2018高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值课时分层训练文新人教A版

合集下载

2018高考数学文全国大一轮复习课件:第二篇函数、导数

2018高考数学文全国大一轮复习课件:第二篇函数、导数

图象 描述 自左向右看图象是上升的 自左向右看图象是下降的
(2)单调区间的定义 若函数y=f(x)在区间D上是 增函数 或减函数,则称函数y=f(x)在这一 区间具有(严格的)单调性, 区间D 叫做y=f(x)的单调区间. 2.函数的最值
前提
条件 结论
一般地,设函数y=f(x)的定义域为I,如果存在M∈R
1 解析:因为 f(x)是(-≦,+≦)上的减函数,则由不等式 f(2)< f 可得 x
2>
1 , x 1 ,故选 D. 2
所以 x<0,或 x>
3.(2016·曲靖校级模拟)函数f(x)= log 1 x 2 1 的单调递增区间为 2 ( D ) (A)(0,+∞) (C)(1,+∞)
3
当 x≤1 时,f(x)=-x2+2x=-(x-1)2+1 递增,可得 f(x)≤1. 综上可得,f(x)的最大值为 1. 答案:-3 1
5.下列命题中假命题有 ①y=
.(填上所有符合题意的序号)
②y=f(x)在[1,+∞)上是增函数,则函数的增区间为[1,+∞) ③函数f(x)=log2(3x+1)的最小值是0 ④对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则f(x)在 D上是增函数 解析:不同单调区间不能用并集,①假;[1,+≦)是y=f(x)的增区间的子集, ②假;当x→-≦时,f(x)=log2(3x+1)→0,但不等于0,即无最小值,③假;只
2
内为减函数,由复合函数的单调性可得,函数 f(x)= log 1 x 2 1 的单调递增区
2

高考数学一轮复习第二章函数、导数及其应用2.11.2导数与函数的极值、最值课件理

高考数学一轮复习第二章函数、导数及其应用2.11.2导数与函数的极值、最值课件理

角度二:已知函数的极值求参数 【典例 2】 (2016· 山东高考)设 f(x)=xlnx-ax2+(2a-1)x,a∈R。 (1)令 g(x)=f′(x),求 g(x)的单调区间; (2)已知 f(x)在 x=1 处取得极大值,求实数 a 的取值范围。
【解析】 (1)由 f′(x)=lnx-2ax+2a, 可得 g(x)=lnx-2ax+2a,x∈(0,+∞)。 1-2ax 1 则 g′(x)=x-2a= x 。


1 1 ③当 a=2时,2a=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调 递减, 所以当 x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意。
1 1 1 ④当 a>2时,0<2a<1,当 x∈2a,1 时,f′(x)>0的单调增区间为 0,2a,单调减区间为2a,+∞ 。
(2)由(1)知,f′(1)=0。 ①当 a≤0 时,f′(x)单调递增, 所以当 x∈(0,1)时,f′(x)<0,f(x)单调递减; 当 x∈(1,+∞)时,f′(x)>0,f(x)单调递增。 所以 f(x)在 x=1 处取得极小值,不合题意。

易知 φ(x)在 (0,1)上单调递增,在 (1,+∞) 上单调递减,所以 φ(x)max=φ(1)=1,则 φ(x)的大 致图象如图所示,若函数 f(x)有两个极值点,则 直线 y=2a 和 y=φ(x)的图象有两个交点,所以 1 0<2a<1,得 0<a<2。
1 (2)f(x)的定义域为(0,+∞),f′(x)=x-ax-b,由 f′(1)=0,得 b -ax2+1+ax-x -x-1ax+1 1 =1-a。 ∴f′(x)=x-ax+a-1= = 。 ① x x 若 a≥0,当 0<x<1 时,f′(x)>0,f(x)单调递增;当 x>1 时,f′(x)<0,f(x) 单调递减,所以 x=1 是 f(x)的极大值点。②若 a<0,由 f′(x)=0,得 x 1 1 =1 或 x=-a。因为 x=1 是 f(x)的极大值点,所以-a>1,解得-1<a<0。 综合①②得 a 的取值范围是 a>-1。 1 【答案】 (1) 0,2 (2)(-1,+∞)

高考数学一轮总复习第二章函数导数及其应用2.11.2导数与函数的极值最值课件理

高考数学一轮总复习第二章函数导数及其应用2.11.2导数与函数的极值最值课件理

第七页,共43页。
角度三 已知函数极值情况求参数
(1)已知函数 f(x)=x(x-c)2 在 x=2 处有极大值,则实数 c 的值为
()
A.2 或 6
B.2
2 C.3
D.6
(2)已知函数 f(x)=ln x+21ax2-2x 有两个极值点,则 a 的取值范围是(
)
A.(-∞,1)
B.(0,2)
C.(0,1)
第二十六页,共43页。
【解】 (1)因为蓄水池侧面的总成本为 100·2πrh=200πrh 元,底面的总成本为 160πr2 元,
所以蓄水池的总成本为(200πrh+160πr2)元. 又根据题意 200πrh+160πr2=12 000π, 所以 h=51r(300-4r2), 从而 V(r)=πr2h=π5(300r-4r3). 因为 r>0,又由 h>0 可得 r<5 3, 故函数 V(r)的定义域为(0,5 3).
第十五页,共43页。
列表:
x (-∞,-1) -1 (-1,1)1来自(1,+∞)f′(x)

0

0

f(x)
极大值-1e
极小值-e
所以 x=-1 时,f(x)取极大值-1e;当 x=1 时,f(x)取极小值-e.
第十六页,共43页。
(2)f′(x)=(x+1)ex-a(x+1)=(x+1)(ex-a), 当 a=0 时,易知函数 f(x)只有一个零点,不符合题意; 当 a<0 时,在(-∞,-1)上,f′(x)<0,f(x)单调递减; 在(-1,+∞)上,f′(x)>0,f(x)单调递增; f(-1)=-1e<0,且 f(1)=e-2a>0,x→-∞,f(x)→+∞, 所以函数 f(x)有两个零点.

2018高考数学一轮复习第2章函数导数及其应用第2节函数的单调性与最值教师用书

2018高考数学一轮复习第2章函数导数及其应用第2节函数的单调性与最值教师用书

第二节 函数的单调性与最值1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2);(2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2).2.单调性、单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.3.函数的最值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( ) (3)函数y =|x |是R 上的增函数.( )(4)所有的单调函数都有最值.( )[答案] (1)√ (2)× (3)× (4)×2.下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-xD [选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数; 选项D 中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x 在(-1,1)上是减函数.] 3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.【导学号:51062019】 ⎝⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.f (x )=x 2-2x ,x ∈[-2,3]的单调增区间为________,f (x )max =________.[1,3] 8 [f (x )=(x -1)2-1,故f (x )的单调增区间为[1,3],f (x )max =f (-2)=8.](1)2(2)试讨论函数f (x )=x +kx (k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数, t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间。

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的极值最值教学案理解析版

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的极值最值教学案理解析版

利用导数解决函数的极值问题►考法1根据函数图像判断函数极值的情况【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1—x)f′(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(—2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(—2)D.函数f(x)有极大值f(—2)和极小值f(2)D[由题图可知,当x<—2时,f′(x)>0;当—2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=—2处取得极大值,在x=2处取得极小值.]►考法2求已知函数的极值【例2】已知函数f(x)=(x—2)(e x—ax),当a>0时,讨论f(x)的极值情况.[解] ∵f′(x)=(e x—ax)+(x—2)(e x—a)=(x—1)(e x—2a),∵a>0,由f′(x)=0得x=1或x=ln 2a.1当a=错误!时,f′(x)=(x—1)(e x—e)≥0,∴f(x)递增,故f(x)无极值.2当0<a<错误!时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表:x(—∞,ln 2a)ln 2a(ln 2a,1)1(1,+∞)f′(x)+0—0+f(x)↗极大值↘极小值↗23当a>错误!时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表:2综上,当0<a<错误!时,f(x)有极大值—a(ln 2a—2)2,极小值a—e;当a=错误!时,f(x)无极值;当a>错误!时,f(x)有极大值a—e,极小值—a(ln 2a—2)2.►考法3已知函数极值求参数的值或范围【例3】(1)已知f(x)=x3+3ax2+bx+a2在x=—1时有极值0,则a—b=________.(2)若函数f(x)=e x—a ln x+2ax—1在(0,+∞)上恰有两个极值点,则a的取值范围为()A.(—e2,—e)B.错误!C.错误!D.(—∞,—e)(1)—7 (2)D[(1)由题意得f′(x)=3x2+6ax+b,则错误!解得错误!或错误!经检验当a=1,b=3时,函数f(x)在x=—1处无法取得极值,而a=2,b=9满足题意,故a—b=—7.(2)∵f′(x)=e x—错误!+2a,(x>0)∴由f′(x)=0得a=错误!.令g(x)=错误!(x>0).由题意可知g(x)=a在(0,+∞)上恰有两个零点.又g′(x)=—错误!(x>0),由g′(x)>0得0<x<1,且x≠错误!.由g′(x)<0得x>1.∴函数g(x)在错误!,错误!上递增,在(1,+∞)上递减.又g(0)=0,g(1)=—e,结合图形(图略)可知a∈(—∞,—e),故选D.][规律方法] 1.利用导数研究函数极值问题的一般流程2.已知函数极值点和极值求参数的两个要领(1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解.(2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2A.2或6 B.2C.错误!D.6(2)(2019·广东五校联考)已知函数f(x)=x(ln x—ax)有极值,则实数a的取值范围是()A.错误!B.错误!C.错误!D.错误!(1)D(2)A[(1)法一:f′(x)=(x—c)(3x—c),当f′(x)=0时,x1=错误!,x=c.2因为极大值点是x=2,所以c>0,并且错误!<c.当x∈错误!时,f′(x)>0,当x∈错误!时,f′(x)<0,当x∈(c,+∞)时,f′(x)>0,所以x=错误!是极大值点,错误!=2,解得c=6.故选D.法二:因为f′(x)=(x—c)(3x—c).又因为f(x)在x=2处取极值,所以f′(2)=0,即(2—c)(6—c)=0.所以c=2或c=6.当c=6时,f′(x)=3(x—2)(x—6),易知x∈(—∞,2)和x∈(6,+∞)时,f′(x)>0,函数f(x)是增函数,x∈(2,6)时,f′(x)<0,函数f(x)是减函数,此时x=2为极大值点.当c=2时,f′(x)=3(x—2)错误!,易知x∈错误!和x∈(2,+∞)时,f′(x)>0,函数f(x)是增函数,x∈错误!时,f′(x)<0,函数f(x)是减函数,此时x=2是极小值点.因此c=6.故选D.(2)f(x)=x ln x—ax2(x>0),f′(x)=ln x+1—2ax.令g(x)=ln x+1—2ax,则g′(x)=错误!—2a=错误!.∵函数f(x)=x(ln x—ax)有极值,∴g(x)=0在(0,+∞)上有实根.当a≤0时,g′(x)>0,函数g(x)在(0,+∞)上递增,当x趋向于0时,g(x)趋向于—∞,当x趋向于+∞时,g(x)趋向于+∞,故存在x0∈(0,+∞),使得f(x)在(0,x0)上递减,在(x0,+∞)上递增,故f(x)存在极小值f(x0),符合题意.当a>0时,令g′(x)=0,得x=错误!.当0<x<错误!时,g′(x)>0,函数g(x)递增;当x>错误!时,g′(x)<0,函数g(x)递减,∴x=错误!时,函数g(x)取得极大值.∵当x趋向于0和x趋向于+∞时,均有g(x)趋向于—∞,要使g(x)=0在(0,+∞)上有实根,且f(x)有极值,必须g错误!=ln 错误!>0,解得0<a<错误!.综上可知,实数a的取值范围是错误!,故选A.]利用导数解决函数的最值问题【例4】已知函数f(x)=ln x—ax(a∈R).(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上的最小值.[解] (1)f′(x)=错误!—a(x>0),1当a≤0时,f′(x)=错误!—a>0,即函数f(x)的递增区间为(0,+∞).2当a>0时,令f′(x)=错误!—a=0,可得x=错误!,当0<x<错误!时,f′(x)=错误!>0;当x>错误!时,f′(x)=错误!<0,故函数f(x)的递增区间为错误!,递减区间为错误!.综上可知,当a≤0时,函数f(x)的递增区间为(0,+∞);当a>0时,函数f(x)的递增区间为错误!,递减区间为错误!.(2)1当0<错误!≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,所以f(x)的最小值是f(2)=ln 2—2a.2当错误!≥2,即0<a≤错误!时,函数f(x)在区间[1,2]上是增函数,所以f(x)的最小值是f (1)=—a.3当1<错误!<2,即错误!<a<1时,函数f(x)在错误!上是增函数,在错误!上是减函数.又f(2)—f(1)=ln 2—a,所以当错误!<a<ln 2时,最小值是f(1)=—a;当ln 2≤a<1时,最小值为f(2)=ln 2—2a.综上可知,当0<a<ln 2时,函数f(x)的最小值是f(1)=—a;当a≥ln 2时,函数f(x)的最小值是f(2)=ln 2—2a.[规律方法] 求函数f x在[a,b]上的最大值、最小值的步骤1求函数在a,b内的极值.2求函数在区间端点的函数值f a,f b.3将函数f x的极值与f a,f b比较,其中最大的为最大值,最小的为最小值.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间错误!上的最大值和最小值.[解] (1)因为f(x)=e x cos x—x,所以f′(x)=e x(cos x—sin x)—1,f′(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x—sin x)—1,则h′(x)=e x(cos x—sin x—sin x—cos x)=—2e x sin x.当x∈错误!时,h′(x)<0,所以h(x)在区间错误!上递减.所以对任意x∈错误!有h(x)<h(0)=0,即f′(x)<0.所以函数f(x)在区间错误!上递减.因此f(x)在区间错误!上的最大值为f(0)=1,最小值为f错误!=—错误!.利用导数研究生活中的优化问题【例5】已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x千件,并且全部销售完,每千件的销售收入为f(x)万元,且f(x)=错误!(1)写出年利润W(万元)关于年产品x(千件)的函数解析式.(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入—年总成本)[解] (1)由题意得W=错误!即W=错误!(2)1当0<x≤10时,W=8.1x—错误!x3—10则W′=8.1—错误!x2=错误!=错误!,因为0<x≤10所以当0<x<9时,W′>0,则W递增;当9<x≤10时,W′<0,则W递减.所以当x=9时,W取最大值错误!=38.6万元.2当x>10时,W=98—错误!≤98—2错误!=38.当且仅当错误!=2.7x,即x=错误!>10时取最大值38.综上,当年产量为9千件时,该企业生产此产品所获年利润最大.[规律方法] 利用导数解决生活中的优化问题的一般步1分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f x.2求函数的导数f′x,解方程f′x=0.,3比较函数在区间端点和f′x=0的点的函数值的大小,最大小者为最大小值.,4回归实际问题,结合实际问题作答.为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域.(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.[解] (1)因为蓄水池侧面的总成本为100×2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意得200πrh+160πr2=12000π,所以h=错误!(300—4r2),从而V(r)=πr2h=错误!(300r—4r3).由h>0,且r>0可得0<r <5错误!,故函数V(r)的定义域为(0,5错误!).(2)因为V(r)=错误!(300r—4r3),所以V′(r)=错误!(300—12r2).令V′(r)=0,解得r1=5,r2=—5(因为r2=—5不在定义域内,舍去).当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5错误!)时,V′(r)<0,故V(r)在(5,5错误!)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8,即当r=5,h=8时,该蓄水池的体积最大.。

高中数学第二章导数及其应用习题课用导数研究函数的单调性极值最值课件北师大版选择性必修第二册

高中数学第二章导数及其应用习题课用导数研究函数的单调性极值最值课件北师大版选择性必修第二册
若a≤0,则f'(x)=ln x-2ax+1>0在x>1时恒成立,从而f(x)在区间(1,+∞)上单调
递增,
所以f(x)>f(1)=0在区间(1,+∞)上恒成立,与已知矛盾,
故a≤0不符合题意.
若a>0,设φ(x)=f'(x)=ln x-2ax+1,x>1,
1
1
则 φ'(x)= -2a,且 ∈(0,1).
(3)注意区分“在区间上恒成立”与“在区间上存在x值使不等式成立”的区别.
分离参数后对应不同的最值类型.
【变式训练1】 已知函数f(x)=x2+aln x.
(1)当a=-2时,求函数f(x)的单调区间;
2
(2)若g(x)=f(x)+ 在[1,+∞)上是单调函数,求实数a的取值范围.
2 2(2 -1)
∴函数f(x)在区间(0,π)上单调递减.
答案:D
).
二、函数的极值、最值与导数
【问题思考】
1.(1)函数的极大值与极小值:
若函数y=f(x)在区间(a,x0)上单调递增,在区间(x0,b)上单调递减,则x0是极大
值点,f(x0)是极大值.
若函数y=f(x)在区间(a,x0)上单调递减,在区间(x0,b)上单调递增,则x0是极小
2 2
则 g'(x)≤0 在[1,+∞)上恒成立,即 a≤ -2x 在[1,+∞)上恒成立.

因为φ(x)没有最小值,不满足题意,
所以实数a的取值范围为[0,+∞).
探究二
用导数求函数的极值、最值
【例2】 已知函数f(x)= 1x2+aln x.

高考数学一轮复习教案(含答案):第2章 第12节 导数与函数的极值、最值

高考数学一轮复习教案(含答案):第2章 第12节 导数与函数的极值、最值

第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).1.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[常用结论]对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.()(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)x=0是函数f(x)=x3的极值点. ()[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值点的个数为()A.1B.2C.3D.4A[导函数f′(x)的图象与x轴的交点中,左侧图象在x轴下方,右侧图象在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点D[函数f(x)的定义域为(0,+∞),f′(x)=1x-2x2=x-2x2,令f′(x)=0得x=2,又0<x<2时,f′(x)<0,x>2时,f′(x)>0.因此x=2为f(x)的极小值点,故选D.]4.已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4 B.-2 C.4 D.2D[由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.8 [y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.]【例1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.]►考法2 根据函数的解析式求极值【例2】 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.[解] (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )极大值(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上所述,当a ≤0时,函数在定义域上无极值点,当a >0时,函数有一个极大值点.►考法3 已知函数的极值求参数【例3】 (1)(2020·成都模拟)若函数f (x )=(x 2+ax +3)e x 在(0,+∞)上有且仅有一个极值点,则实数a 的取值范围是( )A .(-∞,-22]B .(-∞,-22)C .(-∞,-3]D .(-∞,-3)(2)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =________.(1)C (2)2 [(1)f ′(x )=(2x +a )e x +(x 2+ax +3)e x =[x 2+(a +2)x +a +3]e x . 令g (x )=x 2+(a +2)x +a +3,由题意知⎩⎪⎨⎪⎧ -a +22>0,g (0)≤0或⎩⎪⎨⎪⎧ -a +22≤0,g (0)<0, 即⎩⎪⎨⎪⎧ -a +22>0,a +3≤0或⎩⎪⎨⎪⎧ -a +22≤0,a +3<0,解得a ≤-3,故选C.(2)f (x )=x (x -a )2=x 3-2ax 2+a 2x ,∴f ′(x )=3x 2-4ax +a 2.由f ′(2)=12-8a +a 2=0,解得a =2或a =6.当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意;当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,∴a =2.](1)当a =1,且函数图象过点(0,1)时,求f (x )的极小值.(2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围.[解] f ′(x )=3ax 2-4x +1.(1)函数图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1,令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增; 在 ⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a ≠0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.【例4】 (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1.f (x )与f ′(x )的变化情况如下:所以,f (x )(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上可知,当k ≤1时,f (x )min =-k ;当1<k <2时,f (x )min =-e k -1;当k ≥2时,f (x )min =(1-k )e.已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值.[解] 因为f (x )=1-x x +k ln x ,所以f ′(x )=-x -(1-x )x 2+k x =kx -1x 2. (1)若k =0,则f ′(x )=-1x 2在⎣⎢⎡⎦⎥⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减.所以f (x )min =f (e)=1-e e ,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -1. (2)若k ≠0,f ′(x )=kx -1x 2=k ⎝ ⎛⎭⎪⎫x -1k x 2.①若k <0,则在⎣⎢⎡⎦⎥⎤1e ,e 上恒有k ⎝ ⎛⎭⎪⎫x -1k x 2<0, 所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. ②若k >0,由k <1e ,得1k >e ,则x -1k <0,所以k ⎝ ⎛⎭⎪⎫x -1k x 2<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. 综上,k <1e 时,f (x )min =1e +k -1,f (x )ma x =e -k -1.【例5】 已知函数f (x )=e x(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.[解] (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x, 令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点, 且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧ 9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x. 因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e-5=5e 5>5=f (0), 所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________.[-3,0) [由题意,得f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0).]1.(2020·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1]. 由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)·e -3=0,所以a =-1.所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点.所以函数f (x )的极小值为f (1)=-1.故选A.]2.(2020·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;第11页 共11页 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).。

(新课标)高考数学一轮总复习 第二章 函数、导数及其应用 2-2 函数的单调性与最值课时规范练 理(

(新课标)高考数学一轮总复习 第二章 函数、导数及其应用 2-2 函数的单调性与最值课时规范练 理(

2-2 函数的单调性与最值课时规X 练(授课提示:对应学生用书第219页)A 组 基础对点练1.下列函数中,定义域是R 且为增函数的是( B ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( C ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg|x |3.下列函数中,既是奇函数且在定义域内是增函数的为( D ) A .y =x +1 B .y =-x 3C .y =1xD .ln 2+x 2-x4.函数f (x )=ln(x 2-3x +2)的递增区间是( D ) A .(-∞,1)B .⎝ ⎛⎭⎪⎫1,32 C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)解析:令t =x 2-3x +2=(x -1)(x -2)>0,求得x <1或x >2,故函数的定义域为{x |x <1或x >2},f (x )=ln t ,由复合函数的单调性知本题即求函数t 在定义域内的增区间.结合二次函数的性质可得函数t 在定义域内的增区间为(2,+∞). 5.设f (x )=x -sin x ,则f (x )( B ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( D )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.(2017·某某模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( C ) A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)8.(2018·某某二模)已知实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则下列关系式中恒成立的是( D )A .tan x >tan yB .ln(x 2+2)>ln(y 2+1) C.1x >1yD .x 3>y 3解析:根据题意,实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则x >y ,依次分析选项:对于A ,因为y =tan x 在其定义域上不是单调函数,故tan x >tan y 不一定成立,不符合题意;对于B ,若x >y ,则x 2+2>y 2+2不一定成立,故ln(x 2+2)>ln(y 2+1)不一定成立,不符合题意;对于C ,当x >y >0时,1x <1y,不符合题意;对于D ,函数y =x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意.9.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.已知函数f (x )=x 2-2ax +3在区间[1,2]上具有单调性,则实数a 的取值X 围为( D ) A .(-∞,1] B .[1,2]C .[2,+∞)D .(-∞,1]∪[2,+∞)11.(2017·某某模拟)函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a的取值X 围是( B ) A .(0,1)B .⎣⎢⎡⎭⎪⎫13,1C.⎝ ⎛⎦⎥⎤0,13 D .⎝ ⎛⎦⎥⎤0,23 解析:由题意知⎩⎪⎨⎪⎧0<a <1,3a ≥1,得13≤a <1. 12.函数f (x )=x +2x -1的最小值为 12.解析:由2x -1≥0可得x ≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞, 又函数f (x )=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12.13.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值X 围是⎝ ⎛⎭⎪⎫-12,23.解析:依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m⇒⎩⎪⎨⎪⎧-1<m <3-12<m <32m <23⇒-12<m <23.14.(2018·城关区校级模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,若m >0,n >0,且m +n =f (f (ln 2)),则1m +2n的最小值为 3+2 2.解析:函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,m +n =f [f (ln 2)]=f (e ln 2-1)=f (2-1)=log 33=1,则1m +2n=(m +n )⎝ ⎛⎭⎪⎫1m +2n =3+n m +2m n≥3+2n m ·2mn=3+22, 当且仅当n =2m 时,取得最小值3+2 2.15.(2018·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤2,log 2x -1,x >2,则f (f (4))= 1 ;函数f (x )的单调递减区间是 [1,2] . 解析:f (4)=log 24-1=1, ∴f (f (4))=f (1)=-12+2×1=1.x ≤2时,f (x )=-x 2+2x ,对称轴为x =1,∴f (x )在[1,2]上单调递减. ∴f (x )的单调递减区间为[1,2].B 组 能力提升练1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f ⎝⎛⎭⎪⎫log 12a ≤2f (1),则a 的取值X 围是( C )A .[1,2]B .⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]2.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是( D )A.⎝ ⎛⎦⎥⎤-14,0 B .(0,+∞)C.⎣⎢⎡⎦⎥⎤-14,0 D .⎝ ⎛⎭⎪⎫-14,+∞ 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.3.(2017·某某阶段测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( B ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数4.(2018·某某一模)已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f x 1-f x 2x 1-x 2>0;②对定义域内任意x ,都有f (x )=f (-x ),则符合上述条件的函数是( A )A .f (x )=x 2+|x |+1 B .f (x )=1x-xC .f (x )=ln|x +1|D .f (x )=cos x解析:由题意得f (x )是偶函数,在(0,+∞)递增,对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0,故f (x )在(0,+∞)递增,符合题意;对于B ,函数f (x )是奇函数,不合题意;对于C ,由x +1=0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不合题意;对于D ,函数f (x )在(0,+∞)无单调性,不合题意.5.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值X 围是( B ) A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2 解析:由题意知f ′(x )=2x -12x=2x +12x -12x ,易知函数f (x )在x =12处取得极值,所以有k -1<12<k +1,且k -1≥0,得k ∈⎣⎢⎡⎭⎪⎫1,32. 6.(2018·铁东区校级一模)指数函数f (x )=a x(a >0,且a ≠1)在R 上是减函数,则函数g (x )=a -2x 2在其定义域上的单调性为( C ) A .单调递增 B .单调递减C .在(0,+∞)上递增,在(-∞,0)上递减D .在(0,+∞)上递减,在(-∞,0)上递增 解析:∵指数函数f (x )=a x在R 上是减函数, ∴0<a <1,∴-2<a -2<-1,函数y =1x2在(-∞,0)上递增,在(0,+∞)上递减.∴g (x )在(-∞,0)上递减,在(0,+∞)上递增. 7.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( C ) A .sgn[g (x )]=sgn x B .sgn[g (x )]=sgn[f (x )] C .sgn[g (x )]=-sgn x D .sgn[g (x )]=-sgn[f (x )]8.若f (x )=e x -a e -x为奇函数,则f (x -1)<e -1e 的解集为( A )A .(-∞,2)B .(-∞,1)C .(2,+∞)D .(1,+∞)9.已知函数f (x )=lg(a x-b x)+x 中,常数a ,b 满足a >1>b >0,且a =b +1,那么f (x )>1的解集为( B ) A .(0,1) B .(1,+∞) C .(1,10)D .(10,+∞)10.(2018·兴庆区校级三模)已知函数f (x )=⎩⎪⎨⎪⎧a x -1-b ,x ≤1,-log 2x +1,x >1(a >0,a ≠1),在其定义域上单调,则ab 的值不可能的是( D ) A .-1 B .1 C .-2D .2解析:由于函数f (x )在R 上单调,当x >1时,函数f (x )=-log 2(x +1)单调递减,则当x ≤1时,函数f (x )=a x -1-b 单调递减,所以0<a <1,且a1-1-b ≥-log 2(1+1),即1-b ≥-1,解得b ≤2.当0<b ≤2时,0<ab <2;当b ≤0时,则ab ≤0.因此,ab ≠2,故选D.11.已知函数f (x )是定义在R 上的单调递增函数,且满足对任意的实数x 都有f (f (x )-3x)=4,则f (x )+f (-x )的最小值等于( B ) A .2 B .4 C .8D .12解析:由f (x )的单调性知存在唯一实数K 使f (K )=4,即f (x )=3x+K ,令x =K 得f (K )=3K +K =4,所以K =1,从而f (x )=3x +1,即f (x )+f (-x )=3x+13x +2≥23x·13x +2=4,当且仅当x =0时取等号.故选B.12.(2018·某某二模)已知函数f (x )=(x +2 012)(x +2 014)(x +2 016)(x +2 018),x ∈R ,则函数f (x )的最小值是 -16 解析:令x +2 012=t ,t ∈R ,则y =t (t +2)(t +4)(t +6)=(t 2+6t )(t 2+6t +8)=(t 2+6t )2+8(t 2+6t )=(t 2+6t +4)2-16,当t 2+6t +4=0,即t =-3±5时,取得最小值-16.13.(2017·某某东营广饶一中模拟)已知f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x ≤1,log a x ,x >1是R 上的减函数,则a 的取值X 围是 ⎣⎢⎡⎭⎪⎫17,13 . 解析:由函数f (x )为单调递减函数可得g (x )=(3a -1)x +4a 在(-∞,1]上单调递减,函数h (x )=log a x 在(1,+∞)上单调递减,且g (1)≥h (1), ∴⎩⎪⎨⎪⎧3a -1<0,0<a <1,7a -1≥0,∴17≤a <13. 14.已知函数f (x )=则f (f (3))= -3 ,函数f (x )的最大值是1 . 解析:f (3)=3=-1,∴f (f (3))=f (-1)=-(-1)2-2=-3. 当x >1时,f (x )=x 为减函数,可得f (x )<0;当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1,最大值为1. 15.(2017·模拟)已知函数f (x )=xx 2+1,关于f (x )的性质,有下列四个结论:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12; ③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中正确结论的个数是 3 . 解析:对于①,∵函数f (x )=xx 2+1,∴f (x )的定义域是(-∞,+∞),故①正确; 对于②,当x ≠0时,f (x )=1x +1x,若x >0,则0<f (x )≤12,若x <0,则-12≤f (x )<0;当x =0时,f (x )=0,故f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12,故②正确; 对于③,f (-x )=-f (x ),∴f (x )是奇函数,故③正确; 对于④,f ′(x )=1-x2x 2+12,令f ′(x )>0,解得-1<x <1,令f ′(x )<0,解得x >1或x <-1,∴f (x )在区间(0,2)上先增后减,故④错误. 综上可知,正确结论的个数是3.。

高考数学大一轮总复习 第二章 函数、导数及其应用 2.11.2 导数与函数的极值、最值课件 理 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 2.11.2 导数与函数的极值、最值课件 理 北师大版

又 f-34-f14=ln 32+196-ln 27-116 =ln 37+12=121-ln 499<0。 所以 f(x)在区间-34,14的最大值为 f41=116+ln 72。
x f′(x)
f(x)
(0,1) - 单调递减
1 0 极小值3
(1,+∞) +
单调递增
• 由上表知f(x)在(0,1)上为减函数,在(1,+∞)上为增函数, 故f(x)在x=1处取得极小值f(1)=3。
3.(2015·安徽卷)已知函数 f(x)=x+axr2(a>0,r>0)。 (1)求 f(x)的定义域,并讨论 f(x)的单调性; 解 (1)由题意知 x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞)。 f(x)=x+axr2=x2+2arxx+r2, f′(x)=ax2+2rxx2++2r2rx-+arx222 x+2r =ar-x+xrx+4 r, 所以当 x<-r 或 x>r 时,f′(x)<0。当-r<x<r 时,f′(x)>0。 因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增 区间为(-r,r),
角度二:求函数的极值 2.设 f(x)=aln x+21x+23x+1,其中 a∈R,曲线 y=f(x)在点(1,f(1)) 处的切线垂直于 y 轴。 (1)求 a 的值; 解 因为 f(x)=aln x+21x+23x+1, 故 f′(x)=ax-21x2+32 由于曲线 y=f(x)在点(1,f(1))处的切线垂直于 y 轴,故该切线斜率为 0, 即 f′(1)=0, 从而 a-21+23=0,解得 a=-1。
• 解析 ①当x<-2时,1-x>0。 • ∵(1-x)f′(x)>0, • ∴f′(x)>0,即f(x)在(-∞,-2)上是增函数。 • ②当-2<x<1时,1-x>0。 • ∵(1-x)f′(x)<0, • ∴f′(x)<0,即f(x)在(-2,1)上是减函数。 • ③当1<x<2时,1-x<0。 • ∵(1-x)f′(x)>0,∴f′(x)<0, • 即f(x)在(1,2)上是减函数。 • ④当x>2时,1-x<0。 • ∵(1-x)f′(x)<0,

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标15 导数与函数的极值、最值 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标15 导数与函数的极值、最值 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标15导数与函数的极值、最值 理[解密考纲]本考点主要考查利用导数研究函数的单调性、极值、最值、或者已知最值求参数等问题.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( D ) A .⎣⎢⎡⎭⎪⎫32,+∞ B .⎝⎛⎭⎪⎫32,+∞ C .⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D .⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 2.函数f (x )=12x 2-ln x 的最小值为( A )A .12B .1C .0D .不存在解析:f ′(x )=x -1x =x 2-1x,且x >0,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1, ∴f (x )在x =1处取得极小值也是最小值, 且f (1)=12-ln 1=12,故选A .3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( D ) A .15 B .16 C .17D .18解析:x =2是函数f (x )=x 3-3ax +2的极小值点,即x =2是f ′(x )=3x 2-3a =0的根,将x =2代入得a =4,所以函数解析式为f (x )=x 3-12x +2.令f ′(x )=3x 2-12=0,得x =±2,故函数在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时函数f (x )取得极大值f (-2)=18,故选D .4.函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1,x ≤0,e ax,x >0,在[-2,2]上的最大值为2,则实数a 的取值范围是( D )A .⎣⎢⎡⎭⎪⎫12ln 2,+∞B .⎣⎢⎡⎦⎥⎤0,12ln 2C .(-∞,0)D .⎝ ⎛⎦⎥⎤-∞,12ln 2解析:当x ∈[-2,0)时,因为f ′(x )=6x 2+6x =6x (x +1),所以在[-2,-1)上f ′(x )>0,在(-1,0]上,f ′(x )≤0,则当x ∈[-2,0]时函数有最大值,为f (-1)=2.当a ≤0时,若x >0,显然e ax ≤1,此时函数在[-2,2]上的最大值为2,符合题意;当a >0时,若函数在[-2,2]上的最大值为2,则e 2a≤2,得a ≤12ln 2,综上可知a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12ln 2,故选D . 5.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( A )A .-37B .-29C .-5D .-11解析:f ′(x )=6x 2-12x =6x (x -2),由f ′(x )=0得x =0或x =2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,显然f (0)>f (2)>f (-2),∴m =3,最小值为f (-2)=-37,故选A .6.(2017·河北三市二联)若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则函数f (x )在R 上的极小值为( A )A .2b -43B .32b -23C .0D .b 2-16b 3解析:f ′(x )=x 2-(2+b )x +2b =(x -b )(x -2). ∵函数f (x )在区间[-3,1]上不是单调函数,∴-3<b <1, 则由f ′(x )>0,得x <b 或x >2.由f ′(x )<0,得b <x <2, ∴函数f (x )的极小值为f (2)=2b -43,故选A .二、填空题7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M-m =32.解析:f ′(x )=3x 2-12,令f ′(x )=0,则x =2和x =-2为其两个极值点,f (3)=-1,f (-3)=17,f (2)=-8,f (-2)=24,∴M =24,m =-8,M -m =32.8.(2017·东北八校月考)已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为4.解析:∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧f ′2=3×22+6a ×2+3b =0,f ′1=3×12+6a ×1+3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.9.已知函数f (x )的定义域是[-1,5],部分对应值如下表:x -1 0 2 4 5 f (x )1221f (x )的导函数f ′(的极小值为0.解析:由y =f ′(x )的图象知,f ′(x )与f (x )随x 的变化情况如下表:x (-1,0) 0 (0,2) 2 (2,4) 4 (4,5) f ′(x ) +0 -0 +0 -f (x )极大值极小值极大值三、解答题10.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解析:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex .由曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-ae=0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.11.(2017·河北衡水中学调研)已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x(a 为实数).(1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[t ,t +2](t >0)上的最小值. 解析:(1)当a =5时,g (x )=(-x 2+5x -3)e x,g (1)=e.又g ′(x )=(-x 2+3x +2)e x ,故切线的斜率为g ′(1)=4e.所以切线方程为y -e =4e(x -1),即y =4e x -3e. (2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥1e 时,在区间[t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .12.已知函数f (x )=ax 2-e x(a ∈R ,e 为自然对数的底数),f ′(x )是f (x )的导函数. (1)解关于x 的不等式:f (x )>f ′(x );(2)若f (x )有两个极值点x 1,x 2,求实数a 的取值范围. 解析:(1)f ′(x )=2ax -e x ,f (x )-f ′(x )=ax (x -2)>0. 当a =0时,无解;当a >0时,解集为{x |x <0或x >2}; 当a <0时,解集为{x |0<x <2}.(2)设g (x )=f ′(x )=2ax -e x,则x 1,x 2是方程g (x )=0的两个根.g ′(x )=2a -e x ,当a ≤0时,g ′(x )<0恒成立,g (x )单调递减,方程g (x )=0不可能有两个根;当a >0时,由g ′(x )=0,得x =ln 2a ,当x ∈(-∞,ln 2a )时,g ′(x )>0,g (x )单调递增, 当x ∈(ln 2a ,+∞)时,g ′(x )<0,g (x )单调递减. ∴当g (x )max >0时,方程g (x )=0有两个根, ∴g (x )max =g (ln 2a )=2a ln 2a -2a >0,得a >e2.故实数a 的取值范围是⎝ ⎛⎭⎪⎫e 2,+∞.。

2018版高考数学(人教A版理)一轮复习教师用书 第2章 第12节 导数与函数的极值、最值 Word版含解析

2018版高考数学(人教A版理)一轮复习教师用书 第2章 第12节 导数与函数的极值、最值 Word版含解析

第十二节导数与函数的极值、最值[考纲传真] .了解函数在某点取得极值的必要条件和充分条件.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)..函数的极值与导数的关系()函数的极小值与极小值点若函数()在点=处的函数值()比它在点=附近其他点的函数值都小,′()=,而且在点=附近的左侧′()<,右侧′()>,则点叫做函数的极小值点,()叫做函数的极小值.()函数的极大值与极大值点若函数()在点=处的函数值()比它在点=附近其他点的函数值都大,′()=,而且在点=附近的左侧′()>,右侧′()<,则点叫做函数的极大值点,()叫做函数的极大值..函数的最值与导数的关系()函数()在[,]上有最值的条件如果在区间[,]上函数=()的图象是一条连续不断的曲线,那么它必有最大值和最小值.()求=()在[,]上的最大(小)值的步骤①求函数=()在(,)内的极值;②将函数=()的各极值与端点处的函数值(),()比较,其中最大的一个是最大值,最小的一个是最小值..(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) ()函数的极大值一定比极小值大.( )()对可导函数(),′()=是为极值点的充要条件.( )()函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) ()若实际问题中函数定义域是开区间,则不存在最优解.( )[答案]()×()×()√()×.(教材改编)函数()的定义域为开区间(,),导函数′()在(,)内的图象如图--所示,则函数()在开区间(,)内极小值点的个数为( )图--.[导函数′()的图象与轴的交点中,左侧图象在轴下方,右侧图象在轴上方的只有一个,所以()在区间(,)内有一个极小值点.].已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为=-+-,则使该生产厂家获取最大年利润的年产量为( ) .万件万件.万件万件[′=-+,令′=得=或=-(舍去).当∈()时,′>,当∈(,+∞)时,′<,则当=时,有最大值.即使该生产厂家获取最大年利润的年产量为万件.].(·四川高考)已知为函数()=-的极小值点,则=( ).-.-.[由题意得′()=-,令′()=得=±,∴当<-或>时,′()>;当-<<时,′()<,∴()在(-∞,-)上为增函数,在(-)上为减函数,在(,+∞)上为增函数.∴()在=处取得极小值,∴=.].函数=-在区间[-]上的最大值是.[′=-,令′=,得=或=.。

[推荐学习]全国通用2018高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用

[推荐学习]全国通用2018高考数学一轮复习第2章函数导数及其应用第12节导数与函数的极值最值教师用

第十二节导数与函数的极值、最值————————————————————————————————[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).1.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.( )(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(4)若实际问题中函数定义域是开区间,则不存在最优解.( )[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图2­12­1所示,则函数f (x )在开区间(a ,b )内极小值点的个数为( )图2­12­1A .1B .2C .3D .4A [导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,所以f (x )在区间(a ,b )内有一个极小值点.]3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件C [y ′=-x 2+81,令y ′=0得x =9或x =-9(舍去). 当x ∈(0,9)时,y ′>0,当x ∈(9,+∞)时,y ′<0, 则当x =9时,y 有最大值.即使该生产厂家获取最大年利润的年产量为9万件.]4.(2016·四川高考)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2D [由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,∴当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________. 8 [y ′=6x 2-4x ,令y ′=0, 得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.]☞角度1 根据函数图象判断极值设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图2­12­2所示,则下列结论中一定成立的是( )图2­12­2A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.] ☞角度2 求函数的极值求函数f (x )=x -a ln x (a ∈R)的极值.[解] 由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;5分(2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,9分从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.12分☞角度3 已知极值求参数(1)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )【导学号:31222087】A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12C .(0,1)D .(0,+∞)(2)(2016·广东肇庆三模)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.(1)B (2)5 [(1)∵f (x )=x (ln x -ax ), ∴f ′(x )=ln x -2ax +1,故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x,设g (x )=ln x +1x ,则g ′(x )=-ln x x2, ∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1, ∴只需0<2a <1⇒0<a <12.(2)f ′(x )=3x 2+2ax +3,由题意知x =-3为方程3x 2+2ax +3=0的根,∴3×(-3)2+2a ×(-3)+3=0,解得a =5.][规律方法] 利用导数研究函数极值的一般流程(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.2分f (x )与f ′(x )的变化情况如下:单调递减单调递增5分(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ,7分 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10分 综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-ek -1;当k ≥2时,f (x )min =(1-k )e.12分[规律方法] 求函数f (x )在[a ,b ]上的最大值、最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的为最大值,最小的为最小值. [变式训练1] (2017·石家庄质检(二))若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为( )A .2B .3C .6D .9D [f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,a +b =6,又a >0,b >0,则t =ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,故选D.]价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.5分(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+x -2=2+10(x -3)(x -6)2,3<x <6.7分从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6), 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.12分 [规律方法] 利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答.[变式训练2] 某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x>0),为使耗电量最小,则速度应定为________. 【导学号:31222088】40 [由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0;x >40时,y ′>0.所以当x =40时,y 有最小值.][思想与方法]1.可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.2.求闭区间上可导函数的最值时,对函数的极值是极大值还是极小值可不作判断,直接与端点的函数值比较即可.3.如果目标函数在定义区间内只有一个极值点,那么根据实际意义该极值点就是最值点.4.若函数f(x)在定义域A上存在最大值与最小值,则:(1)对任意x∈A,f(x)>0⇔f(x)min>0;(2)存在x∈A,f(x)>0⇔f(x)max>0.[易错与防范]1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.2.导数为零的点不一定是极值点.对含参数的求极值问题,应注意分类讨论.3.若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.4.利用导数解决实际生活中的优化问题,要注意问题的实际意义.课时分层训练(十五) 导数与函数的极值、最值A 组 基础达标 (建议用时:30分钟)一、选择题1.下列函数中,既是奇函数又存在极值的是( ) A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2xD [由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),而D 选项中的函数既为奇函数又存在极值.]2.当函数y =x ·2x取极小值时,x 等于( )【导学号:31222089】A.1ln 2B .-1ln 2C .-ln 2D .ln 2B [令y ′=2x+x ·2x ln 2=0, ∴x =-1ln 2.经验证,-1ln 2为函数y =x ·2x的极小值点.]3.函数y =ln x -x 在x ∈(0,e]上的最大值为( ) A .e B .1 C .-1D .-eC [函数y =ln x -x 的定义域为(0,+∞). 又y ′=1x -1=1-xx,令y ′=0得x =1,当x ∈(0,1)时,y ′>0,函数单调递增; 当x ∈(1,e]时,y ′<0,函数单调递减. 当x =1时,函数取得最大值-1.]4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )【导学号:31222090】A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)B [∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3.]5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R),若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )图象的是( )A B C DD [因为[f (x )e x]′=f ′(x )e x+f (x )(e x)′=[f (x )+f ′(x )]e x,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0.选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.]二、填空题6.函数f (x )=13x 3+x 2-3x -4在[0,2]上的最小值是________.【导学号:31222091】-173 [f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.]7.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________. (-∞,-1) [∵y =e x +ax ,∴y ′=e x+a . ∵函数y =e x+ax 有大于零的极值点, 则方程y ′=e x+a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x<-1.]8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为________元时利润最大,利润的最大值为________元.30 23 000 [设该商品的利润为y 元,由题意知,y =Q (p -20)=-p 3-150p 2+11 700p -166 000,则y ′=-3p 2-300p +11 700, 令y ′=0得p =30或p =-130(舍),当p ∈(0,30)时,y ′>0,当p ∈(30,+∞)时,y ′<0, 因此当p =30时,y 有最大值,y max =23 000.]三、解答题9.已知函数f (x )=-x 3+ax 2+b (a ,b ∈R).(1)要使f (x )在(0,2)上单调递增,试求a 的取值范围;(2)当a <0时,若函数满足y 极大=1,y 极小=-3,试求y =f (x )的解析式. [解] (1)f ′(x )=-3x 2+2ax . 依题意f ′(x )≥0在(0,2)上恒成立,即2ax ≥3x 2.∵x >0,∴2a ≥3x ,∴2a ≥6,∴a ≥3, 即a 的取值范围是[3,+∞).5分 (2)∵f ′(x )=-3x 2+2ax =x (-3x +2a ).∵a <0,当x ∈⎝⎛⎦⎥⎤-∞,23a 时,f ′(x )≤0,f (x )递减. 当x ∈⎝ ⎛⎭⎪⎫23a ,0时,f ′(x )>0,f (x )递增.当x ∈[0,+∞)时,f ′(x )≤0,f (x )递减.8分∴⎩⎪⎨⎪⎧f 极大0=1,f 极小⎝ ⎛⎭⎪⎫23a =-3⇒⎩⎪⎨⎪⎧a =-3,b =1.∴f (x )=-x 3-3x 2+1.12分10.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值.[解] (1)设点C 受A 污染源污染程度为kax2,点C 受B 污染源污染程度为kb18-x2,其中k 为比例系数,且k >0,从而点C 处受污染程度y =ka x2+kb18-x2.5分(2)因为a =1,所以y =k x2+kb18-x2,y ′=k ⎣⎢⎡⎦⎥⎤-2x 3+2b 18-x 3,8分 令y ′=0,得x =181+3b,又此时x =6,解得b =8,经验证符合题意,所以,污染源B 的污染强度b 的值为8.12分B 组 能力提升(建议用时:15分钟)1.(2017·石家庄一模)若函数f (x )=x 3+ax 2+bx (a ,b ∈R)的图象与x 轴相切于一点A (m,0)(m ≠0),且f (x )的极大值为12,则m 的值为( )【导学号:31222092】A .-23B .-32 C.23D.32 D [由题意可得f (m )=m 3+am 2+bm =0,m ≠0,则m 2+am +b =0 ①,且f ′(m )=3m2+2am +b =0 ②,①-②化简得m =-a 2,f ′(x )=3x 2+2ax +b 的两根为-a 2和-a 6,则b =a 24,f ⎝ ⎛⎭⎪⎫-a 6=12,解得a =-3,m =32,故选D.] 2.(2016·北京高考改编)设函数f (x )=⎩⎪⎨⎪⎧ x 3-3x ,x ≤0,-2x ,x >0,则f (x )的最大值为________.2 [当x >0时,f (x )=-2x <0;当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1),当x <-1时,f ′(x )>0,f (x )是增函数,当-1<x <0时,f ′(x )<0,f (x )是减函数,∴f (x )≤f (-1)=2,∴f (x )的最大值为2.]3.已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值.[解] (1)因为f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b .2分由于f (x )在点x =2处取得极值c -16,故有⎩⎪⎨⎪⎧ f =0,f 2=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16, 化简得⎩⎪⎨⎪⎧ 12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧ a =1,b =-12.5分 (2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12=3(x -2)(x +2),令f ′(x )=0,得x 1=-2,x 2=2.当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;7分当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;8分当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数.由此可知f(x)在x=-2处取得极大值,f(-2)=16+c,f(x)在x=2处取得极小值f(2)=c-16.由题设条件知16+c=28,解得c=12.10分此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(十五)导数与函数的极值、最值
A 组 基础达标
(建议用时:30分钟)
一、选择题
1.下列函数中,既是奇函数又存在极值的是( )
A .y =x 3
B .y =ln(-x )
C .y =x e -x
D .y =x +2x
D [由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极
值),而D 选项中的函数既为奇函数又存在极值.]
2.当函数y =x ·2x 取极小值时,x 等于( )
【导学号:31222089】
A.1ln 2 B .-1ln 2
C .-ln 2
D .ln 2
B [令y ′=2x +x ·2x ln 2=0,
∴x =-1ln 2
. 经验证,-1ln 2
为函数y =x ·2x 的极小值点.] 3.函数y =ln x -x 在x ∈(0,e]上的最大值为( )
A .e
B .1
C .-1
D .-e
C [函数y =ln x -x 的定义域为(0,+∞).
又y ′=1x -1=1-x x
,令y ′=0得x =1, 当x ∈(0,1)时,y ′>0,函数单调递增;
当x ∈(1,e]时,y ′<0,函数单调递减.
当x =1时,函数取得最大值-1.]
4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是
( )
【导学号:31222090】
A .(-1,2)
B .(-∞,-3)∪(6,+∞)
C .(-3,6)
D .(-∞,-1)∪(2,+∞)
B [∵f ′(x )=3x 2+2ax +(a +6),
由已知可得f ′(x )=0有两个不相等的实根,
∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0,
∴a >6或a <-3.]
5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R),若x =-1为函数f (x )e x
的一个极值点,则下列图象不可能为y =f (x )图象的是( )
A B C D
D [因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x
,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0.选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.]
二、填空题
6.函数f (x )=13
x 3+x 2-3x -4在[0,2]上的最小值是________. 【导学号:31222091】
-173
[f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173
.] 7.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________. (-∞,-1) [∵y =e x +ax ,∴y ′=e x +a .
∵函数y =e x +ax 有大于零的极值点,
则方程y ′=e x +a =0有大于零的解,
∵x >0时,-e x <-1,∴a =-e x
<-1.]
8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为________元时利润最大,利润的最大值为________元.
30 23 000 [设该商品的利润为y 元,由题意知, y =Q (p -20)=-p 3-150p 2+11 700p -166 000,
则y ′=-3p 2-300p +11 700,
令y ′=0得p =30或p =-130(舍),
当p ∈(0,30)时,y ′>0,当p ∈(30,+∞)时,y ′<0,
因此当p =30时,y 有最大值,y max =23 000.]
三、解答题。

相关文档
最新文档