2.2.3证明
高中数学2.2直接证明与间接证明2.2.2反证法教案文新人教A版选修2-2(2021学年)
安徽省宿松县2016-2017学年高中数学 2.2 直接证明与间接证明2.2.2 反证法教案文新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省宿松县2016-2017学年高中数学 2.2直接证明与间接证明 2.2.2 反证法教案文新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省宿松县2016-2017学年高中数学 2.2 直接证明与间接证明 2.2.2 反证法教案文新人教A版选修2-2的全部内容。
2.2。
2反证法发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.注:结合准备题分析以上知识。
2。
教学例题:① 出示例1:求证圆的两条不是直径的相交弦不能互相平分。
分析:如何否定结论? → 如何从假设出发进行推理? → 得到怎样的矛盾?与教材不同的证法:反设AB 、CD被P平分,∵P 不是圆心,连结O P,则由垂径定理:O P AB ,OPCD ,则过P 有两条直线与OP 垂直(矛盾),∴不被P 平分。
② 出示例2:求证3是无理数. ( 同上分析 → 板演证明,提示:有理数可表示为/m n )证:假设3是有理数,则不妨设3/m n =(m,n为互质正整数),从而:2(/)3m n =,223m n =,可见m 是3的倍数.设m=3p (p 是正整数),则 22239n m p ==,可见n 也是3的倍数.这样,m, n 就不是互质的正整数(矛盾). ∴3/m n=不可能,∴3是无理数。
组合数学引论课后答案(部分)
组合数学引论课后答案习题一1.1任何一组人中都有两个人,它们在该组内认识的人数相等。
1.2任取11个整数,求证其中至少有两个数,它们的差是10的倍数1.3任取n+1个整数,求证其中至少有两个数,它们的差是n的倍数1.4在1.1节例4中证明存在连续的一些天,棋手恰好下了k盘棋(k=1,2,…,21).问是否可能存在连续的一些天,棋手恰好下了22盘棋1.5将1.1节例5推广成从1,2,…,2n中任选n+1个数的问题1.6从1,2,…,200中任取100个整数,其中之一小于16,那么必有两个数,一个能被另一个整除1.7从1,2,…,200中取100个整数,使得其中任意两个数之间互相不能整除1.8任意给定52个数,它们之中有两个数,其和或差是100的倍数1.9在坐标平面上任意给定13个整点(即两个坐标均为整数的点),则必有一个以它们中的三个点为顶点的三角形,其重心也是整点。
1.11证明:一个有理数的十进制数展开式自某一位后必是循环的。
N=3,我们有3259=777⨯;N=4,有41952=7700⨯;N=5,有514=70⨯;……)1.13(1) 在一边长为1的等边三角形中任取5个点,则其中必有两个点,该两点的距离至多为12;(2) 在一边长为1的等边三角形中任取10个点,则其中必有两个点,该两点的距离至多为13;(3) 确定n m ,使得在一边长为1的等边三角形中任取n m 个点,则其中必有两个点,该两点的距离至多为1n ;1.14 一位学生有37天时间准备考试,根据以往的经验,她知道至多只需要60个小时的复习时间,她决定每天至少复习1小时,证明:无论她的复习计划怎样,在此期间都存在一些天,她正好复习了13个小时。
1.15从1,2,…,2n中任选n+1个整数,则其中必有两个数,它们的最大公约数为1出的数属于同一个鸽巢,即它们的最大公约数为11.16针对1.1节的例6,当m,n不是互素的两个整数时,举例说明例中的结论不一定成立习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
高中数学选修2-2精品课件3:2.2.2 反证法
用反证法证明存在性、唯一性命题
求证:方程2x=3有且只有一个根. 【分析】 本题中“有且只有”含有两层含义:一层为“有” 即存在;另一层为“只有”即唯一性,证明唯一性常用反证 法. 【证明】显然x=log23是方程的一根,假设方程2x=3有两个根 b1、b2(b1≠b2). 则2b1=3,2b2=3.两式相除,得2b1-b2=1.
用反证法证明“至多”、“至少”类命题
设 f(x)=x2+bx+c,x∈[-1,1],证明:b<-2 时,在其定 义域范围内至少存在一个 x,使|f(x)|≥12成立. 【分析】本题中,含有“至少存在一个”,可考虑使用反证法.
【证明】假设不存在 x∈[-1,1]使|f(x)|≥12. 则对于 x∈[-1,1]上任意 x,都有-12<f(x)<12成立.当 b<-2 时,其对称轴 x=-b2>1, f(x)在 x∈[-1,1]上是单调递减函数,
2.若结论的反面情况有多种,则必须将所有的反面 情况一一驳倒,才能推断结论成立.
3.反证法的证题步骤
包括以下三个步骤: (1)作出否定结论的假设(反设)——假设命题的结论不 成立,即假定原命题的反面为真; (2)逐步推理,导出矛盾(归谬)——从假设和已知条件 出发,经过一系列正确的逻辑推理,得出矛盾结果; (3)否定假设,肯定结论(存真)——由矛盾结果,断定 假设不真,从而肯定原结论成立.
2.注意否定命题时,要准确无误. 3.用反证法证题时,必须把结论的否定作为条件使用,否则 就不是反证法.有时在证明命题“若p,则q”的过程中,虽然 否定了结论q,但是在证明过程中没有把“¬q”当作条件使 用,也推出了矛盾或证得了结论,那么这种证明过程不是 反证法.
4.用反证法证题,最后要产生一个矛盾命题,常见的主要 矛盾有: (1)与数学公理、定理、公式、定义或已被证明了的结 论相矛盾; (2)与假设矛盾; (3)与已知条件矛盾; (4)与公认的简单事实矛盾. 矛盾是在推理过程中发现的,不是推理之前设计的.
证明2、3复习讲义
中考复习——证明㈡ 证明㈢一、复习知识要点:1、全等三角形的性质:全等三角形的对应边相等、对应角相等。
2、三角形全等的判定方法:⑴一般三角形全等的判定方法:①SSS ;②SAS ;③ASA ;④AAS 。
⑵直角三角形全等的判定方法:①SSS ;②SAS ;③ASA ;④AAS ;⑤HL 。
3、特殊三角形的性质和判定 5、线段的垂直平分线的定理及其逆定理:⑴定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
⑵逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
⑶相关定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
6、角平分线的定理及其逆定理:⑴定理:角平分线上的点到这个角的两边的距离相等。
⑵逆定理:在一个角的内部,且到角的两边的距离相等的点,在这条角的平分线上。
⑶相关定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
7、尺规作图: ⑴只允许使用没有刻度的直尺和圆规进行的作图称为尺规作图。
⑵基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③经过一点作已知直线的垂线;④平分已知角;⑤作线段的垂直平分线。
8910、一些定理和推论:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
推论:夹在两平行线间的平行线段相等。
推论:直角三角形斜边上的中线等于斜边的一半;推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
11、一些思想方法:⑴方程思想:运用方程思想将一个几何问题化为一个方程的求解问题。
⑵化归思想方法:解四边形问题时,常通过辅助线把四边形问题转化归为三角形问题来解决。
梯形问题化为三角形、平行四边形来解决。
⑶分解图形法:复杂的图形都是由简单的基本图形组成,故可将复杂图形分解成几个基本图形,从而使问题简单化。
⑷构造图形法:当直接证明题目有困难时,常通过添加辅助线构造基本图形以达到解题的目的。
南京航空航天大学高等工程应用数学整理资料
- 1 -例1.1.1212110,2,0,1(1,2,)k k A A k k k -⎡⎫⎡⎫=-=+=⎪⎪⎢⎢⎣⎭⎣⎭,易得[)lim 0,2n n A →∞=,[]lim 0,1n n A →∞=。
因为[][)lim0,1lim 0,2n n n n A A →∞→∞=≠=,{}1n n A ∞=不收敛。
定理1.2.1 设映射 1:f X Y →,2:f Y Z →,3:f Z W →,则有(1)123123)()(f f f f f f ⋅⋅=⋅⋅ ;(2)111f I f f I A B =⋅=⋅。
证明 显然,)(123f f f ⋅⋅与123)(f f f ⋅⋅都是X 到W 的映射。
对任意x X ∈,有))](([)])([())](([123123123x f f f x f f f x f f f =⋅=⋅⋅))](([))()(()]()[(123123123x f f f x f f f x f f f =⋅=⋅⋅因此,123123)()(f f f f f f ⋅⋅=⋅⋅。
定理1.2.2 设映射:f X Y →是可逆的,则f 的逆映射1-f 是唯一的。
证明 设映射:g Y X →和:h Y X →均为f 的逆映射,则Y f g I ⋅=,X h f I ⋅= 。
于是由定理1.2.1,有()()Y X h h I h f g h f g I g g =⋅=⋅⋅=⋅⋅=⋅=定理1.2.3 映射:f X Y →是可逆映射的充分必要条件为f 是X 到Y 的双映射。
证明1、必要性.设:f X Y →是可逆映射,则存在映射1:f Y X -→。
对任意12,x x X ∈,如果12()()f x f x =,则有1112()()()()f f x f f x --⋅=⋅从而12x x = 。
因此f是X 到Y 的单映射。
对任意y Y ∈,若1()f y x X -=∈,则11()(())()()f x f f y f f y y --==⋅=。
苏教版高二数学选修2-2 2.2.1直接证明 学案
2.2.1 直接证明学习目标 1.了解直接证明的特点.2.理解综合法、分析法的意义,掌握综合法、分析法的思维特点.3.会用综合法、分析法解决问题.知识点一 直接证明思考 阅读下列证明过程,总结此证明方法有何特点? 已知a ,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0,所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0,所以b (c 2+a 2)≥2abc . 因此a (b 2+c 2)+b (c 2+a 2)≥4abc .答案 利用已知条件a >0,b >0和重要不等式,最后推导出所要证明的结论. 梳理 (1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明. (2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.知识点二 分析法和综合法思考 阅读证明基本不等式的过程,试分析两种证明过程有何不同特点? 已知a ,b >0,求证:a +b2≥ab .证明:方法一 ∵(a -b )2≥0, ∴(a )2+(b )2-2ab ≥0, ∴a +b ≥2ab ,∴a +b2≥ab . 方法二 要证a +b2≥ab ,只需证a +b ≥2ab , 只需证a +b -2ab ≥0, 只需证(a -b )2≥0,∵(a -b )2≥0显然成立,∴原不等式成立.答案 方法一从已知条件出发推出结论;方法二从结论出发,追溯导致结论成立的条件. 梳理 综合法和分析法定义比较类型一 综合法命题角度1 用综合法证明不等式例1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等, ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.反思与感悟 (1)用综合法证明有关角、边的不等式时,要分析不等式的结构,利用正弦定理、余弦定理将角化为边或边化为角.通过恒等变形、基本不等式等手段,可以从左证到右,也可以从右证到左,还可两边同时证到一个中间量,一般遵循“化繁为简”的原则. (2)用综合法证明不等式时常用的结论 ①ab ≤(a +b 2)2≤a 2+b 22(a ,b ∈R ).②a +b ≥2ab (a ≥0,b ≥0).跟踪训练1 已知a ,b ,c 为不全相等的正实数.求证:b +c -a a +c +a -b b +a +b -cc >3.证明 因为b +c -a a +c +a -b b +a +b -cc=b a +a b +c b +b c +a c +ca-3. 又a ,b ,c 为不全相等的正实数, 而b a +a b ≥2,c b +b c ≥2,a c +ca ≥2, 且上述三式等号不能同时成立, 所以b a +a b +c b +b c +a c +ca -3>6-3=3,即b +c -a a +c +a -b b +a +b -cc>3. 命题角度2 用综合法证明等式例2 求证:sin(2α+β)=sin β+2sin αcos(α+β). 证明 因为sin(2α+β)-2sin αcos(α+β) =sin[(α+β)+α]-2sin αcos(α+β)=sin(α+β)cos α+cos(α+β)sin α-2sin αcos(α+β) =sin(α+β)cos α-cos(α+β)sin α =sin[(α+β)-α]=sin β. 所以原等式成立.反思与感悟 证明三角恒等式的主要依据(1)三角函数的定义、诱导公式及同角基本关系式. (2)和、差、倍角的三角函数公式.(3)三角形中的三角函数及三角形内角和定理. (4)正弦定理、余弦定理和三角形的面积公式. 跟踪训练2 在△ABC 中,AC AB =cos Bcos C,证明:B =C . 证明 在△ABC 中,由正弦定理及已知,得 sin B sin C =cos Bcos C. 于是sin B cos C -cos B sin C =0, 即sin(B -C )=0.因为-π<B -C <π, 从而B -C =0,所以B =C .类型二 分析法 例3 已知a >0,求证: a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.反思与感悟 分析法的应用范围及方法跟踪训练3 求证:a -a -1<a -2-a -3 (a ≥3). 证明 方法一 要证a -a -1<a -2-a -3, 只需证a +a -3<a -2+a -1, 只需证(a +a -3)2<(a -2+a -1)2, 只需证2a -3+2a 2-3a <2a -3+2a 2-3a +2, 只需证a 2-3a <a 2-3a +2, 只需证0<2,而0<2显然成立, ∴a -a -1<a -2-a -3(a ≥3). 方法二 ∵a +a -1>a -2+a -3, ∴1a +a -1<1a -2+a -3,∴a -a -1<a -2-a -3.1.设a =lg 2+lg 5,b =e x (x <0),则a 与b 的大小关系为________. 答案 a >b解析 ∵a =lg 2+lg 5=lg 10=1, b =e x <e 0=1,∴a >b .2.设0<x <1,则a =2x ,b =x +1,c =11-x 中最大的是________.答案 c解析 ∵0<x <1,∴b =x +1>2x >2x =a , ∵11-x -(x +1)=1-(1-x 2)1-x =x 21-x>0,∴c >b >a . 3.欲证2-3<6-7成立,只需证下列各式中的________.(填序号) ①(2-3)2<(6-7)2; ②(2-6)2<(3-7)2; ③(2+7)2<(3+6)2; ④(2-3-6)2<(-7)2. 答案 ③解析 根据不等式性质,当a >b >0时,才有a 2>b 2, ∴只需证2+7<6+3,即证(2+7)2<(3+6)2. 4.3-2________2-1.(填“>”或“<”) 答案 <5.设x ,y 是正实数,且x +y =1,求证:(1+1x )(1+1y )≥9.证明 方法一 (综合法)左边=(1+x +y x )(1+x +y y )=(2+y x )(2+xy )=4+2(y x +xy )+1≥5+4=9=右边,原不等式得证. 方法二 (分析法)要证(1+1x )(1+1y)≥9成立,∵x ,y 是正实数,且x +y =1,∴y =1-x , 只需证明(1+1x )(1+11-x)≥9,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2, 即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立. ∴原不等式成立.1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.课时作业一、填空题1.如果a a >b b ,则实数a ,b 应满足的条件是________. 答案 a >b >0解析 由a a >b b ,得a 3>b 3, 则a ,b 需满足a >b >0.2.已知x >0,y >0,且x 3+y4=1,则xy 的最大值为____.答案 3解析 ∵1=x 3+y4≥2xy 12= xy 3. ∴xy ≤3,当且仅当x =32,y =2时等号成立.3.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )=________. 答案 -b解析 函数f (x )的定义域为{x |-1<x <1},且f (-x )=-f (x ),∴函数f (x )为奇函数,∴f (-a )=-f (a )=-b .4.若P =a +a +7,Q =a +3+a +4 (a ≥0),则P 与Q 的大小关系为________. 答案 P <Q解析 ∵P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, ∴P 2<Q 2,即P <Q .5.若A、B为△ABC的内角,则A>B是sin A>sin B的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充要解析由正弦定理知asin A=bsin B=2R,又A、B为三角形的内角,∴sin A>0,sin B>0,∴sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B.6.设n∈N,则n+4-n+3________n+2-n+1.(判断大小)答案<解析要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.7.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)答案垂心解析如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连结AO,BO.∵SA⊥BC,SO⊥BC,SA∩SO=S,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.8.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.答案a≥0,b≥0且a≠b解析a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可.9.已知函数f (x )=2x ,a ,b ∈(0,+∞).A =f (a +b 2),B =f (ab ),C =f (2aba +b ),且a ≠b ,则A ,B ,C 从小到大排列为______________. 答案 C <B <A解析 ∵a +b 2>ab >2aba +b ,又∵f (x )=2x 在R 上为增函数, ∴A >B >C .10.比较大小:设a >0,b >0,则lg(1+ab )________12[lg(1+a )+lg(1+b )].答案 ≤解析 ∵(1+ab )2-(1+a )(1+b ) =2ab -(a +b )≤0, ∴(1+ab )2≤(1+a )(1+b ), 则lg(1+ab )2≤lg(1+a )(1+b ), 即lg(1+ab )≤12[lg(1+a )+lg(1+b )].11.在△ABC 中,∠C =60°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则a b +c +b c +a=________. 答案 1解析 由余弦定理,c 2=a 2+b 2-2ab cos C , ∴c 2=a 2+b 2-ab ,① a b +c +ba +c =a 2+ac +b 2+bc (b +c )(a +c )=a 2+b 2+ac +bc ab +ac +bc +c 2, ②将①式代入②式,得a b +c +b a +c =1.二、解答题12.已知a >0,b >0且a +b =1,求证: a +12+ b +12≤2. 证明 要证a +12+ b +12≤2, 只需证a +12+b +12+2(a +12)(b +12)≤4,又a +b =1, 即只需证明(a +12)(b +12)≤1.而(a +12)(b +12)≤(a +12)+(b +12)2=1+12+122=1成立,所以a +12+ b +12≤2成立. 13.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明 由A ,B ,C 成等差数列,有2B =A +C . ①由于A ,B ,C 为△ABC 的三个内角, 所以A +B +C =π. ② 由①②,得B =π3.③ 由a ,b ,c 成等比数列,得b 2=ac , ④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , 再由④,得a 2+c 2-ac =ac ,即(a -c )2=0, 从而a =c ,所以A =C . ⑤ 由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形. 三、探究与拓展14.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一个条件即可,不必考虑所有可能的情形).答案 对角线互相垂直(答案不惟一) 解析 要证A 1C ⊥B 1D 1,只需证B 1D 1垂直于A 1C 所在的平面A 1CC 1, 因为该四棱柱为直四棱柱,所以B 1D 1⊥CC 1, 故只需证B 1D 1⊥A 1C 1即可.15.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.考点 综合法及应用题点 利用综合法解决数列问题(1)解 当n =1时,2S 11=2a 1=a 2-13-1-23=2,解得a 2=4.(2)解 2S n =na n +1-13n 3-n 2-23n ,①当n ≥2时,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),②①-②得2a n =na n +1-(n -1)a n -n 2-n ,整理得na n +1=(n +1)a n +n (n +1),即a n +1n +1=a n n +1,a n +1n +1-a n n =1,当n =1时,a 22-a 11=2-1=1.所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为首项,1为公差的等差数列,所以a nn=n ,即a n =n 2.所以数列{a n }的通项公式为a n =n 2,n ∈N *. (3)证明 因为1a n =1n 2<1(n -1)n =1n -1-1n (n ≥2),所以1a 1+1a 2+…+1a n =112+122+132+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74.。
新人教版八年级上册数学2.3技巧训练用全等三角形证明常见结论的四种证明技巧优质课件
在△AMO与△DMO中, ∠ OMA=OMO=M,∠DOM, ∠AMO=∠DMO, ∴△AMO≌△DMO.∴AO=OD.
∵OC=OD,∴OA=OC.
而OA<OC,故③错误.
正确结论有3个.故选B.
【答案】B
第五页,共十六页。
2.(2020·衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作 DE⊥AB,DF⊥AC,垂足分别为点E,F.
新人教版八年级上册数学 2.3 技巧训练 用全等三角形证明常见结论的四种 证明技巧 优质课件
科 目:数学
适用版本:新人教版
适用范围:【教师教学】
人教版 八年级上
期末提分练案
第2讲 全等三角形的判定和性质 第3课时 技巧训练 用全等三角形证明
常见结论的四种证明技巧
第一页,共十六页。
1.(2020B,OC=OD, OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接 OM.下列结论:
第十一页,共十六页。
4.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE, ∠ACE=90°,猜想线段AE,AB,DE满足的数量关系,并证 明.
【 】本题利用截长法,通过截取AF=AB,为证明三角形全等创造 条件.也可以用补短法解题,请有兴趣的同学尝试一下.
第十二页,共十六页。
解:AE=AB+DE.证明如下: 如图,在AE上截取AF=AB,连接CF. ∵AC平分∠BAE,∴∠BAC=∠CAF.
又∵AC=AC,∴△BAC≌△FAC(SAS).
∴BC=FC,∠ACB=∠ACF. ∵∠ACE=90°, ∴∠ACF+∠FCE=90°,∠ACB+∠DCE=90°.
第十三页,共十六页。
∴∠FCE=∠DCE. ∵C为BD的中点,∴BC=DC.∴DC=FC. 又∵CE=CE,∴△FCE≌△DCE(SAS). ∴DE=FE. ∴AE=AF+FE=AB+DE.
人教版数学必修二2.2.3
研一研·问题探究、课堂更高效
问题探究点一 问题 1 直线与平面平行的性质
2.2.3
如果一条直线与平面平行,那么这条直线是否与这个
平面内的所有直线都平行?这条直线与这个平面内有多少 条直线平行?
答 如果一条直线与平面平行,这条直线不会与这个平面内 的所有直线都平行,但在这个平面内却有无数条直线与这条 直线平行.
∵点 A 与直线 a 在 α 的异侧, ∴β 与 α 相交,∴面 ABD 与面 α 相交,交线为 EG.
∵BD∥α,BD⊂面 BAD,面 BAD∩α=EG.
∴BD∥EG,∴△AEG∽△ABD, EG AF ∴BD=AC, AF 5 20 ∴EG=AC· BD= ×4= . 9 9
练一练·当堂检测、目标达成落实处
本 讲 栏 目 开 关
填一填·知识要点、记下疑难点
2.2.3
本 讲 栏 目 开 关
直线与平面平行的性质定理: 一条直线与一个平面平行,则 过这条直线的任一平面与
此平面的交线与该直线平行 .
(1)符号语言描述:
a∥α a⊂ β ⇒a∥b β∩α=b .
(2)性质定理的作用: 可以作为 作 平行线
直线和直线
的方法.
平行的判定方法,也提供了一种
研一研·问题探究、课堂更高效
2.2.3
本 讲 栏 目 开 关
复习回顾 问题 1 直线与平面的位置关系有哪几种?
答
问题 2
平行、相交、在平面内.
如果直线和平面平行,那么这条直线与这个平面内的
直线的位置关系是怎样的?
答
平行或者异面.
研一研·问题探究、课堂更高效
本 讲 栏 目 开 关
教室内的日光灯管所在的直线与地面平行,如何在地面
2018-2019学年高二数学苏教版选修2-2讲义:第2章 2.2 2.2.2 间接证明
2.2.2 间 接 证 明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a ,b ,c 满足a 2+b 2=c 2.求证:a ,b ,c 不可能都是奇数. 问题1:你能利用综合法和分析法给出证明吗? 提示:不能.问题2:a 、b 、c 不可能都是奇数的反面是什么?还满足条件a 2+b 2=c 2吗? 提示:都是奇数.若a 、b 、c 都是奇数,则不能满足条件a 2+b 2=c 2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法 (1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p 则q ”的过程可以用下面的框图表示:导致逻辑矛盾“若p 则q ”为真(2)反证法证明命题“若p 则q ”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果. ③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[对应学生用书P30][例1]锐角三角形.[思路点拨]本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析]假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通](1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2]求证:两条相交直线有且只有一个交点.[思路点拨]“有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析]假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通]证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3]已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨]本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a 、b 、c 、d 都不是负数, 即a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴b =1-a ≥0,d =1-c ≥0.∴ac +bd =ac +(1-a )(1-c )=2ac -(a +c )+1 =(ac -a )+(ac -c )+1=a (c -1)+c (a -1)+1. ∵a (c -1)≤0,c (a -1)≤0. ∴a (c -1)+c (a -1)+1≤1, 即ac +bd ≤1. 与ac +bd >1相矛盾.∴假设不成立.∴a 、b 、c 、d 中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:6.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0, ∴(1-a )+b 2≥(1-a )b >14=12. 同理(1-b )+c 2>12,(1-c )+a 2>12.三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.7.用反证法证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明:假设方程f (x )=0在区间[a ,b ]上至少有两个根, 设α,β为其中的两个实根. 因为α≠β,不妨设α<β,又因为函数f (x )在区间[a ,b ]上是增函数, 所以f (α)<f (β). 这与f (α)=0=f (β)矛盾.所以方程f (x )=0在区间 [a ,b ]上至多只有一个实根.1.反证法证明的适用情形 (1)一些基本命题、基本定理; (2)易导出与已知矛盾的命题; (3)“否定性”命题; (4)“惟一性”命题; (5)“必然性”命题; (6)“至多”“至少”类命题; (7)涉及“无限”结论的命题. 2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.[对应学生用书P32]一、填空题1.命题“1+b a ,1+ab 中至多有一个小于2”的反设为________.答案:1+b a ,1+ab都小于22.(山东高考改编)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根. 答案:方程x 3+ax +b =0没有实根1. 用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为 ____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②. 答案:③①②5.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________. 解析:对“且”的否定应为“或”,所以“x ≠a 且x ≠b ”的否定应为“x =a 或x =b ”. 答案:x =a 或x =b 二、解答题6.(陕西高考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n=⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n)1-q ,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.7.设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|<12,|f (2)|<12,|f (3)|<12,则有⎩⎪⎨⎪⎧-12<1+a +b <12,-12<4+2a +b <12,-12<9+3a +b <12.于是有⎩⎪⎨⎪⎧-32<a +b <-12, ①-92<2a +b <-72, ②-192<3a +b <-172. ③由①、②得-4<a <-2,④ 由②、③得-6<a <-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P∉直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P∉直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.。
人教A版高中数学选修2-2课件2.2.2直接证明与间接证明3.pptx
正面 词语
否定
等于 不等于
大于(>) 小于(<) 是
小于或 大于或 等于(≤) 等于(≥) 不是
都是 不都是
正面 至多有 至少有 任意的 所有的 至多有n 任意
词语 一个 一个
个 两个
至少有 一个也 否定 两个 没有
某个
某些 至少有n 某两个 +1个
思考:
练习:
1、已知实数a,b,c满足0<a,b,c<1,求证: (1-a)b,(1-b)c,(1-c)a不可能同时大于1/4.
故假设不成立,结论 a > b成立。
练一练:已知a≠0,证明x的方程ax=b有且 只有一个根。 证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x1,且x1 ≠ x2 则ax1 = b,ax2 = b ∴ ax1 = ax2 ∴ ax1 - ax2 = 0 ∴ a(x1 - x2)= 0
证:假设 2是有理数,
则存在互质的整数m,n使得 2 = m , n
∴ m = 2n ∴ m2 = 2n2
∴ m2是偶数,从而m必是偶数,故设m = 2k(k∈ N)
从而有4k2 = 2n2,即n2 = 2k2 ∴ n2也是偶数, 这与m,n互质矛盾!
假设不成立,故是无2 理数。
练一练:
反思2:
高中数学课件
(鼎尚图文*****整理制作)
直接证明与间接证明 (3)
之反证法
思考?
A、B、C三个人,A说B撒谎,B说C撒谎, C说A、B都撒谎。则C必定是在撒谎,为 什么?
分析:假设C没有撒谎,则C真.那么A假且B假;
由A假,知B真.这与B假矛盾.
那么假设C没有撒谎不成立;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设∠A,∠B,∠C 中没有一个角大于或等60°, 即∠A<60°,∠B<60°,∠C<60°, 则∠A+∠B+∠C<180°. 这与“三角形的内角和等于180°”矛盾, 所以假设不正确. 因此,∠A, ∠B, ∠C中至少有一个角大于或等于60°.
证明
观察、操作、实验是人们认识事物的重 要手段,而且人们可以从中猜测发现出一些 结论.
做一做 采用剪拼或度量的方法,猜测“三角形的
外角和”等于多少度. 从剪拼或度量可以猜测三角形的三个外角之和 等于360°,但是剪拼时难以真正拼成一个周角, 只是接近周角;分别度量这三个角后再相加,结果 可能接近360°,但不能很准确地都得到360°. 另外,由于不同形状的三角形有无数个,我 们也不可能用剪拼或度量的方法来一一验证,因 此,我们只能猜测任何一个三角形的外角和都为 360°.
此时猜测出的命题仅仅是一种猜想,未必都 是真命题. 要确定这个命题是真命题,还需要通过推理 的方法加以证明. 数学上证明一个命题时,通常从命题的条件 出发,运用定义、基本事实以及已经证明了的定 理和推论,通过一步步的推理,最后证实这个命 题的结论成立. 证明的每一步都必须要有根据.
动脑筋
证明命题“三角形的外角和为360°”是真命题.
2. 已知:如图,直线AB,CD被直线MN所截, ∠1=∠2. 求证:∠2=∠3,∠3+∠4=180°. 证明: ∵ ∠1=∠2, ∴ AB∥CD(同位角相等,两直线平行) ∴ ∠2 =∠3(两直线平行,内错角相等) ∠3+∠4=180°(两直线平行, 同旁内角互补).
3. 已知:如图,AB与CD 相交于点E. 求证:∠A+∠C=∠B+∠D. 证明: ∵ AB与CD 相交于点E ,
像这样,当直接证明一个命题为真有困难时, 我们可以先假设命题不成立,然后利用命题的条件 或有关的结论,通过推理导出矛盾,从而得出假设 不成立,即所证明的命题正确,这种证明方法称为 反证法. 反证法是一种间接证明的方法,其基本的思路 可归结为“否定结论,导出矛盾,肯定结论”.
练习
1. 在括号内填上理由. 已知:如图,∠A+∠B= 180°. 求证:∠C+∠D= 180°. 证明:∵∠A+∠B= 180°(已知), ∴ AD∥BC(同旁内角互补,两直线平行 ). ∴ ∠C+∠D= 180° ( 两直线平行,同旁内角互补).
证明:∵∠DAC =∠B +∠C(三角形外角定理), ∠B=∠C(已知), ∴ ∠DAC=2∠B(等式的性质). 又∵AE平分∠DAC(已知), ∴∠DAC=2∠DAE(角平分线的定义)
∴∠DAE=∠B(等量代换).
∴AE∥BC(同位角相等,两直线平行)
例2
已知:∠A,∠B,∠C是△ABC的内角. 求证:∠A,∠B,∠C中至少有一个角大于或等于60°.
∴ ∠AEC=∠BED (对顶角相等),
又 ∠A+∠C +∠AEC =∠B+∠D +∠BED =180° (三角形内角和等于180°), ∴ ∠A+∠C=∠B+∠D.
课后作业
• 完成状元导练本课时对应习题
∴ ∠BAF+∠CBD+∠ACE=2×180°=360°.
证明与图形有关的命题时,一般有以下步骤:
第一步
根据题意
画出图形
第二步
根据命题的条件和结论,结合图形
写出已知、求证
第三步
通过分析,找出证明的途径
写出证明的过程
例1 已知:如图,在△ABC中,∠B=∠C,点D在线 段BA的延长线上,射线AE平分∠DAC. 求证:AE∥BC.
在分析出这一命题的条件和结论后,我们 就可以按如下步骤进行: 已知:如图,∠BAF,∠CBD和∠ACE分 别是△ABC的三个外角. 求证:∠BAF+∠CBD+∠ACE=360°. 证明:∵ ∠BAF=∠2+∠3, ∠CBD=∠1+∠3, ∠ACE=∠1+∠2(三角形外角定理), ∴∠BAF+∠CBD+∠ACE=2(∠1+∠2+∠3) (等式的性质). ∵∠1+∠2+∠3=180°(三角形内角和定理),