:当力小于某一定值 时,没有发生位Байду номын сангаас,当力达到该 定值时位移可以无限增大(对应 于屈服后的塑性流动)。
如果不考虑材料的强化性质,并且忽略屈服 极限上限的影响,则模型简化为理想弹塑性模型。
2.基本假设
对一般应力状态的塑性理论,作以下基本假设: 1. 材料的塑性行为与时间、温度无关。即只研究常温静载下的材料,认
为材料是非粘性的,在本构关系中没有时间效应。
2. 材料具有无限的韧性,即认为材料可以无限地变形而不出现断裂。
~~
3. 变形前材料是初始各向同性的,且拉伸和压缩的 (真应力—
b) 由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆性,或称为耗散 性(dissipation)。在一个加载-卸载的循环中外力作功恒大于零,这一部 分能量被材料的塑性变形损耗掉了。
c) 当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生 塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化 。
塑性基本概念
1.基本实验 2.基本假设 3.简化模型 4.应力分析
1.基本实验
1.1材料简单拉压实验
弹性与塑性的根本区别不在于应力-应 变关系是否线性,而在于卸载后变形 是否可恢复
没有明显屈服平台的应力应变曲线 有明显屈服阶段的拉伸曲线(低碳钢类) (铝合金类)
卸载后再加载
经过屈服阶段后,材料又恢复了抵抗变形的能力。 在第二次加载过程中,弹性系数仍保持不变,但 弹性极限及屈服极限有升高现象,后继屈服应力 升高程度与塑性变形的历史有关,决定于前面塑 性变形的程度。这种现象称为材料的应变强化。
工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
塑性力学 ppt课件
或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量
一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理
弹塑性力学塑性本构关系
0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H
《工程弹塑性力学》PPT课件
工程弹塑性力学
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA
《弹塑性力学》第十一章塑性力学基础
几何方程
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
弹塑性力学课件
i,j
任晓丹 第二讲:张量分析基础
矩阵的标量函数
aij bij = A : B
张量概述 张量的运算和性质 张量分析初步
矩阵
矩阵的向量函数 y1 = f1 (B) y2 = f2 (B) y3 = f3 (B)
线性函数
∑ 1 y1 = ∑i,j aij bij y2 = i,j a2 bij ∑ ij 3 y3 = i,j aij bij
标量
标量 x, y, x1 , y1 , ...... 标量函数 y = f(x), y1 = g(x1 ), ...... 线性标量函数 (线性变换) f(x1 + x2 ) = f(x1 ) + f(x2 )
线性函数的表示 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = ax
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
向量
向量 x = [x1 , x2 , x3 ]T , y = [y1 , y2 , y3 ]T
向量的标量函数 y = f(x) = f(x1 , x2 , x3 )
线性函数 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = a1 x1 + a2 x2 + a3 x3 =
任晓丹 第二讲:张量分析基础
矩阵的标量函数
aij bij = A : B
张量概述 张量的运算和性质 张量分析初步
矩阵
矩阵的向量函数 y1 = f1 (B) y2 = f2 (B) y3 = f3 (B)
线性函数
∑ 1 y1 = ∑i,j aij bij y2 = i,j a2 bij ∑ ij 3 y3 = i,j aij bij
标量
标量 x, y, x1 , y1 , ...... 标量函数 y = f(x), y1 = g(x1 ), ...... 线性标量函数 (线性变换) f(x1 + x2 ) = f(x1 ) + f(x2 )
线性函数的表示 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = ax
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
向量
向量 x = [x1 , x2 , x3 ]T , y = [y1 , y2 , y3 ]T
向量的标量函数 y = f(x) = f(x1 , x2 , x3 )
线性函数 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = a1 x1 + a2 x2 + a3 x3 =
第十一章 塑性力学绪论
由于应力可分解为静水压力与偏应力张量之和,
而后者具有J 2 , J 3 两个坐标不变量,于是屈服条
件又可写为
f (I1, J2, J3) 0
(11.3b)
由式(1.45)可知,J 3 可表示为 J 2 和Lode 角 的函数,因此,它可以表示为
f (I1, J2 ,3 ) 0
(11.3c)
2.屈服与静水压力无关
当应力 ij 较小时,他们在应力空间中的
位置位于坐标原点附近,此时材料处于弹 性状态。
当应力 ij 增加到一定程度,材料便进入塑性状
态。两者的交界就是屈服面,屈服面以外的区域
为塑性区。这可叙述为:应力状态 ij位于屈服
面之内时( f ( ij ) 0),材料处于弹性状态;
当应力状态 ij 位于屈服面上时( ij 0 ),
力分量满足某种关系时,这一点才进入屈服,
而不是某个应力分量达到某个确定值。因此,
屈服条件应使用函数形式表达,一般为
f ( ij ) 0
(11.1)
式中f是应力状态的函数,称为屈服函数。
为了方便描述,我们引入应力空间,它是6个应 力分量作为坐标轴所构成的抽象空间,空间中的 每一点代表一个确定的应力状态。式(11.1)在应 力空间中为空间曲面,称为屈服面。
部,即 f (1, 2 , 3 ) 0 ,表示处于弹性状态。
从数学上讲,各向同性就意味着:在不同的坐标 系下,屈服函数具有相同的函数形式,即与坐标 系的选取无关,因此,f应是应力张量3个坐标不 变量的函数。
f (I1, I 2 , I3 ) 0 (11.3a) 式中 I1, I 2 , I3 是应力张量的3个坐标不变量。
对于简单拉伸,根据实验可确定其屈服极限
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
塑性力学基础知识ppt课件
• 由于材料的屈服极限是唯一 的,所以 应该用应力或应力的组合作为判断材 料是否进入了塑性状态的准则。
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
弹塑性力学11塑性极限分析
ss
Pe
b h2 6l
ss
Mp
bh2 4
ss
Pp
b h2 4l
s
s
Pe P PP
Ms
Me 2
3
4
he2 h2
he 1 3 2P(l x)
h2
Pel
Ms Mp
M Ppl Me Pel
Pe 2 Pp 3
l
3
o
x
l z
P x
Mp
Me
ss
h/2
z ss
§11-2 塑性极限分析定理与方法
若给物体一微小的虚变形(位移)。则外力的
虚功必等于应力的虚功(物体内储存的虚应变
能)。
fi ui*dV Fi ui*dS s ij i*jdV
V
ST
V
Fi ST
Su
ui
V
虚变形(位移):结构约束所允许的无限小位移。
证明: fiui*dV Fiui*dS s ij i*jdV
平衡方程: 边界条件:
塑性极限弯矩
z
ss
x
l 6
h/2
PP
4MP l
bh2 l
s
s
塑性极限载荷
M
PP 2
l 2
Me
Pel 4
l
6
z ss
确定塑性区位置
❖塑性铰:在全塑性阶段,跨中 截面的上下两塑性区相连,使 跨中左右两截面产生像结构 (机械)铰链一样的相对转动 --塑性铰。
❖ 特点:
塑性铰的存在是由于该截面上的 弯矩等于塑性极限弯矩;故不能 传递大于塑性极限弯矩的弯矩。
x j
V
s
x
ij j
塑性力学基础知识
9.4 (弹)塑性本构关系的几个关键点
1、什么时候塑性开始产生? 即塑性条件,初始屈服条件,或初始屈服准则。
复杂应力情形呢?
应力空间,主应力空间
屈服函数!
屈服面
9.4 (弹)塑性本构关系的几个关键点
2、什么是后继屈服条件?
1. 后继屈服条件的概念
什么是后继屈服? 后继屈服条件的一般形式?
简单拉伸:
弹性力学是我们研究塑性力学的基础! 仍然要记住,弹塑性力学也是以数学函数,也就 是数学场为研究对象的,可以研究整个区域内的力 状态和变形状态。
9.4 (弹)塑性本构关系的几个关键点
1、什么时候塑性开始产生? 即塑性条件,初始屈服条件,或初始屈服准则。
(a)理想弹塑性材料
一维问题-单向应力情形
(c) 线性硬化弹塑性材料
s A
A1 1
C C1
B B1
o εA
εB εC ε
可见,弹塑性问题与加载路径有关。
9.3 (弹)塑性力学VS.弹性力学
1、问题的来源
同弹性力学相同!
9.3 (弹)塑性力学VS.弹性力学
2、研究任务
研究由于载荷或者温度改变,弹塑性体内 部所产生的位移、变形和应力分布等。
为解决工程结构的强度,刚度和稳定性问 题作准备。
塑性力学则研究它们在塑性变形阶段的力学 响应。
弹塑性力学
9.2 应力-应变曲线
1、实际试验资料
9.2 应力-应变曲线
1、实际试验资料
9.2 应力-应变曲线
2、弹塑性变形的特 点
(1)存在一个从弹性 进入塑性的分界。
(2)在塑性阶段卸载, 然后再加载,加载路径 几乎沿着卸载路径回到 原来的卸载点继续加载。 换句话说,这个卸载点 成为了新的弹性-塑性的 界限。
弹塑性力学基础
温加工
冷加工 在不产生回复和 再结晶温度以下
改善产品组织性能
降低金属变形抗力 改善金属塑性 提高强度
冷加工-退火 表面光洁,尺寸精确, 组织性能良好
加热温度 变形终了温度 变形程度 冷却速度
冷变形及热变形
冷变形
变形温度低于回复温度时,金属在 变形过程中只有加工硬化而无回复与再 结晶现象,变形后的金属只具有加工硬 化组织,这种变形称为冷变形。
继续提高变形速度,塑性又开始 下降:随变形速度↑,变形抗力
升高,达到相应于更小变形程度 下的断裂抗力之值。 第二次上升:热效应起作用,温度↑ ,变形抗力下降。
第二次下降:热效应极大,把金属加热到出现液相或大大降
低其晶间物质的强度。
4.变形程度 变形程度对塑性的影响,是同加工硬化及加工过程中伴 随着塑性变形的发展而产生的裂纹倾向联系在一起的。 在热变形过程中,变形程度与变形温度-速度条件是相 互联系着的,当加工硬化与裂纹胚芽的修复速度大于发生速
4、具有纤维组织的金属,各个方向上的机械性能 不相同。顺纤维方向的机械性能比横纤维方向的好。金 属的变形程度越大,纤维组织就越明显,机械性能的方 向性也就越显著。
使纤维分布与零件的轮廓相符合而不被切断; 使零件所受的最大拉应力与纤维方向一致,最大 切应力与纤维方向垂直。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与杆部 的纤维被切断,不能连贯起来,受力时产生的切应力顺着纤维 方向,故螺钉的承载能力较弱(如图a示 )。 当采用同样棒料经局部镦粗方法制造螺钉时(如图b示),纤 维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较 好。
3)金属表面形成吸附润滑层,塑性↑
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组 织的均匀性; (2)采用合适的变形温度—速度制度;
弹塑性力学
• 三重标量积可写为
U (V W ) ijk uiv jwk
• 对交错张量和克罗内尔符号,有下列关 系式:
ijk ist js kt jt ks
• 可用指标方法证明:
A(B C) (AC)B (A B)C
A(B C) (A B)C
• 叉积
U V ijk u jvk ei
• 证明:对分量1,对于表达式 1 jk u jvk
由于下标1,j,k必须互不相同,所以可 能的组合有1,j=2,k=3和1,j=3,k=2, 因而
1 jk u jvk 123u2v3 132u3v2 u2v3 u3v2
• 同理可对其它分量计算,合并得证。
2.2.5 标量场和矢量场
• 函数 (x1, x2, x3) c 称为一个标量场,梯
度
grad
e1
x1
e2
x2
e3
x3
( , , )
x1 x2 x3
• 构成矢量场, 垂直于 =常数的表面。
• 矢量的散度:
V v1 v2 v3 x1 x2 x3
2.2.1 矢量代数
• 矢量既有大小又有方向,在坐标系中 通常用箭头表示。
• 对空间任一点P,坐标是(v1, v2, v3),可以表示为矢量OP或V。
• 由单位矢量叠加有:
V v1e1 v2e2 v3e3
• 或简洁写为:
V (v1, v2, v3 )
vi ui ,i 1,2,3
• ≤弹性与塑性力学≥,陈惠发、A. F. 萨里普 著,北京:建筑工业出版社,2004
目录
弹塑性力学课件
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of us have to make our way laboriously on foot. Albert Einstein
可以证明坐标转换矩阵具有正交性:βik βjk = βki βkj = δij 。
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
坐标变换
将向量看作 1 阶张量
u∗ j = ui βij
2 阶张量 T 的坐标分量满足 T∗ ij = βik βjl Tkl n 阶张量 R 满足下述坐标转换方程 R∗ i1 ······in = βi1 j1 · · · · · · βin jn Rj1 ······jn 而上述方程,在很多教科书中当作 n 阶张量的定义。
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
张量的并乘(张量积)
第十一章 塑性本构关系
也可改写为偏应力率和偏应变率之间的关系:
1 ij e E 1 ij 10 s s ij 2 1 2 1 kk kk 11 kk 3k E
其中: k
E 2 0 -体积模量 3 1 2 3
x
z
l/2 l/2
x
纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
x
x
x ( x, z), y z xy yz zx 0
小挠度假设:在梁达到塑性极限状态瞬间 之前,挠度与横截面尺寸相比为一微小 量,可用变形前梁的尺寸进行计算。 1
Pl/4
弹性极限荷载
s
s
s
s
3.弹塑性阶段(约束塑性变形阶段)
M s Me
he
塑性区扩展
h/ 2
s
he h / 2
M s 2b x zdz 2b s zdz
0 he
z M s 2b s zdz 2b s zdz he 0 he
h/ 2
he
z s P o l/2 z l/2 x
加载
d ij
屈服面
f ij
ij
d ij 卸载
ij
中性变载
加载 卸载
加载面
d ij
f ij
二、硬化材料的加卸载准则
当应力状态处于当前加载面上,再施加应力增量会 出现3种可能性并由此产生3种不同的变形情况。
ij
d ij 卸载
d ij 加载
ij
1、加载:应力增量指向加载面外,应力状态到达新的加载面上; 2、中性变载:应力增量与加载面相切,不产生新的塑性变形; 3、卸载:应力增量指向加载面内,变形从塑性状态回到弹性状态。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 塑性力学基础
§11-1 金属材料的力学实验及几种简化力学模型 §11-2 一维问题弹塑性分析
§11-3 应力、应变偏量的不变量和等效应力 e 等效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2020/10/9
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2020/10/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变
Et
s
s+Et
o
理想刚塑性模型
o
线性强化刚塑性模型
2020/10/9
11
§11-1 金属材料的力学实验及几种简化力学模型
1.3金属材料在静水压力实验:
前人(Bridgman)对大量金属进行水压力实验 及拉压和静水压力联合实验,得到下列结果:
1.在静水压力(高压) p 作用下, 金 属 体 积 应 变
15
§11-2 一维问题弹塑性分析
得
N1 P /(1 a b)
最大弹性荷载
N2 (P a b) (1 a b)
Pe N1(1 a b) s A(1 a b)
力P 作用点的伸长为
e
N1a EA
Pea (1 a )EA
sa
E
b
2020/10/9
16
§11-2 一维问题弹塑性分析
(2)弹塑性解Pp P Pe : P = Pe 后,P 可继续增大,而 N1=sA 不增加
当软钢应力达到A点后,软钢有明显屈服 (塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为
强化阶段,BC段),但强化阶段 增幅较少。
A
s
B
C
’s s
A
B
软钢 -
o
p
e
p
e
o
O’
p e
C
合金钢 -
2020/10/9
4
§11-1 金属材料的力学实验及几种简化力学模型
对于此种材料(有明显屈服流动,强化阶段
理想弹塑性模型
2020/10/9
14
§11-2 一维问题弹塑性分析
(1)弹性解:
当杆处于弹性阶段,杆两部分的伸长为
a
N1a EA
b
N2b EA
代入变形协调方程为
N1a N2b 0 或
EA EA
N2
N1
a b
由于b a,所以 N1 N2 ,将 N2 N1 a b
代入平衡方程。
2020/10/9
是一一对应关系,而要考虑加载变形历史。
(3)对于有明显屈服流动且强化阶段较小的材料, 屈服条件采用初始屈服条件。对于无明显屈服流 动且强化阶段较高的材料,将有后继屈服函数产生。
(4)有些强化材料具有包辛格效应。
2020/10/9
8
§11-1 金属材料的力学实验及几种简化力学模型
1.2 常见的几种简化力学模型
结论:静水压力与塑性变形无关。
2020/10/9
13
§11-2 一维问题弹塑性分析
1.拉压杆的弹塑性问题
EA
N1
图示为两端固定的等
P
N2
截面杆(超静定杆),
x ab
设材料为理想弹塑性材料,
在x = a 处(b a)作用一
逐渐增大的力P。
s
平衡条件 : N1+N2=P
变形协调条件:a+b=0
o s
o
p
e
p
e
’s s
A
BC
合金钢 -
o
O’
p e
当应力-应变曲线在OA范围内变化,材料
为弹性变化。当应力达到 s时(软钢有明显
屈服发生(AB段),合金钢无明显屈服发生) 将发生塑性变形。确定材料发生塑性变形的
条件为
2020/10/9
3
§11-1 金属材料的力学实验及几种简化力学模型
f () = - s = 0 初始屈服条件(函数)
映出反向加载的屈服极限 ’’s s —— 称为
包辛格效应(Bauschinger. J. 德国人)。
BC
包辛格效应
A
’s s
o
O’
’
s’’
2020/10/9
7
§11-1 金属材料的力学实验及几种简化力学模型
小结:
(1)在弹性阶段( s): = e 应力应变关系
一一对应。
(2)当应力达到初始屈服条件( =s时),材料 进入弹塑性阶段, = e+ p,应力-应变关系不再
e=V/V=p/k成正比,当p达到或超过金属材料 的s时,e与p 仍成正比;并且除去压力后,
体积变化可以恢复,金属不发生塑性变形。
2020/10/9
12
§11-1 金属材料的力学实验及几种简化力学模型
2. 金属受静水压力和拉压联合作用与金属单 独受拉压作用比较,发现静水压力对初始屈
服应力 s没有影响。
1
§11-1 金属材料的力学实验及几种简化力学模型
1.1 单 向 拉 压 实 验 :
不同材料在单向拉压实验中,有不同的 应力-应变曲线。
C
s A B
’s s
A
B
C
o
p
e
p
e
软钢 -
o O’
p e
合金钢 -
2020/10/9
2
§11-1 金属材料的力学实验及几种简化力学模型
C
软钢 - s A B
Et E
E( s
)
线性强化弹塑性模型
s(1
Et E
)
Et
s(1 )
Et
Et E 1
2020/10/9
10
§11-1 金属材料的力学实验及几种简化力学模型
在实际问题中,有时当弹性应变 e p 塑
性应变,可忽略弹性变形。
上述两种模型分别简化为: s 时, = 0
s =s
1. 理想弹塑性模型:
加载时: =E = s
s s
s
o s
理想弹塑性模型
2020/10/9
9
§11-1 金属材料的力学实验及几种简化力学模型
2. 线性强化弹塑性模型:
加载时: =E s
Et
s
E
= E s+ Et ( - s ) s o s
s
Et ( s
) s
形,卸载按线弹性。对于强化特性明显的材料,
由O’点继续加载,在O’B段又是线性弹性变化,
当 达到B点再次发生塑性变形,
’s sAFra bibliotekBo
O’
p e
C - ’s=0——后继屈服函数 ’s=’s( p)
2020/10/9
6
§11-1 金属材料的力学实验及几种简化力学模型
当卸载后,反向加载时,有些金属材料反
(a段进入塑性屈服,但 b 段仍处于弹性)
N2=P- N1=P-sA 力 P 作用点的伸长取决于b 段杆的变形
b
N2b EA
(P
s
EA
A)b
2020/10/9
17
§11-2 一维问题弹塑性分析
b
N2b EA
(P
s A)b
EA
Pe s A(1 a b) s A Pe (1 a b)
§11-1 金属材料的力学实验及几种简化力学模型 §11-2 一维问题弹塑性分析
§11-3 应力、应变偏量的不变量和等效应力 e 等效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2020/10/9
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2020/10/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变
Et
s
s+Et
o
理想刚塑性模型
o
线性强化刚塑性模型
2020/10/9
11
§11-1 金属材料的力学实验及几种简化力学模型
1.3金属材料在静水压力实验:
前人(Bridgman)对大量金属进行水压力实验 及拉压和静水压力联合实验,得到下列结果:
1.在静水压力(高压) p 作用下, 金 属 体 积 应 变
15
§11-2 一维问题弹塑性分析
得
N1 P /(1 a b)
最大弹性荷载
N2 (P a b) (1 a b)
Pe N1(1 a b) s A(1 a b)
力P 作用点的伸长为
e
N1a EA
Pea (1 a )EA
sa
E
b
2020/10/9
16
§11-2 一维问题弹塑性分析
(2)弹塑性解Pp P Pe : P = Pe 后,P 可继续增大,而 N1=sA 不增加
当软钢应力达到A点后,软钢有明显屈服 (塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为
强化阶段,BC段),但强化阶段 增幅较少。
A
s
B
C
’s s
A
B
软钢 -
o
p
e
p
e
o
O’
p e
C
合金钢 -
2020/10/9
4
§11-1 金属材料的力学实验及几种简化力学模型
对于此种材料(有明显屈服流动,强化阶段
理想弹塑性模型
2020/10/9
14
§11-2 一维问题弹塑性分析
(1)弹性解:
当杆处于弹性阶段,杆两部分的伸长为
a
N1a EA
b
N2b EA
代入变形协调方程为
N1a N2b 0 或
EA EA
N2
N1
a b
由于b a,所以 N1 N2 ,将 N2 N1 a b
代入平衡方程。
2020/10/9
是一一对应关系,而要考虑加载变形历史。
(3)对于有明显屈服流动且强化阶段较小的材料, 屈服条件采用初始屈服条件。对于无明显屈服流 动且强化阶段较高的材料,将有后继屈服函数产生。
(4)有些强化材料具有包辛格效应。
2020/10/9
8
§11-1 金属材料的力学实验及几种简化力学模型
1.2 常见的几种简化力学模型
结论:静水压力与塑性变形无关。
2020/10/9
13
§11-2 一维问题弹塑性分析
1.拉压杆的弹塑性问题
EA
N1
图示为两端固定的等
P
N2
截面杆(超静定杆),
x ab
设材料为理想弹塑性材料,
在x = a 处(b a)作用一
逐渐增大的力P。
s
平衡条件 : N1+N2=P
变形协调条件:a+b=0
o s
o
p
e
p
e
’s s
A
BC
合金钢 -
o
O’
p e
当应力-应变曲线在OA范围内变化,材料
为弹性变化。当应力达到 s时(软钢有明显
屈服发生(AB段),合金钢无明显屈服发生) 将发生塑性变形。确定材料发生塑性变形的
条件为
2020/10/9
3
§11-1 金属材料的力学实验及几种简化力学模型
f () = - s = 0 初始屈服条件(函数)
映出反向加载的屈服极限 ’’s s —— 称为
包辛格效应(Bauschinger. J. 德国人)。
BC
包辛格效应
A
’s s
o
O’
’
s’’
2020/10/9
7
§11-1 金属材料的力学实验及几种简化力学模型
小结:
(1)在弹性阶段( s): = e 应力应变关系
一一对应。
(2)当应力达到初始屈服条件( =s时),材料 进入弹塑性阶段, = e+ p,应力-应变关系不再
e=V/V=p/k成正比,当p达到或超过金属材料 的s时,e与p 仍成正比;并且除去压力后,
体积变化可以恢复,金属不发生塑性变形。
2020/10/9
12
§11-1 金属材料的力学实验及几种简化力学模型
2. 金属受静水压力和拉压联合作用与金属单 独受拉压作用比较,发现静水压力对初始屈
服应力 s没有影响。
1
§11-1 金属材料的力学实验及几种简化力学模型
1.1 单 向 拉 压 实 验 :
不同材料在单向拉压实验中,有不同的 应力-应变曲线。
C
s A B
’s s
A
B
C
o
p
e
p
e
软钢 -
o O’
p e
合金钢 -
2020/10/9
2
§11-1 金属材料的力学实验及几种简化力学模型
C
软钢 - s A B
Et E
E( s
)
线性强化弹塑性模型
s(1
Et E
)
Et
s(1 )
Et
Et E 1
2020/10/9
10
§11-1 金属材料的力学实验及几种简化力学模型
在实际问题中,有时当弹性应变 e p 塑
性应变,可忽略弹性变形。
上述两种模型分别简化为: s 时, = 0
s =s
1. 理想弹塑性模型:
加载时: =E = s
s s
s
o s
理想弹塑性模型
2020/10/9
9
§11-1 金属材料的力学实验及几种简化力学模型
2. 线性强化弹塑性模型:
加载时: =E s
Et
s
E
= E s+ Et ( - s ) s o s
s
Et ( s
) s
形,卸载按线弹性。对于强化特性明显的材料,
由O’点继续加载,在O’B段又是线性弹性变化,
当 达到B点再次发生塑性变形,
’s sAFra bibliotekBo
O’
p e
C - ’s=0——后继屈服函数 ’s=’s( p)
2020/10/9
6
§11-1 金属材料的力学实验及几种简化力学模型
当卸载后,反向加载时,有些金属材料反
(a段进入塑性屈服,但 b 段仍处于弹性)
N2=P- N1=P-sA 力 P 作用点的伸长取决于b 段杆的变形
b
N2b EA
(P
s
EA
A)b
2020/10/9
17
§11-2 一维问题弹塑性分析
b
N2b EA
(P
s A)b
EA
Pe s A(1 a b) s A Pe (1 a b)