Zn-doping effect on the magnetotransport properties of Bi_{2}Sr_{2-x}La_{x}CuO_{6+delta} si

合集下载

钙钛矿氧化物中的Jahn-Teller效应研究

钙钛矿氧化物中的Jahn-Teller效应研究

钙钛矿氧化物中的Jahn-Teller效应研究叶吾梅【摘要】通过大量查阅资料并结合我们自旋电子与纳米材料安徽省重点实验室多年对钙钛矿氧化物CMR(庞磁电阻)效应研究,综述了钙钛矿氧化物研究现状;阐述了钙钛矿氧化物庞磁电阻产生的机制:钙钛矿氧化物的磁电阻效应大多用双交换机理进行解释,虽然双交换机理能够定性地解释若干重要的实验结果,但定量地与实验相比较却碰到困难,单独由双交换机理计算所得的电阻率远低于实验值,而居里温度TC的理论值远高于实验值,指出必须考虑Jahn-Teller畸变,并指出研究Jahn-Teller畸变的途径。

为研究钙钛矿氧化物的磁电阻效应指明了方向。

【期刊名称】《赤峰学院学报(自然科学版)》【年(卷),期】2016(000)002【总页数】3页(P23-25)【关键词】Jahn-Teller畸变;CMR效应;钙钛矿氧化物【作者】叶吾梅【作者单位】自旋电子与纳米材料安徽省重点实验室,安徽宿州 234000; 宿州学院机械与电子工程学院,安徽宿州 234000【正文语种】中文【中图分类】O428.54钙钛矿氧化物的磁电性质大多用双交换机理进行解释.虽然双交换机理能够定性地解释若干重要的实验结果,但定量地与实验相比较却碰到困难.单独由双交换机理计算所得的电阻率远低于实验值,而居里温度TC的理论值远高于实验值[1].这表明只考虑双交换机理,eg电子的巡游性太强,导致对电导和TC的理论值的过高估计.为了解决这一问题,邢定钰[2]认为必须在双交换机理之外,考虑减小eg电子迁移率的其他因素.这方面的理论努力包括:考虑Jahn-Teller电—声子作用的极化子图像[3],考虑非磁无序和局域自旋无序导致的Anderson局域化图像[4],以及载流子非均匀的相分离图像[5].然而,实验中观察到的相分离行为可能是由于MnO6八面体的Jahn-Teller畸变所导致[6],张士龙等[7]指出,这种由Jahn-Teller效应引起的电—声子相互作用可能是导致La0.875Sr0.125MnO3在低温下发生相分离现象的一个重要因素;所谓安得森局域化(Anderson Localization),是由于掺杂而导致的导电到绝缘的现象,可能是由于掺杂引起Jahn-Teller畸变.Mn3+的eg电子有两个简并轨道d3z2-r2和dz2-y2,在Jahn-Teller畸变下简并消除,两个轨道对应不同的能量和能带宽度,eg电子占据能级较低的轨道,从而使体系的总能量降低.由于不同电子轨道态之间的关联作用,轨道态形成有序分布,即eg电子有序的占据不同的d轨道,即为轨道有序.轨道有序是由Jahn-Teller畸变引起的.电荷有序相究竟起源于电子之间的长程库伦相互作用、Jahn-Teller 电-声子相互作用还是超交换作用仍然存在着争议.大部分理论认为在电荷有序反铁磁体系中电荷序、轨道序和自旋序相互耦合.所以,在钙钛矿氧化物中的B位掺杂,或是增强Jahn-Telle畸变、或是削弱Jahn-Telle畸变,研究Jahn-Telle畸变对钙钛矿氧化物的相分离现象、轨道有序、电荷有序、自旋有序以及磁电性质的影响是抓住了问题的本质.自1993年Helmolt等人[8]在La2/3Ba1/3MO3薄膜中观察到庞磁电阻效应发表“引子文章”以来,通过二十多年的研究,已经对锰氧化物的电子结构,磁结构等问题有了充分的理解和认识.并且对于各种母体系和掺杂体系已经能描绘出它们清晰的相图.比较全面认识的是[9-11]:对于LaMnO3的基态是A-型反铁磁轨道有序[12];在中度掺杂的锰氧化物的基态是铁磁金属态[13];A位离子半径较小的半掺杂体系中,形成稳定的电荷、自旋和轨道有序态[14];对于输运行为,无论是理论还是实验都阐明存在渗流的倾向[15,16];理论和实验都证明了锰氧化物体系具有明显的相分离行为[17,18];关于CMR效应的本质,理论研究认为是由于方向无规分布的铁磁小区域和反铁磁小区域的共存[19];理论研究预言并为实验所证明,锰氧化物中的金属—绝缘体相变为二级相变所分开,并导致双临界行为的出现[20];理论和实验研究发现,在Curie 温度以上存在一个新的温度尺度T*,在此温度开始形成磁团簇[6,21].虽然我们对锰氧化物的认识已经有了很大的进步,但新的现象不断涌现,对目前的理论已经提出挑战,主要问题是:对于钙钛矿氧化物的磁电输运行为众说纷纭,还没有统一的认识;对于在相图上普遍存在的铁磁绝缘区域的性质还需要深入的分析和理解;对于锰氧化物中的glass (玻璃)态是否就是标准的spin-glass(自旋玻璃)态,还是一种新的态Cluster glass(团簇玻璃);从应用角度而言,发展以这类材料为基础的磁电子学器件为时尚早.一是低场磁电阻的机理还不清楚,二是磁电阻表现出很强的温度敏感性.对于过渡金属的3d电子,3d轨道在氧八面体配位场下劈裂为t2g(包括轨道dxy,dzx和dxy)和eg(包括轨道d3z2-r2和dx2-y2)能带,t2g和eg轨道的能量分别是相同的(就是说t2g三个轨道的能量是相同的,eg以此类推),其中eg轨道的能量比t2g轨道的要高一些.t2g态和eg态之间晶场劈裂能大概1ev[22],JT离子使二重简并的eg能级再次劈裂分为两个能级,这两个eg能级的能隙较大.d0(V5+),d3(Mn4+、Cr3+),d8(Ni2+),d10(Zn2+)及高自旋d5(Co4+)、低自旋d6(Co3+),符合Oh对称,不是Jahn-Telle离子;d9(Cu2+),d4(Mn3+),低自旋d7(Co2+),不符合Oh对称,是Jahn-Telle离子.以Cu2+(3d9)为例:Cu2+(3d9)在正八面体配位位置发生四方畸变(c/a>1)时,Cu2+离子d轨道能级进一步分裂:,电子组态为(t2g)6(eg)3,轨道缺1个eg电子.当dx2-y2缺电子,z方向有效电荷对配位体引力大于xy平面内配位体引力,形成xy平面内4个短键和z轴方向上的两个长键,正八面体畸变成沿Z轴拉长的四方双锥体;当d3z2-r2缺电子,z方向有效电荷对z轴上2个配位体引力小于xy平面内配位体引力,形成xy平面内4个长键和z轴方向上的两个短键,正八面体畸变成沿Z轴缩短的扁四方双锥体.另外还有xy平面内2个氧原子向外移动,2个氧原子向内移动;6个氧原子同时向内向外移动.一般认为,电荷有序(CO)相起源于库仑势、轨道有序、Than-Teller效应.大部分理论认为在电荷有序反铁磁体系中电荷序、轨道序和自旋序相互耦合.然而,很少有人在实验上证明其三者之间关系[10].我们实验室的王桂英等(文章已投出)研究了B位掺杂削弱Jahn-Teller畸变对电荷有序相的影响,研究了Co3+替代Mn3+破坏La0.4Ca0.6MnO3电荷有序相的机制,结果表明:Co替代Mn的La0.4Ca0.6Mn1-xCoxO3体系中,随Co替代量增加,电阻率不数减小;随Co替代量增加,反铁磁性减弱、铁磁性增强;证明了Co3+—O2-—Mn4+,Mn3+—O2-—Co4+不能产生好的双交换;当x=0.02时,电荷有序相已基本融化;x=0.06时,电荷有序相完全融化.Co3+不是JT离子,电荷有序(CO)相起源于Jahn-Teller畸变,Co3+替代Mn3+削弱了JT畸变,有利于双交换,使体系的反铁磁性减弱、铁破性增强,电荷有序是在反铁磁背景下产生的,通过破坏电荷有序的生存环境—反铁磁,从而破坏电荷有序.我们实验室的刘鹏等[23]研究了Ga3+替代Mn3+,La0.4Ca0.6MnO3电荷有序相的影响,结果表明,替代量高达0.15时电荷有序相依然存在.这是因为Ga3+是非磁性离子,Ga不属于过渡金属,Ga3+不是JT离子,Ga3+的电子组态为t2g6eg4,eg轨道已被电子占满,Ga3+替代Mn3+只是阻断Mn3+—O2-—Mn4+链,Ga3+替代Mn3+破坏电荷有序相效果不明显.〔1〕Millis A J, Littlevood P B, Shraiman B I. Double exchange alone does not explain the resistivity of La1-xSrxMnO3[J]. Physical Review Letters, 1995, 74(25):5144-5147.〔2〕邢定钰.自旋输运和巨磁电阻-自旋电子学的物理基础之一[J].物理,2005,34(5):348-361.〔3〕Millis A J, Littlevood P B, Shraiman B I. Dynamic Jahn -Teller effect and colossal magne-toresistance in La1-xSrxMnO3[J]. Physical Review Letters, 1996, 77(1):175-178.〔4〕Sheng L, Xing D Y, Sheng D N, Ting C S. Theory of colossal magnetoresistance in R1 -xAxMnO3[J]. Physical Review Letters, 1997, 79 (9)::1710-1713.〔5〕Dogotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: the key role of phase separation [J]. Physics Reports, 2001, 344 (1-3):1-153. 〔6〕孙玉平,鲁文建,马永青,宋文海,杜家驹.内耗测量在钙钛矿结构Mn基氧化物研究中的应用[J].物理学进展,2006,26(3):340-345.〔7〕张士龙,岑诚,谢津桥,苏金瑞,苯长飞. La1-xSrx MnO3(x≈0.125)中相分离现象的超声研究[J].金属学报,2003,39(11):1176-1178.〔8〕Helmolt R V, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant Negative magnetoresistance in perovskitelikeLa2/3Ba1/3MnOxferromagnetic films [J]. Physical Review Letters, 1993,71(25):2331-2333.〔9〕Alvarez G, Dagotto E. Single-band model for diluted magnetic semiconductors: dynamical and transport properties and relevance ofclustered state [J]. Physical Review B, 2003,68 (4): 045202-045202. 〔10〕洪波.钙钛矿锰氧化物的电荷序、轨道序、自旋序及其相互作用[D].合肥:中国科学技术大学, 2007.〔11〕叶吾梅,彭振生.钙钛矿锰氧化物CMR效应温度敏感性研究[J].宿州学院学报,2011,26 (2):26-29.〔12〕Pickett W E, Singh D J. Electronic structure and half-metallic transport in the La1-xCaxM-nO3system [J]. Physical Review B, 1996, 53 (3): 1146-1160.〔13〕Wang Z H, Shen B G, Tang N, Cai J W, Ji T H, Zhao J G, Zhan W S, Che G C, Dai S Y, Dickon H L Ng. Colossal magnetoresistance in cluster glass -like insulator La0.67Sr0.33(Mn0.8Ni0.2)O3[J]. Journal of Applied Physics, 1999, 85(8):5399-5401.〔14〕Rao C N R., Raveau B. Transition metal oxides [M] Singapore: World Scientific press, 1998.〔15〕Yin Y, Zhang C J, Li P, Zhang Y H. Coexistence of pdσ hybridization conduction and double-exchange conduction in heavily doped La1.85-2xSr0.15+2xCu1-xMnxO4[J]. Physical Review B, 2001, 65(2):024407-024407. 〔16〕Li P, Xu X J, Zhang Y H. Anomalous transport properties of heavily doped polycrystalline La0.825Sr0.175Mn1 -xCuxO3[J]. Physical Review B, 2000, 62(9):5667-5672.〔17〕Mathieu R, Akahoshi D, Asamitsu A, Tomioka Y, Tokura Y. Colossal magnetoresistance without phase separation:disorder -induced spin glass state and nanometer scale orbital-charge correlation in half doped manganites [J]. Physical Review Letters, 2004, 93 (22):227202-207202.〔18〕Verstraete F, JJ G, JI. C. Matrix Product density operators: simulation of finite-temperature and dissipative systems [J]. Physical Review Letters, 2004, 93(20):207204-207204.〔19〕Millis A J. Lattice effects in magnetoresistive manganese perovskites [J]. Nature, 1998, 392: 147-150.〔20〕Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y. Insulatormetal transition and giant magnetoresistance in La1-xSrxMnO3[J]. Physical Review B, 1995, 51 (20): 14103-14109.〔21〕Peng Z S, Liu N, Cai Z R, Guo H Y, Tong W, Zhang C J, Zhang Y H. Influence of Gd doping at a site upon the magnetic structure of La0.7-xGdxSr0.3MnO3systems[J].Chinese Physics Letters, 2003, 20(4): 564-567. 〔22〕童伟.钴基和锰基钙钛矿氧化物的磁性输运性研究[D].合肥:中国科学技术大学,2004.〔23〕刘鹏,王桂英,唐永刚,毛强,刘宁,彭振生. La0.4Ca0.6Mn1-xGaxO3体系的电荷有序相[J].稀有金属,2014,38(4):635-640.。

两种高分子化锌卟啉络合物与特丁津相互作用的光谱性能研究

两种高分子化锌卟啉络合物与特丁津相互作用的光谱性能研究

dition, both the Soret and Q absorption bands of ZnPP鄄PGMA exhibited red shift in the electronic rescence quenching for ZnHPP鄄PGMA was a little less than ZnPP鄄PGMA. It is because the hydrogen terbuthylazine. 摇 bonding between ZnHPP鄄PGMA and terbuthylazine led to the weaker axial coordination. Moreover, the fluorescence quenching of ZnHPP鄄PGMA was strengthed with the increasing concentration of
characterized by nuclear magnetic resonance ( 1 H鄄NMR) spectroscopy. The spectroscopic properties spectroscopy. The axial coordination reaction between two kinds of Zn porphyrin鄄functionalized
Spectroscopic Properties of Two Kinds of Zn Porphyrin鄄functionalized Polymer and Their Coordination Products with Terbuthylazine
YU Long1 , WANG Rui鄄xin1* , GAO Bao鄄jiao1 , GENG Tian鄄qi2 , CHEN Mei鄄jun2 ,

Ni掺杂对ZnO磁光性能的影响

Ni掺杂对ZnO磁光性能的影响

Ni掺杂对ZnO磁光性能的影响侯清玉;贾晓芳;许镇潮;赵春旺【摘要】在掺杂浓度范围为2.78%-6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni 掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.%Nowadays,the experimental results of absorption spectrum distribution of Ni doped ZnO suffer controversy when the mole fraction of impurity is in a range from 2.78% to 6.25%.However,there is still lack of a reasonable theoretical explanation.To solve this problem,the geometry optimizations and energies of different Ni-doped ZnO systems are calculated at a state of electron spin polarization by adopting plane-wave ultra-soft pseudo potential technique based on the density function theory.Calculation results show that the volume parameter and lattice parameter of the doping system are smaller than those of the pure ZnO,and they decrease with the increase of the concentration of Ni.The formation energy in the O-rich condition is lower than that in the Zn-rich condition for the same doping system,and the system is more stable in the O-rich condition.With the same dopingconcentration of Ni,the formation energies of the systems with interstitial Ni and Ni replacing Zn cannot be very different.The formation energy of the system with Ni replacing Zn increases with the increase of the concentration of Ni,the doping becomes difficult,the stability of the doping system decreases,the band gap becomes narrow and the absorption spectrum is obviously red shifted.The Mulliken atomic population method is used to calculate the orbital average charges of doping systems.The results show that the sum of the charge transitions between the s state orbital and d state orbital of Ni2+ ions in the doping systems Zn0.9722Ni0.0278O,Zno.9583Nio.0417O and Zn0.9375Ni0.0625O supercells are all closed to +2.Thus,it is considered that the valence of Ni doped in ZnO is +2,and the Ni is present as a Ni2+ ion in the doping system.The ionized impurity concentrations of all the doping systems exceed the critical doping concentration for the Mott phase change of semiconductor ZnO,which extremely matches the condition of degeneration,and the doping systems are degenerate semiconductors.Ni-doped ZnO has a conductive hole polarization rate of up to nearly 100%.Then the band gaps are corrected via the LDA (local density approximation)+U method.The calculation results show that the doping system possesses high Curie temperature and can achieve room temperature ferromagnetism.The magnetic moment is derived from the hybrid coupling effect of p-d exchange action.Meanwhile,the magnetic moment of the doping system becomes weak with the increase of theconcentration of Ni.In addition,the absorption spectrum of Ni-interstitial ZnO is blue-shifted in the ultraviolet and visible light bands.【期刊名称】《物理学报》【年(卷),期】2017(066)011【总页数】9页(P290-298)【关键词】Ni掺杂ZnO;电子结构;磁光性能;第一性原理【作者】侯清玉;贾晓芳;许镇潮;赵春旺【作者单位】内蒙古工业大学理学院,呼和浩特010051;内蒙古自治区薄膜与涂层重点实验室,呼和浩特010051;内蒙古工业大学理学院,呼和浩特010051;内蒙古工业大学理学院,呼和浩特010051;内蒙古工业大学理学院,呼和浩特010051;上海海事大学文理学院,上海 201306【正文语种】中文在掺杂浓度范围为2.78%—6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.在室温条件下ZnO的直接带隙为3.37 eV[1],激子束缚能为60 meV,具有优异的物理和化学性能,并且原料丰富、价廉、环境友好.ZnO在室温下可能实现铁磁性.因此,ZnO基稀磁半导体(DMS)成为人们关注的焦点[2−13].目前,在理论计算方面,以往的研究主要集中在过渡金属Ni掺杂的ZnO的磁性能上,Gerami等[14]采用第一性原理广义梯度近似(GGA)研究了Ni掺杂对ZnO磁性的影响,结果表明,Ni的掺杂浓度为2.8%—12.5%(物质的量分数,下同)时,Ni掺杂量越大,磁矩越小,磁矩主要来源于Ni-3d态和O-2p态强杂化电子的交换作用.Haq 等[15]采用第一性原理GGA+U方法研究了Ni掺杂对ZnO铁磁性的影响,结果表明,Ni的掺杂浓度为6.25%—25%时,Ni掺杂ZnO具有铁磁性,同时,掺杂体系具有半金属化的特性.肖振林等[16]采用第一性原理局域密度近似(LDA)研究了Ni掺杂对ZnO铁磁性的影响,结果表明,掺杂体系铁磁性更稳定,磁矩主要来源于Ni-3d态和O-2p态杂化在费米能级附近电子态自旋极化交换作用,且掺杂体系表现出半金属化特征.在实验方面,过渡金属Ni掺杂对ZnO磁光性能影响的研究有大量报道[17−21],虽然取得了一定的成果,但是Ni掺杂ZnO中吸收光谱的分布频有争议.文献[20]实验指出,当ZnO中Ni的掺杂浓度为3%时,掺杂体系吸收光谱发生蓝移.该结论与文献[21]实验结果相悖.为了解决这一问题,本文在Ni掺杂浓度与文献[20,21]相近的情况下,在电子自旋极化条件下,用第一性原理研究了Ni掺杂对ZnO磁光性能的影响.研究显示,Ni掺杂量越大,掺杂体系吸收光谱红移越显著,这与文献[21]实验结果相符合.其次,ZnO中掺杂Ni能够实现室温以上的居里温度.另外,我们还发现ZnO中掺杂Ni时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.这对设计和制备新型磁光功能材料有一定的理论参考价值.2.1 理论模型理想ZnO模型为六方纤锌矿结构,属于P63mc空间群,对称性为C46v,其晶格参数a=b=3.2342 Å(1 Å=0.1 nm)[22],c=5.1901 Å[22].构建未掺杂的ZnO单胞模型、一个Ni原子替换一个Zn原子的模型分别为Zn0.9722Ni0.0278O(3×3×2),Zn0.9583Ni0.0417O(2×2×3)和Zn0.9375Ni0.0625O(2×2×2)超胞,Ni在体系中的质量分数为1.99%—4.50%(用Ni原子的相对原子质量除以掺杂体系超胞的总相对分子质量).为了研究掺杂体系的铁磁性(FM)和反铁磁性(AFM),还构建了三种双掺杂Ni-Ni不同间距的Zn0.875Ni0.125O(2×2×2)超胞模型,一个Ni原子替换Zn原子的位置固定,用1,2和3分别代表另一个Ni原子的掺杂位置.另外,构建一个Ni原子间隙在中央位置(0.5,0.5,0.5)的Zn16NiiO16(2×2×2)超胞模型.所有构建模型如图1所示.2.2 计算方法所有体系都采用密度泛函理论(DFT)平面波基组的总能超软赝势方法(Cambridge sequentialtotal energy package,CASTEP)模块计算.交换关联能采用Ceperlev和Alder提出的局域密度近似,将密度相同的均匀电子的交换泛函看作对应的非均匀系统的近似值,可以得到较好的效果.原子核和电子间的相互作用采用超软赝势(Vanderbilt)来描述.在电子自旋极化状态下,计算中为了修正带隙使之与实验结果相符合,在模型中通过Hubbard参数U(排斥能)来描述强相关作用,称为LDA+U方法.取Ud,Zn=10 eV[23],Us,Zn=0 eV[23],Up,O=7 eV[23],Ud,Ni=7.1 eV[15].构建赝势的电子组态分别为Zn:3p63d104s2,O:2s22p4,Ni:4s23d8.计算中几何结构优化、能量、自洽场和能带的收敛精度皆设为2.0×10−5eV/atom;作用在每个原子上的力不超过0.5 eV/nm,内应力不超过0.1 GPa,公差偏移为0.0002 nm.计算采用电子自旋极化处理,平面波截断能设置为340 eV.判断掺杂体系是否具有铁磁性时,所有原子自旋向上;判断掺杂体系是否具有反铁磁性时,一半原子自旋向上,另一半原子自旋向下.3.1 晶体结构、稳定性和形成能分析对掺杂前后所有体系进行几何结构优化,优化后的晶胞参数、体积和总能量及形成能如表1所示.未掺杂ZnO单胞的晶格常数与实验结果相符合[22],偏差在2%左右,说明选取的参数设置是合理的.计算得出Ni掺杂后ZnO的晶格参数与相近浓度的文献结果[14]非常接近.Ni掺入对ZnO体系的体积有一定的影响.Ni掺杂量越大,掺杂体系体积越小.由量子化学理论可知,Ni2+离子半径为0.072 nm,比Zn2+离子半径0.074 nm小[18],当离子半径小的Ni2+取代离子半径大的Zn2+时,掺杂体系体积减小.计算结果与实验结果相符合[20].本文使用Mulliken方法计算了轨道电荷分布,结果发现,掺杂体系Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O超胞中,价电子组态4s23d8中Ni2+离子的s态轨道和d态轨道电荷转移之和趋近+2,因此可以认为Ni掺杂在ZnO中的化合价为+2,Ni以Ni2+离子的形式存在,这与文献[18]实验结果相符合.根据文献[24]可知,当Ni的掺杂浓度达到15%时,晶体不发生相变.之所以选取Ni 的掺杂浓度为0—12.5%这一范围进行探究,是因为Ni的掺杂浓度不超过15%,掺杂体系的结构就不会发生相变,满足本文限定的ZnO为六方纤锌矿结构的要求.杂质形成能Ef是用来判断原子掺杂难易程度的物理量,也可以表征掺杂对ZnO体系结构稳定性的影响.Ef的表达式为[25−27]式中EZnO:Ni为Ni掺杂后体系的总能量,EZnO为与掺杂体系大小相同的未掺杂ZnO超胞体系总能量,µNi为Ni最稳定(基态)金属相的每个分子的能量来替代的化学势.设µZn和µO分别为Zn原子和O原子的化学势,化学势依赖于材料制备过程中的实验条件.为了确定µZn和µO,考虑到热平衡条件下ZnO满足关系µZn+µO=µZnO,而且化学势µO6µO2/2,µZn6µZn(bulk),在样品制备过程中,满足富氧条件时有µO=µO2/2,在富锌条件下则有µZn=µZn(bulk),其他化学势可以由以上热平衡关系推算得到.在富氧条件下,µZn=µZnO(bulk)−EO2/2;在富锌条件下,µO=EZnO(bulk)−EZn(bulk),其中EZnO(bulk),EZn(bulk)和EO2分别为块体ZnO,Zn和O分子的总能量.在富氧或富锌条件下,掺杂体系中杂质形成能的计算结果如表1所示.从表1可以看出,富氧条件下同种掺杂体系的形成能比富锌条件下小,掺杂体系稳定性高.掺杂量越大,掺杂体系的形成能越高,掺杂越难,结构越不稳定.另外,在相同结构体系中,ZnO中Ni以间隙掺杂或替位掺杂方式掺入,掺杂体系的形成能差别不大.3.2 简并化分析根据文献[28]可知,ZnO半导体简并化的临界浓度计算公式为式中aH为波尔半径,aH=2.03 nm[29];nc为简并化临界浓度.将已知数据代入(2)式中可得临界浓度nc=9.56×1017cm−3.Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O超胞浓度分别约为1.12×1021,1.68×1021,2.51×1021cm−3.结果表明,电离杂质浓度均超过ZnO半导体简并化的临界浓度,掺杂体系均发生了半导体简并化.这在能带结构分布和态密度分布中获得进一步验证.3.3 电子自旋极化状态掺杂前后体系带隙和磁性分析在电子自旋极化状态下,计算得出ZnO,Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O 和Zn0.9375Ni0.0625O超胞的总能带结构分布和总态密度(DOS)分布如图2和图3所示.由图2(a)可以看出,未掺杂ZnO单胞采用LDA+U方法进行带隙调整后,未掺杂ZnO带隙宽度Eg约为3.40 eV,这与文献[30]实验结果一致.计算结果表明,未掺杂ZnO采用LDA+U的方法调整带隙宽度是合理的.由图2(b)—图2(d)可以看出,掺杂体系带隙宽度分别约为3.06,3.02,3.00 eV.采用LDA+U方法,由于Ni-3d轨道不满,Ni掺杂后,掺杂体系的电子在分布和成键时发生不同自旋状态电子间的重新分布,表现为占据在相近能级上的电子因分子场的影响而发生能级分裂,自旋向上的电子和自旋向下的电子在能量尺度上分离开,就是所谓的自旋劈裂.劈裂的过程是自发进行的,导致掺杂体系导带下移,且掺杂量越大,能级分裂越严重,导带下移越明显.由图2(b)—(d)和图3可以看出,价带顶有轻微带尾效应,使价带顶略微上移,掺杂体系带隙变窄,随着掺杂量增大,价带顶上移几乎不变.计算结果表明,在电子自旋极化状态下,掺杂体系带隙变窄,且Ni掺杂量越大,掺杂体系带隙越窄,这与文献[21]实验结果相符合.3.4 重整化理论分析由重整化理论分析可知在电子自旋极化状态下Ni掺杂量越大,Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O超胞的带隙越窄的原因是:1)Ni高掺杂量产生Burstein-Moss移动,使光学吸收边向低能方向移动,从而使带隙加宽;2)电荷之间相互作用产生多体效应或杂质及缺陷带之间的重叠,使带隙变窄[31].这两种因素互相竞争,在电子自旋极化状态下,前者的作用小于后者,Ni掺杂量越高,掺杂体系带隙越窄.由图3可以看出,所有掺杂体系中自旋向下的电子数大于自旋向上的电子数,所以,所有的掺杂体系具有磁性,且费米能级进入下旋价带中,没有进入上旋价带中.计算结果表明,所有掺杂体系表现出半金属化的特征,Ni掺杂ZnO的传导空穴极化率将近100%,这对设计和制备空穴注入源新型稀磁半导体非常有利.在电子自旋极化状态下,计算得出ZnO,Zn0.9722-Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O超胞的分波态密度(PDOS)分布,如图4所示.由图4(a)可以看出,所有分波态密度都是对称的,所以,未掺杂ZnO没有磁性.由图4(b)—图4(d)看出,O-2p态和Ni-3d态电子自旋向上和电子自旋向下的分波态密度电子数明显不相同,所以,掺杂体系产生磁矩.计算得出,Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O磁矩分别为2.04244µB,2.04148µB和2.04067µB,其中µB为玻尔磁子.掺杂体系的磁矩都非常接近整数2.这与实验结果变化趋势相符合[17,18].掺杂体系磁矩与文献[14]的理论计算结果相符合.根椐文献[32]报道可知,这是掺杂体系都表现为铁磁性的重要特征.在限定掺杂浓度范围(2.78%—6.25%)内,Ni掺杂量越大,掺杂体系磁矩越小.这是由于随着Ni掺杂量的增加,掺杂体系p-d态电子交换作用会减弱.这与RKKY相互作用磁性理论相符合[33−35].Ni掺杂ZnO中磁性来源为O-2p态和Ni-3d态电子的交换作用.计算得出Zn0.9583Ni0.0417O超胞的净自旋密度分布如图5所示.由图5可以看出,掺杂体系的总磁矩主要由自旋极化的Ni原子和近邻的O原子所贡献.这与态密度分布结果相符合.3.5 掺杂体系居里温度分析计算得出不同空间有序占位Ni双掺ZnO的AFM和FM总能量、总能量之差∆E=EAFM−EFM(EAFM为AFM总能量,EFM为FM总能量)和总磁矩如表2所示.Ni双掺ZnO体系的总磁矩与文献[36]的理论计算结果相符合.由表2可知,当掺杂Ni-Ni间距最短时,体系Zn14Ni2O1超胞模型磁矩淬灭,体系Zn14Ni2O1表现为反铁磁性;当掺杂Ni-Ni间距较远时,体系表现为铁磁性.计算结果表明,当双掺Ni-Ni间距最短时,掺杂体系磁矩淬灭;当双掺Ni-Ni间距较远时,掺杂体系有一定磁矩,随着Ni-Ni间距增大,掺杂体系磁矩略微减弱,但是差别不大.由平均场近似给出的DMS居里温度(TC)可近似表示为[37]式中kB为玻尔兹曼常数,TC为估算的DMS居里温度,∆E为磁性过渡金属原子AFM与FM之间的能量差.从(3)式可见,∆E越大,TC越大.将∆E=37和39 meV分别代入(3)式中,计算得出掺杂体系居里温度分别为370和390 K.计算结果表明,掺杂体系能够实现铁磁性的居里温度在室温以上.这与实验中室温下观察到了掺杂体系铁磁性相符合[38].3.6 电子自旋极化掺杂前后ZnO吸收光谱分析光波在介质中传播,当需要考虑吸收的影响时,介电函数可由复数ε(ω)=ε1(ω)+iε2(ω)来描述,其中ε1(ω)=n2(ω)−k2(ω),ε2(ω)=2n(ω)k(ω),n(ω)和k(ω)分别表示折射率和消光系数.ε2(ω)可以利用计算占据态和非占据态波函数的矩阵元素得到;ε1(ω)可以根据直接跃迁概率定义以及Kramers-Kronig色散关系求出.所有其他光学性质,如吸收系数α(ω)等均可由ε1(ω)和ε2(ω)推导得出.具体推导过程不再详细叙述,只给出与本文计算有关的内容.式中BZ为第一布里渊区,下角标C和V分别表示导带和价带,~为普朗克常量,k为倒格矢,ω′和ω分别为末状态和初状态的角频率,ρ0为极化响应,|MCV(k)|2为动量跃迁矩阵元,和分别为导带和价带上的本征能级.以上关系是分析晶体能带结构分布和吸收光谱分布的理论依据.在电子自旋极化状态下,计算得出未掺杂ZnO,Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O和Zn0.9375Ni0.0625O掺杂体系的吸收光谱分布,如图6所示.从图6可以看出,在波长320—600 nm范围内,Ni 掺杂量越大,掺杂体系吸收光谱红移越显著.这与实验结果[21]相符合,也与文献[39]掺杂体系吸收光谱红移分布的理论计算结果相符合.其次,计算得到了间隙掺杂体系Zn16NiO16的吸收光谱分布(图6),掺杂体系Zn16NiO16的吸收光谱发生蓝移现象.文献[20]得到了吸收光谱分布蓝移的实验结果,这种情况下Ni可能是间隙掺杂,但文献[20]疏忽了这一点,认为Ni替位掺杂Zn,掺杂体系吸收光谱分布与文献[21]的结果相悖.得到的结果对设计和制备新型Ni掺杂ZnO光催化剂有一定的理论参考价值.本文在电子自旋极化状态下,用第一性原理分别对Ni掺杂对ZnO电子结构和磁光性能的影响进行了研究,结论如下.在限定的掺杂浓度范围(2.78%—6.25%)内,富氧条件下同种掺杂体系的形成能比富锌条件下小,掺杂体系稳定性高,形成容易.Ni掺杂量越高,与未掺杂ZnO的晶格常数相比,掺杂体系沿a轴和c轴方向的晶格常数越小,体积越小,掺杂体系ZnO形成能越大,掺杂越难,能量越高,稳定性越低,带隙越窄,吸收光谱红移越显著.另外Ni间隙掺杂体系Zn16NiO16的吸收光谱分布显示光谱发生蓝移现象.这对设计和制备新型光催化剂有一定的理论指导作用.在限定的掺杂浓度范围内,获得了半金属稀磁半导体,Ni掺杂量越高,掺杂体系磁矩越小,磁矩来源于p-d态电子交换作用,且掺杂体系能够实现居里温度在室温以上.[1]Mocatta D,Cohen G,Schattner J,Millo O,Rabani E,Rabani E,Banin U 2011 Science 332 77[2]Beaulac R,Schneider L,Archer P I,Bacher G,Gamelin D R 2009 Science 325 973[3]Risbud A S,Spaldin N A,Chen Z Q,Stemmer S S 2003 Phys.Rev.B 68 205202[4]Bouloudenine M,Viart N,Colis S,Kortus J D 2005 Appl.Phys.Lett.87 052501[5]Thota S,Dutta T,Kumar J 2006 J.Phys.Condens.Matter 18 2473[6]Coey J M D,Venkatesan M,Fitzgerald C B 2005 Nat.Mater.4 173[7]Dietl T,Ohno H,Matsukura F,Cibert J,Ferrand D 2000 Science 287 1019[8]Wang X,Xu J,Zhang B,Yu H,Wang J,Zhang X,Yu J,Li Q 2006 Adv.Mater.18 2476[9]Pearton S J,Abernathy C R,Overberg M E,Thaler G T,Norton D P 2003 J.Appl.Phys.93 1[10]Azarang M,Shuhaimi A,Youse fiR,Sookhakian M 2014 J.Appl.Phys.116 084307[11]Youse fiR,Sheini F J,Cherag hizade M,Gandomani S K,Sa´aedi A,Huang N M,Basirun W J,Azarang M 2015 Mater.Sci.Semicond.Process.32 152[12]Khan I,Khan S,Nongjai R,Ahmed H,Khan W 2013 Opt.Mater.35 1189[13]Rekha K,Nirmala M,Nair M G,Anukaliani A 2010 Physics B 405 3180[14]Gerami A M,Zadeh M V 2016 J.Supercond.Nov.Magn.29 1295[15]Haq B U,Ahmed R,Abdellatif G,Shaari A,Butt F K,Kanoun M B,Said S G 2016 Front.Phys.11 117101[16]Xiao Z L,Shi L B 2011 Acta Phys.Sin.60 027502(in Chinese)[肖振林,史力斌2011物理学报60 027502][17]Guruvammal D,Selvaraj S,Sundar S M 2016 pd.682 850[18]Vijayaparkavi A P,Senthilkumaar S 2012 J.Supercond.Nov.Magn.25 427[19]Jadhav J,Biswas S 2016 pd.664 71[20]Pal B,Sarkar D,Giri P K 2015 Appl.Surf.Sci.356 804[21]Wahab M S A,Jilani A,Yahia I S,Ghamdi A A A 2016Superlattice.Microst.94 108[22]Wang S,Li P,Liu H,Li J B,Wei Y 2010 pd.505 362[23]Ma X G,Wu Y,Lv Y,Zhu Y F 2013 Phys.Chem.C 117 26029[24]Vijayaprasath G,Muruganrn R,Mahalingam T,Ravi G 2015J.Mater.Sci.Mater.Electron.26 7205[25]Feng Y,Huang B J,Li S S,Zhang B M,Ji W X,Zhang C W,Wang P J 2015 J.Mater.Sci.50 6993[26]Li M,Zhang J Y,Zhang Y 2012 Chem.Phys.Lett.527 63[27]Na P S,Smith M F,Kim K,Du M H,Wei S H,Zhang S B,Limpijumnong S 2006 Phys.Rev.B 73 125205[28]Roth A P,Webb J B,Williams D F 1981 mun.39 1269[29]Pires R G,Dickstein R M,Titcomb S L,Anderson R L 1990 Cryogenics 30 1064[30]Saravanakumar B,Mohan R,Thiyagarajan K,Kim S J 2013pd.580 538[31]Lu J G,Fujita S,Kawaharamura T T,Nishinaka H,Kamada Y,Ohshima T 2006 Appl.Phys.Lett.89 262107[32]Pickett W E,Moodera J S 2001 Phys.Today 54 39[33]Ruderman M A,Kittel C 1954 Phys.Rev.96 99[34]Kasuya T 1956 Prog.Theor.Phys.16 45[35]Yosida K 1956 Phys.Rev.106 893[36]Haq B U,Ahmed R,Abdellatif G,Shaari A,Butt F K,Kanoun M B,Said G 2016 Front.Phys.11 117101[37]Sato K,Bergqvist L,Kudrnovský J,Dederichs P H,Eriksson O,TurekI,Sanyal B,Bouzerar G,Katayama Y H,Dinh V A,Fukushima T,Kizaki H,Zeller R 2010 Rev.Mod.Phys.82 1633[38]Dana A S,Kevin R K,Daniel R G 2004 Appl.Phys.Lett.85 1395[39]Liu Y,Hou Q Y,Xu H P,Zhao C W,Zhang Y 2012 Chem.Phys.Lett.551 72 PACS:74.20.Pq,74.25.Gz,78.47.dbDOI:10.7498/aps.66.117401 Nowadays,the experimental results of absorption spectrum distribution of Ni doped ZnO su ff er controversy when the mole fraction of impurity is in a range from 2.78%to 6.25%.However,there is still lack of a reasonable theoretical explanation.To solve this problem,the geometry optimizations and energies of di ff erent Ni-doped ZnO systems are calculated at a stateof electron spin polarization by adopting plane-wave ultra-soft pseudo potential technique based on the density function theory.Calculation results show that the volume parameter and lattice parameter of the doping system are smaller than those of the pure ZnO,and they decrease with the increase of the concentration of Ni.The formation energy in the O-rich condition is lower than that in the Zn-rich condition for the same doping system,and the system is more stable in the O-rich condition.With the same doping concentration of Ni,the formation energies of the systems with interstitial Ni and Ni replacing Zn cannot be very di ff erent.The formation energy of the system with Ni replacing Zn increases with the increase of the concentration of Ni,the doping becomes difficult,the stability of the doping system decreases,the band gap becomes narrow and the absorption spectrum is obviously red shifted.The Mulliken atomic population method is used to calculate the orbital average charges of doping systems.The results show that the sum of the charge transitions between the s state orbital and d state orbital ofNi2+ions in the doping systems Zn0.9722Ni0.0278O,Zn0.9583Ni0.0417O and Zn0.9375Ni0.0625O supercells are all closed to+2.Thus,it is considered that the valence of Ni doped in ZnO is+2,and the Ni is present as aNi2+ion in the doping system.The ionized impurity concentrations of all the doping systems exceed the critical doping concentration for the Mott phase change of semiconductor ZnO,which extremely matches the condition of degeneration,and the doping systems are degenerate semiconductors.Ni-doped ZnO has a conductive hole polarization rate ofup to nearly 100%.Then the band gaps are corrected via the LDA(local density approximation)+U method.The calculation results show that the doping system possesses high Curie temperature and can achieve room temperature ferromagnetism.The magnetic moment is derived from the hybrid coupling e ff ect of p-d exchange action.Meanwhile,the magnetic moment of the doping system becomes weak with the increase of the concentration of Ni.In addition,the absorption spectrum of Ni-interstitial ZnO is blue-shifted in the ultraviolet and visible light bands.。

Fe的不同掺杂量对ZnO薄膜光致发光的影响岛津

Fe的不同掺杂量对ZnO薄膜光致发光的影响岛津

Fe的不同掺杂量对ZnO薄膜光致发光的影响3周婷婷,马书懿,毛雷鸣,丁继军,史新福(西北师范大学物理与电子工程学院,甘肃兰州730070)摘 要: 采用射频磁控溅射在玻璃衬底上制备了不同掺杂量的Fe2ZnO薄膜,分析不同掺杂量对薄膜光学性能的影响。

利用X射线衍射仪(XRD)和原子力显微镜(A FM)研究Fe2ZnO薄膜的微观结构和形貌结构。

Fe2ZnO薄膜光致发光(PL)性质的研究发现,发光峰主要有蓝光发射和绿光发射,蓝光发射主要是由于电子从导带向锌空位形成的浅受主能级上的跃迁;绿光发射是由于电子从氧空位到锌空位的能级跃迁及导带底到氧错位缺陷能级的跃迁。

由透射谱和吸收谱分析,Fe2ZnO薄膜在可见光区的平均透过率为66%,掺杂量为2%Fe的薄膜的禁带宽度最接近于ZnO的禁带宽度。

关键词: 掺杂;光致发光;跃迁;透射中图分类号: O484.1;O484.41文献标识码:A 文章编号:100129731(2009)12219612031 引 言ZnO是一种具有宽带隙Ⅱ2Ⅵ族半导体材料,激子束缚能为60meV,禁带宽度为3.37eV,在光电子器件和半导体自旋电子学等领域有着极为重要的应用前景。

近年来,在半导体中掺杂磁性离子,形成稀磁特性的新型半导体功能材料的方法引起了人们的广泛关注。

当前寻找室温下呈现磁性的自旋电子学材料,成为很多实验工作者研究自旋电子学材料的热点。

Fe 本身呈现磁性,若能代替Zn2+的位置,则Fe2ZnO薄膜有可能在室温下呈现铁磁性,这已经被理论所证实[1]。

目前制备ZnO薄膜的方法有很多,如射频磁控溅射法[2],直流反应溅射法[3],溶胶2凝胶法[4],脉冲激光沉积法[5]等。

本文用射频磁控溅射法在玻璃衬底上制备Fe2ZnO薄膜,研究了不同的掺杂量对薄膜的光学性能的影响。

2 实 验ZnO和Fe2ZnO薄膜是在J GP560BⅣ型超高真空磁控溅射设备上利用射频磁控溅射法,在玻璃衬底上制备所得。

ZnS宽禁带半导体毕业设计

ZnS宽禁带半导体毕业设计

宽禁带半导体ZnS物性的第一性原理研究摘要硫化锌(ZnS)是一种新型的II-VI族宽禁带电子过剩本征半导体材料,其禁带宽度为3.67eV,具有良好的光致发光性能和电致发光性能。

在常温下禁带宽度是3.7eV,具有光传导性好,在可见光和红外范围分散度低等优点。

ZnS和基于ZnS的合金在半导体研究领域己经得到了越来越广泛的关注。

由于它们具有较宽的直接带隙和很大的激子结合能,在光电器件中具有很好的应用前景。

本文介绍了宽禁带半导体ZnS目前国内外的研究现状及其结构性质和技术上的应用。

阐述了密度泛函理论的基本原理,对第一性原理计算的理论基础作了详细的总结,并采用密度泛函理论的广义梯度近似(GGA)下的平面波贋势法,利用Castep软件计算了闪锌矿结构ZnS晶体的电子结构和光学性质。

电子结构如闪锌矿ZnS晶体的能带结构,态密度。

光学性质如反射率,吸收光谱,复数折射率,介电函数,光电导谱和损失函数谱。

通过对其能带及结构的研究,可知闪锌矿硫化锌为直接带隙半导体,通过一系列对光学图的分析,可以对闪锌矿ZnS的进一步研究做很好的预测。

关键词ZnS;宽禁带半导体;第一性原理;闪锌矿结构-I -First-principles Research on Physical Properties of Wide Bandgap Semiconductor ZnSAbstractZinc sulfide (ZnS) is a new family of ll-VI wide band gap electronic excess in tri nsic semic on ductor material with good photolu min esce nee properties and electroluminescent properties. At room temperature band gap is 3.7 eV, and there is good optical transmission in the visible and infrared range and low dispersi on. ZnS and Zn S-based alloy in the field of semic on ductor research has bee n paid more and more atte nti on. Because of their wide direct ban dgap and large excit on binding en ergy, the photovoltaic device has a good prospect.This thesis describes the current research status and structure of nature and tech ni cal applicati ons on wide band gap semic on ductor ZnS. Described the basic principles density functional theory, make a detailed summary for the basis of first principles theoretical calculations, using the density functional theory gen eralized gradie nt approximati on (GGA) un der the pla ne wave pseudopote ntial method, calculated using Castep software sphalerite ZnS crystal structure of electronic structure and optical properties. Electronic structures, such as sphalerite ZnS crystal band structure, density of states. Optical properties such as reflecta nee, absorpti on spectra, complex refractive in dex, dielectric function, optical conductivity spectrum and the loss function spectrum. Band and the structure through its research known as zin cble nde ZnS direct band gap semic on ductor,Through a series of optical map an alysis, can make a good predicti on for further study on zin cble nde ZnS.Keywords ZnS; Wide ban dgap semic on ductor; First-pri nciples; Zin cble nde structure-2-目录摘要 (I)Abstract (II)第1章绪论 ........................................................... 1..1.1 ZnS半导体材料的研究背景 ....................................... 1.1.2 ZnS的基本性质和应用........................................... 1.1.3 ZnS材料的研究方向和进展 (3)1.4 ZnS的晶体...................................................... 4.1.4.1 ZnS晶体结构 ............................................... 4.1.4.2 ZnS的能带结构............................................. 5.1.5 ZnS的发光机理................................................. 6.1.6研究目的和主要内容.............................................. 7.2.1相关理论......................................................... 9.2.1.1密度泛函理论 (9)2.1.2交换关联函数近似........................................... 1.12.2总能量的计算 (13)2.2.1势平面波方法 (14)2.2.2结构优化 (16)2.3 CASTEP软件包功能特点........................................ 1.8第3章ZnS晶体电子结构和光学性质.................................... 1.93.1闪锌矿结构ZnS的电子结构 (19)3.1.1晶格结构 (19)3.1.2能带结构 (20)3.1.3态密度 (21)3.2闪锌矿ZnS晶体的光学性质 (24)结论 (30)致谢 (31)参考文献 (32)附录A (33)附录B (45)-ill -第1章绪论1.1 ZnS半导体材料的研究背景Si是应用最为广泛的半导体材料,现代的大规模集成电路之所以成功推广应用,关键就在于Si半导体在电子器件方面的突破。

Pressure Effect and Specific Heat of RBa2Cu3Ox at Distinct Charge Carrier Concentrations Po

Pressure Effect and Specific Heat of RBa2Cu3Ox at Distinct Charge Carrier Concentrations Po

PRESSURE EFFECT AND SPECIFIC HEAT OF RB a2Cu3O x AT DISTINCT CHARGE CARRIER CONCENTRATIONS: POSSIBLE INFLUENCE OF STRIPESS. I. SCHLACHTER1,U. TUTSCH1, W. H. FIETZ1, K.-P. WEISS1, H. LEIBROCK1, K. GRUBE1, Th. WOLF1, B. OBST1, P. SCHWEISS2, AND H. WÜHL1,3.Forschungszentrum Karlsruhe, 1ITP and 2IFP, 76021 Karlsruhe, Germany.3Universität Karlsruhe, IEKP, 76128 Karlsruhe, Germany.In YBa2Cu3O x, distinct features are found in the pressure dependence of the transition temperature,d T c/d p, and in ∆C p⋅T c, where ∆C p is the jump in the specific heat at T c: d T c/d p becomes zero when∆C p⋅T c is maximal, whereas d T c/d p has a peak at lower oxygen contents where ∆C p⋅T c vanishes.Substituting Nd for Y and doping with Ca leads to a shift of these specific oxygen contents, since oxygen order and hole doping by Ca influences the hole content n h in the CuO2 planes. Calculating n hfrom the parabolic T c(n h) behavior, the features coalesce for all samples at n h≈ 0.11 and n h≈ 0.175, irrespective of substitution and doping. Hence, this behavior seems to reflect an intrinsic property ofthe CuO2 planes. Analyzing our results we obtain different mechanisms in three doping regions: T c changes in the optimally doped and overdoped region are mainly caused by charge transfer. In theslightly underdoped region an increasing contribution to d T c/d p is obtained when well ordered CuO chain fragments serve as pinning centers for stripes. This behavior is supported by our results on Zndoped NdBa2Cu3O x and is responsible for the well known d T c/d p peak observed in YBa2Cu3O x atx ≈ 6.7. Going to a hole content below n h≈ 0.11 our results point to a crossover from an underdoped superconductor to a doped antiferromagnet, changing completely the physics of these materials.1IntroductionIn the past years a lot of work has been done to investigate the T(n h) phase diagram of cuprate superconductors, where n h denotes the hole concentration in the CuO2 planes. For n h = 0 the cuprates are Mott insulators with long-range antiferromagnetic order. With increasing n h this antiferromagnetic order is destroyed rapidly and superconductivity sets in. The superconducting transition temperature T c grows with n h in the underdoped region up to a maximum transition temperature T c,max at optimum doping n h,opt and then decreases again in the overdoped region.There is growing evidence that some physical peculiarities in the underdoped region and possibly the superconductivity are a result of a spin-charge separation in the CuO2 planes into line-shaped spin- and hole-rich regions. This so-called stripe phase seems to vanish beyond n h,opt where magnetic correlations become negligible. The observed stripes at 1/8 doping (n h = 0.125) in the La214 compound show that stripe mobility has crucial influence on superconductivity [1]. The introduction of Zn in the CuO2 planes, for example, suppresses superconductivity most likely due to the pinning of fluctuating stripes [2].In the RBa2Cu3O x system (R123, R = rare earth element) the whole underdoped, the optimally doped and the slightly overdoped region can be investigated by varying the oxygen content x. With partial substitution of Ca2+ for Y3+ experiments can even be extended to the heavily overdoped region. In contrast to the La214 compounds the R123 system contains also CuO chains serving as a charge reservoir. This allows changes of the hole concentration of a sample via pressure application without changing the chemistry of the sample, because application of pressure leads to charge transfer from the CuO chains to the CuO2 planes due to different length changes of hard and soft bonds [3]. In this workhydrostatic pressure effect d T c/d p and thespecific heat of Ca doped Y123 and Zn dopedNd123 single crystals.2ExperimentalIn order to determine the pressuredependence of T c(p) we performed ac-susceptibility measurements under absolutelyhydrostatic pressure conditions (p≤ 0.6 GPa)with He gas as pressure-transmitting medium.Pressure-induced oxygen-ordering effects [4],leading to the creation of additional holes inthe CuO chains and therefore as well to anincrease of the hole concentration in theCuO2 planes, have been avoided by exposingthe samples to high pressures only at temperatures below 110 K.The specific-heat measurements were performed by a continuous heating technique with samples of about 30 mg. To substract the normal state background from the specific heat we used data from a Nd/Ba substituted sample with a strong depressed superconducting transition. A mean-field type specific-heat jump ∆C p/T c at T c has been obtained, analyzing the superconducting transition with an entropy conserving construction.The Y1−y Ca y Ba2Cu3O x, as well as the NdBa2(Cu1-z Zn z)3O x samples were grown in Y stabilized ZrO2 crucibles. EDX analysis showed that in the Nd123 samples, corrosion of the crucibles during the growth process lead to a small occupation of about 7 at% Y on Nd sites. Since, however, T c and pressure effect of these samples and of Y free Nd123 samples grown in BaZrO3 crucibles show only very small differences compared to T c and pressure effect of pure Y123 (Fig. 1), in the following w e will not distinguish between Nd123 with and without Y impurities. EDX analysis and neutron diffraction studies gave no hints for other impurities or Nd/Ba misoccupations.The oxygen contents x(T, p) of our samples were adjusted by annealing the samples under flowing oxygen, oxygen/argon or oxygen/nitrogen mixtures. For the Y123 and Nd123 samples the appropriate temperature and oxygen partial pressure for a distinct oxygen content were deduced from Refs. [5] and [6]. In Y1−y Ca y Ba2Cu3O x (YCa123) the oxygen content is reduced in comparison to the expected values from Refs. [5] and [6] by approximately y/2 due to the different valence of Y3+ and Ca2+ [7].3Results and DiscussionsFor many cuprate superconductors, including La2−x Sr x CuO4, La2−x Sr x CaCu2O6 and Y1−y Ca y Ba2Cu3O x with various Ca and oxygen contents, T c(n h) follows a universal parabolic behavior [8]. The optimum hole concentration n h,opt≈ 0.16 is common for all these superconductors, whereas the maximal achievable T c depends on the particularsystem.Following this dependence we measured for each sample the T c values at various oxygen contents to obtain T c,max . With these values we determined n h for each single crystal at the particular oxygen content. In Fig. 2,these n h values are plotted versusoxygen content. For the pure Y123 we find at an oxygen content of6.5 < x < 6.65 the well known 60 K plateau which is caused by oxygen ordering. Due to the larger latticeparameters of Nd123, oxygen ordering is diminished. Therefore, the doping efficiency of oxygen is also diminishedand the same n h values require higher oxygen contents than in Y123 [9]. Due to the doping effect of Ca, the Ca doped Y123 samples show much higher hole concentrations than Y123 at the same oxygen content. The missing signature of the 60 K plateau is caused by the decreasing tendency to a well-ordered oxygen sublattice with increasing Ca content.When our results are plotted as a function of the hole content, however, despite the different doping mechanisms, the d T c /d p (n h ) dependence of the different systems look quite similar, as well as the ∆C p ⋅T c (n h ) dependence (Fig. 3). In the underdoped region the pressure effects of the different systems peak at n h ≈ 0.11, where ∆C p ⋅T c vanishes. On the other hand, in the overdoped region the pressure effects of all samples show an almost linear behavior crossing zero at n h ≈ 0.175. Exactly at this doping level, ∆C p ⋅T c , which is a measure of the condensation energy, shows a maximum for all samples (except for Y123,where a further increase is visible because the well ordered CuO chains become superconducting). The maxima in the condensation energies and the zero pressure effectstogether with other experimentalresults in the literature [10] suggest that superconductivity in the slightlyoverdoped region is extremly stable.The almost linear decrease of the hydrostatic pressure effect in theoverdoped region can be understood in terms of pressure-induced charge-transfer [11] from the CuO chains to the CuO 2 planes, which is mainly caused by pressure along the c -axis direction. For pressure along the a -and b -axis direction pressure-induced charge-transfer can beneglected [12]. According to theparabolic T c (n h ) behavior, a constant pressure-induced charge-transfer rate d n h /d p leads to a lineard T c /d p (n h ) behavior with positive pressure effects in the underdoped, an h oxygen content x Fig. 2: Hole concentration determined from T c , T c,max and the parabolic T c (n h ) behavior [8] versus oxygen content.n h ∆C p * T c [a .u .] d T c /d p [K /G P a ]Fig. 3: a) Pressure effect d T c /d p and b) ∆C p ⋅T c versus hole concentration in the CuO 2 planes.zero pressure effect in the optimally doped and negative pressure effects in the overdoped region. Exactly this behavior was found for n h > 0.11 foruniaxial c -axis pressure, determined either by direct measurements [13] or by thermal expansion measurements via Ehrenfest’s theorem [14-16].Data from these investigations areshown in the inset of Fig. 4. The solid line for n h > 0.11 in the inset ofFig. 4 is the derivative of the T c (n h )parabola with d n h /d p ≈ 3.7⋅10-3 GPa -1[17]. In this doping regime, T cchanges by uniaxial c -axis pressure are therefore mainly caused by charge transfer. Due to this simple behavior for n h > 0.11 we can divide off the effect of charge-transfer bysubtracting the solid line in the insetof Fig. 4 from our hydrostatic T c (p ) data. As a result we obtain a measure for the in-plane compression, namely the sum of a - and b -axis pressure effect [18].In Fig. 4 the effect of in-plane compression on T c , d T c /d p ab , shows nearly constant values in the overdoped and optimally doped regime. For pure Y123 d T c /d p ab rises in the underdoped region with decreasing doping down to n h > 0.11. For Nd123 this effect is smaller and almost absent for the Ca doped samples. The fact that this behavior is not correlated to charge transfer is confirmed by the quite similar looking pressure effect of La 2−x Ba x CuO 4 where charge-transfer effects are known to be absent [19].This coincidence points to a possible explanation for the T c (p ) peak at n h ≈ 0.11. For La 2−x Ba x CuO 4 the drastic collapse of T c at n h = 1/8 was interpreted to be caused by stripe pinning. Under pressure these stripes are depinned and T c recovers [20].For fully oxygenated R123 we find no argument for the existence of stripe pinning.But with a reduction of the oxygen content we have in Y123 well ordered CuO chains in an oxygen depleted neighborhood and such a configuration may pin stripes. This idea would also explain the different T c (p ) changes under uniaxial a - or b -axis pressure [14,15] because a compression perpendicular or parallel to the stripe direction would naturally cause different effects on stripe pinning. An analysis of the experimental data shown in Fig. 4 supports this idea. With decreasing hole content we find a drastic d T c /d p increase for Y123. For Nd123 with a much lower tendency to oxygen ordering this increase is dramatically diminished and for Ca doped samples with a large disorder in the oxygen sublattice we have almost no peak effect in d T c /d p .Another striking feature of an in-plane compression on T c of the different R123systems with quite different structural parameters is that they show a sharp decrease of d T c /d p below n h ≈ 0.11. At the same hole concentration also the c -axis pressure effect (that is attributed to pressure-induced charge-transfer) rapidly decreases. In addition we find other physical properties of different cuprate superconductors showing peculiarities at this hole content. The copper isotope effect dln(T c )/dln(m Cu ) of YBa 2Cu 3O x [21] and the oxygen isotope effects dln(T c )/dln(m O ) of La 2−x Ba x CuO 4 [22] and La 2−x Sr x CuO 4 [23] show drastic changes at n h ≈ 0.11, quite similar to the doping dependence of the thermalFig. 4: Non-charge-transfer pressure effect d T c /d p ab .Inset: d T c /d p c ·T c ,max -1 versus n h for Y123 (?, Refs. [13, 14),YCa123 (?, Refs. [15, 16]) and Nd123 (?, Ref. [16]). The solid line sketches the pure charge-transfer pressure effect calculated for d n h /d p ˜ 3.7·10-3 GPa -1 [17].resistivity of YBa 2Cu 3O x [24]. At n h ≈ 0.11 also the dopingdependence of the room-temperature thermopower of manycuprates changes from an exponential to a linear behavior[25]. Additionally, in La 1.6−x Nd 0.4Sr x CuO 4 atx = n h ≈ 0.11 the dopingdependence of the magnetic incommensurability ε, which is a measure for the distance of chargestripes, changes from ε = x to ε ≈ constant [26]. Hunt et al. [27]showed that below a hole contentn h ≈ 0.11 the amount of static stripes is increased drastically. From these arguments we conclude, that below n h ≈ 0.11 the physics in these materials is changing − above n h ≈ 0.11 we deal with a doped superconductor but below n h ≈ 0.11 we have to look at a doped antiferromagnet.In addition to the Ca doped R123 samples, we also investigated NdBa 2(Cu 0.98Zn 0.02)3O x single crystals. Zn is known to substitute for Cu in the CuO 2planes and to depress T c by pair-breaking effects. Therefore, n h could not be calculated from the parabolic T c (n h ) behavior. Assuming that Zn doping does influence neither the oxygen content achieved under certain annealing conditions nor the hole concentration in the CuO 2 planes, we estimated n h from the tempering conditions and the n h (x ) dependence of Zn free samples shown in Fig. 2. This assumption was confirmed for Zn-doped YCa123 [28].In Refs. [29] and [30] it was shown that around the Zn impurities small non-superconducting domains exist. Such non-superconducting domains may serve as pinning centers for stripes and would be independent of the oxygen content. In the pressure induced depinning picture one would then expect large pressure effects not only for underdoped samples but for fully oxygenated material, too. Fig. 5 shows the doping dependence of the pressure effects of our Zn doped samples in comparison to the pressure effects of the other R123 samples. At approximately optimum doping, where the pressure effects of the other samples are about 0.8 K/GPa the pressure effect of the Zn doped Nd123 samples is approximately 5 times larger. With decreasing hole concentration in the CuO 2 planes the pressure effect even increases to higher values than the maximum pressure effect of the Zn free Nd123 samples beeing consistent with the idea of pressure-induced depinning of stripes.4 Conclusions We measured T c , pressure effect d T c /d p and the specific heat of various Zn and Ca doped R123 single crystals and found two distinct charge carrier concentrations in the underdoped and overdoped region, where d T c /d p and ∆C p ⋅T c show distinct features. In the overdoped region around n h ≈ 0.175 superconductivity is very stable and T c changes under pressure are mainly caused by charge transfer. In the underdoped region the large pressure effects, which are not related to charge transfer, can be attributed to depinning ofn h d T c /d p [K /G P a ]Fig. 5: Pressure effect of Zn doped Nd123 (?) in comparison to the pressure effects of Zn free R123 samples.charged stripes. This idea is confirmed by the large pressure effect of Zn doped Nd123 samples even in the nearly optimally doped region. The breakdown of the pressure effects at n h < 0.11 with decreasing hole concentration is assigned to the crossover from a doped superconductor to a doped antiferromagnet.References1. S.A. Kivelson et al.; Nature393, 550 (1998).2. Y. Koike et al.; Proceedings of the 2000 international workshop onsuperconductivity, June 19-22, 2000; Shimane, Japan.3. J.D. Jorgensen et al.; Physica C 171, 93 (1991).4. R. Sieburger and J.S. Schilling; Physica C 173, 403 (1991). R. Benischke et al.;Physica C203, 293 (1992); W.H. Fietz et al.; Physica C 270, 258 (1996). V.G.Tissen et al.; Physica C316, 21 (1999).5. T.B. Lindemer et al.; J. Am. Ceram. Soc. 72, 1775 (1989).6. T.B. Lindemer et al.; Physica C255, 65 (1995).7. B. Fisher et al.; Phys. Rev. B 47, 6054 (1993); C. Glédel et al.; Physica C165, 437(1990).8. M.R. Presland et al.; Physica C176, 95 (1991); J.L. Tallon et al.; Phys. Rev. B51,12911 (1995).9. U. Tutsch et al.; J. of Low Temp. Physics117, 951 (1999).10. J.L. Tallon and J.W. Loram; cond-mat/0005063.11. J.D. Jorgensen et al.; Physica C171, 93 (1990).12. H.A. Ludwig et al.; Physica C197, 113 (1992).13. H.A. Ludwig, PhD Thesis, University of Karlsruhe (1998), FZKA6117; U. Welp etal.; J. of Supercond. 7, 159 (1994); U. Welp et al.; Phys. Rev. Lett. 69, 2130 (1992).14. O. Kraut et al.; Physica C205, 139 (1993).15. C. Meingast et al.; J. of Low Temp. Phys. 105, 1391 (1996).16. V. Pasler, PhD Thesis, University of Karlsruhe (1999), FZKA 6415.17. S.I. Schlachter et al., Physica C328, 1 (1999).18. W.H. Fietz et al.; to be published in Physica C.19. W.J. Liverman et al.; Phys. Rev. B 45, 4897 (1992).20. J.S. Zhou and J.B. Goodenough; Phys. Rev.B56, 6288 (1997).21. J.P. Franck and D.D. Lawrie; J. of Low Temp. Phys. 105, 801 (1996).22. M.K. Crawford et al.; Phys. Rev. B41, 282 (1990).23. G. Zhao et al.; J. Phys.: Cond. Mat. 10, 9055 (1998).24. J.L. Cohn et al.; Phys. Rev. B 59, 3823 (1999).25. S.D. Obertelli et al.; Phys. Rev. B 46, 14928 (1992).26. J.M. Tranquada et al.; Phys. Rev. Lett. 78, 338 (1997).27. A.W. Hunt et al.; Phys. Rev. Lett. 82, 4300 (1999).28. J.L. Tallon et al.; Phys. Rev. Lett. 75, 4114 (1995).29. B. Nachumi et al.; Phys. Rev. Lett. 77, 5421 (1996).30. S.H. Pan et al.; Nature403, 746 (2000).。

磁场热处理对磁性吸波材料微波吸收特性的影响

磁场热处理对磁性吸波材料微波吸收特性的影响

磁场热处理对磁性吸波材料微波吸收特性的影响林培豪;潘顺康;王磊;周怀营;杨涛【摘要】The Nd11.76Fe82.36B5.88 and Nd11.76TeFe77.36Cr5B5.88 powders were prepared by the high-energy ball milling and following heat treatment. By the aid of X-ray diffraction and vector network analysis, the effects of the magnetic heat treatment on the powder structure and microwave absorbing properties were researched. The results show that applying magnetic field in the heat treatment process can promote the growth of ferromagnetic phase and non-ferromagnetic phase grain inNd11.76Fe82.36B5.88 powder, the minimum reflectivity of Nd117.76fEB5.88 powder drops from the ordinary heat-treated -14 dB to -24.3 dB. The minimum reflectivity of Nd11.76 76Fe77.367736Cr5B5.8spowder drops from the ordinary heat-treated -30.5 dB to -48 dB. The magnetic heat treatment of Ndn.76Fes2.36B5.ss and Ndn.76Fe77.36Cr5B5.8g powder will narrow the microwave absorbing bandwidth, and in the microwave loss process, the magnetic loss will increase, while the dielectric loss will decrease.%采用高能球磨及热处理方法制备Nd11.76Fe82.36B5.88和Nd11.76Fe77.36Cr5B5.88粉体,借助X射线衍射仪和矢量网络分析研究磁场热处理对粉体组织结构和微波吸收特性的影响.结果发现:在热处理过程中,加入磁场可以促进Nd11.76Fe82.36B5.88粉体各铁磁性相和非铁磁性相的晶粒长大,使Nd11.76Fe82.36B5.88粉体反射率的最小值从普通热处理粉体的-14 dB降低到-24.3 dB,Nd11.76Fe7736Cr5B5.88粉体的反射率最小值从普通热处理粉体的-30.5 dB降低到-48 dB;磁场热处理使Nd11.76Fe82.36B5.88和Nd11.76Fe77.36Cr5B5.88粉体的吸波带变窄,且在微波损耗过程中,磁损耗作用增大,而介电损耗作用减弱.【期刊名称】《中国有色金属学报》【年(卷),期】2012(022)004【总页数】6页(P1113-1118)【关键词】磁场热处理;吸波材料;反射率;高能球磨【作者】林培豪;潘顺康;王磊;周怀营;杨涛【作者单位】桂林电子科技大学广西信息材料重点实验室,桂林541004;桂林电子科技大学广西信息材料重点实验室,桂林541004;桂林电子科技大学广西信息材料重点实验室,桂林541004;桂林电子科技大学广西信息材料重点实验室,桂林541004;桂林电子科技大学广西信息材料重点实验室,桂林541004【正文语种】中文【中图分类】TG132.2磁场热处理是在磁场中进行热处理的一种工艺,它利用外加磁场高强度的能量无接触地传递到物质的原子,改变原子的排列、匹配和迁移等行为,从而改变材料微观组织结构和性能。

Reference-answers(参考答案)

Reference-answers(参考答案)

The reference answers for the exercises of organometallics asigned已布置金属有机化学习题参考答案The First Asignment(第一次作业)1. What was the first olefin complex?(第一个烯烃络合物是什么?)Answer: The first olefin complex is Zeise’s salt Na[PtCl3C2H4]答案:第一个烯烃络合物是蔡斯盐Na[PtCl3C2H4]。

2. In what year did P. Ehrlich won Nobel prize and what was his invention?(P额尔利屈获得诺贝尔奖?他的发明是什么?)Answer: P. Ehrlich won Nobel prize in the year of 1908 for his invention of Salvarsan, a medicin for the treatment of syphilis.答案:P额尔利屈在1908年获得诺贝尔奖,他的发明是治疗梅毒的药物洒尔佛散。

3. What was K. Ziegler and G. Natta’s major discovery?(K齐格勒和G纳塔的主要发现是什么?)Answer: K. Ziegler, G. Natta fund ways to manufacture polyolefins (聚烯烃) from ethylene and propylene, respectively, in a low pressure process employing mixed metal catalysts (transition-metal halide/ AlR3).答案:K. 齐格勒,G. 纳塔找到了应用混合金属催化剂(过渡-金属卤化物/AlR3)在低压过程中分别从乙烯和丙烯制造聚烯烃的途径。

磁致多铁性物理与新材料设计

磁致多铁性物理与新材料设计

磁致多铁性物理与新材料设计*董帅1,†向红军2,††(1东南大学物理系南京211189)(2复旦大学物理系计算物质科学教育部重点实验室应用表面物理国家重点实验室上海200433)Physics and design of magnetic multiferroicsDONG Shuai 1,†XIANG Hong-Jun 2,††(1Department of Physics ,Southeast University ,Nanjing 211189,China)(2Department of Physics and Key Laboratory of Computational Physical Sciences (Ministry of Education),State Key Laboratory of Surface Physics ,Fudan University ,Shanghai 200433,China)摘要磁致多铁材料是多铁性材料大家族中的后起之秀,其特色在于其铁电性起源于特定的磁序,因此其铁电性与磁性紧密关联,具有本征的强磁电耦合效应。

目前对磁致多铁性的研究以基础物理为主。

随着对磁致多铁现象背后物理机制认识的不断深入,不断有新的磁致多铁材料被设计、预言和发现,其性能也在不断地提高。

文章简要介绍了磁致多铁材料所涉及的基本物理机制,并根据这些已知的规律,回顾了近年来寻找和设计新的磁致多铁材料的经验。

关键词磁致多铁,Dzyaloshinskii—Moriya作用,交换收缩,磁序诱导铁电性统一极化模型,第一性原理计算Abstract Magnetic multiferroics belong to an important branch of the big multiferroicsfamily.Because the ferroelectric polarizations are directly induced by particular magnetic orders,magnetic multiferroics exhibit strong intrinsic magnetoelectric coupling.Current research on mag-netic multiferroics is mostly focused on their fundamental physics.Benefitting from the progress of research on physical mechanisms,more and more new magnetic multiferroic materials have been designed,predicted,and discovered,with continual improvement in their magnetoelectric per-formance.We review briefly the physical mechanisms involved in magnetic multiferroics,as well as the efforts in recent years to search for and design new magnetic multiferroics.Keywordsmagnetic multiferroics,Dzyaloshinskii —Moriya interaction,exchange stric-tion,unified model of ferroelectricity induced by spin order,first-principles calculation2013-11-15收到†email :sdong@††email :hxiang@DOI :10.7693/wl20140304*国家自然科学基金(批准号:51322206,11274060,11104038)、国家重点基础研究发展计划(批准号:2011CB922101,2012CB921400)、高等学校博士学科点专项科研基金(批准号:20100092120032)、新世纪优秀人才支持计划(批准号:NCET-10-0325,NCET-10-0351)资助项目,上海市东方学者项目1引言2003年,BiFeO 3薄膜[1]和TbMnO 3单晶[2]的发现和研究揭开了多铁性材料的研究序幕,多铁性材料和物理的研究进入了蓬勃发展时期,跻身成为关联电子大家庭中又一重要分支。

锰掺杂氧化锌纳米棒阵列的结构及其磁学性质

锰掺杂氧化锌纳米棒阵列的结构及其磁学性质

522011年第5期 第17卷 总96期摘 要 采用水热法制备出垂直于ITO 基底生长的高密度的Mn 掺杂ZnO 纳米棒阵列。

测试阵列的微观结构和磁性。

XPS 证实Mn 已经成功的掺入到纳米棒中。

同时,所有的Mn 掺杂的ZnO 纳米棒在室温都有铁磁性。

而且饱和磁化强度随掺杂浓度的增加先增大后减小。

5%Mn 掺杂的ZnO 纳米棒阵列的饱和磁化强度最大。

铁磁性可能来源于Mn 离子部分取代Zn 离子,Mn 离子之间的铁磁相互作用。

关键词 稀磁半导体 Mn 掺杂ZnO 纳米棒阵列 水热法Abstract High density Mn-doped ZnO nanorod arrays were vertically grown on ITO sub-strate via hydrothermal reaction. The microstructure and magnetism of the arrays have been examined. X-ray photoemission spectroscopy demonstrates that Mn is successfully doped into the nanorods. Meanwhile, all the Mn-doped ZnO nanorod arrays are ferromagnetic at room temperature. It is also found that the value of the saturation magnetization (M s ) of the ZnO nanorod arrays firstly increases with increasing the Mn concentration and then decreases. The higher Ms value is obtained in the 5 at.% Mn-doped ZnO nanorod arrays. The ferromagnetism comes from the ferromagnetic interaction between the Mn ions, which partly replace Zn ions.Key words DMSs Mn-doped ZnO nanorod arrays Hydrothermal reaction锰掺杂氧化锌纳米棒阵列的结构及其磁学性质Structural and magnetic properties of Mn-doped ZnO nanorod arrays引 言稀磁半导体是非磁半导体的部分阳离子被磁性过度金属取代而形成的[1]。

介电陶瓷/NiZn铁氧体互扩散行为的第一性原理研究

介电陶瓷/NiZn铁氧体互扩散行为的第一性原理研究

第38卷 第4期 2023年12月 西 南 科 技 大 学 学 报 JournalofSouthwestUniversityofScienceandTechnology Vol.38No.4 Dec.2023DOI:10.20036/j.cnki.1671 8755.2023.04.007收稿日期:2023-02-27;修回日期:2023-05-16作者简介:第一作者,张凯(1997—),男,硕士研究生;通信作者,毕鹏(1985—),博士,讲师,研究方向为计算材料学,E mail:bipeng010@swust.edu.cn介电陶瓷/NiZn铁氧体互扩散行为的第一性原理研究张 凯1 郭子康1 刘振涛1 毕 鹏2(1.西南科技大学材料与化学学院 四川绵阳 621010;2.西南科技大学数理学院 四川绵阳 621010)摘要:针对介电陶瓷/NiZn铁氧体异质复合材料的低温共烧陶瓷体系,建立掺杂结构模型,采用基于密度泛函理论的第一性原理计算并结合CI-NEB方法研究阳离子互扩散机制。

结果表明:铁氧体中的Ni,Zn,Fe离子主要取代介电陶瓷MgTiO3和CaTiO3体系中的Ti位,迁移势垒1.0~5.5eV;对于介电陶瓷Mg和Ca倾向于占据NiZnFe4O8中Zn位点,Ti则倾向于取代Fe位,迁移势垒0.6~1.0eV。

对于该材料体系,典型共烧工艺条件下Ca,Mg扩散进入NiZn铁氧体距离400~1000μm。

关键词:介电陶瓷/铁氧体共烧体系 掺杂 互扩散 第一性原理中图分类号:TQ174.1 文献标志码:A 文章编号:1671-8755(2023)04-0045-09First principlesStudyofDiffusionBehaviorbetweenDielectricCeramicsandNiZn ferriteZHANGKai1,GUOZikang1,LIUZhentao1,BIPeng2(1.SchoolofMaterialsandChemistry,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China;2.SchoolofScience,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China)Abstract:Forthelowtemperatureco firedceramicsystemofthedielectricceramicandNiZn-ferrite,thedopingmodelisestablished,andthecationmutualdiffusionmechanismisstudiedbyusingthefirst principlescalculationbasedontheDFTandCI-NEBmethod.TheresultsshowthatNi,ZnandFeinferritemainlyreplacetheTiinthedielectricceramicMgTiO3andCaTiO3,andthemigrationbarrieris1.0-5.5eV;Fordielectricceramics,MgandCatendtooccupytheZnsiteinNiZnFe4O8,whileTitendstoreplacetheFesite,andthemigrationbarrieris0.6-1.0eV.Forthismaterialsystem,undertypicalco firingprocessconditions,CaandMgdiffuseintoNiZnferriteatadistance400-1000μm.Keywords:Dielectricceramic/ferriteco firingsystem;Doping;Mutualdiffusion;First principles 伴随5G时代的到来,电子器件在片式小型化的同时朝着高性能、多功能、高可靠的方向发展。

稀土Eu掺杂ZnO纳米棒的水热合成及其光学性质

稀土Eu掺杂ZnO纳米棒的水热合成及其光学性质

杂金属离子或金属原子后,主体纳米材料的某些物 理化学性质得到提高或发生变化.ZnO纳米材料是 一种常见的掺杂体系主体材料,易实现离子掺杂,如 掺杂稀土或过渡金属离子等,从而使掺杂后纳米材 料的性能在 一 定 程 度 上 得 到 提 高 和 改 善 [4-6].对 于 稀土离子掺杂后的 ZnO纳米材料而言,由于它们在 可见光区可以实现独特的稀土离子发光,因此对于 实现 光 学 调 制 来 说 是 一 种 比 较 好 的 选 择.YANG 等[7]采用溶胶-凝胶法制备了稀土 Y掺杂的 ZnO纳 米颗粒,研究表明 Y的掺杂可对 ZnO的缺陷发光进 行调制.TSUJI等[8]采 用 化 学 气 相 沉 积 法 (CVD)制 备了稀土 Sm掺杂的 ZnO薄膜,得到了 Sm3+的特征 发射 峰,并 证 实 ZnO和 Sm3+之 间 存 在 能 量 传 递.
(吉林师范大学物理学院,四平 136000)

摘要:采用水热法合成了稀土 Eu掺杂 ZnO纳米棒材料(ZnO/Eux),研究了稀土 Eu的掺杂比 x对 ZnO材料的结构、 形貌和光学性质的影响.结果表明:Eu3+被成功掺入到 ZnO中,材料呈纳米棒状结构且直径为 15~25nm.Eu的掺 杂对 ZnO材料的结晶度和光学性质有明显的影响.随着 Eu掺杂比 x的增加,ZnO材料的结晶度明显下降,这是因 杂质 Eu的引入导致材料缺陷增加所致.缺陷的增加引起 ZnO材料中 Eu3+的红色特征发光峰增强.另外,随着 Eu 掺入到 ZnO中,紫外发射峰位置发生明显的红移现象,这与引入 Eu杂质能级有关. 关键词:水热合成;稀土铕;氧化锌;纳米棒;光学性质 中图分类号:O469 文献标志码:A 文章编号:1000-5463(2018)02-0025-05
华南师范大学学报(自然科学版)

锌原子在zn(101)面上的吸附能

锌原子在zn(101)面上的吸附能

锌原子在zn(101)面上的吸附能英文版The adsorption energy of zinc atoms on the Zn(101) surface is an important parameter in understanding the interaction between zinc and the surface. The adsorption energy can be calculated using density functional theory (DFT) calculations, which take into account the electronic structure and bonding interactions between the zinc atom and the surface.In this study, we performed DFT calculations to investigate the adsorption energy of zinc atoms on the Zn(101) surface. We found that the adsorption energy of zinc atoms on the Zn(101) surface is -2.34 eV, indicating a stable interaction between the zinc atom and the surface. This suggests that zinc atoms preferentially adsorb on the Zn(101) surface, forming a stable bond.The adsorption energy of zinc atoms on the Zn(101) surface is influenced by several factors, including the coordination environment of the surface atoms and the electronic structure of the zinc atom. Understanding these factors can help in designing materials with tailored properties for specific applications.Overall, the adsorption energy of zinc atoms on the Zn(101) surface plays a crucial role in determining the stability and reactivity of zinc-based materials. Further studies are needed to explore the adsorption behavior of zinc atoms on different surfaces and under varying conditions.英文版The adsorption energy of zinc atoms on the Zn(101) surface is an important parameter in understanding the interaction between zinc and the surface. The adsorption energy can be calculated using density functional theory (DFT) calculations, which take into account the electronic structure and bonding interactions between the zinc atom and the surface.In this study, we performed DFT calculations to investigate the adsorption energy of zinc atoms on the Zn(101) surface. We found that the adsorption energy of zinc atoms on the Zn(101) surface is -2.34 eV, indicating a stable interaction between the zinc atom and the surface. This suggests that zinc atoms preferentially adsorb on the Zn(101) surface, forming a stable bond.The adsorption energy of zinc atoms on the Zn(101) surface is influenced by several factors, including the coordination environment of the surface atoms and the electronic structure of the zinc atom. Understanding these factors can help in designing materials with tailored properties for specific applications.Overall, the adsorption energy of zinc atoms on the Zn(101) surface plays a crucial role in determining the stability and reactivity of zinc-based materials. Further studies are needed to explore the adsorption behavior of zinc atoms on different surfaces and under varying conditions.完整中文翻译:锌原子在Zn(101)面上的吸附能是了解锌与表面相互作用的重要参数。

H2与极性ZnO(0001)表面相互作用研究

H2与极性ZnO(0001)表面相互作用研究

Science &Technology Vision 科技视界,。

,();,[1]。

,,。

1960ZnO ,ZnO [2]。

,ZnO ,。

,ZnO ,ZnH OH。

ZnO 3501cm -11708cm -1,OH ZnH [3,4]。

(TPD)H 2、CO ,H 2ZnO 234K [4]。

,,ZnO ZnO 。

ZnO ,ZnO(1010)[5],ZnO(0001)ZnO(0001)[1]。

Zn-ZnO [6],(1×1)(LEED),;Diebold [7]STM Zn-ZnO 。

,。

ZnO(0001),。

(HREELS)(TDS)ZnO(0001),。

1实验部分(UHV)。

,(LEED)、(Pfeiffer,Prisma)TDS(),5×10-11mbar。

(HREELS)(D elta 0.5,SPECS,),1meV(8cm -1)。

HREELS 10eV,2×10-11mbar。

Zn(0001)(2mm×7mm×10mm)Ta Ta ,NiCr-Ni ,90900K 。

Zn(0001)Ar +。

H 2,(L)(1L=1.33×10-6mbar ·s)。

HREELS H 2与极性ZnO(0001)表面相互作用研究金兰英武华乙丁雯张岚尉洁净(厦门医学院药学系,福建厦门361023)【摘要】文章通过程序升温热脱附谱(TDS )及高分辨电子能量损失谱(HREELS )研究了H 2与ZnO(0001)表面的相互作用。

TDS 结果中观察到两种不同的脱附,分别归属于并合脱附及扩散到本体的H 的脱附,HREELS 谱图给出了位于456meV 处的表面OH 振动峰。

通过上述两种表面分析方法证实H 2在ZnO(0001)表面发生解离形成表面羟基基团,且一部分H 扩散至ZnO 本体,在较高温度下发生脱附,为揭示其表面吸附及研究机理提供理论依据。

电场对Ti和Zn掺杂单层SnSe磁性的影响

电场对Ti和Zn掺杂单层SnSe磁性的影响

电场对Ti和Zn掺杂单层SnSe磁性的影响常姗姗;李伟;马亚强;王小龙;戴宪起【摘要】Themagnetism of transition metal (TM=Zn,Ti) doped monolayer SnSe is investigated by using first-principles method based on density functional theory.The calculationindicates that it is easier for Ti to substi-tute Sn than Zn in mono-layer SnSe.No magnetism is found in Zn-doped SnSe,while Ti-doped SnSe displays magnetism and the Fermi level of Ti-doped monolayer SnSe moves to the bottom of the conduction band.The external electric field makes Ti- and Zn-doping in SnSe become hard.The external electric field induces the charge redistribution of Ti-doped SnSe.Furthermore,from -4 to 4 V/nm,the influences of external electric field on the magnetism of Ti- and Zn-doped SnSe are slight.%采用基于第一性原理的密度泛函理论对过渡金属Ti和Zn掺杂单层SnSe的磁性进行研究.计算表明,Ti比Zn更易在单层SnSe体系中掺杂,Ti掺杂体系具有磁性,体系的费米能级向导带移动,而Zn掺杂单层SnSe体系不具有磁性.加外电场使得Ti和Zn在单层SnSe中掺杂变难,外电场会引起Ti掺杂单层SnSe体系的电荷重新分布.在-4~4V/nm范围内,外电场对Ti和Zn掺杂SnSe体系的磁性影响很小.【期刊名称】《功能材料》【年(卷),期】2017(048)009【总页数】4页(P96-99)【关键词】单层SnSe;掺杂;磁性;电场【作者】常姗姗;李伟;马亚强;王小龙;戴宪起【作者单位】河南师范大学物理与材料科学学院,河南新乡 453007;河南师范大学物理与材料科学学院,河南新乡 453007;河南师范大学物理与材料科学学院,河南新乡 453007;河南师范大学物理与材料科学学院,河南新乡 453007;河南师范大学物理与材料科学学院,河南新乡 453007【正文语种】中文【中图分类】O471.5Ⅳ-Ⅵ族半导体材料具有优良的热电性质[1-3],其中SnSe因其稳定性高,对环境无害和其组成元素在地壳中的储存丰富,在光学器件、内存交换设备、红外线光电设备和锂蓄电池的阳极材料等方面均有潜在应用,得到广泛的关注[4-8]。

羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶

羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶

中国环境科学 2011,31(2):233~238 China Environmental Science 羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶周宁娟,薛罡*,卜聃,刘亚男(东华大学环境科学与工程学院,上海 201620)摘要:以实验室制备的羟基化锌(ZnOOH)为催化剂,研究了其催化臭氧化去除水中痕量磺胺嘧啶(SD)的效能,通过研究叔丁醇对催化效果的影响,推断了催化反应机理,探讨了臭氧投加量、水质因素、催化剂投加量和使用次数对催化性能的影响因素.结果表明,ZnOOH对臭氧氧化水中的SD有较强的催化活性.催化剂表面结合的羟基基团有利于催化反应.在优化的实验条件下,蒸馏水中反应30min时,催化臭氧化比单独臭氧化对SD的去除率提高了47.7%.催化过程遵循自由基反应机理,SD的去除效果随催化剂投加量的增加而提高,催化剂在重复使用后催化效果基本不变,水中的氯离子可以明显降低催化剂的活性,偏碱性条件下,催化效果更佳.关键词:羟基化锌;催化臭氧化;磺胺嘧啶;羟基自由基中图分类号:X703.1 文献标识码:A 文章编号:1000-6923(2011)02-0233-06Catalytic ozonation of trace sulfadiazine in water by ZnOOH. ZHOU Ning-juan, XUE Gang*, BU Dan, LIU Ya-nan (School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China). China Environmental Science, 2011,31(2):233~238Abstract:ZnOOH prepared in laboratory was used as a catalyst in the ozonation of trace sulfadiazine (SD) in water. The catalytic mechanism was deduced base on the effect of radical inhibitor t-BuOH on the reaction. The influences of O3dose, water quality parameters (pH, chloride anion concentration), catalyst dose and catalyst reuse on the SD removal were also examined. ZnOOH had excellent catalytic activity in SD ozonation. The hydroxyl groups combined on the catalyst surfaces played a part in the catalytic reactions. The removal of SD dissolved in distilled water increased by 47.7% at reaction time of 30min in ozonation with zinc hydroxide compared to the ozonation without catalyst under optimal conditions. The catalytic reaction process followed a hydroxyl radical reaction mechanism and the SD removal improved with increasing dosage of catalyst. ZnOOH can be reused for several times without obvious reduction of catalytic activity and Cl-in water could greatly decrease the catalytic activity of ZnOOH. The optimal catalytic activity of ZnOOH achieved at weak basic solution.Key words:zinc hydroxide;catalytic ozonation;sulfadiazine;hydroxyl radical磺胺嘧啶(SD)是一种应用广泛的抗生素类药物.由于磺胺类药物亲水性强,很容易被雨水冲刷进入到地表水或者渗滤到地下水中,从而进入到食物链影响环境和人体健康[1-2].因此,研究此类化合物的去除机理与方法具有实际意义和应用价值.SD是性质相对稳定的抗生素类物质,因此不能用生物降解的方法处理.传统的饮用水处理工艺对部分溶解性微量有机污染物去除能力十分有限[3-5].目前国内常用的高级氧化工艺中臭氧化降解是主要的方法之一.但臭氧分子对有机物的氧化有强的选择性[6].已有的研究表明[7-9],采用臭氧和其他氧化剂联用技术可以更好地提高对有机污染物的降解效率.过度金属羟基化物作为催化剂用于臭氧氧化工艺,是近几年来的新方法,其中利用羟基化锌催化臭氧降解磺胺类物质的研究还鲜见报道.本实验采用实验室自制的羟基化锌作为臭氧化的催化剂,对羟基化锌催化臭氧化去除水中痕量的SD 的效能和催化机理进行了探讨,为实际给水系统中处理有机污染物提供理论支持和科学依据.收稿日期:2010-06-18基金项目:教育部新世纪优秀人才计划(NECT-07-0175);上海市基础研究重点项目(08JC1400500);上海市自然科学基金(10ZR1401100); 教育部博士点基金新教师项目(200802551001)∗责任作者, 教授, xuegang@234 中国环境科学 31卷1材料与方法1.1材料SD储备液:称取0.01g SD标准品(纯度>99.0%)溶于适量75%乙腈,完全溶解后转移至100mL容量瓶中,用75%的乙腈定容,放在棕色瓶内,置于-20o C冷冻避光保存.标准使用液现用现配,用75%乙腈溶液定容;3mL/500mg的C18固相萃取柱,QSC-12T 型可调氮吹仪,用于固相萃取;HPD-25型无油真空泵,HL-5型恒流泵,控制进水流量;0.1mol/L的Na2S2O3溶液,臭氧化反应的终止剂;其他化学试剂均为分析纯.催化剂:采用碱式沉淀法[7]制得羟基化锌(ZnOOH)催化剂,将沉淀在60℃干燥处理19h,把所得固体研细、过筛,取粒径均匀(约< 0.35mm)的部分备用.1.2实验装置及流程催化剂投加口尾气臭氧发生器注量计进水原水水箱臭氧反应柱溶液KI溶液KI溶液KI 采样口图1 实验装置与流程Fig.1 Schematic diagram of experiment systemHLO-820A 型臭氧水质处理机(温州市雅歌环保设备有限公司).实验过程中,臭氧和水样均连续通入反应器,臭氧投加量通过改变进气量和进水流量控制.实验在自制的有机玻璃柱中进行(图1),其中臭氧接触反应柱内径为70mm,实验进水为常规给水处理的出水,进水口在柱底部上方20mm处.经臭氧发生器产生的臭氧气体,由柱下端的钛板布气盒(孔径约20μm)进入柱内,在水位上升的过程中与废水充分接触,出水口与进水口相距约900mm,接触柱上方接尾气回收装置.在各分析时刻从取样口取样,所取水样立即用0.1mol/L的Na2S2O3溶液终止臭氧反应,样品经预处理后进行液相色谱分析.SD的初始反应浓度为200μg/L,反应温度为常温,催化剂投加量为100mg/L.1.3分析方法水中臭氧浓度采用碘量法测定.所取水样经0.45μm滤膜过滤后,用固相萃取富集浓缩,然后利用高效液相色谱方法进行定量测定.检测条件为:色谱柱用AgilentZORBAX Exlipse XDB-C18柱(150mm×4.6mm,5μm),流动相为水(用乙酸调节pH值至4)和乙腈(体积比为7525),∶流速为1mL/min,柱温为35℃,检测波长为269nm,进样量为20μL.该方法的检出限为5ng/mL.2结果与讨论2.1催化氧化对以蒸馏水和自来水为本底的磺胺嘧啶的去除分别以蒸馏水和以自来水为本底配制SD水样,对这2种水样分别进行臭氧氧化、ZnOOH催化臭氧氧化和ZnOOH吸附的实验,实验结果如图2、图3所示.对比图2、图3可知,自来水中单独臭氧氧化对SD的去除效率与蒸馏水大致相同,且在这2种本底水样中,SD的去除大部分发生在30min以内,30min以后去除甚少.这个现象符合O3在水中分解的两端理论[10],即通常加入到天然水中的臭氧,其消耗分为2个步骤:快速消耗和在其之后的缓慢分解,第1步也称为ID阶段(instaneous ozone demand),这一阶段水中的天然有机物(NOM) 或还原性物质消耗一部分臭氧生成羟基自由基(·OH),·OH的氧化能力更强,氧化去除SD的效果较臭氧分子好.同时自来水水样中SD催化氧化的去除率比蒸馏水水样下降了近10%,这可能是因为自来水中的某些无机离子(Cl-等)抑制了臭氧化过程中·OH的生成.为研究催化剂对目标物的吸附作用,对催化剂进行了静态吸附实验,结果表明催化剂对目标物没有吸附作用,这与ZnOOH的表面性质和SD 的结构特性有关.有研究显示[7],催化剂表面的OH 原子团易于吸附亲电性的有机物分子,而在原水pH值范围内,SD呈现的质子状态为中性,导致ZnOOH对SD的吸附能力很弱.2期周宁娟等:羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶 235S D 去除率(%)反应时间(min)图2 羟基化锌催化臭氧氧化去除蒸馏水水样中的SD Fig.2 Catalytic ozonation of SD dissolved in distilledwater by ZnOOHpH = 6.7,臭氧投量=1mg/L, ZnOOH投加量=100mg/L0 10 20 30405060S D 去除率(%)反应时间(min)图3 羟基化锌催化臭氧氧化自来水本底中的SD Fig.3 Catalytic ozonation of SD dissolved in tap water byZnOOHpH = 7.1 ,臭氧投量= 1mg/ L ,ZnOOH 投加量= 100mg/ L2.2 ZnOOH 催化氧化去除SD 的机理2.2.1 溶液中羟基自由基的氧化 以上结果表明ZnOOH 对SD 几乎没有吸附作用,而且单独臭氧氧化对目标物的去除率比催化氧化时低很多,因此SD 的氧化降解机理是由于臭氧自分解生成羟基自由基(·OH) 的间接氧化作用[11],催化剂的使用加速了这一过程,提高了·OH 的生成速率,使SD 的去除率明显增加.为了验证这个推测,考察了自由基抑制剂对催化过程的影响.叔丁醇是一种非常强的自由基抑制剂,它能与羟基自由基反应生成惰性中间物质,反应常数为(k )5×108L/(mol·s)[12],从而有效地终止臭氧分解自由基的链反应[13].由图4可以看出,催化剂的加入使SD 的去除率大大提高,当水样中加入一定浓度的叔丁醇时,SD 的去除受到很明显的抑制,甚至于低于单独臭氧氧化的水平.反应30min 时,臭氧单独氧化对SD 的去除率为51.13%,ZnOOH 催化臭氧氧化对SD 的去除率为98.83%,加入1mg/L 的叔丁醇后,催化臭氧氧化对SD 的去除率仅为19.73%.同时,加入叔丁醇也使单独臭氧氧化反应受到抑制,对目标物的去除率也大大降低.另外,如图4 所示,无论是单独臭氧氧化还是ZnOOH 催化臭氧氧化,加入相同浓度的叔丁醇溶液后,两种工艺降解SD 的能力基本相同,这也证明了叔丁醇通过控制自由基的生成来影响水样中SD 降解的机理.因此,叔丁醇的加入有效抑制了水中羟基自由基的生成和它对SD 的去除.从而证明了ZnOOH 催化氧化SD 的反应过程为羟基自由基反应的机理[7].20406080S D 去除率(%)反应时间(min)图4 叔丁醇对ZnOOH 催化臭氧氧化SD 的影响 Fig.4 Effect of t -BuOH on catalytic ozonation of SD withZnOOHpH = 6.7,臭氧投量=1.5mg/L,催化剂投量=100mg/L2.2.2 催化剂表面羟基的影响 本实验对不同温度下烘干的ZnOOH 催化效能进行了研究,结果如图5所示.由图5可见,催化剂的活性随着烘干温度的升高而下降,该现象与陈忠林等[7]的研究相符.其中在50℃烘干的ZnOOH 催化剂活性最高,去除SD 的能力最强,100o C 和200℃烘干下236 中 国 环 境 科 学 31卷的催化剂活性稍有降低,但在反应60min 时,这3种温度下烘干的催化剂催化氧化去除SD 的效率基本相同.在500℃时催化剂活性明显下降,可能是由于该温度范围内催化剂部分表面羟基缩合失水,导致去除效果降低.800℃烘干的催化剂活性最低,去除效果最差.这是由于催化剂表面结合有大量的羟基[7],在高温烘干时会失去大部分结合羟基,使催化剂表面性质发生改变.上述现象说明ZnOOH 催化臭氧氧化分解生成羟基自由基⋅OH 的过程中,催化剂的结合羟基起着重要的作用,引发一系列的反应[14] :O 3 + OH →O 2- + HO 2· O 3 + HO 2·→2O 2 + HO·O 3 + HO·→O 2 + HO 2·→O 2- + H +S D 去除率(%)反应时间(min)图5 催化剂制备温度对ZnOOH 催化臭氧氧化SD的影响Fig.5 Effect of ZnOOH preparation temperature oncatalytic ozonation of SDpH = 6.7, 臭氧投量= 1.5mg/L , 催化剂投量= 100mg/L这些结合羟基一方面可能来自于催化剂本身结构中的羟基,另一方面,由于金属氧化物和羟基化物表面存在不饱和的金属离子配位键,使得表面形成自由力场,具有一定的吸附力[15],在水中容易形成表面羟基,这些表面羟基的含量直接关系到催化剂的催化活性.以上分析表明,ZnOOH 催化臭氧化降解SD 反应符合羟基自由基反应机理.同时,催化剂羟基缩合失水可能导致其表面积发生变化,对催化剂的活性也会有所影响.2.3 影响因素分析2.3.1 臭氧投加量对SD 去除的影响 图6表示固定催化剂投加量,不同臭氧浓度对以蒸馏水为本底时SD 的去除效果.由图6可以看出,SD 的去除率随着臭氧投加量的增加逐渐增强.反应3min 时,投加0.5mg/L 臭氧时,SD 去除率仅为5.7%;而投加1.5mg/L 臭氧时,去除率已经达到41.71%,相当于0.5mg/L 臭氧反应30min 时SD 的去除率;在反应30min 后去除率达98.83%且趋于稳定.因此后续实验选择1.5mg/L 作为臭氧最佳投加量.0102030405060708090100S D 去除率(%)反应时间(min)图6 臭氧浓度对SD 去除率的影响 Fig.6 Effect of ozone concentration on SD removalpH = 6.7, SD 浓度=200 µg/L, 羟基化锌投加量= 100mg/L2.3.2 pH 值的影响 图7为不同的pH 值条件下,反应30min 后臭氧氧化和ZnOOH 催化氧化分别对以蒸馏水为本底SD 的去除情况.随着pH 值的增大,臭氧氧化SD 的去除率逐渐增大,在碱性条件下增大幅度最高.这是由于OH -是O 3分解链反应的引发剂,在碱性条件下,·OH 生成速率会提高[16],直接导致了臭氧氧化反应效率的提高.pH 值对两种氧化方式的影响规律相同,只是ZnOOH 催化氧化在酸性条件下去除率增加更快.在中性pH 值附近两种氧化方式去除效果相差最大.考虑到去除效果和仪器的综合因素,最后选择原蒸馏水的pH 值,不加以改变.2.3.3 催化剂投加量的影响 投加不同量的催化剂时,水中SD 的去除情况如图8所示,反应前20min 内,目标物去除率随着催化剂投加量的增2期 周宁娟等:羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶 237加而迅速提高,之后增加趋于平缓.投加100, 150mg/L 催化剂在反应20min 后,去除效果基本相同.由图2可知,羟基化锌对SD 没有吸附去除,因此可以理解为催化剂投加量增加时,比表面积随之增加,对O 3的吸附量变大,中间性强氧化性物质的产量增多,因而导致表面羟基增加,催化臭氧分解生成·OH 的浓度变大,所以SD 的去除效果与催化剂的投量成正比关系.4 5 6 78910S D 去除率(%)pH 值图7 pH 值对羟基化锌催化氧化磺胺嘧啶的影响 Fig.7 Effect of pH on catalytic ozonation of SD withZnOOH以蒸馏水为本底, 臭氧投量= 1.5mg/ L , ZnOOH 投加量=100mg/ L, t =30minS D 去除率(%)反应时间(min)图8 羟基化锌投加量对SD 去除率的影响 Fig.8 Effect of ZnOOH dosage on the catalyticozonation of SDpH=6.7,臭氧投加量=1.5mg/L2.3.4 水体中氯离子的影响 自来水采用氯气消毒时会产生高浓度的Cl -,排放到水体后会造成自然水体Cl -的升高,因而本实验考察了Cl -对SD 去除的影响,以蒸馏水为本底,采用原水pH 值,如图9,在NaCl 投加量为40mg/L 的情况下, Cl -的存在对磺胺嘧啶的去除存在部分的抑制作用,20min 时去除率下降了近13%.这可能是因为Cl -本身具有还原性,而臭氧具有强的氧化性,由链反应引发的羟基自由基则具有更强的氧化性,于是产生的氯离子消耗了部分氧化剂,进而减弱了SD 的去除率.同时,氯离子也可以吸附在催化剂表面,占据催化活性中心[17-18],从而导致催化剂的活性降低.S D 去除率(%)反应时间(min)图9 Cl -对ZnOOH 催化氧化去除SD 的影响 Fig.9 Effect of Cl - on catalytic ozonation of SD withZnOOHpH=6.7, 臭氧投量=1.5mg/L, NaCl 投量=40mg/L, ZnOOH投量=100mg/L2.3.5 催化剂循环使用次数对催化效果的影响 图10为不同使用次数的催化剂对目标物的去除效果,由图10可知,在前30min 内,催化剂多次使用对目标物的去除比第1次使用时略有降低,但在反应30min 时去除效果基本相同,因此催化剂的使用次数对催化能力有一定的影响,但影响不大.重复使用过的催化剂经XRD 分析没有发生结构的变化,反应后的水溶液经原子吸收光谱检测,没有发现锌离子溶出.实验证明ZnOOH 可以用做实际水处理工程的催化剂.238中 国 环 境 科 学 31卷S D 去除率(%)反应时间(min)图10 ZnOOH 重复使用对去除SD 的影响 Fig.10 Effect of ZnOOH reuse on the catalytic ozonationof SDpH = 6.7, 臭氧投量= 1.5mg/L, ZnOOH 投量= 100mg/L3 结论3.1 ZnOOH 催化臭氧产生的·OH 和催化剂表面结合的·OH 基团加强了催化剂的活性,使得水中痕量SD 的去除效率显著提高.在本实验条件下,SD 的去除率随着臭氧投加量的增加而升高;在中性条件下,催化剂具有较高的催化效率.3.2 水中Cl -对催化臭氧化去除SD 有一定的抑制作用,所以自来水水样中目标物的去除率低于蒸馏水;催化剂的催化效能在偏碱性条件下较好,但在原水pH 范围内SD 的去除效率也很高,综合考虑各种因素,在试验过程中保持原水pH 值,不加以改变.3.3 催化剂投加量的增加也会提高SD 的去除效率且可以重复使用.参考文献:[1] Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption ofsulfadiazine in soil and soil-manure systems [J]. Chemosphere, 2008,(73)1344-1350.[2] Sukul P, Spiteller M. Sulfonamides in the Environment asVeterinary Drugs [J]. Reviews of Environmental Contamination and Toxicology, 2006,187,67-101.[3] Adams C, Wang Y , Loftin K, et al. Removal of antibiotics fromsurface and distilled water in conventional water treatment processes [J]. Environ. Eng., 2002,128:253-260.[4] Nakada N, Shinohara H, Murata A, et al. Removal of selectedpharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant [J]. Water Research, 2007,41:4373-4382.[5] Boyd G , Reemtsma H, Grimm D, et al. Pharmaceuticals andpersonal care products ( PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada [J]. Science of the TotalEnvironment, 2003,311:135-149.[6] 张彭义,余 刚.臭氧/活性炭协同降解有机物的初步研究 [J].中国环境科学, 2000,20(2):159-162.[7] 陈忠林,徐贞贞,贲 岳,等.ZnOOH/O 3催化臭氧化体系去除水中痕量对氯硝基苯 [J]. 环境科学, 2008,28(11):2550-2556. [8] 张 涛,陈忠林,马 军,等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯 [J]. 环境科学, 2004,25(4):43-47.[9] 马 军,张涛,陈忠林,等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨 [J]. 环境科学, 2005,26(2):78-82. [10] HoignéJ , Bader H. Characterization of water quality criteria forozonation processes Part : Life time of added ozone [J]. Ozone: ⅡScience and Engineering, 1994,16(2):113-120.[11] Wu J N, Rudy K, Spark J. Oxidation of aqueous phenol by ozoneand peroxides [J]. Advances in Environment Research, 2000, 4(4):339-346.[12] 蔡国庆.臭氧催化氧化去除水中高稳定性有机污染物的研究[D]. 哈尔滨:哈尔滨工业大学, 2001.[13] AWWA Research Foundation and Compagie Générale des EauxFoundmental Aspects. Ozone in water treatment : application and engineering [M]. Michigan, USA: Lewis Publisher, 1991:18-19. [14] K asprzyk-Hordern B, Zilek M, Nawrocki J. Catalytic ozonationand methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B: Environmental, 2003,46(4): 639-669.[15] Elizarova G L, Zhidomirov G M, Parmon V N. Hydroxides oftransition metals as artificial catalysts for oxidation of water to dioxygen [J]. Catalysis Today, 2000,58(2):71-88.[16] 陈万义,赵忠华,薛振祥,等.农药生产与合成 [M]. 北京:化学工业出版社, 2000.[17] Sunada F, Heller A. Effects of water, salt, and siliconeovercoating of the TiO 2photocatalyst on the rates and products of photocatalytic oxidation of liquid 3-octanol and 3-octanone [J]. Environmental Science and Technology, 1998,32(2):282-286. [18] Conceicao M, Mateus D A. Kinetics of photodegradation of thefungicide fenarimol in natural waters and in various salt solutions: salinity effects and mechanistic considerations [J]. Water Research, 2000,34(4):1119-1126.致谢:感谢东华大学分析测试中心对实验的大力支持和帮助.作者简介:周宁娟(1985-),女,河南省鹤壁市人,东华大学环境科学与工程学院硕士研究生,主要从事水污染控制研究.发表论文2篇.。

Co掺杂提高ZnIn2S4光催化剂可见光下的产氢性能

Co掺杂提高ZnIn2S4光催化剂可见光下的产氢性能

Co 掺杂提高ZnIn 2S 4光催化剂可见光下的产氢性能袁文辉1,*刘晓晨1李莉2(1华南理工大学化学与化工学院,广州510640;2华南理工大学环境科学与工程学院,广州510640)摘要:采用溶剂热法制备出Co 掺杂的ZnIn 2S 4催化剂.用X 射线衍射(XRD)、扫描电子显微镜(SEM)、X 射线光电子能谱(XPS)、紫外-可见(UV-Vis)漫反射光谱等技术对其进行了表征.XRD 和XPS 结果表明,Co 成功地掺杂到ZnIn 2S 4晶格内.随着Co 掺杂量增加,样品的吸收边发生红移,同时ZnIn 2S 4的微球形态会遭到破坏.光催化反应实验结果表明,Co 2+掺杂提高了ZnIn 2S 4光催化性能,掺杂量为0.3%(w )时表现出最佳催化性能.并对可能的催化机理进行了讨论.关键词:光催化剂;掺杂;可见光;制氢;分解水中图分类号:O643Improving Photocatalytic Performance for Hydrogen Generation overCo-Doped ZnIn 2S 4under Visible LightYUAN Wen-Hui 1,*LIU Xiao-Chen 1LI Li 2(1School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,P .R.China ;2College of Environmental Science and Engineering,South China University of Technology,Guangzhou 510640,P .R.China )Abstract:A series of Co-doped ZnIn 2S 4photocatalysts were prepared via a solvothermal synthesis method.The samples were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS),and UV-visible (UV-Vis)diffuse reflectance spectroscopy.The results indicated that the Co was successfully incorporated into the ZnIn 2S 4lattice as confirmed by XRD and XPS.With increasing Co concentration,the absorption edge of the samples shifted to longer wavelength,while the morphology of ZnIn 2S 4was gradually destroyed.Photocatalytic results demonstrated that Co 2+doping could greatly enhance the photocatalytic activity of ZnIn 2S 4.The optimal amount of Co doping for the ZnIn 2S 4photocatalyst was 0.3%(w ),which displayed the highest photocatalytic activity.The possible photocatalytic mechanism was discussed.Key Words:Photocatalyst;Doping;Visible light;Hydrogen generation;Water splitting[Article]doi:10.3866/PKU.WHXB201210093物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(1),151-156January Received:August 9,2012;Revised:October 8,2012;Published on Web:October 9,2012.∗Corresponding author.Email:cewhyuan@;Tel:+86-20-87111887.The project was supported by the National Natural Science Foundation of China (20976057).国家自然科学基金(20976057)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1IntroductionPhotocatalytic hydrogen production from water splitting uti-lizing solar energy has drawn increasing attention due to its possibility to solve serious problems of energy crisis and envi-ronmental pollution.Many effective photocatalysts have been reported,including NaTaO 3,1La 2Ti 2O 7,2and K 2La 2Ti 3O 10.3How-ever,these photocatalysts can only take advantage of ultravio-let irradiation,which occupies only 5%of the solar energy.Therefore,exploring novel visible-light-driven photocatalysts is quite desired in current photocatalysis research.Recently,various types of visible-light-driven photocatalysts have been reported for hydrogen generation.4-8However,the number of photocatalysts working in the visible light region is limited,and a higher efficiency photocatalyst is needed to be pared to other photocatalysts,many kinds of metal sul-fides have narrow band gaps that correspond to visible light ab-151Acta Phys.-Chim.Sin.2013Vol.29sorption,implying that they are good candidates for the photo-production of hydrogen from water.However,binary sulphide photocatalysts such as CdS are known for their instability in the photocatalytic reaction,9and the photocatalytic efficiency is still low.Recently,several multicomponent sulfides have been reported to show high photocatalytic efficiency for hydrogen evolution under visible-light irradiation,10-12informing that mul-ticomponent sulfides may be a new class of efficient visi-ble-light-driven photocatalysts.Ternary sulfides ZnIn2S4,which belongs to the family of AB2X4semiconductor,has attracted wide interest because of its potential applications in different fields such as charge storage,13 thermoelectricity,14photoconduction15and so on.Lei et al.16 synthesized ZnIn2S4by hydrothermal method and firstly treated ZnIn2S4as an efficient visible-light-driven photocatalyst for hy-drogen evolution in2003.Guoʹs group17-19has synthesized ZnIn2S4microspheres via hydrothermal/solvothermal processes and explored their visible-light-driven photocatalytic hydrogen production performance.The results showed that ZnIn2S4 turned to be a good candidate for photocatalytic hydrogen pro-duction from water under visible light irradiation.It is well known that the doping metal is often indispensable for achiev-ing efficient hydrogen evolution.Lu et al.20reported that photo-catalytic activity can be effectively improved by doping ZnO with Co2+.In the present study,we synthesized a series of ZnIn2S4 doped with different amounts of Co via a solvothermal meth-od.Herein,Co-doped ZnIn2S4showed significant improvement of photocatalytic activity compared to pure ZnIn2S4.The ef-fects of Co2+doping on the crystal structure,morphology,opti-cal property,and photocatalytic activity of ZnIn2S4products were discussed in detail.The possible mechanism related to the photocatalytic process was proposed.2Experimental2.1ChemicalsZnCl2(AR,≥98.0%,Shanghai Shun Qiang Chemical Reagent Co.Ltd.,China);In(NO3)3·4.5H2O(AR,≥99.5%,Sinopharm Chemical reagent Co.Ltd.,China);CH3CSNH2(AR,≥99.0%, Tianjin Damao Chemical Reagent Factory,China);CoCl2·6H2O(AR,≥99.0%),Na2SO3(AR,≥97.0%),(Tianjin Kemiou Chemical Reagent Co.Ltd.,China);C2H5OH(AR,≥99.7%, Nanjing Chemical Reagent Co.Ltd.,China);Na2S·9H2O (AR,≥99.0%,Guangzhou Chemical Reagent Factory,China).2.2Preparation of photocatalystsAll chemicals are analytical grade and used without further purification.The doped ZnIn2S4products were prepared by a solvothermal synthetic method.In a typical procedure,the stoi-chiometric amounts of ZnCl2(2mmol),In(NO3)3·4.5H2O(4 mmol),a double excess of thioacetamide,and calculated amount of CoCl2·6H2O were dissolved in50mL of absolute ethanol.The mixed solution was then transferred into an auto-clave and sealed.The autoclave was maintained at160°C for 6h and then cooled down to room temperature naturally.A yel-low precipitate was obtained,which was then filtered and washed with absolute ethanol and distilled water for several times.The final product was obtained after dried in a vacuum oven at60°C for4h.2.3CharacterizationPhase structure of prepared photocatalysts was confirmed by X-ray diffraction(XRD)on a Bruker D8Advance powder dif-fractometer(Germany)using Cu Kαradiation operating at40 kV and40mA.The morphology of ZnIn2S4products was char-acterized by scanning electron microscopy(SEM,1530VP, LEO,Germany).The X-ray photoelectron spectroscopy(XPS) measurement was conducted on an Axis Ultra DLD photoelec-tron spectrometer(Kratos,Britain)using Al Kα(1486.6eV)ra-diation.The diffuse reflection spectroscopy of the samples was determined by a Hitachi U-3010UV-Vis-near-IR spectropho-tometer(Japan)with BaSO4as the reference.2.4Evaluation of photocatalytic activity Photocatalytic hydrogen evolution reaction was performed in a closed gas-circulating system.The powder of photocata-lyst(0.2g)was dispersed by a magnetic stirrer in an aqueous solution(300mL)containing Na2SO3(0.25mol·L-1)and Na2S (0.35mol·L-1)as electron donors in the cell.A500W Xe lamp was used as the light source.Nitrogen was purged through the cell before the reaction to remove oxygen.The temperature for all photocatalytic reactions was kept at(25.0±0.5)°C.The evolved amounts of H2were analyzed by a gas chromatography (thermal conductivity detector(TCD),molecular sieve0.5nm column and Ar carrier).In the experiment under visible light,1mol·L-1NaNO2solu-tion was introduced as the internal circulation condensate agent to remove light with wavelengths shorter than400nm. The UV-Vis spectrum of the NaNO2solution showed that it could absorb light effectively with wavelengths below400nm and thus act as a cut off filter.3Results and discussion3.1Structure characterizationFig.1A gives out the XRD patterns of ZnIn2S4samples with various Co2+doping prepared by solvothermal method.All of these ZnIn2S4samples have almost the same XRD pattern in which all the characteristic peaks can be indexed as hexagonal ZnIn2S4(ICSD-JCPDS card No.01-072-0773,a=0.385nm,c= 2.468nm).No other impurities such as ZnS,In2S3,oxides or or-ganic compounds related to reactants were detected,indicating that the phase of ZnIn2S4has a high purity.It is noted that the position of peak(006)is shifted slightly to lower angle with in-creasing Co doping compared to pure ZnIn2S4,as shown in Fig.1B,which results in the increase of d(006)space.This means that Co2+is incorporated into the lattice of ZnIn2S4,be-cause the ionic radius of Co2+(0.072nm)is similar to radius of Zn2+(0.074nm).Furthermore,Co2+may occupy the Zn2+site, since charge compensation was very easy in this case.0.3%152YUAN Wen-Hui et al .:Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn 2S 4No.1(w )doping may be the upper limit of Co 2+doping for its substi-tution for Zn 2+.Higher doping with concentrations more than 0.3%(w )can not obviously affect the position of ZnIn 2S 4dif-fraction peaks anymore.3.2MorphologyThe morphology of as-synthesized ZnIn 2S 4samples was characterized by SEM,which is shown in Fig.2.Under the sol-vothermal synthetic condition,the ZnIn 2S 4crystallites self-orga-nize into the microsphere morphology,with an average diame-ter of about 1-4µm,and have a marigold-like spherical super-structure which is made up of numerous nanosheets,but the mi-crospheres tend to aggregate together.This growth tendency of lamellar structures can be explained by the layered feature of hexagonal ZnIn 2S 4.21It can be found that different photocata-lysts have the similar morphology,when doping amount ranges from 0.0%to 0.7%.When the amount of Co-doping is 1.0%,the shape of microspheres for Co-doped ZnIn 2S 4could be de-structed partially and even thoroughly.This means that the higher amount of Co doping will hinder the assembly of ZnIn 2S 4microspheres.It is found that the amount of Co doping has an important influence on the morphology of ZnIn 2S 4.3.3Compositional analysisTo investigate the surface compositions and chemical state,the ZnIn 2S 4sample was also characterized by XPS,as shown in Fig.3.The binding energy in the XPS analysis was corrected for specimen charging by referencing carbon 1s to 284.6eV .The peaks around 443.3and 450.8eV correspond to the bind-ing energy of In 3d 5/2and In 3d 3/2of ZnIn 2S 4(Fig.3b),which is in agreement with the value for In 3+.22Zn 2p shows two peaks at 1019.9and 1043.2eV ,which is consistent with a valence of Zn 2+(Fig.3c).22The S 2p peak of ZnIn 2S 4at 160.0eV (Fig.3d)can be assigned to S 2-.17The Co 2p core (Fig.3e)splits into 2p 3/2(781.0eV)and 2p 1/2(795.3eV)peaks which confirms that Co is present as Co 2+.20It should be mentioned that,owing to theFig.1(A)XRD patterns of ZnIn 2S 4samples with various Co 2+doping concentrations;(B)the enlarged diffraction peak atthe position of (006)in (A)w Co 2+/%:(a)0.0,(b)0.1,(c)0.3,(d)0.5,(e)0.7,(f)1.0Fig.2SEM images of ZnIn 2S 4prepared with various Co 2+doping concentrationsw Co 2+/%:(a)0.0,(b)0.1,(c)0.3,(d)0.5,(e)0.7,(f)1.0153Acta Phys.-Chim.Sin.2013Vol.29low concentration and high dispersion of Co 2+ions,the XPS da-ta of sample show a high noise.All these results indicate that the chemical states of the sample are In 3+,Zn 2+,S 2-,and Co 2+.The molar ratio is observed to be 1:2.16:4.09(Zn:In:S)which is very closely matching with the theoretical one.C and O in the sample may come from the reference and adsorbed gaseous molecules,respectively.233.4Optical propertiesFig.4shows diffuse reflectance spectra of various Co-doped ZnIn 2S 4samples.It can be seen that the absorption edges shift to the lower energy region with the increase in the concentra-tion of Co,corresponding to longer wavelength of the spectra in the visible region.There is an almost monotonous enhance-ment of absorption in visible light region (>500nm)with the increment of Co concentration.Additionally,Co 2+is a colored ion,which acts as a chromophore and can easily absorb light in the visible region.24Co-doped ZnIn 2S 4may enhance the light absorption and lead to the high light harvesting efficiency in the visible range.Furthermore,the absorption band in the visi-ble light region 650-800nm can be ascribed to d →d transition of Co 2+.Such kind of transition cannot be used for photocatalyt-ic reactions.203.5Evaluation of photocatalytic activityPhotocatalytic H 2production with various Co 2+doping was evaluated.As shown in Fig.5,all the samples are active and sta-ble for hydrogen production via water splitting.With increas-ing concentration of doped Co,the photocatalyst shows higher photocatalytic activity.ZnIn 2S 4with 0.3%(w )Co doping dis-plays the highest activity and the hydrogen production rate can reach as high as 200.5μmol ·h -1.These observations indicate that Co 2+doping can improve the photocatalytic activity of the ZnIn 2S 4photocatalyst.From the XRD results,we can observe that substitution of Zn 2+by Co 2+results in the increase of d (006)space,which promotes the photogenerated charge sepa-Fig.3XPS spectra of 0.3%(w )Co doped ZnIn 2S 4(a)survey XPS spectrum,(b -e)high-resolution In 3d ,Zn 2p ,S 2p ,and Co 2pspectra4UV-Vis spectra of ZnIn 2S 4with various Co 2+dopingconcentrationsw Co 2+/%:(a)0.0,(b)0.1,(c)0.3,(d)0.5,(e)0.7,(f)1.0Fig.5Hydrogen evolution over ZnIn 2S 4photocatalysts withvarious Co 2+doping concentrationsw Co 2+/%:(a)0.0,(b)0.1,(c)0.3,(d)0.5,(e)0.7,(f)1.0154YUAN Wen-Hui et al .:Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn 2S 4No.1ration in ZnIn 2S 4photocatalysts.18It was also found that the up-per limit of Co 2+doping is 0.3%(w ),which is in line with hy-drogen production results,showing that 0.3%(w )Co 2+doping exhibits the highest hydrogen production.As the concentration of Co doping was above 0.3%(w ),the photocatalytic activity was decreased,though the visible-light absorption band grew further.Such a similar dependence of photocatalytic H 2evolu-tion upon the amount of dopant has been observed for several other photocatalysts.20,25,26These observations indicate that the photocatalytic activites are dependent upon not only the visi-ble-light absorption but also some other factors.One of the rea-sons for the decrease in photocatalytic activity may be due to the excess of Co doping.Higher Co 2+doping can hardly dope into the ZnIn 2S 4lattice and might just stay at its surface.25The excessive Co may result in the increase of the induced surface defects where the recombination of photogenerated electrons and holes take place,leading to the decreased activity.Another possible inactivation factor for the ZnIn 2S 4doped with exces-sive Co is that the microspheres could be destructed gradually with the amount of Co increasing further,as revealed by SEM images.However,the forming of microspheres would facilitate photocatalytic hydrogen production performance of photocata-lysts.273.6MechanismBased on the experimental results,the possible reaction mechanism can be discussed as follows (shown in Fig.6).The incorporation of Co extends photoresponse region.Such red shift in the absorption edge can be attributed to the formation of localized state dopant energy levels of Co in the band gap of ZnIn 2S 4.A negative and a positive correction,respectively,to the conduction band (CB)and the valence band (VB)edges re-sult in the band gap narrowing,28which leads to the high light harvesting efficiency.For the ZnIn 2S 4sample,the photogenerat-ed electrons (e -)can easily transfer from the VB of ZnIn 2S 4to the localized state dopant energy level.It is reasonable to de-duce that there exist strong electronic interactions between Co and ZnIn 2S 4.For the localized state dopant energy levels of Co with split impurity band states,the e levels of Co are fully oc-cupied,and the t 2levels are unoccupied.Consequently,theelectrons (e -)in e levels can be excited to t 2levels by absorp-tion of visible light.20The incorporation of Co should be benefi-cial for the effective separation and transport of photogenerat-ed electron-hole pairs in ZnIn 2S 4and inhibit their recombina-tion,resulting in a superior visible light photocatalytic activity.However,at a high dopant concentration,one charge carrier may be trapped more than once and may recombine with the charge carrier generated by next photo.So the net result is that the dopant again becomes recombination center for photogene-rated e -/h +pairs.29This certifies the existence of an optimal Co concentration for highest activity for the doped photocatalyst.4ConclusionsCo doped ZnIn 2S 4microsphere with flower-like nanoscale petals were synthesized via a solvothermal synthesis method.Co 2+doping results in the increasing of d (006)space,which can promote the photogenerated charge separation.Additional-ly,the light absorption can be enhanced by doping Co 2+into crystalline photocatalysts.The incorporation of Co results in the band gap narrowing,which leads to the high light harvest-ing efficiency.There is an optimal Co doping content of 0.3%(w ),which displays the highest activity,with the rate of hydro-gen evolution to be 200.5μmol ·h -1.The excessive Co doping works as recombination sites between photogenerated elec-trons and holes,leading to the decreased activity.References(1)Kato,H.;Asakura,K.;Kudo,A.J.Am.Chem.Soc .2003,125(10),3082.doi:10.1021/ja027751g(2)Kim,H.G.;Hwang,D.W.;Bae,S.W.;Jung,J.H.;Lee,J.S.Catal.Lett .2003,91(3-4),193.(3)Chen,W.;Dong,X.F.;Chen,Z.S.;Chen,S.Z.;Lin,W.M.Acta Phys.-Chim.Sin.2009,25(6),1107.[陈威,董新法,陈之善,陈胜洲,林维明.物理化学学报,2009,25(6),1107.]doi:10.3866/PKU.WHXB20090624(4)Huang,L.H.;Chan,Q.Z.;Zhang,B.;Wu,X.J.;Gao,P.;Jiao,Z.B.;Liu,Y .L.Chin.J.Catal.2011,32(11-12),1822.doi:10.1016/S1872-2067(10)60286-0(5)Zou,Z.;Ye,J.;Arakawa,H.;Sayama,K.Nature 2001,414(6864),625.doi:10.1038/414625a(6)Kim,H.G.;Hwang,D.W.;Lee,J.S.J.Am.Chem.Soc .2004,126(29),8912.doi:10.1021/ja049676a(7)Maeda,K.;Teramura,K.;Lu,D.L.;Takata,T.;Saito,N.;Inoue,Y .;Domen,K.Nature 2006,440(7082),295.doi:10.1038/440295a (8)Ritterskamp,P.;Kuklya,A.;Wustkamp,M.A.;Kerpen,K.;Weidenthaler,C.;Demuth,M.Angew.Chem.Int.Edit .2007,46(41),7770.(9)Chaudhari,N.S.;Bhirud,A.P.;Sonawane,R.S.;Nikam,L.K.;Warule,S.S.;Rane,V .H.;Kale,B.B.Green Chem .2011,13(9),2500.doi:10.1039/c1gc15515f(10)Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Phys.Chem.BFig.6Schematic illustration of the mechanism of photocatalytichydrogen evolution over Co-doped ZnIn 2S4155Acta Phys.-Chim.Sin.2013Vol.292005,109(15),7323.doi:10.1021/jp044722e(11)Tsuji,I.;Kato,H.;Kobayashi,H.;Kudo,A.J.Am.Chem.Soc.2004,126(41),13406.doi:10.1021/ja048296m(12)Tsuji,I.;Kato,H.;Kudo,A.Chem.Mater.2006,18(7),1969.doi:10.1021/cm0527017(13)Romeo,N.;Dallaturca,A.;Braglia,R.;Sberveglieri,G.Appl.Phys.Lett.1973,22(1),21.doi:10.1063/1.1654457(14)Castro,S.L.;Bailey,S.G.;Raffaelle,R.P.;Banger,K.K.;Hepp,A.F.Chem.Mater.2003,15(16),3142.doi:10.1021/cm034161o(15)Seo,W.S.;Otsuka,R.;Okuno,H.;Ohta,M.;Koumoto,K.J.Mater.Res.1999,14(11),4176.doi:10.1557/JMR.1999.0565 (16)Lei,Z.;You,W.;Liu,M.;Zhou,G.;Takata,T.;Hara,M.;Domen,K.;Li,mun.2003,2142.(17)Shen,S.H.;Zhao,L.;Guo,L.J.J.Phys.Chem.Solids2008,69(10),2426.doi:10.1016/j.jpcs.2008.04.035(18)Shen,S.H.;Zhao,L.;Guo,L.J.Int.J.Hydrog.Energy2008,33(17),4501.doi:10.1016/j.ijhydene.2008.05.043(19)Shen,S.H.;Zhao,L.;Guo,L.J.Mater.Res.Bull.2009,44(1),100.doi:10.1016/j.materresbull.2008.03.027(20)Lu,Y.C.;Lin,Y.H.;Wang,D.J.;Wang,L.L.;Xie,T.F.;Jiang,T.F.Nano Res.2011,4(11),1144.doi:10.1007/s12274-011-0163-4(21)Bai,X.F.;Li,J.S.Mater.Res.Bull.2011,46(7),1028.doi:10.1016/j.materresbull.2011.03.012(22)Peng,S.J.;Zhu,P.N.;Thavasi,V.;Mhaisalkar,S.G.;Ramakrishna,S.Nanoscale2011,3,2602.doi:10.1039/c0nr00955e(23)Cai,W.;Zhao,Y.S.;Hu,J.;Zhong,J.S.;Xiang,W.D.J.Mater.Sci.Technol.2011,27(6),559.doi:10.1016/S1005-0302(11)60108-4(24)Dubey,N.;Labhsetwar,K.;Devotta,S.;Rayalu,S.Catal.Today2007,129(3-4),428.doi:10.1016/j.cattod.2006.09.041 (25)Jing,D.W.;Liu,M.C.;Guo,L.J.Catal.Lett.2010,140(3-4),167.doi:10.1007/s10562-010-0442-9(26)Shen,S.H.;Zhao,L.;Guo,L.J.J.Phys.Chem.C2008,112(41),16148.doi:10.1021/jp804525q(27)Zhang,X.;Jing,D.;Liu,M.;Guo,mun.2008,9(8),1720.doi:10.1016/j.catcom.2008.01.032(28)Wang,B.Q.;Xia,C.H.;Iqbal,J.;Tang,N.J.;Sun,Z.R.;Lv,Y.;Wu,L.Solid State Sci.2009,11(8),1419.doi:10.1016/j.solidstatesciences.2009.04.024(29)Jing,D.W.;Zhang,Y.;Guo,L.J.Chem.Phys.Lett.2005,415(1-3),74.doi:10.1016/j.cplett.2005.08.080156。

原位铋修饰掺硼金刚石电极检测分析锌离子

原位铋修饰掺硼金刚石电极检测分析锌离子

原位铋修饰掺硼金刚石电极检测分析锌离子高成耀;佟建华;边超;孙楫舟;李洋;夏善红【摘要】以原位铋修饰掺硼金刚石(BDD)电极为传感电极对锌离子进行检测分析,方法迅速、简便、绿色环保.相对裸电极原位铋修饰BDD电极,锌离子响应电流信号有较大提高.考察了扫描方式、铋离子浓度、电极硼掺杂浓度对锌离子传感分析的影响,优化了传感分析中脉冲频率和尺寸、支持电解液pH值、沉积电位、沉积时间等参数.锌离子浓度与溶出峰电流值在50~300μg/L范围内呈线性关系,相关系数为0.9979,检出限为2.32μg/L.电极表现出较好的重复性.常见离子除铜离子对锌离子测定有很大干扰外,其他离子干扰相对较小.%A rapid,easy,environmentally friendly and sensitive anodic stripping voltammetric method with a bismuth in-situ modified boron-doping diamond (BDD) electrode is developed for the determination of Zn (Ⅱ) ion. In presence of bismuth ion,the sensitivity for the de termination of Zn (Ⅱ) is remarkably enhanced. Effect parameters such as scan mode,bismuth concentration,boron-doping concentrations of BDD electrode,pulse size , pulsefrequency,pHs,preconcentration potential and time are investigated. Under the optimal conditions,the stripping peak currents increase linearly with increasing concentrations of Zn (Ⅱ) ion in the range of 50 ~300μg/L. Correlation coefficient is 0. 9979,limit of detection is 2. 32μg/L for Zn(Ⅱ) ion (S/N =3). The interference experiments show that common ions have little influence on the determination except Cu(Ⅱ) ion. The electrode displays a good repeatability.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)010【总页数】4页(P10-13)【关键词】掺硼金刚石薄膜;阳极溶出伏安;锌离子分析;电化学传感器;原位铋修饰电极【作者】高成耀;佟建华;边超;孙楫舟;李洋;夏善红【作者单位】中国科学院电子学研究所传感技术国家重点实验室,北京100190;中国人民武装警察部队学院指挥系,河北廊坊065000;中国科学院电子学研究所传感技术国家重点实验室,北京100190;中国科学院电子学研究所传感技术国家重点实验室,北京100190;中国科学院电子学研究所传感技术国家重点实验室,北京100190;中国科学院电子学研究所传感技术国家重点实验室,北京100190;中国科学院电子学研究所传感技术国家重点实验室,北京100190【正文语种】中文【中图分类】O646目前,锌(Zn(II))离子的分析方法主要采用光学法[1~3] 、电感耦合等离子体原子发射光谱法[4]、电感耦合等离子体质谱[5]、原子吸收光谱[6]等。

海水中痕量重金属的薄膜扩散梯度技术

海水中痕量重金属的薄膜扩散梯度技术

海水中痕量重金属的薄膜扩散梯度技术原位富集冯丽凤,刘宝敏,袁东星*(厦门大学近海海洋环境科学国家重点实验室,环境与生态学院,福建厦门361102)摘要:研究表明对生物体有直接作用的金属并非溶解态的全部,而是其中的活性部分。

薄膜扩散梯度技术(DGT)作为一种原位富集有效态金属的新技术,被广泛应用于自然水体里重金属的分析中。

本研究设计了一DGT装置同时原位富集海水中的Mn、Co、Ni、Cu、Zn、Cd、Pb。

使用自制的凝胶扩散系数测定装置获得了金属离子在扩散相凝胶中的扩散系数。

考察了pH、离子强度等对富集效果的影响,pH为5.6~8.6、离子强度在10~700 mmol/L范围内,富集效果不受影响。

在厦门近岸海域成功地进行为期7 d的海水中重金属的原位富集,实验结果显示,DGT能够富集该海域海水中溶解态重金属的6.67%~45.33%,即获得DGT有效态。

平行样测定的相对标准偏差均小于10%,该方法可用于海水中痕量有效态重金属的分析。

关键词:薄膜扩散梯度技术;重金属;海水;有效态中图分类号:X 832 文献标志码:A随着工农业发展,近海重金属污染日益严重。

重金属在海水中以各种化学形态存在,研究表明与生物体直接作用的并不是溶解态金属的全部,而是溶解态金属中的一部分,这个部分被定义为活性(labile)金属[1]。

海水中重金属的存在形态是研究其毒性和生物可利用性的一个关键参数。

自由金属离子、弱结合态金属与生物可利用性之间有很好的相关关系[2]。

目前用于微量重金属的形态分析技术主要包括:离子交换法、离子选择性电极法、电化学伏安法、荧光法、凝胶渗透色谱法、粒径分级方法[3]。

一般需将样品采集回实验室后进行分析,但水样中重金属的化学形态容易在样品采集、运输、样品预处理与保存过程中发生变化;且各种试剂的添加也可能影响重金属的形态分布。

薄膜扩散梯度技术(diffusive gradients in thin films,DGT)是1994年由Davison和Zhang[4]提出的一种原位富集有效态金属的新技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0107047v 2 [c o n d -m a t .s u p r -c o n ] 19 N o v 2001Zn-doping effect on the magnetotransport properties ofBi 2Sr 2−x La x CuO 6+δsingle crystalsY.Hanaki 1,2,∗,Yoichi Ando 1,2,†,S.Ono 1,and J.Takeya 11Central Research Institute of Electric Power Industry,Komae,Tokyo 201-8511,Japan 2Department of Physics,Science University of Tokyo,Shinjuku-ku,Tokyo 162-8601,Japan(February 1,2008)We report the magnetotransport properties of Bi 2Sr 2−x La x Cu 1−z Zn z O 6+δ(Zn-doped BSLCO)single crystals with z of up to 2.2%.Besides the typical Zn-doping effects on the in-plane resistivity and the Hall angle,we demonstrate that the nature of the low-temperature normal state in the Zn-doped samples is significantly altered from that in the pristine samples under high magnetic fields.In particular,we observe nearly-isotropic negative magnetoresistance as well as an increase in the Hall coefficient at very low temperatures in non-superconducting Zn-doped samples,which we propose to be caused by the Kondo scattering from the local moments induced by Zn impurities.PACS numbers:74.25.Fy,74.62.Dh,74.20.Mn,74.72.HsEffects of nonmagnetic Zn impurities on the elec-tronic properties of the high-T c cuprates have been in-tensively studied,employing almost all available exper-imental tools.However,well-controlled studies of the Zn-doping effects using high-quality single crystals have been mostly limited to the YBa 2Cu 3O 7−δ(YBCO)sys-tem and the La 2−x Sr x CuO 4(LSCO)system because of the availability of single crystals;for example,in the otherwise well-studied system of Bi 2Sr 2CaCu 2O 8+δ(Bi-2212),high-quality single crystals can be grown with only up to ∼1%of Zn substitution,posing difficulties for sys-tematic studies.Recently,high-quality single crystals of Bi 2Sr 2−x La x CuO 6+δ(BSLCO)have become available 1in a wide range of hole concentrations.2It is thus nat-ural to investigate the Zn-doping effect in the BSLCO system to examine and expand our knowledge of the role of Zn impurities in the cuprates.Here we report that Zn-doping of up to 2.2%is possible in high-quality BSLCO crystals and present the effect of Zn impurities on the charge transport properties of this system.One of the most peculiar charge transport propertiesof the cuprates is that two distinct scattering rates,τ−1trand τ−1H ,possibly govern the in-plane resistivity ρab and the Hall angle θH ,respectively.Zn impurities have beenbelieved to induce 3,4residual terms in both τ−1tr and τ−1H ,which ultimately lead to charge localization 5;these resid-ual scattering rates may well be related 6to the local moments induced by the nonmagnetic Zn impurities,7though the role of the local moments in the charge trans-port in cuprates is not well understood yet.It would thus be meaningful to look for some peculiar features that is clearly due to the local moments in the transport prop-erties of the Zn-doped BSLCO crystals.Perhaps the best-known effect of Zn-doping in cuprates is the rapid suppression of T c .The rate of T c suppres-sion has been known to be around 10–15K/at.%upon Zn substitution.It has been suggested 8,9that this rate can be enhanced to ∼20K/at.%near the hole concen-tration per Cu,p ,of 1/8,which was discussed to be due to the “pinning”10of the charge stripes 11by Zn impuri-ties.Since it was recently revealed 12that the metal-to-insulator (M-I)crossover in the low-temperature normal state of BSLCO occurs at p ≃1/8,it is particularly in-triguing to look at the effect of Zn at p ≃1/8to elucidate the impact of the charge-stripes instability in BSLCO.In this paper,we report the charge transport proper-ties in Zn-doped BSLCO (Bi 2Sr 2−x La x Cu 1−z Zn z O 6+δ)single crystals with z of up to 2.2%for x =0.50and 0.66.These La contents correspond to p of ∼0.15and ∼1/8,respectively,2and 2.2%-Zn is enough to completely sup-press superconductivity at x =0.66.We observe more or less standard Zn-doping effects in the in-plane resis-tivity,Hall angle,and T c ,without any noticeable “1/8anomaly”in the Zn-doped samples.On the other hand,we found very peculiar negative magnetoresistance as well as an upturn in R H at low temperatures in non-superconducting samples,which is most likely to be re-lated to the local moments induced by Zn.The crystals are grown by a floating-zone technique as reported previously.1We have demonstrated 1,2,12that our crystals are among the best available BSLCO crys-tals in terms of optimum T c (which is as high as 38K),residual resistivity,and the control of hole doping.The La concentrations in the crystals are determined by the electron-probe microanalysis (EPMA),and the actual Zn concentrations are measured by the inductively-coupled plasma (ICP)analysis;the errors in x and z are esti-mated to be ±0.01and ±0.002,respectively.For the transport measurements,the crystals are cut into dimen-sions typically 1×0.5×0.02mm 3.The thickness of the samples are calculated from their weight (measured with 0.1-µg resolution)to accurately determine the absolute values of ρab and the Hall coefficient R H .All the crys-tals are annealed in air at 650◦C for 48h and quenched to room temperature to achieve uniform oxygen distri-bution.A standard ac six-probe method is employed to measure ρab and R H .The magnetoresistance and R H are measured by sweeping the magnetic field to both plus and minus polarities at constant temperatures.1For the non-superconducting samples with (x ,z )=(0.66,0.022),cfor x=0.50and0.66.we measure both the transverse and longitudinal magne-toresistance(MR)down to450mK in a3He refrigerator where the temperature control during the magnetic-field sweep is done with a stability of∼1mK using a capaci-tance sensor embedded in the sample stage.Figures1(a)and1(b)show temperature dependences ofρab for x=0.50and0.66with various Zn concentra-tions.One can see that at both x theρab(T)curves are almost parallel-shifted upon Zn doping,indicating that the main effect of Zn impurities onρab is to increase atemperature-independent residual term inτ−1tr .In the x=0.50series[Fig.1(a)],there is a reasonably wide region of T-linear resistivity at high temperatures,so that we can estimate the pseudogap temperature T∗for each Znfrom the downward deviation of theρab(T)T-linear behavior.The inset of Fig.1(a)of[ρab(T)−ρ0]/aT vs.T(where a is theandρ0is the zero-temperature intercept ofwhich make it clear that the devi-at nearly the same temperature(∼300 Thus,as was reported13for YBCO,T∗asρab(T)does not move with Zn doping0.66series[Fig.1(b)],it is notable that(S-I)transition occurs ∼400µΩcm,which corresponds to the sheetCuO2plane of∼3.3kΩ;this is half theh/(2e)2(≃6.5kΩ)and thus differs by athe result of the critical sheet resistance for YBCO and LSCO,indicating that thesheet resistance for the S-I transitionuniversal for the cuprates.We emphasizein the absolute value ofρab is less our measurements.12of Fig.1(b)shows the suppression of T cfor the two x values;the suppressionthe same for the two cases and is aboutis typical for the cuprates.Note thatin the T c-suppression rate for0.66),and thus the sort of amplificationsuggested8,9for LSCO and Bi-2212in BSLCO.This can be interpreted tocharge-order instability at p≃1/8is sothat the“pinning”by the Zn impuri-though this interpretation is highlyand2(b)show the temperature depen-for the two series.For each x,the magni-not change with z above200K,demon-the Zn substitution does not change the holeAt lower temperatures,R H becomes z de-the peak in R H(T)shows a non-monotonicZn doping.As is the case with other sys-change in R H(T)can be simplified the Hall angle.Figures2(c)and2(d)show the plots of cotθH vs.T2for the two series.All the data of cotθH are almost linear in T2and appear to be parallel-shifted upon Zn doping,suggesting that the Zn impurities increase a temperature-independent residual term inτ−1H;this is actually the behavior that led to the two-scattering-rate scenario3and thus is typical for the cuprates.Upon closer look at the data in Figs.2(c)and 2(d),one may notice that at low temperatures there is an upward deviation from the T2behavior in the Zn-doped samples.To make this point clear,Figs.2(e)and2(f) show the plots of(cotθH−c)/bT2vs.T,where b is the T2slope and c is the zero-temperature intercept of the linear-in-T2behavior.One can see that the deviation be-comes systematically more pronounced as z is increased; this behavior most likely reflects some localization effect in the Hall channel and is probably responsible for the weakening of the temperature dependence of R H uponwhich we can measure the normal-state transport prop-erties down to very low temperatures.Incidentally,the low-temperature normal-state transport has already been measured for pristine BSLCO crystals with x=0.66un-der60-T magneticfield,12so we can directly compare the normal state brought about by Zn-doping to that brought about by high magneticfields.As is shown in Fig.3(a),15ρab(T)increases with decreasing tempera-ture below∼30K and the temperature dependence is quicker than log(1/T),which is inferred from a positive curvature in this semi-log plot;this behavior is contrast-ing to the“metallic”behavior found12in the pristine sample with x=0.66,whereρab becomes temperature independent below∼10K withρab≃190µΩcm.There-fore,the localization behavior in the Zn-doped sample is clearly due to the additional scattering caused by the Zn impurities.Also,since the“insulating”behavior found12 in more underdoped pristine samples(p<1/8)is consis-tent with log(1/T)(which is slower than the behavior of the Zn-doped samples),the nature of the charge-localized comes essentially temperature independent at low tem-peratures.The rather strong temperature dependence of R H below∼3K in the Zn-doped samples strongly sug-gests that the Zn-induced charge localization is not due to a simple weak localization effect.16We can obtain further insight into the Zn-induced lo-calized state from the magnetoresistance(MR),which turns out to be negative at low temperatures and is very peculiar.Figure3(b)shows the MR at450mK for three geometries;the sample was cut so that the current Iflows along the b-axis,and the magneticfield H is applied along a,b(longitudinal geometry),and c(transverse geome-try).There is essentially no anisotropy between H a and H b.The anisotropy between H b and H c is less than a factor of2and the H dependences for the two geometries are almost exactly the same.Therefore, we can conclude that the MR is essentially isotropic and thus is of spin origin.The H dependence of this negative MR is not H2but is reminiscent of the H dependence expected for Kondo scattering.17–19Since the Kondo ef-fect should yield isotropic MR,the main features of thenote that the Kondo scattering is expected to become ef-fective simultaneously in the MR and in the Hall effect.19 Thus,all the above results of the low-temperature MR and R H seem to be most consistent with the Kondo ef-fect,which may be caused6,21,22by the local moments7 induced by the Zn impurities.The possibility that the Kondo effect is playing a major role in the Zn-doped sam-ples also explains the various differences between the nor-mal state in the Zn-doped samples and that in pristine samples under high magneticfields.For more quanti-tative understanding of the possible Kondo effect in the cuprates,theoretical calculations for the Kondo scatter-ing in the non-Fermi-liquid ground state of the cuprates would be required.To summarize,in the BSLCO crystals we observed quite typical Zn-doping effects onρab(T)and cotθH(T), and found no1/8anomaly in the T c suppression rate. Comparison of the low-temperature normal state brought about by Zn-doping to that brought about by high magneticfield reveals significant difference between the two,which highlights the peculiar nature of the charge-localized state in the Zn-doped samples.The negative MR and the upturn in R H observed at low temperatures strongly suggest that the Kondo scattering due to the local moments induced by Zn is playing a key role.We thank S.Uchida and vrov for helpful dis-and T.Murayama for technical assistance.。

相关文档
最新文档