曲轴箱油雾浓度监视报警器
船舶电气与自动化
1.Graviner Mark 6型曲轴箱油雾浓度监视报警系统采用的是______。
A.检测透光度技术B.机械旋转部件技术C.光学测量、数字传输技术D.分立元件技术2.H级绝缘材料的耐热极限温度是______。
A.120℃B.180℃C.105℃D.130℃3.______的方法不能用于电机调速。
A.变电源频率B.变磁极对数C.变电源电压D.变电源相数4.______励磁方式的直流电动机具有如图所示的机械特性曲线。
A.串励B.它励C.并励D.复励5.______是拆装后的电动机在投入使用前需要检查的项目之一A.测量绕组绝缘电阻B.起动电动机与电源容量的配合C.测量空载电流D.负载试验与温升的测定6.______在船上被广泛用作辅机平台、主甲板和货舱口等处照明。
A.荧光灯B.高压汞灯C.普通白炽灯D.汞氙灯7.不经过分配电板,直接由主配电板供电的方式是______所采用的。
A.照明负载B.部分重要负载C.部分次要负载D.小功率负载普遍8.不论电路如何复杂,总可归纳为由电源,_______,中间环节三部分组成。
A.电阻B.电容C.电感D.负载9.采用灯光明暗法并车,只能判断出频差的大小,但无法判断出_______。
A.频差的方向B.频差的快慢C.相位差的大小D.相位差的程度10.采用同步指示灯的“灯光明暗法”来并车,灯光明暗的程度反映_____,灯光明暗的快慢反映______。
A.频差/相位差B.相位差/频差C.电压表/频差D.电压差/相位差11.采用万用表测量停止按钮时,常在断电时拆下线路测量,如果测量值为______,则说明需要更换按钮。
A.1xxx(测量溢出,xxx表示无显示)B.10ΩC.0ΩD.通断档报警12.差温式(温升式)火警探测器是在______大于给定值情况下给出火警信号。
A.温度值B.烟气浓度C.温度升高率D.烟气浓度变化量13.常用的感烟式火灾探测器,为避免漏报其监视舱室顶棚的高度一般不超过______。
Greaviner Mark5油雾浓度监视报警系统简介
Greaviner Mark5油雾浓度监测报警系统简介船舶管理二部陆品涛周超超曲柄箱油雾浓度监测报警器是船舶主机安全运行的重要安保装置之一。
主机运转时,曲柄箱内的滑油在高温条件下(70℃以上)会产生油气,这些油气与空气混合后形成油雾,当油雾浓度超过正常标准时,就可能会引起曲柄箱爆炸事故。
因此柴油机曲柄箱安装了油雾浓度监测报警器后,一旦油雾浓度超过正常标准时,该装置会发出声光报警,同时使主机自动减速或停车,以避免机损事故的发生。
随着柴油机的技术发展和自动化程度的加快,对主机曲柄箱油雾浓度监测报警器的准确性和反应速度有了更高的要求,以保证船舶的安全航行,这也是港口国和船旗国对船舶各种检查的必查项目。
目前,船上采用的这类产品种类繁多,但工作原理相近,Greaviner Mark5型油雾浓度监测报警器是在新的远洋船舶上应用较多的一种。
它以单片机为监测报警的核心部件,对曲柄箱油雾浓度进行监测、显示、报警,以及对主机进行安全保护。
它采样准确,执行速度快,并有较强的自检功能。
1 Greaviner Mark5组成该监测报警器主要由采样切换电磁阀、油雾浓度测量单元、显示报警单元及控制电路部分组成。
2 显示报警单元3个状态指示灯:(1)SYSTEM ON:系统接通电源时亮;(2)SIMULA-TION MODE:系统模拟运行时亮;(3)TEST MODE :对系统进行测试时亮4个警报和故障状态指示灯:(1)A VERAGE ALARM:发生平均浓度报警时亮;(2)DEVIATION ALARM:发生偏差浓度报警时亮;(3)FLOW FAULT:系统不能正常采样时亮;(4)OPTICAL FAULT:光学系统有故障时亮3个操作按钮:(1)SELECT:选择采样显示点按钮;(2)TEST:测试按钮;(3)RESET:复位按钮液晶显示器分上、下两层,上层显示油雾浓度达到报警值的百分比,下层显示采样点序号。
3 Greaviner Mark5工作原理(如图1)图1 Greaviner Mark5工作原理3.1气样的采集该系统共有11个两位三通电磁阀,其中有10个电磁阀分别采集各曲柄箱的气样,最多可检测10个缸的气样。
MK6+型油雾浓度探测器工作原理及疑难故障一例
MK6 型探测器发生报警时将在显示屏上显示警报的种类和地址, 同时探头本体上的相应指示灯也会点亮。 如某
缸探头检测到油雾浓度过高,则发出浓度高报警同时该探头上的红灯亮起。在正常情况下探头上只有绿色指示灯是 亮的代表探头工作中,如果在探头通电初期这盏绿灯长时间无法点亮,说明探头无法通过自检,原因一般是探头损 坏。黄灯亮代表探头故障,原因有通信故障、风扇停转、感光接收孔脏堵或地址码设置错误等。 光电探测器最重要的日常保养就是保持光学部件的清洁,MK6 型也不例外。当发光管污染时会使读数上升, 因 为光线在射出时就发生了散射,感光管污染会使读数下降,也就是变相提高了报警值。MK6 探头为了保证在正常情 况下进入感光管的光线量为 0,在感光管前面设有一个隔板,隔板上开有一个小孔,形成感光接收孔,隔板同感光 管之间的空间非常容易积聚油污且难以清洗,在日常清洁时可以用电气清洁剂插上附带的细管直接伸入小孔中进行 冲洗。目前最新的 P57100-113 版程序每 24 小时自动执行一次 OPTICS TEST(光学 测试)对探头进行检测,老版本的程序需要手动调用测试。另外,还有一个容易忽视的 地方是 MK6 的进气道细窄且是螺旋式的,在底部还有一个近乎 90°的弯头,这样的构 MK6 的螺旋进气道 造特别容易积聚油污引!所以在清洗探头的时候不要忘了吹通进气道。 二、故障实例 � 现象
MK6 型油雾浓度探测器工作原理及疑难故障一例
大型柴油机曲轴箱爆炸对于船舶安全威胁极大,不仅会给船公司带来巨大的经济损失,往往还造成船员的重大 伤亡。1947 年“REINA DEL PACIFIC”号主机曲轴箱爆炸,导致了船上 28 名船员罹难!造成柴油机曲轴箱爆炸的 原因主要是由于柴油机运动部件发生故障,如轴承高温、活塞漏气、连杆螺栓拉长等等,在曲轴箱中形成了局部高 温使润滑油汽化产生油雾,伴随着温度的不断上升和油雾不断地积聚,一旦温度上升到油雾的闪点最终就会引发爆 炸。由于局部高温的产生可以由多种原因造成,用监测热源的方法很难全面周到的防止灾难的发生。而在爆炸发生 前,曲轴箱内必然有一个油雾积聚的过程。所以目前在预防曲轴箱爆炸的技术方面,油雾监测一直处于最前沿。 目前的柴油机曲轴箱油雾浓度探测器从工作原理上可以分为检测透光率和检测散射光的两种形式: (1) 检测透光率的传统油雾浓度探测器 这 种 探 测 器 比 较 有 代 表 性 的 主 要 有 英 国 的 Graviner MK4/5 型 、 德 国 的 VISATRON CN115/116/215 和 日 本 的 DAIHATSU MD-9x 系列等型号。它们的共同特点是都在 检测室中面对面(180°)布置光源和感光管, 利用油雾对光线的阻光度和浓度成正比的关 系,对曲轴箱中的油雾浓度进行监视,感光管 检测到的光线越弱,说明油雾浓度越高。这种 技术的灵敏度较低,一般只能分辨 0.x mg/L 的油雾浓度,当样品中油雾浓度较低时很难检 测,同时抗干扰能力较差, 无法区分样品中的油 雾和水汽,误报率高。在工作时,通过采样管 VISATRON CN115 采样管典型布置 将各个曲轴箱内的气体抽到主控制机里,再通 过电磁阀等选择进入检测室的样品气体。这样的系统每个采样点和主控制机之间用管道联接,主控制机选 择各个采样点的气体是机械切换,故障率高,响应时间长,同时,采样管一般还需要倾斜布置并有一定的 物理长度,目的是为了使采样气体在通过采样管时让气体中较大的油 /水滴冷却、凝结、滴落到采样管并 流回柴油机的曲轴箱。受物理尺寸和工作原理所限,这样的系统支持的监测点数有限,更不能同时监测多 台柴油机。 (2) 检测散射光的新型油雾浓度探测器 与传统探测器不同,这种探测器检测光束侧向的散射光,散射光越强,说明油雾的浓度越高,这一点 和传统型探测器正好相反,为此它的光源和感光管侧向布置(一般为 90°)。光线穿过样品气体,被悬浮 于气体中的杂质颗粒向四面八方反射,形成了光的散射【注】 。由于各种物质对于光线的反射率不同,颗粒的 大小/质量不同,受到光作用后发生的振动也不同,由此产生的次级光波也不一样。所以,光散射型探测 器检测特定波长的光线强度,就可以识别出反光物质的种类和密度,因而减少了样品背景噪声的影响,误 报率得以降低,同时系统的灵敏度大大提高,可以检测出非常微弱的悬浮颗粒。同时现代微电子技术的蓬 勃发展也使得探测器的体积重量大大减小,为系统分布式设计创造了条件。英国 KIDDE 公司的格莱维诺 Graviner MK6 型就采用了这种先进技术。我司 2008 年由南通川崎船厂建造的 4 条 10000TEU 超大型 集装箱船,4 台副机各装备一台德国 Schaller 自动化公司的 VISATRON CN115/87 型油雾浓度探测器, 主机使用的就是 Graviner MK6 型主机油雾浓度探测器。 一、系统简介
船舶电气与自动化练习题(第10章第二部分、第11章)
第十章第四节曲轴箱油雾浓度监视与报警系统1.从检测原理上来看,曲轴箱油雾浓度的检测方法有()。
A. 检测透光度或检测电容容值B. 检测透光度或检测散光度C. 超声波法或光散射法D. 光敏电阻检测或光电池检测2.Graviner Mark-5型油雾浓度探测器的主要功能是对柴油机曲轴箱的油雾浓度进行()。
①检测;②监视;③显示;④记录;⑤打印;⑥报警。
A.①②③④B.②④⑤⑥C.①②③⑥D.②③④⑤3.在Graviner Mark-5型曲柄箱油雾浓度监视报警器中,现检测6缸柴油机,当采集到3号缸气样时,单片机确定平均浓度与偏差浓度的过程是()。
A.先让6缸混合气样进测量室测平均浓度,再与3号缸浓度相比较,得偏差浓度B.先让除3号缸外各缸混合气样进测量室测平均浓度,再与3号缸比较,得偏差浓度C.先用平均浓度与3号缸比较,得偏差浓度,再用新测3号缸浓度代替原3号缸,算平均浓度D.先用新测3号缸浓度算平均浓度,再与3号缸比较得偏差浓度4.在Graviner Mark-5型油雾浓度探测器中,单片机计算偏差浓度时所用的平均浓度值是一个()。
A.事先设定好的值B.装置开始工作时调定的值C.不断更新的值D.工作一段时间后重新调整的值5.在Graviner Mark-5型曲柄箱油雾浓度监视报警器的面板上,OPTICAL FAULT灯亮的条件是()。
A.光源断线B.光源污染C.光电池损坏D.以上都是6.在Graviner Mark-5型油雾浓度探测器中,清洗空气电磁阀通电的条件是()。
A.当光源、光电池及测量室脏污时B.每缸轮流检测一次后C.由单片机进行定时控制D.当光源、光电池发热时7.在Graviner Mark-5型曲柄箱油雾浓度监视报警器中,若清洗电磁阀通电,则测量室(),各采样电磁阀的状态为()。
A.通空气,全断电B.通空气,全通电C.通混合气样,全断电D.通混合气样,全通电8.在Graviner Mark-5型油雾浓度监视报警器中,清洗空气的作用是()。
船员考试题库船舶动力装置(3000kW及以上船舶轮机长)
船员考试题库中华人民共和国海事局适任培训大纲熟悉训练02科目:船舶动力装置(750kW及以上船舶轮机长)适用对象:3000kW及以上船舶轮机长1.在Graviner Mark6型曲轴箱油雾浓度监视报警系统中,显示器上显示LED FAULT,通常这种现象是______。
A. 探头透光孔堵了、导光管损坏及探头故障(DETECTOR FAULT)B. 探头地址码设置错误、探头供电不正常(COMMS FAULT)C. 偏差报警设置有向题(FALSE DEVIATON ALARM)D. 探头油雾循环腔需要清洗或LED有故障D解析:显示器上显示LED FAULT:探头油雾循环腔需要清洗或LED有故障。
2.柴油机拉缸时的应急处理方法中错误的是______。
A. 发现拉缸时,应加大气缸油注入量B. 发现拉缸时,应迅速降速并降低气缸冷却水温C. 应增大活塞冷却液流量D. 因拉缸而停车后可进行盘车B3.关于船舶伙食冷库的防潮层,描述错误的是______。
A. 冷库必须要有防潮层B. 冷库的防潮层必须连续完整C. 冷库的防潮层阻止含有水蒸汽的空气向隔热层外渗透D. 冷库的防潮层阻止含有水蒸汽的空气向隔热层内渗透4.柴油机采用废气再循环后,由于进气中氧浓度降低和热容量的增加,可获得______。
A.较低的燃烧温度从而降低NOx的生成B. 较低的燃烧温度从而有利于NOx的生成C. 较高的燃烧温度从而降低NOx的生成D. 较高的燃烧温度从而有利于NOx的生成A5.船舶主柴油机的启动闭锁通常包括哪些条件?①启动空气压力低②转速检测器故障③主机故障停车④主机没备妥A. ①②④B. ①②③C. ①③④D.①②③④D解析:起动失败/闭锁指示灯反映主机的起动故障情况,前三项属于起动失败,后四项属于起动闭锁,即不满足起动的准备条件,主机不能起动。
17.三次起动失败18.起动时间过长失败19.慢转起动失败20.起动空气压力低21.两套测速装置均有故障22.主机有故障23.主机未准备好6.船舶艏侧推控制开始前,驾驶室按下起动请求按钮,待起动允许信号出现后,才能控制侧推工作,但驾驶员一直没有等到允许运行信号,通常是______。
曲拐箱油雾浓度报警MARK-6装置
GRAVINERMk 6 OIL MIST DETECTORINSTALLATION, OPERATIONANDMAINTENANCEMANUAL59812-120PROPRIETARY RIGHTS NOTICEThe information contained in this manual is the property of Kidde Fire Protection Services Limited and may not be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, nor stored in any retrieval system of any nature without the express written authority of Kidde Fire Protection Services Limited.© Copyright 2002 Kidde Fire Protection Services LtdTABLE OF CONTENTSChapter Page 1.0DESCRIPTION AND OPERATION11.1INTRODUCTION11.2PRINCIPLE11.3DESCRIPTION11.4OPERATION31.5SYSTEM FUNCTION, CONTROLS AND DISPLAYS42.0INSTALLATION AND COMMISSIONING62.1INSTALLATION62.2SYSTEM CHECKS PRIOR TO SWITCHING ON92.3SYSTEM CONFIGURATION AND COMMISSIONING92.4SYSTEM OPERATION222.5SYSTEM TEST252.6DATA [EVENT AND HISTORY] LOGS293.0MAINTENANCE313.1ROUTINE MAINTENANCE313.2DETECTOR REPLACEMENT323.3DETECTOR REFURBISHMENT323.4FAN REPLACEMENT323.5CABLE REPLACEMENT333.6CONTROL UNIT PCBs343.7REPLACEMENT OF 8 ENGINE STATUS DISPLAY MEMBRANE353.8REPLACEMENT OF LCD DISPLAY353.9REPLACEMENT OF LCD DISPLAY MEMBRANE353.10DECOMMISSIONING354.0FAULT FINDING414.1GENERAL41TABLE OF CONTENTSChapter Page 5.0DATA495.1LEADING PARTICULARS496.0SPARE PARTS51APPENDICESCOMMISSIONING KIT Appendix A SERVICE KIT Appendix B INSTALLATION AND WIRING DIAGRAMS Appendix CLIST OF ILLUSTRATIONSFigure Title Page1View of Mk 6 OMD Control Unit22Oil Mist Detection System33Display and Controls54Bezel 35100-K18775Junction Box External Connections Label86Control Unit External Connections Label10 7OMD Engineer Menu Schematic13 8Detector Head E3561-30120 9Interface PCB36 10Main Control Processor PCB37 118 Engine Status Display PCB38 12Status Display PCB39 13Junction Box PCB40 14Junction Box51 15Detector Head E3561-30152 16Mk 6 Oil Mist Detector Control Unit53Intentionally BlankCHAPTER 1DESCRIPTION AND OPERATION1.1INTRODUCTIONThis manual covers the Mk 6 Oil Mist Detector (OMD). High temperatures, in excess of 200 deg C that occur on bearing surfaces under initial failure conditions, can lead to a rapid generation of oil vapour.When the hot vapour contacts the relatively cooler atmosphere of the crankcase it condenses into a fine mist, with typical particle sizes of around 0.5 to 5 microns in diameter. When the density of these particles reaches between 30 to 50 mg/litre (depending upon the type of oil) an explosive condition exists. Using optical measuring techniques, oil mist density can be measured at levels as low as 0.05 mg/litre.Oil Mist Detection techniques have been used to monitor diesel engine crankcases for potential explosive conditions and early detection of bearing failures. The systems available rely mainly on analysing the optical density of oil mist samples drawn from the crankcase compartments, through pipes to the detector. While these systems proved successful in the past, engine design has improved significantly over the years and oil mist detection techniques have improved substantially to maintain adequate protection.The Mk 6 OMD provides the following design improvements:Elimination of sample pipesSignificant reduction in scanning timeRelocating system controls and display to the control roomMulti engine capability1.2PRINCIPLEThe Graviner Mk 6 OMD (Figure 1) retains the differential measuring system long established by Graviner and unique to Graviner, which enables high sensitivity to be used while maintaining the maximum false alarm rejection. It still uses optical sensing, but light scatter instead of obscuration.This enables very small detectors to be used. These are rugged and are designed to be engine mounted using standard oil mist detector ports. As they each have their own means of sample acquisition no sample pipes are required. Multiple internal light sources ensure that a single failure will not cause the loss of a detector. Modular construction means that a faulty detector can be replaced ina matter of minutes.1.3DESCRIPTION (Refer to Figure 2)The Graviner Mark 6 OMD system can comprise up to 64 detectors directly mounted on the crankcases of up to 8 engines. A full system has a scan time of 1.2 seconds but with alarm priorities that enable the system to respond to an alarm as it occurs.Each detector has a cable connecting it directly to an engine mounted junction box, which is in turn connected by two cables to the control/display unit in the control room or other appropriate location.The system uses digital data transmission technology which means all system displays and controls are located on the control unit which is designed to be mounted within the Engine Control Room. This eliminates the need to enter the machinery space in alarm conditions.The system comprises three main components:DetectorsEngine Junction BoxesControl UnitFigure 1: View of Mk6 OMD Control UnitDETECTORSJUNCTION BOXDETECTORSJUNCTION BOXDETECTORSJUNCTION BOXFigure 2: Oil Mist Detection System1.4OPERATIONEach detector continually monitors the oil mist density in the crankspace to which it is connected. In addition, it self checks for any internal faults. The control unit sequentially scans this information in digital form, including the address of the detector.The control unit separates the information according to engine group. For each engine it carries out the average mist density calculation and the deviation of each reading from the average it then compares the average and all deviations to the pre-set alarm levels for each engine.The control unit incorporates a Liquid Crystal Display (LCD) which constantly displays the average oil mist density reading for each engine. It also enables the individual readings of each detector on an engine and the average to be displayed on demand and automatically under alarm conditions.As an aid to system commissioning and routine operation, both average and deviation alarm levels are also displayed for each engine.The software can be simply configured on site for both 2 and 4 stroke engines or a combination of both. It can also be adjusted to accommodate varying mist levels within a single crankspace, e.g. the higher levels normally found in a 2 stroke gear case. The software is menu driven and provides a logical route to all functions. It has three operating levels:UserEngineerServiceThe user function is essentially for interrogation only and does not allow any adjustments to be made to alarm settings or system configuration.The Engineer menu is password protected and allows access to most functions and the full range of settings. The only function denied is resetting of the event and history logs.The Service menu is also password protected (different from the engineer menu) and allows access to all functions. This is only available to authorised Kidde Fire Protection Ltd personnel and authorised service agents.In the interest of safety, all system controls and alarm displays/outputs are located on the control unit.However to aid fault finding each detector is fitted with 3 indicator lights:Green power onRed alarmAmber faultEach detector also has an access to its address set switch.As all detectors operate independently, the loss of one by either failure or the need to clean does not affect the operation of the rest of the system. Individual detectors, or engine groups, can be isolated from the rest of the system for maintenance while the rest of the system remains in operation.1.5SYSTEM FUNCTION, CONTROLS AND DISPLAYSThe control unit interrogates each detector in turn, notes its address and the oil mist density signal value. It then sorts this data into engine groups.For each engine the average oil mist density is calculated and stored. Each detector signal is then compared in turn with the stored average. A positive difference (the deviation) is then compared witha pre-set, but adjustable reference (the deviation alarm level) for that engine (or detector). If it isgreater than the reference a deviation alarm is given.The stored average level is also compared with a preset reference (the average alarm level) and an average alarm is given if the reference is exceeded.1.5.1ControlsThe controls, situated below the display, enable the following:Alarm ACCEPT, selection of MAIN DISPLAY, selection of MAIN MENU, system RESET afteralarm, selection of ENGINE DISPLAY and HOLD (during alarm) and system TEST menu.Also located in the display area are the software navigation keys ie. (cursor up), (cursordown), (cursor right), (cursor left), (enter), (quit) and a set of numerical inputs, 0-9.Operation of the navigation keys is accompanied by an audio signal. The MAIN DISPLAY andMAIN MENU keys allow fast return to the normal display or the main menu from anywhere inthe software.The keypad keys are:indicating a downward actionindicating an upward actionindicating a leftward actionindicating a rightward actionindicating a cancelling actionanactioninitiatingACCEPT indicating an acceptance of an event0 - 9 indicating a number between 0 and 91.5.2Main LCD DisplayThis provides visual access to all the data required to operate the system and displays thesoftware pages for system configuration and fault analysis. On the main display and theengine display, the left hand vertical scale shows oil mist density in mg/l. In addition the maindisplay shows the average alarm setting for each engine.On the engine display, both the deviation alarm(s) and the average alarm settings aredisplayed. Under normal operating conditions, the main display page shows the average oilmist density for all engines and the relevant average alarm settings. It also shows the time,the date and NORMAL.The engine display control calls up the individual engine cylinder readings and the average. It also displays the deviation and average alarm settings. The / keys allow each engine in the system to be displayed in turn.The MAIN DISPLAY key always returns the display to this page from anywhere in the software.The MAIN MENU key allows access to all the user/engineer and service menus. At the bottom of each displayed page the active navigation keys for that page are shown.1.5.3Engine Alarm IndicatorsEach of the eight engine alarm indicator sets show the status of that engine ie. Alarm, Fault and Isolate.This display is designed to be a backup to the main LCD.1.5.4Main Alarm IndicatorsThis light display consists of alarm indicators for all the individual alarm, fault and isolate conditions. Its function is to provide back up indication in the unlikely event of the loss of the main LCD display.Figure 3: Display and ControlsCHAPTER 2 INSTALLATION AND COMMISSIONING2.1INSTALLATIONAll connections to the Control Unit and Junction Box must be carried out in accordance with Appendix C, Figure 1, Sheet 1 and 2. For cable specification refer to Appendix C, Figure 1, Sheet 3.2.1.1Control UnitThe control unit is designed for either bulkhead or panel mounting, and must be installed in acontrol room or similar environment.For bulkhead mounting fix to a rigid structure using the four M6 mounting flanges at the rear ofthe unit.For panel mounting a bezel, part number 35100-K187 can be supplied (refer to Figure 4).The position of the control unit must be sited for optimum visibility of the display. Sufficientspace must be left around the control unit to allow the fitting of glands and routing of thecables, and to facillitate easy access to all aspects of the control unit. A minimum of 750 mmmust be allowed at the front of the control unit to allow the door to be opened.2.1.2DetectorEach detector is mounted to an individual crankcase via a ¾ inch BSP threaded hole.The detector should be located at the upper part of the crankcase wall NOT in the direct line ofthe oil throw. On smaller engines it is permissible to mount the detector on the crankcase doorif desired or installation dictates. The detector must be fitted at a maximum of plus or minus10 degrees from the vertical. Horizontally the detector must be mounted level or with thedetector body inclined towards the engine to ensure oil drainage.Each detector is then connected via either a straight or 90º bend cable assembly to its relevantjunction box.2.1.3Junction BoxThe junction box is designed for on-engine mounting and it is recommended that the box isinstalled as near centre of the engine as possible to minimise detector cable lengths.Mounting is via the four M6 locating holes in the box. Sufficient space must be left around thejunction box to allow access to the cable glands and the routing of the cables and to facillitateeasy access to all aspects of the junction box. The wiring connections to the junction boxmust be made in accordance with the label on the inside of the box lid (refer to Figure 5).2.1.4CablesCables, part numbers 43682-K108-XX (5 to 25 m) and 43682-K109-XX (5 to 25 m) areavailable.XX = Length of the Cable00 = 5 m05 = 17.5 m01 = 7.5 m06 = 20 m02 = 10 m07 = 22.5 m03 = 12.5 m08 = 25 m04 = 15 mFigure 4: Bezel 35100-K187Figure 5: Junction Box External Connections Label2.2SYSTEM CHECKS PRIOR TO SWITCH ON2.2.1Ensure all detectors fitted to the engine are locked tightly in place by means of the lock nutsupplied.2.2.2Ensure that the detectors are correctly addressed and the switch window label has been fitted(refer to para 2.3.4. Set Detector Address).2.2.3Check that the detector cables are correctly terminated in the junction box and that thescreens are made off correctly in the glands, e.g. the detector that is addressed 01 isconnected to the detector 1 position in the junction box, and the detector addressed 02 isconnected to the detector 2 position in the junction box etc.2.2.4Ensure that the Communication and Junction Box power supply cables are connectedcorrectly in the junction box (refer to Figure 5).2.2.5Check the cable run of the Communication and Junction Box power supply cables back fromthe junction box to the Control Unit to ensure that they are not damaged.2.2.6Ensure that the Communication and Junction Box power supply cables are connectedcorrectly in the Control Unit (refer to Figure 6).2.2.7Ensure that the Engine Slowdown, Main Alarm and Fault Alarm relays are connected correctlyin the Control Unit (refer to Figure 6).2.2.8Ensure that the supply input cable is connected correctly to the Control Unit (refer to Figure 6).2.2.9Ensure that the input voltage is 24V D.C. +30%, - 25%2.2.10Check the location and function of the main controls on the front of the Control Unit (refer toFigure 3).2.2.11When all of the above have been checked and are satisfactory the system is ready to switchon.2.3SYSTEM CONFIGURATION AND COMMISSIONING2.3.1System Menus2.3.1.1Main Menu - UserWhen the Main Menu - User is selected, four sub-menus appear on the screen as follows:System Status, Test, Event log and History Log.System StatusWhen the System Status menu is selected, two sub-menus appear on the screen as follows:Engine Status and Detector Status.Engine StatusThis menu will show the average alarm level as set in the engineer configurationmenu, the maximum average level that has been reached, if the engine slow downrelay and engine are isolated, if the engine system has any general faults and finallythe number of detectors configured for this engine.If more than one engine is configured, press the key once then by using the andkeys highlight the next engine to be checked and press the key.Figure 6: Control Unit External Connections LabelDetector StatusWhen the detector sub-menu is selected four more menu options appear on the screen as follows:Detector LevelThis gives the actual oil mist density reading for each detector.Detector StatusThis gives the following information for each detector: maximum oil mist density,set deviation alarm level, whether the detector is isolated, if the detector has acomms fault and also the light average.Detector FaultsWill reveal with each detector selected if the detector has a fan, light, optic,watchdog or address fault.Detector OffsetsThis menu cannot be used at this level.TestWhen the Test menu is selected it provides access to the test sub-menus. Refer to para 2.5 for more information on how to test the system.Event LogWhen the Event Log sub-menu is selected three more menu options appear on the screen as follows:List all eventsThis will allow the last 256 events to be interrogatedList by eventThis allows events of a specific type to be interrogatedList by dateAllows events from a user specified time and date only to be interrogated.History LogWhen the History Log menu is selected, four more menu options appear on the screen as follows:List by EngineLists each engine's detector readings.List by LevelThis allows a mg/l reading to be entered and, when entered, shows all detectors that have had readings that are higher.List from DateAllows the end-user to interrogate from a specific time and date.History Sample LevelAllows a level between 0.00 to 1.99 mg/l, any detector level that varies by more thanthe set sample limit will be stored in the History Log .2.3.1.2Main Menu - Engineer (Refer to Figure 7)When selected a prompt for a password will appear. Enter 012345 then press the key,the main menu - engineer is displayed with 7 menu options as follows: Configure System,System Status, Isolate, Test, Event Log, History Log, Cancel Password.Configure SystemThis menu allows the system to be programmed via on screen prompts. Refer toFigure 7 for software flow charts.It allows the engineer to configure the system for the following:1.The number of engines and the number of detectors per engine.2.To name each engine individually.3.Set the average and deviation alarm levels.4.Time and date.5.Unique password. Password must be minimum 2 digits, maximum 6 digits.6.Allows individual detector offsets to be stored.When the programming in each section is complete, press the key once. Thewords Save Configuration Data will appear for a few seconds at the bottom of thedisplay. Allow these words to disappear before moving on to the next section to beprogrammed.System StatusThis is the same as the user menu, except that it has a third sub-menu which isSTATUS. This, when selected, allows the configuration to be erased.IsolateThis allows either all the detectors on one engine, a single detector or an engine shutdown relay to be isolated.TestAccesses the test menus. Refer to Para 2.5 for more information on how to test thesystem.Event LogAs user menu.History LogAs user menu.Cancel Password.When selected, returns to the normal display.Figure 7: OMD Engineer Menu SchematicSheet 1Figure 7: OMD Engineer Menu SchematicSheet 2Figure 7: OMD Engineer Menu SchematicSheet 32.3.1.3Main Menu - ServiceThis menu is password protected and access is for authorised service agents of Kidde FireProtection Ltd only.2.3.2Default SettingsAttribute Default CommentNumber of engines1User selectable - 1 to 8Number of detectors6User selectable - 1 to 64Detectors per engine6User selectable - 1 to 142.3.3Initial Actions and Settings1.After switch on, the control unit display shows the message SCANNING FORDETECTORS. Followed by a flashing COMMS FAULT message.2.Press ACCEPT to silence the audible alarm. The COMMS FAULT continues to flash.Select MAIN MENU use the cursor to highlight ENGINEER. Press .3.The display calls for password. Enter the default password 012345 press . Displayshows MAIN MENU ENGINEER. Use the cursor to highlight option 1 CONFIGURESYSTEM. Press .2.3.4Set Detector AddressCorrect operation of the system depends on all detector heads being correctly addressed.This is carried out after installation (refer to Figure 8).1.Remove the temporary adhesive label covering the access port to the addressswitches.e an instrument screwdriver to set the switches.3.The left hand switch sets the TENS, the right hand switch sets the UNITS.4.Detectors are supplied with the switches set to 00.5.The detector addresses must be sequential and should run in sequence from engineto engine, ie if the last detector head on the first engine is address 08, then the firstdetector head on the second engine must be 09.6.Clean the detector head in the area around the address switches and indicator lightswith wet and dry wipes to ensure any oil or grease is removed. Attach the switchwindow label so that both the switches and the indicator lights are visible.7.The address should be written on the invalidate guarantee label in the position shown.8.It is essential that if detector heads are removed for overhaul they are returned to theiroriginal position or they are re-addressed.Figure 8: Detector Head E3561-3012.3.5Setting Engine Details1.Select ENGINEER MAIN MENU, followed by CONFIGURATION SYSTEM andENGINE/DETECTOR.2.In ENGINE/DETECTOR CONFIGURATION enter number of engines. Press .3.Select each engine in turn using the and navigation keys.4.For each engine enter the number of detectors. Press after each entry.5.Press to return to configuration menu.6.Select engine name. Select engine 1 (2, 3, 4, etc) press .7.Enter engine description letter by letter using the / keys to sequence through thealphabet and the / keys to move to the next letter. Press to store the name.Press to return to engine description page and select NEXT ENGINE.8.Repeat this section to name all configured engines.2.3.6Setting Detector to ZeroOnce the system is configured to the engine installation, the detectors must be set to zero. As the detectors are electro-optical devices it is normal for each of them to exhibit a small zero shift when first switched on. This is referred to in the configuration menu as CLEAN AIR OFFSET.Note:The detectors must be set to zero prior to engine start.To zero the detectors proceed as follows:1.Select ENGINEER MAIN MENU and call up CONFIGURATION.2.Select DETECTOR OFFSETS. CLEAN AIR OFFSET-ZERO DETECTORS isdisplayed. Press .3.DETECTOR OFFSET MENU is displayed.4.Type in engine number and detector number, press .5.Repeat this for each detector on each engine.6.All detectors will now be set to zero.2.3.7Setting Alarm LevelsThe system is supplied with default alarm settings for both average and deviation. These are based on past experience and allow the system to operate initially and gather data from the engines being monitored. To enable the alarm settings to be matched to the individual engines, the actual oil mist density readings should be taken from each engine after it has been operating at full load for at least two hours.Average1.Enter MAIN MENU and select ENGINEER/SYSTEM STATUS. At SYSTEM STATUSselect ENGINE 1 (2, 3, 4,.etc). SYSTEM STATUS ENGINE 1 (2, 3, 4,.etc) shows.2.Read maximum actual average value (retain this value for deviation alarm setting).3.Reset average alarm level to a maximum of twice the max actual average, as follows:Return to CONFIGURATION MENU, select 3, ALARM LEVELS, Select SETAVERAGE ALARM, Select engine number, press . Enter new alarm level, ascalculated from above.4.Repeat steps (1) to (3) for all engines.DeviationHave the max actual average for each engine to hand as used in resetting the average alarm (from step (2) in 2.3.7 above).1.Enter MAIN MENU and select ENGINEER MAIN MENU. Enter password, Press .2.Select SYSTEM STATUS followed by DETECTOR, Select DETECTOR STATUS,Select engine 1 then select detector 1 (2, 3, 4, etc.) in turn and note the peak level oneach detector.3.Select the highest value, subtract the max actual average for engine 1. Log the result.4.Repeat for each engine by using key to return to DETECTOR STATUS menu.5.To set the deviation alarm level for engine 1 take the value obtained above forengine 1 and set the deviation alarm for each detector on this engine to twice thisvalue, or a minimum of 0.05mg/l, whichever is the larger; as follows:e key to return to CONFIGURATION MENU. Select ALARM LEVELS.7.Select DEVIATION ALARM. Select engine 1, enter set new deviation alarm level foreach detector for engine 1.8.Repeat steps (5) to (7) for each engine.2.3.8System Access PasswordAccess to the system is at three levels:UserEngineerServiceThe User access level allows for READ only. No adjustments are possible but all data andsettings can be read.The Engineer access level is password protected and allows the system to be configured andread. It also allows the alarm settings to be adjusted. The system is supplied with a defaultpassword, but it can be altered to suit individual operators. The default password will alwaysremain active for emergency.To change the password proceed as follows:1.Press MAIN MENU and then select ENGINEER. Enter default password, select 1,CONFIGURE SYSTEM.2.In configuration menu select 5, SET PASSWORD.3.In set PASSWORD MENU, select SET ENGINEER PASSWORD.4.Enter new password, (min 2 digits, max 6 digits) press , enter new password againto confirm and press .The new password is now active.The Service access level is also password protected and access is for authorised serviceagents of Kidde Fire Protection Ltd only.2.4SYSTEM OPERATIONWarning:In the event of an alarm, do not interrogate the detector while the alarm condition is still present.2.4.1Action on AlarmOn receipt of either a Deviation or Average alarm the engine should, unless connected to ashut-down relay, be stopped if safe to do so and allowed to cool down so that the backgroundoil mist levels reduce. Investigations can then be carried out to find the cause of the alarm andrectify. Once the fault in the engine has been rectified the OMD system can be re-set and thedisplay returns to the normal mode.When a system fault alarm is received, the information on the display should be noted andthen the appropriate fault finding procedure in Chapter 4 of the manual should be consulted toenable the fault to be rectified.Note:When the engine is started from cold in Arctic conditions, a water mist can be produced that could give a false alarm.2.4.1.1Alarm, Fault and Warning Messages LCDAlarm and fault messages have an associated priority. These are detailed below:Message PriorityAlarm HighestComms. fault2nd highestSensor fault3rd highestSystem fault4th highestAll events are stored in the alarm/fault queue in order of occurrence. The user can scrollthrough the queue by use of the arrow keys.Once an event is active the event is displayed on the LCD in the appropriate format. Toclear the display press the ACCEPT key. Once the ACCEPT key is pressed, the display shows the ENGINE AVERAGES display.When an alarm condition exists, the following warning message is displayed regardless ofother information on the display (ie alarm events have the highest priority): DEVIATIONALARM.2.4.2Status Data2.4.2.1EngineThis menu will show the average alarm level as set in the engineer configuration menu, themaximum average level that has been reached, if the engine slow down relays and engineare isolated, if the engine system has any general faults and finally the number of detectorsconfigured for this engine.2.4.2.2DetectorDetector Status - This gives the following information for each detector, maximum oil mistdensity, set deviation alarm level, whether the detector is isolated, if the detector has acomms. fault and also the light average.2.4.3Checking and Resetting Alarm levelsIt may become necessary over a period of time that due, to changes in the engine's characteristics, the alarm levels need to be adjusted. If this becomes apparent, refer to para2.3.7: Setting Alarm Levels, to enable adjustments to be made.2.4.4Detector OffsetBecause of the optical design of the detectors it may be required to remove detector readings whilst measuring no oil mist. To carry out this operation, refer to para 2.3.6: Setting Detector to Zero.2.4.5IsolationEngine IsolationTo isolate all of the detectors on one particular engine, access the MAIN MENU and select ENGINEER. Enter either the default password or own unique password if this option has been used.1.When in the engineer menu, press key number 3 to highlight ISOLATE and thenpress the key.。
主机曲轴箱油雾浓度Graviner-MK6型报警操作规程-
主机曲轴箱油雾浓度Graviner-MK6型报警操作规程-
xxx船舶管理集团GravinerMK6
内部的蜂鸣器响持续大约5秒,除绿色的POWERON灯外其余
灯均熄灭,显示器复回至测试菜单(TESTMENU)状态。
4)LED/LCD测试完成,按主显(MAINDISPLAY)键返回至正常显示状态,或选择至另一个测试项目。
B.探头烟雾浓度报警测试
利用船上备用探头测试包(DETECTORHEAD
COMMISSIONINGKIT)按以下步骤进行探头烟雾报警测试。
包(KIT)内含蜡烛(Wick)150mm、烟雾测试油(SmokeTest
Oil)30ml、烟雾测试器(SmokeT ester);
a)切割大约30mm长的蜡烛,将其插入烟雾测试器的蜡烛夹持器
(WickHolder)中,将测试器的尼龙管(NylonPipe)压入至探头本体联接器(Connector)中,另一端与管连接头(PipeConnector)
相接;
b)将蜡烛浸入至烟雾测试油瓶中并重新将测试油瓶密封(仍用少
量的测试油即可);
c)点燃蜡烛吹出火焰,挤压吸管球(PipetteBulb)确保蜡烛持续燃
烧;
d)当蜡烛仍在慢燃时,将其插入管连接头(PipeConnector),挤压吸
管球(PipetteBulb);
e)观察指示灯变化情况,红灯应亮起(绿灯仍亮)以示报警发生。
曲轴箱油雾浓度探测报警
电转换装置将油污浓度信号转变成电信号,由单
片机监测并将监测值与预设的参考值进行比较,
控制输出报警和显示。油雾浓度反映主机的工况,
当主机工况不正常时(例如不正常的轴承磨损以
及过热等等,导致主机曲轴箱内的温度升高),
曲轴箱内的润滑油挥发而造成的油雾浓度增加,
当浓度高于正常值时,发出警报、减速甚至停车
信号。
CRANKCASE OIL MIST DETECTORS 曲轴箱油雾探测器
公约要求
• SOLAS 74/CII-1/R47 2250KW及以上的内燃机或气缸内大于 300mm的内燃机,应设有曲轴箱油雾探测ቤተ መጻሕፍቲ ባይዱ器或机器轴承温度监测器或等效装置。
原理介绍
•
系统通过风机,将主机气缸曲轴箱内的润滑
油的油雾进行抽取采样,并送进检测室,通过光
15.4曲柄箱油雾浓度监视报警系统介绍
第四节曲柄箱油雾浓度监视报警系统程真启一、曲柄箱油雾浓度检测原理二、Mark 6曲轴箱油雾浓度监视报警系统典型实例内容在高温时滑油会产生油气,这些油气在曲柄箱中与70℃左右的较冷空气混合形成油雾,当油雾浓度超过正常标准时,可能会引起曲柄箱的爆炸事故。
柴油机装有曲柄箱油雾浓度监视报警器后,一旦油雾浓度超过正常标准时,能及时发出声光报警,同时使主机自动降速或停车。
Graviner Mark 4:其特点是以机械运动部件及分立元件为主,设备本身体积比较大,容易出现故障。
Graviner Mark 5:随后设计了以单片机为核心的Graviner Mark 5型油雾浓度探测器,该探测器体积减小,它取消了许多机械旋转部件,大大提高了监视报警器工作的可靠性,同时,它采样准确、执行速度快,并有较强的自检功能。
Graviner Mark 6型油雾浓度探测器是随着网络技术的发展及传感器技术的不断进步而发展起来的,它采用CAN总线把传感器及控制单元连接起来,从而可以使系统中的检测点数目增加,一台油雾浓度探测器可以监视多台柴油机。
一、曲柄箱油雾浓度检测原理分两类:检测透光率和散射光。
1、检测透光率的传统油雾浓度探测器特点:面对面设置光源和感光管;利用油雾对光线的阻光度和浓度成正比的关系监测。
缺点:①灵敏度低;②抗干扰能力差,误报率高;③机械切换,故障率高;④响应时间长;⑤管路长,需倾斜布置;⑥检测点数有限。
2、检测散射光的油雾浓度探测器特点:•光源和感光器侧向布置,(900)•误报率低;•灵敏度高;二、Mark 6曲轴箱油雾浓度监视报警系统典型实例●Mark 6型油雾浓度探测器最主要的改进设计是取消了采样管路、每个检测点用一个传感器进行检测,并通过通信总线连接起来,大大降低了扫描时间,提高了检测速度。
●Mark 6保留了Graviner建立的差动测量系统,使系统有高灵敏度,最大限度地降低了误报警的发生。
●该系统仍然使用光学传感测量方法,但用散射光测量取代了透明度的测量,从而实现传感器的小型化,通过标准的接口安装固定在机器上,●各个采样点独立且不用采样管路,●传感器内部多光源的设计使得当一个光源损坏时传感器仍能正常使用。
轮机自动化7
图11-6 感烟管式火灾探测器
图11-7 离子式火灾探测器
图11-8 感温式火灾探测器
手动报警按钮的外形及内部线路
定温式火灾探测器外观与双金属片结构图
机械式差定温火灾探测器的外观与结构示意图
电子式差定温火灾探测器的内部结构及工作电、 干货舱自探火及报警系统 (一)系统的基本组成 (二)KIDDE型干货舱自动探火及报警系统 1.启动前的准备 2.系统工作过程 3.自检功能
3)故障
图10-1 机舱 监视与报警系 统的组成
图10-2 监测 点与报警处理 流程图
1)长延时报警(2-30S) 2)短延时报警(0.5S) 5. 报警闭锁 6.延伸报警 1)无人机舱设置 2)按严重程度分组 (1)主机故障自动停车报警 (2)主机故障自动降速报警 (3)重要故障报警 (4)一般故障报警 7.失职报警(3min) 8.值班呼叫 9.测试功能
图中右侧上方小按钮为主按钮组,下方大按钮为二级按钮组。 在主按钮组中,点击“收藏夹(FAVORITES)”可进行值班轮机员 的个性显示及其管理,点击“列表查看(LIST VIEWS)”可以列 表的形式查看监视参数,点击“显示配置(CONFIG DISPLAYS)” 可对各种显示进行自定义配置,进入“服务(SERVICE)”菜单可 显示系统信息、说明书查阅、背景亮度调节和报警测试等,进 入“值班(WCALL ENGINE)”菜单可操作对值班呼叫系统,进入 “系统总览(SYS.OVERVIEW)”可查看整个系统的网络布局及网 络工作状态(若采用了AC-C20主机遥控系统,则在这里还将显示 AC C20的网络结构,并可对主机遥控系统的参数进行设置)。 “主机总览(MEOVER VIEW)”、“火警系统(FIRE SYSTEM)”、 “发电机总览(A/E OVERVIEW)”、“燃滑油系统(FO&LO SYSTEM)”、“海淡水系统(SW/FW SYSTEM)”和“泵与风机总览 (PUMP&FAN OVERV)”等则以mimic图的形式显示相应系统的工作 状态。
曲轴箱油雾浓度监视报警器
曲柄箱油雾浓度监视报警器
新一代实时多任务操作系统——
主要内容
• 检测曲柄箱油雾浓度的方法
• 曲柄箱油雾浓度监视报警器的重要性
• 曲柄箱油雾浓度监视报警器的原理 • 曲柄箱油雾浓度监视报警器的功能
新一代实时多任务操作系统——
一、检测曲柄箱油雾浓度的方法
•传感过热零件的温度
新一代实时多任务操作系统——
新一代实时多任务操作系统——
系统测试电路:系统测试的目的是检查该 监视报警器的各种功能,如报警指示灯、 声光报警及抽风机等工作是否正常。 系统测试电路如图所示。
新一代实时多任务操作系统——
新一代实时多任务操作系统——
后期的故障分析及检测:抽风机、采样电 磁阀切换故障、光路故气源故障。
新一代实时多任务操作系统——
1. 整个电路工作原理框图
如图所示:11.jpg
2. 气路工作原理框图
新一代实时多任务操作系统——
新一代实时多任务操作系统——
空气源是由减压过滤器给出的,它被引到左边第一个电 磁阀,从主机曲轴箱引来的10只采样管也被接到电磁阀 的输入端。 被采样的油雾经由电磁阀切换后,进入测量室,从而为 光电检测提供被测对象,其余未被检测的油雾经旁通管 由抽风机排出。
新一代实时多任务操作系统——
谢谢听讲!
O(∩_∩)O~
以单片机作为监视报警器的核心部件, 对曲柄箱油雾浓度进行检测、监视、显 示、报警及对主机进行安全保护。
新一代实时多任务操作系统——
优点:取消了许多机械旋转部件。 提高了监视报警器工作的可靠性。 采用准确,执行速度快,并有较 强的自检功能。
新一代实时多任务操作系统——
MARK 5型油雾浓度检测装置由三部分组 成: • 电路 • 气路 • 光路
轮机自动化简答题资料
第四章自动控制系统1。
1执行机构在反馈控制系统中的作用执行机构的输入量是调节机构的输出控制信号,执行机构的输出量是阀的开度。
调节机构的控制信号经执行机构直接改变调节阀的开度,从而可以改变流入被控对象的物质或能量流量,使之符合控制对象的负荷要求,被控量会逐渐回到给定值或给定值附近,系统将达到一个新的平衡.2。
简述气缸冷却水温度控制系统的类型、功能以及特点?(1)直接作用式是指冷却水温度控制系统不用外加能源,而是将装在冷却水管路中的温包或感温盒内充足低沸点液体,利用其压力随温度成比例变化的特性直接推动三通调节阀来改变经冷却器水的流量和旁通水流量,以控制冷却水温度在给定值附近.直接作用式调节器结构简单,但是只能实现比例控制,存在静差,所以其精度低,误差大,主要用于小型主机和副机。
在对冷却水温度精度要求较高的情况下,如对于中大型主机,使用直接作用式调节器是不适宜的,一般采用间接作用式(如电动和气动)控制系统。
(2)间接作用式是指冷却水温度控制系统需要在外加能源的作用下进行调节,目前常用的气动和电动控制系统属于间接作用式。
该作用方式根据需要可实现比例微分、比例积分等作用规律,调节精度高,误差小.目前主要有MR—Ⅱ型电动冷却水温度控制系统和单片机式的中央冷却水控制系统。
(3)微机控制的柴油机冷却水温度控制系统也已经广泛应用于主机上,可以实现强大的智能化控制功能,并在此基础上逐步引入变频调速、模糊控制等先进技术。
3.简述气缸冷却的方法?答:柴油机冷却水温度控制的方法是把气缸冷却水分成两部分:一部分通过淡水冷却,经海水冷却使温度降低;另一部分不通过淡水冷却器,即通过旁通的方法直接与通过冷却的淡水混合,然后进入柴油机气缸的冷却空间。
若冷却水温度偏高,通过三通阀减少旁通的淡水量,增多通过冷却器的淡水量。
4.在MR—Ⅱ型电动冷却水温度控制系统中,都采取了哪些保护措施,各起什么作用?答:P92(1)在电机M通电回路中加装一个限位开关,当电机带动平板阀转到接近极限位置时,限位开关断开,切断电机电源,防止平板阀卡在极限位置,以免电机反向起动电流太大,且起动动作迟缓;(2)装有电机热保护继电器,防止电机因短路、过载使电流过大而被烧坏;(3)在“减少输出继电器"和“增加输出继电器”的通电回路中各串联一个对方的常闭触头,互相连锁,防止两个继电器同时通电。
VISATRON215型油雾浓度探测器原理分析
VISATRON215型油雾浓度探测器原理分析油雾浓度探测器作为主机上的一个辅助装置,有着举足轻重的作用。
它能帮我们及早发现来自曲轴箱内部的致命故障,避免船舶机械设备遭受进一步的重大损失。
VISATRON215是一种较为先进的油雾浓度探测器,我司4条大“乐”字号安装的油雾浓度探测器均为此型,与另外一种新船上使用较多的MARK5型油雾浓度探测器在原理上存在一些差异。
由于相关教材和书籍对其鲜有介绍,船上说明书的介绍也非常之一般化,因此大部分轮机管理人员对VISATRON215型油雾浓度探测器原理的认识都模糊不清,平时对于简单故障只能进行一些教条式的处理,至于为何要这样处理则思路并不清晰,而大部分故障在很大程度上都还是要依赖岸上的专业维修人员来处理。
通过这些年来在大“乐”上工作对其的了解,加上数次详细地查阅说明书和对实体的内部结构进行研究,我对VISATRON215型油雾浓度探测器的原理有了一些较为清晰的认识,在此与各位同行分享和探讨。
一、VISATRON215型油雾浓度探测器的主要特点VISATRON215型油雾浓度探测器灵敏度较高,反应时间短,简单实用,当探测到某缸油雾浓度高时,能在几秒钟之内使柴油机实现自动减速或保护性停机。
该装置内外部均采取了多种减震措施,以保证装置的可靠性。
最重要的一点是:该装置能连续监测各缸油雾浓度(这一点有别于其它油雾浓度探测器),在监测到油雾浓度超过自检线时(自检线通常为报警线的10%),其自检程序将启动,最终找到并显示是哪一个缸油雾浓度高。
二、VISATRON215型油雾浓度探测器的主要原理介绍如图所示,各点采样气流经管接头块进入阀箱。
平时在正常工作期间,我们可以看到,阀箱可视面板上的示位标应全部处于红色位,它表示所有电磁阀全部处于开启位(电磁阀实际使用的是左右各3个,其余4个是闲置的)。
这一点与MARK5型油雾浓度探测器有很大区别:MARK5型油雾浓度探测器阀箱上的电磁阀是轮流开启的,一次只能检测一个缸的油雾浓度,而VISATRON215型油雾浓度探测器一次能对所有缸的油雾浓度进行监测。
MARK5和MARK6曲轴箱油雾浓监视报警系统精讲
Graviner Mark5 型油雾浓度探测器:体积小;可 靠性高;以单片机为核心,采样准确、执行速度 快、有较强的自检功能。 检测方法——通过检测透光度反映油雾浓度的大 小
Graviner Mark5 型油雾浓度探测器:采用CAN总 线把传感器和控制单元连接起来,从而使系统中 的检测点数目增加,一台探测器可以监视多台柴 油机。
15
• Mark 6曲轴箱油雾浓度监视报警系统的组成
• Graviner Mark 6 OMD系统可以安装多达64个分 布于八台柴油机上的探头。在没有报警的正常情 况下全系统扫描时间为1.2s。
• 传感器电缆直接连接安装于柴油机上的接线盒, 然后通过两根电缆(通讯电缆和电源线)分别连 接到位于集控室的控制单元及显示单元或其它合 适的地方。该系统采用数字传输技术,这意味着 显示及控制部分可以安装在位于集控室的控制单 元内,在有报警发生时没有必要到现场进行操作 。系统由三部分组成:传感器(探头)、接线箱 及控制单元。
检测方法——检测散射光的强度
2
一、Mark5型油雾浓度监视报警器面板图
二、气样的采集与测量
MARK-5型曲轴箱油雾浓度监视报警系统
• 该单元共有11个两位三通电磁阀,其中有10个电磁阀分别采集各曲柄箱 的气样,该系统最多可检测10个缸的气样,如果是6缸柴油机,只用其 中的6个电磁阀,空4个不用。另一个是清洗空气电磁阀,压缩空气通过 该电磁阀清洗测量装置。系统在正常运行期间,单片机轮流使各采样点 电磁阀通电,通电的电磁阀(如图所示采样点1的电磁)左位通,该缸 曲柄箱油雾气样在抽风机作用下流经测量室,其他点的采样电磁阀断电 右位通,曲柄箱气样在抽风机作用下经旁通管路直接排出而不经测量室。
(一)Mark 6曲轴箱油雾浓度监视与报警系统的 组成
【分析】船舶主机曲轴箱爆炸原因分析及防御措施论文
【关键字】分析大连海事大学毕业论文二○一三年八月船舶主机曲轴箱爆炸原因分析及防御措施专业班级:船舶与海洋工程姓名:霍成年指导教师:冯伟继续教育学院内容摘要近些年来,由船用主机曲轴箱爆炸造成的机损和人员伤亡事故已引起各家船公司的广泛重视。
本文首先分析了船用主机曲轴箱爆炸的基本原因,主要是因为曲轴箱内存在高温热源,从而导致油浓度达到爆炸极限.所以控制曲轴箱油雾浓度是预防曲轴箱爆炸的一个重要手段。
针对如何解决主机曲轴箱爆炸问题,本文总结了当前预防曲轴箱爆炸的几种方法及各自特点,指出了油气分离技术在船用主机曲轴箱爆炸预防中的应用:油气分离器的结构及其原理;油气分离器的功能及优点。
本文最后提出了预防曲轴箱爆炸事故发生的日常管理注意事项及应急措施,以期能供轮机管理人员参考。
关键词:船舶主机;曲轴箱;油雾浓度;油气分离;管理Centen AbstractIn recent years, As marine main engine crankcase explosion caused loss and personnel casualty accidents, Has aroused widespread attention of the various shipping companies.This article first analyzed the marine main engine crankcase explosion basic reason. Mainly because of the crankcase in the high-temperature heat source. Leading oil concentration reaches the explosion limit. so control of crankcase oil mist concentration is an important means of prevention. In order to solve the problem of main engine crankcase explosion, this article summarizes the current methods of prevention of a crankcase explosionAnd their characteristics. pointed out oil and gas separation technology in prevention of. The structure and principle of oil gas separator, Oil and gas separator features and advantages. The article concludes with a daily management and emergency measures, In order to prevent crankcase explosion accident, in order to provide the engineersKey words:marine main engine, crankcase set, oil mist density sender, ]oil gas separation,manage目录船舶主机曲轴箱爆炸原因分析及防御措施1 前言上世纪50年代,在内燃机船“瑞那•德尔•帕西菲哥”号上发生了曲轴箱爆炸的重大事故,造成28人死亡。
技能认证船舶电气知识考试(习题卷7)
技能认证船舶电气知识考试(习题卷7)第1部分:单项选择题,共100题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]关于电动锚机的下列说法,正确的是____A)锚机电动机堵转矩一定要小于其额定转矩,否则堵转时烧电动机B)锚机电动机能在最大负载力矩下起动C)锚机电动机最多能在堵转下工作30s答案:B解析:2.[单选题]逆功率继电器是保护___设备的装置。
A)电动机B)负载C)发电机组答案:C解析:3.[单选题]国际电工委员会对电气设备的防护标准有具体的规定。
用"IPxx”表明防护等级。
IP后面的第一位数字表示_____,第二位数字表示_____A)防外部固体侵入等级/防水液侵人等级B)防水液侵入等级/防外部固体侵入等级C)防漏电等级/防水滴入侵等级答案:A解析:4.[单选题]船舶照明器一般由分配电板(箱)引出单相支路供电。
船舶航行灯及信号灯的供电应___A)与其他的照明灯使用同一个馈电支路B)可以与其他的照明灯使用同一个馈电支路;采取两路的方式并与应急电源相连C)使用两路独立的馈电支路,并与应急电源相连答案:C解析:5.[单选题]按照我国《钢质海船人级与建造规范》规定,船舶电气设备应在船舶____条件下,能有效地工作。
A)横摇横倾22.5以内;纵摇纵倾10以内B)横摇横倾10°以内;纵摇纵倾15以内C)横摇横倾22.5以内;纵摇纵倾22.5以内答案:A解析:6.[单选题]将同步发电机投人并联运行时,最理想的合闸要求是当接通电网的瞬时,该发电机的___为零。
A)电压B)功率因数C)电流答案:C解析:7.[单选题]船舶信号桅上的失控灯采用____A)白色直射灯B)红色环照灯C)白色环照灯答案:B解析:8.[单选题]空压机自动控制系统中的双位控制是指____A)气压高限和低限控制B)冷却水和放残液的控制步关0r9C)手动和自动切换控制答案:A解析:9.[单选题]主机遥控系统的负荷限制功能包括________。
轮机自动化简答题资料
第四章自动控制系统1.1执行机构在反馈控制系统中的作用执行机构的输入量是调节机构的输出控制信号,执行机构的输出量是阀的开度。
调节机构的控制信号经执行机构直接改变调节阀的开度,从而可以改变流入被控对象的物质或能量流量,使之符合控制对象的负荷要求,被控量会逐渐回到给定值或给定值附近,系统将达到一个新的平衡。
2.简述气缸冷却水温度控制系统的类型、功能以及特点?(1)直接作用式是指冷却水温度控制系统不用外加能源,而是将装在冷却水管路中的温包或感温盒内充足低沸点液体,利用其压力随温度成比例变化的特性直接推动三通调节阀来改变经冷却器水的流量和旁通水流量,以控制冷却水温度在给定值附近。
直接作用式调节器结构简单,但是只能实现比例控制,存在静差,所以其精度低,误差大,主要用于小型主机和副机。
在对冷却水温度精度要求较高的情况下,如对于中大型主机,使用直接作用式调节器是不适宜的,一般采用间接作用式(如电动和气动)控制系统。
(2)间接作用式是指冷却水温度控制系统需要在外加能源的作用下进行调节,目前常用的气动和电动控制系统属于间接作用式。
该作用方式根据需要可实现比例微分、比例积分等作用规律,调节精度高,误差小。
目前主要有MR-Ⅱ型电动冷却水温度控制系统和单片机式的中央冷却水控制系统。
(3)微机控制的柴油机冷却水温度控制系统也已经广泛应用于主机上,可以实现强大的智能化控制功能,并在此基础上逐步引入变频调速、模糊控制等先进技术。
3.简述气缸冷却的方法?答:柴油机冷却水温度控制的方法是把气缸冷却水分成两部分:一部分通过淡水冷却,经海水冷却使温度降低;另一部分不通过淡水冷却器,即通过旁通的方法直接与通过冷却的淡水混合,然后进入柴油机气缸的冷却空间。
若冷却水温度偏高,通过三通阀减少旁通的淡水量,增多通过冷却器的淡水量。
4.在MR-Ⅱ型电动冷却水温度控制系统中,都采取了哪些保护措施,各起什么作用?答:P92(1)在电机M通电回路中加装一个限位开关,当电机带动平板阀转到接近极限位置时,限位开关断开,切断电机电源,防止平板阀卡在极限位置,以免电机反向起动电流太大,且起动动作迟缓;(2)装有电机热保护继电器,防止电机因短路、过载使电流过大而被烧坏;(3)在“减少输出继电器”和“增加输出继电器”的通电回路中各串联一个对方的常闭触头,互相连锁,防止两个继电器同时通电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新一代实时多任务操作系统——
优点:取消了许多机械旋转部件。 提高了监视报警器工作的可靠性。 采用准确,执行速度快,并有较 强的自检功能。
新一代实时多任务操作系统——
MARK 5型油雾浓度检测装置由三部分组 成: • 电路 • 气路 • 光路
新一代实时多任务操作系统——
1. 整个电路工作原理框图
如图所示:11.jpg
2. 气路工作原理框图
新一代实时多任务操作系统——
新一代实时多任务操作系统——
空气源是由减压过滤器给出的,它被引到左边第一个电 磁阀,从主机曲轴箱引来的10只采样管也被接到电磁阀 的输入端。 被采样的油雾经由电磁阀切换后,进入测量室,从而为 光电检测提供被测对象,其余未被检测的油雾经旁通管 由抽风机排出。
新一代实时多任务操作系统——
曲柄箱油雾浓度监视报警器
新一代实时多任务操作系统——
主要内容
• 检测曲柄箱油雾浓度的方法
• 曲柄箱油雾浓度监视报警器的重要性
• 曲柄箱油雾浓度监视报警器的原理 • 曲柄箱油雾浓度监视报警器的功能
新一代实时多任务操作系统——
一、检测曲柄箱油雾浓度的方法
•传感过热零件的温度
新一代实时多任务操作系统——
谢谢听讲!
O(∩_∩)O~
新一代实时多任务操作系统——
新一代实时多任务操作系统——
系统测试电路:系统测试的目的是检查该 监视报警器的各种功能,如报警指示灯、 声光报警及抽风机等工作是否正常。 系统测试电路如图所示。
新一代实时多任务操作系统——
新一代实时多任务操作系统——
后期的故障分析及检测:抽风机、采样电 磁阀切换故障、光路故气源故障。
•检测润滑油温度 •监控回流的润滑油内金属粉末 •油雾探测法
新一代实时多任务操作系统——
二、曲柄箱油雾浓度监视报警器的 重要性 • • 经济方面 人身安全
新一代实时多任务操作系统——
三、曲柄箱油雾浓度监视报警器的原理 •光的透射 •光的散射
这次的设计是利用光的透射原理来测量 油雾的浓度。
四、MARK 5型油雾浓度监视报警器的功 能
新一代实时多任务操作系统——
新一代实时多任务操作系统——
选择输出器的作用: 确定偏差报警时是否要延时; 检查译码器的输出状态是否正确; 检查采样点数选择开关的设置是否正确; 油雾浓度过高需要主机降速运行时,检查 单片机是否已把这个降速信号准确地发出。
新一代实时多任务操作系统——
报警和显示电路:进行偏差浓度值、平均 浓度值报警、系统不能正常采样时亮、光 学系统有故障时亮等各种报警提示。液晶 显示器用来显示采样点和曲柄箱的油雾浓 度。
新一代实时多任务操作系统——
3. 光路系统框图
新一代实时多任务操作系统——
光路系统是一个不受外界影响的封闭系统, 由电源、测量管及光电池等组件组成。
新一代实时多任Biblioteka 操作系统——曲柄箱油雾浓度监视报警器的电路比较复 杂,分成四个部分进行叙述,测量电路、 输出电路、显示报警电路和系统测试电路 等。 测量电路的主要作用是,通过测量单元对 各缸曲柄箱气样的油雾浓度进行测量,并 转化成相应的数字量输入单片机。测量电 路如图所示。
新一代实时多任务操作系统——
新一代实时多任务操作系统——
采样电磁阀控制电路工作原理: 采样电磁阀控制电路的作用是,其输出使 10个采样电磁阀轮流通电动作,以使每个 缸曲柄箱气样流经测量室,并对其油雾浓 度进行测量,同时要定时使清洗空气电磁 阀通电,以便清洗测量单元。采样电磁阀 控制电路工作原理图如图所示。