高考数学高频考点归类分析不等式问题中“特殊值法”的应用(真题为例)
高考数学中的不等式问题解析
高考数学中的不等式问题解析不等式作为高中数学的一项重要内容,是高考数学中常常会涉及的题型。
解决不等式题目需要我们对不等式的基本性质加以理解,以及掌握一些基本的求解方法。
1. 不等式的基本性质在解决不等式问题时,我们需要掌握一些重要的基本性质。
首先,不等式的两边可以同时加上或减去一个相同的数,不等式的方向不会改变。
其次,不等式的两边都可以同乘或同除以一个正数,不等式的方向也不会改变。
但是,如果同乘或同除的数是一个负数,则不等式的方向会发生改变。
另外,多个不等式同时存在时,可以使用“与”、“或”关系进行连接。
例如,当我们需要求解同时满足两个不等式的解时,需使用“与”关系将它们连接。
若需要求解满足其中任意一个不等式的解,则使用“或”关系将它们连接。
2. 常见的不等式类型不等式有很多种类型,这里将介绍一些常见的不等式类型及其解法。
2.1 一次不等式一次不等式即形如ax+b>0(或<0)的不等式。
将变量x解出来后,判断所得出的解关于不等式的符号即可。
例如,问题:求解x+3>7的解。
解答中,将3从左边移到右边得到x>4,因此x的取值范围为x>4。
2.2 二次不等式二次不等式即形如ax²+bx+c>0(或<0)的不等式。
解决二次不等式需要使用一些特殊方法。
2.2.1 中间项系数为正数的二次不等式当二次不等式的中间项系数为正数时,可以将不等式转化为完全平方的形式进行求解。
例如,问题:求解x²+6x+8>0的解。
解答中,将x²+6x+8看作(x+3)²-1的形式,得到(x+3)²-1>0。
由于(x+3)²大于等于0,因此当(x+3)²>1时,不等式成立。
即x<-4或x>-2,x的取值范围为x<-4或x>-2。
2.2.2 中间项系数为负数的二次不等式当二次不等式的中间项系数为负数时,可以将不等式转化为中间项系数为正数的形式进行求解。
高考数学不等式考点,高考数学不等式题及解析
考点03不等关系【命题解读】不等式是每年高考都要考察的内容,数学就是研究各种变量间的关系的,因此可以说就是研究相等与不等的,不等式的考察主要有不等式的性质、解法和证明应用等,常常与函数、数列、导数等相结合。
在解答题中是必考的,在集合和函数的定义域、单调性、极值、最值等方面都有,因此应用比较广泛。
【命题预测】预计2021年的高考不等式的考察还是必须的,对于题目的难易度来说,易、中、难都有,主要是以数学运算和逻辑推理为主。
【复习建议】 集合复习策略:1.理解不等关系以及不等式的性质,高考对不等式的考察还是比较稳定的;2.掌握不等式的应用,高考主要是考察不等式的各种应用;3.掌握与不等式考察有关的知识点。
考向一 比较大小1.两个实数比较大小的方法 (1)作差法{a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(2)作商法{ab >1(a ∈R ,b >0)⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ,b ≠0),a b<1(a ∈R ,b >0)⇔a <b (a ∈R ,b >0).1. 已知2t a b =+,21s a b =++,则t 和s 的大小关系为A .t s >B .t s ≥C .t s <D .t s ≤【答案】D【解析】s ﹣t =a +b 2+1﹣a ﹣2b =b 2﹣2b +1=(b ﹣1)2≥0,故有 s ≥t , 故选D .2. 【2020陕西省期末】若P =Q =()0a ≥,则,P Q 的大小关系是( ) A .P Q < B .P Q =C .P Q >D .,P Q 的大小由a 的取值确定 【答案】A【解析】因为220P Q -==<,,P Q >0,所以P Q <,故选A.考向二 不等式性质1.对称性:a>b ⇔b<a (双向性)2.传递性:a>b ,b>c ⇒a>c (单向性)3.可加性:a>b ⇔a+c>b+c (双向性); a>b ,c>d ⇒a+c>b+d (单向性)4.可乘性:a>b ,c>0⇒ac >bc ; a>b ,c<0⇒ac <bc ;a>b>0,c>d>0⇒ac >bd (单向性)5.乘方法则:a>b>0⇒a n >b n (n ∈N ,n ≥1)(单向性)6.开方法则:a>b>0⇒√a n>√b n(n ∈N ,n ≥2)(单向性)1. 如果实数,a b 满足:0a b <<,则下列不等式中不成立的是( ) A .0a b +>B .11a b> C .330a b -<D .11a b a>-【答案】D【解析】由0a b <<,得0a b a b b b >⇒->-=,A 正确; 由0a b <<,得11a b>,B 正确; 由()()()2332221324a b a b a ab b a b a b b ⎡⎤⎛⎫-=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又0a b <<, 则0a b -<, 所以330a b -<,C 正确.由0a b <<, 得0b ->, 所以0a b a >->, 则11a b a<-,D 错误. 故选D.2. 【2020江苏省期末】若实数m ,n 满足m n >,则下列选项正确的是( ) A .()lg 0m n -> B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .330m n ->D .m n >【答案】C【解析】根据实数m ,n 满足m n >,取0m =,1n =-,则可排除ABD . 因为函数3y x =在定义域上单调递增,因为m n >,所以33m n >,即330m n ->故选C .3. 【2020浙江省杭州第二中学高三其他】若0a b +>,则( ) A .ln ln 0a b +> B .330a b +>C . tan tan 0a b +>D .a b >【答案】B【解析】由a b >-得()333a b b >-=-,所以330a b +>.对于A ,取1a b ==,不成立;对于C 取a b π==,不成立;对于D 取1a b ==,不成立. 故选B.题组一(真题在线)1. 【2020年新高考全国Ⅰ】已知a >0,b >0,且a +b =1,则A .2212a b +≥B .122a b->C .22log log 2a b +≥-D2. 【2019年高考全国Ⅰ】已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a << 3. 【2019全国 III 卷】若a b >,则( )A.ln()0a b ->B.33ab <C.330ab -> D.||||a b >4. 【2019天津高考理科】已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( )A. a c b <<B. a b c <<C. b c a <<D. c a b <<5.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件题组二1. 【2020浙江省课时练习】已知a ,b ,c 满足c b a <<,且0ac <,那么下列选项中不一定成立的是( ) A .ab ac >B .()0c b a -<C .22cb ab <D .()0ac a c -<2. 【2020浙江省高一课时练习】已知,a b ∈R ,“a b >”是“||||a a b b >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.【2020浙江省高一单元测试】若12a <<,13b -<<,则a b -的值可能是( ). A .4-B .2-C .2D .44.【2020安徽省六安中学期末(理)】函数()2f x x =,则对任意实数12x x 、,下列不等式总成立的是( )A .()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭B .()()121222f x f x x x f ++⎛⎫ ⎪⎝⎭<C .()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭ D .()()121222f x f x x x f ++⎛⎫⎪⎝⎭>5. 【2020黑龙江省哈尔滨三中期末(理)】若,,,a b c d R ∈,则下列说法正确的是( ) A .若a b >,c d >,则ac bd > B .若a b >,则22ac bc >C .若0a b <<,则11a b< D .若a b >,则33a b >6. 【2020浙江省高一期末】已知数列{}n a 满足12a >,21n n n a a a +=-,*n N ∈,则下列结论中不一定正确的是( ) A .134n n a a +>-,*n N ∈B .()()321211a a a >--C .1234311111314a a a a a +++<+- D .()()()222234551114a a a a -+-+-<+7. 【2020福建省高一期末】下列命题为真命题的是() A .若0a b >>,则22ac bc >B .若0a b <<,则22a ab b >>C .若00a b c >><且,则22c c a b > D .若a b >且11a b>,则0ab <题组一1.ABD 【解析】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确; 对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D ,因为2112a b =+++=,≤12a b ==时,等号成立,故D 正确; 故选ABD.2. B 【解析】由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.3.C 【解析】由函数3y x =在R 上是增函数,且a b >,可得33a b >,即330a b ->.4.A 【解析】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5<<,故112c <<, 所以a c b <<.故选A5.A 【解析】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .题组二1.C 【解析】因为a ,b ,c 满足c b a <<,且0ac <,则0a >,0c <,所以ab ac >一定成立;又因为0b a -<,所以()0c b a ->,即()0c b a -<一定不成立; 因为2b 是否为0不确定,因此22cb ab <也不一定成立;因为0a c ->,所以()0ac a c -<一定成立. 故选C2.A 【解析】由题意,若||a b >,则||0a b >,则a b >,所以2a a a =,则||||a a b b >成立.当1,2a b ==-时,满足a a b b >,但||a b >不一定成立,所以||a b >是a a b >的充分不必要条件. 故选A. 3.C 【解析】13b -<<,31b ∴-<-<,23a b ∴-<-<.故选C.4.A 【解析】依题意()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭222121222x x x x ++⎛⎫=- ⎪⎝⎭()21204x x -=≥,故()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,所以A 选项正确.故选A.5.D 【解析】A :根据不等式的性质可知当0a b >>,0c d >>时,能得到ac bd >.例如当0,1a b ==-,0,1c d ==-,显然a b >,c d >成立,但是ac bd >不成立,故本选项说法不正确; B :当0c 时,显然22ac bc >不成立,故本选项说法不正确;C :111111,0,0,00b a b a a b ab b a a b ab a b ab a b---=<<∴>->∴-=>⇒>,故本选项说法不正确;D :33222213()()()[()],24a b a b a ab b a b a b b -=-++=-++223333130,()0024a b a b a b b a b a b >∴->++>⇒->⇒>,故本选项说法是正确的.故选D6.C 【解析】因为()212=2n n n n n n a a a a a a +-=--,12a >,所以有112n n a a a +>>>.又因为()21=1n nn n n a a a a a +=--,所以()2111111==11n n n n n n na a a a a a a +=---- 对于A 选项,()2221343444020n n n n n n n n a a a a a a a a +>-⇔->-⇔-+>⇔->,故成立; 对于B 选项,()()32321311321211222a aa a a a a a a a a >--⇔>⋅=⇔>,故成立; 对于C 选项,123433111111111111a a a a a a a +++=+<+---,故不成立; 对于D 选项,()()()()22222223423423411123a a a a a a a a a =++-+-+-++-+()()()()334453224=23a a a a a a a a a +++++++-+52554153a a a a +=<<+-+,故成立.故选C.7. BCD 【解析】 选项A :当0c时,不等式不成立,故本命题是假命题;选项B: 2222,00a b a b a ab ab b a ab b a b <<⎧⎧⇒>⇒>∴>>⎨⎨<<⎩⎩,所以本命题是真命题; 选项C: 22222211000,0c c a b a b c a b a b>>⇒>>⇒<<<∴>,所以本命题是真命题; 选项D:2111100,00b aa b b a ab a b a b ab->⇒->⇒>>∴-<∴<,所以本命题是真命题,所以本题选BCD.考点04 基本不等式【命题解读】基本不等式是高考的一个重点,根据近几年的高考分析,基本不等式的考察主要是利用基本不等式求最值,求未知参数的范围等等,题目难度主要集中在中难度上,基本不等式牵扯到的知识点比较多,主要集中在导数、数列、三角函数、解析几何等等。
高考不等式经典例题
高考不等式经典例题高考数学中的不等式经典例题通常包括比较两个数(式)的大小、不等式的性质、一元二次不等式恒成立问题、特值法判断不等式等。
以下是一些高考数学中不等式的经典例题:例1:比较两个数的大小题目:若a = 1/2, b = 3, c = 2, 请比较a, b, c的大小。
解答:因为a = 1/2 < 1 < 2 < 3 = b < c,所以a < b < c。
例2:不等式的性质题目:若x > 0, y > 0, 且x + y > 2, 请证明:xy < 1。
解答:根据不等式的性质,可以得到以下推导:x > 0, y > 0, 则x + y > 2 > 0, 所以xy < (x + y) / 2 < 1。
例3:一元二次不等式恒成立问题题目:若a, b, c均为实数,且a > 0, b > 0, c > 0。
求解不等式:ax2 + bx + c > 0。
解答:首先考虑判别式,由一元二次方程的判别式可知,当判别式小于0时,不等式恒成立。
因此,我们需要求解判别式:Δ= b2 - 4ac < 0,所以不等式ax2 + bx + c > 0恒成立。
例4:特值法判断不等式题目:若a, b为实数,且a > 0, b > 0。
求解不等式:a2 + b2 > ab。
解答:我们可以使用特值法来求解这个不等式。
取a = 2, b = 1,则a2 = 4, b2 = 1, ab = 2。
因为4 > 2 > 1,所以a2 + b2 > ab。
希望以上例题能够帮助你复习不等式部分的知识,祝你高考取得好成绩!。
高考不等式题型及解题方法
高考不等式题型及解题方法高考不等式题型及解题方法不等式作为数学中的一种重要的数学概念,它在高考数学中也占有重要的地位。
在高考中,关于不等式的考点主要有以下几个方面:1. 不等式的基本性质:包括不等式的传递性、反对称性、加减乘除不等式两端的数等等。
2. 不等式的解法:包括一元一次不等式的解法、一元二次不等式的解法、绝对值不等式的解法等等。
3. 不等式的应用:包括利用不等式求最值、证明不等式等等。
在高考中,关于不等式的考点是非常多的,而其中涉及到的不等式类型也是非常多的,下面我们就来了解一下高考中常见的不等式类型及其解法。
一、一元一次不等式一元一次不等式是指一个未知数的一次不等式,它的一般形式为ax+b>0或ax+b<0。
解一元一次不等式时,首先需要将未知数的系数和常数项分别移项,然后根据不等式符号判断解的范围。
例如:解不等式2x-3>1。
解:将不等式中的常数项移项得:2x>4,再将未知数的系数2移项得:x>2。
所以,不等式2x-3>1的解集为{x|x>2}。
二、一元二次不等式一元二次不等式是指一个未知数的二次不等式,它的一般形式为ax+bx+c>0或ax+bx+c<0。
解一元二次不等式时,可以利用函数图像、配方法、求根公式等方法进行求解。
例如:解不等式x+2x-3>0。
解:首先求出x+2x-3=0的两个根:x1=-3,x2=1。
然后将不等式方程对应的二次函数的图像画出来,根据函数图像的上下关系,可以判断出不等式的解集为(-∞,-3)U(1,+∞)。
三、绝对值不等式绝对值不等式是指一个未知数与定值或其他未知数之间的关系,它的一般形式为|ax+b|<c或|ax+b|>c。
解绝对值不等式时,一般需要进行分情况讨论,然后利用不等式的基本性质进行求解。
例如:解不等式|2x-1|<3。
解:首先将不等式中的绝对值拆开,得到两个一元一次不等式:2x-1<3和2x-1>-3。
不等式易考点考向知识点总结分析,不等式高考真题及答案解析
考点24 不等关系与一元二次不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.一、不等关系 1.不等式的概念(1)现实世界与日常生活中,与等量关系一样,不等量关系也是自然界中存在着的基本数量关系.(2)用数学符号“>”“<”“≥”“≤”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.两个实数大小的比较(1)作差法:设a ,b ∈R ,则0a b a b >⇔->,a <b ⇔a −b <0. (2)作商法:设a >0,b >0,则a >b ⇔1a b >,a <b ⇔1ab<. 3.不等式的性质(1)实数的大小顺序与运算性质的关系 ①a >b ⇔0a b ->; ②0a b a b =⇔-=; ③a <b ⇔0a b -<. (2)不等式的性质①对称性:a b b a >⇔<;(双向性) ②传递性:a >b ,b >c ⇒a c >;(单向性)③可加性:a >b ⇔a +c >b +c ;(双向性) ④a >b ,c >d ⇒a c b d +>+;(单向性)⑤可乘性:,0a b c ac bc >>⇒>;(单向性) a >b ,c <0⇒ac <bc ;(单向性) ⑥a >b >0,c >d >0⇒ac bd >;(单向性)⑦乘方法则:()0,1n n a b a b n n >>⇒>∈≥N ;(单向性)⑧开方法则:a >b >0>n ∈N ,n ≥2).(单向性)注意:(1)应用传递性时,若两个不等式中有一个带等号而另一个不带等号,则等号无法传递.(2)可乘性中,要特别注意“乘数c ”的符号. 4.必记结论 (1)a >b ,ab >0⇒11a b<. (2)a <0<b ⇒11a b<. (3)a >b >0,0<c <d ⇒a b c d>. (4)0<a <x <b 或a <x <b <0⇒111b x a<<. (5)若a >b >0,m >0,则b b m a a m +<+;b b m a a m->-(b −m >0); a a m b b m +>+;a a m b b m-<-(b −m >0). 二、一元二次不等式及其解法 1.一元二次不等式的概念我们把只含有一个未知数,并且未知数的最高次数是2的不等式称为一元二次不等式,有下列三种形式:(1)一般式:2(0)y ax bx c a =++≠;(2)顶点式:224()(0)24b ac b y a x a a a-=++≠; (3)两根式:12()()(0)y a x x x x a =--≠.2.三个“二次”之间的关系2(,)x +∞12,)x3.一元二次不等式的解法由一元二次不等式与相应的方程、函数之间的关系可知,求一元二次不等式的解集的步骤如下:(1)变形:将不等式的右边化为零,左边化为二次项系数大于零的不等式,即20(0)ax bx c a ++>>或20(0)ax bx c a ++<>;(2)计算:求出相应的一元二次方程(20(0)ax bx c a ++=>)的根,有三种情况:0,0∆,∆∆=0<>;(3)画图:画出对应二次函数的图象的草图;(4)求解:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.可用程序框图表示一元二次不等式的求解过程,如图.4.一元二次不等式恒成立问题(1)20(0)ax bx c a ++>≠恒成立的充要条件是:0a >且240()b ac x -<∈R .(2)20(0)ax bx c a ++≥≠恒成立的充要条件是:0a >且240()b ac x -≤∈R .(3)20(0)ax bx c a ++<≠恒成立的充要条件是:0a <且240()b ac x -<∈R . (4)20(0)ax bx c a ++≤≠恒成立的充要条件是:0a <且240()b ac x -≤∈R .(5)20ax bx c ++>恒成立的充要条件是:0a b ==且0c >或0a >且240()b ac x -<∈R .(6)20ax bx c ++<恒成立的充要条件是:0a b ==且0c <或0a <且240()b ac x -<∈R .考向一 比较大小比较大小的常用方法:(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. (4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.典例1 若a =2x 2+1,b =x 2+2x ,c =−x −3,试比较a ,b ,c 的大小. 【解析】∵a =2x 2+1,b =x 2+2x ,c =−x −3,∴a −b =(2x 2+1)−(x 2+2x)=x 2−2x +1=(x −1)2≥0,即a ≥b , b −c =(x 2+2x)−(−x −3) =x 2+3x +3=(x +32)2+34>0,即b >c ,综上可得:a ≥b >c .典例2 已知0<a <b <1,则ba ,logb a ,1log ab 的大小关系是A .1log ab <b a <log b a B .1log ab <log b a <baC .log b a <1log ab <ba D .ba <1log ab <log b a【答案】A【解析】因为0<a <b <1,所以001b a a <<=,log log 1b b a b >=,又1a >1,所以1log ab <1log 1a=0. 综上,得1log ab <ba <logb a .故选A.【名师点睛】在用介值法比较时,中介值一般是通过放缩变形,得到一个中间的参照式(或数),其放缩的手段可能是基本不等式、三角函数的有界性等.1.已知,,a b c ∈R ,给出下列条件:①22a b >;②11a b<;③22ac bc >,则使得a b >成立的充分而不必要条件的是 A .① B .② C .③D .①②③考向二 求范围的问题求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n 次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误. 求范围的一般思路是:(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件; (3)结合不等式的传递性进行求解;(4)要注意不等式同向可乘性的适用条件及整体思想的运用.典例3 设实数x ,y 满足212xy ≤≤,223x y ≤≤,则47x y的取值范围是______.【答案】[]2,27【解析】因为()324272x y x y xy⎛⎫⎪⎝⎭=,()322282714x xy y ⎛⎫≤≤≤≤ ⎪⎝⎭,,所以47827[,][2,27]41x y ∈=.典例4 若二次函数y =f (x )的图象过原点,且)12(1f -≤≤,()314f ≤≤,求f (-2)的取值范围.【解析】方法一:∵二次函数y =f (x )的图象过原点,∴可设2(0())f x ax bx a =+≠.易知()()11f a b f a b =+⎧⎪⎨-=-⎪⎩,∴()()()()11121112a f f b f f ⎧=+-⎡⎤⎣⎦⎪⎪⎨⎪=--⎡⎤⎣⎦⎪⎩.则()2423)()11(f a b f f =---=+.∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤.方法二:由题意设2(0())f x ax bx a =+≠,则f (1)=a +b ,f (-1)=a -b . 令m (a +b )+n (a -b )=f (-2)=4a -2b , ∴42m n m n +=⎧⎨-=-⎩,∴13m n =⎧⎨=⎩.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤. 【名师点睛】同向不等式只能相加,不能相减.2.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦考向三 一元二次不等式的解法1.解不含参数的一元二次不等式的方法:(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法. 2.在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:若二次项系数为参数,则应先考虑二次项系数是否为零,以确定不等式是一次不等式还是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(2)关于不等式对应的方程的根的讨论:两根(∆>0),一根(∆=0),无根(∆<0); (3)关于不等式对应的方程根的大小的讨论:121212,,x x x x x x >=<.典例5 解下列不等式: (1)2230x x --+≥. (2)24410x x +≤+.【解析】(1)不等式两边同乘以-1,原不等式可化为2230x x -≤+,即(1)(3)0x x -+≤,则31x -≤≤.故不等式-x 2-2x +3≥0的解集是1{|}3x x ≤≤-.(2)24410x x +≤+,即2(21)0x +≤,则12x =-. 故不等式24410x x +≤+的解集为1{|}2x x =-.典例6 已知函数f(x)=ax 2−(2a +1)x +2. (1)当a =2时,解关于x 的不等式f(x)≤0; (2)若a >0,解关于x 的不等式f(x)≤0.【解析】(1)当a =2时,f (x )≤0⇒2x 2−5x +2≤0,可得(2x −1)(x −2)≤0, ∴12≤x ≤2,∴f (x )≤0的解集为[12,2].(2)不等式f (x )≤0可化为ax 2−(2a +1)x +2≤0,a >0, 即a (x −1a )(x −2)≤0,a >0, ①当0<a <12时,1a >2, 解得12x a≤≤, ②当a =12时,1a =2, 解得x =2.③当a >12时,1a<2,解得12x a≤≤. 综上,当0<a <12时,不等式的解集为1{|2}x x a≤≤; 当a =12时,不等式的解集为{x |x =2 };当a >12时,不等式的解集为1{|2}x x a≤≤.3.已知关于x 的不等式20x ax b -++>.(1)若该不等式的解集为(4,2)-,求a ,b 的值; (2)若1b a =+,求此不等式的解集.考向四 一元二次不等式与二次函数、一元二次方程之间关系的应用一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图象与x 轴的交点情况确定对应一元二次方程的判别式的符号,进而求出参数的取值范围.典例7 已知函数f (x )=−3x 2+a(6−a)x +c . (1)当c =19时,解关于a 的不等式f (1)>0;(2)若关于x 的不等式f (x )>0的解集是(−1,4),求实数a ,c 的值. 【解析】(1)当c =19时,f(x)=−3x 2+a(6−a)x +19, 所以f(1)=−3+a(6−a)+19=−a 2+6a +16, f(1)>0,即a 2−6a −16<0, 解得−2<a <8.(2)依题意:−1,4是方程−3x 2+a(6−a)x +c =0的解,由根与系数的关系可得()63343a a c -⎧=⎪⎪⎨⎪-=-⎪⎩,解得{a =3c =12. 典例8 已知关于x 的不等式2230kx x k -+<.(1)若不等式的解集为{x|x <−3或x >−1},求k 的值; (2)若不等式的解集为∅,求实数k 的取值范围.【解析】(1)由不等式2230kx x k -+<的解集为{x|x <−3或x >−1},可知k <0,−3和−1是一元二次方程2230kx x k -+=的两根,所以()()()()313231k⎧-⨯-=⎪⎨-+-=⎪⎩,解得12k =-. (2)由题意知不等式2230kx x k -+<的解集为∅,若k =0,则不等式为−2x <0,此时x >0,不合题意;若k ≠0,则04430k k k ∆>⎧⎨=-⨯≤⎩,解得3k ≥.综上,实数k 的取值范围为[)3+∞.4.已知二次函数()()21f x kx k x k =--+.(1)若关于x 的不等式()0f x <的解集为R ,求实数k 的取值范围; (2)若关于x 的方程()f x x =有两个不等正实根,求实数k 的取值范围.考向五 一元二次不等式的应用对于分式不等式和高次不等式,它们都可以转化为一元二次不等式或利用一元二次不等式的思想求解.1.分式不等式的解法若()f x 与()g x 是关于x 的多项式,则不等式()0()f xg x >(或<0,或≥0,或≤0)称为分式不等式.解分式不等式的原则是利用不等式的同解原理将其转化为有理整式不等式(组)求解.即()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧>⇒⇒⋅>⎨⎨><⎩⎩或;()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧<⇒⇒⋅<⎨⎨<>⎩⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≥⎧≥⇒⇒⋅>=⎨≠⎩或;()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≤⎧≤⇒⇒⋅<=⎨≠⎩或. 对于形如()()f xg x >a (或<a )的分式不等式,其中a ≠0,求解的方法是先把不等式的右边化为0,再通过商的符号法则,把它转化为整式不等式求解. 2.高次不等式的解法不等式的最高次项的次数高于2的不等式称为高次不等式.解高次不等式常用的方法有两种:(1)将高次不等式()0(0)f x ><中的多项式()f x 分解成若干个不可约因式的乘积,根据实数运算的符号法则,把它等价转化为两个或多个不等式(组).于是原不等式的解集就是各不等式(组)解集的并集. (2)穿针引线法:①将不等式化为标准形式,一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号写出解集.典例9 不等式()()23310x x x --+>的解集为_________. 【答案】()1,0,33⎛⎫-∞ ⎪⎝⎭【解析】不等式()()23310x x x --+>可转化为x (x −3)(3x +1)<0, 且方程()()3310x x x -+=的根为12310,3,3x x x ===-, 则由穿针引线法可得原不等式的解集为()1,0,33⎛⎫-∞ ⎪⎝⎭.典例10 解关于x 的不等式:2x ax a -- <0(a ∈R ). 【解析】原不等式等价于:(x -a )(x -a 2)<0,其对应方程的两根为x 1=a ,x 2=a 2.2211()x x a a a a -=-=-,分情况讨论如下:①若a <0或a >1,即a 2>a ,则所求不等式的解集为{}2|x a x a <<.②若a =0或a =1,原不等式可化为x 2<0或(x -1)2<0. 此时,所求不等式的解集为x ∈∅.③若0<a <1,即a 2<a ,则所求不等式的解集为{}2|x a x a <<. 综上所述:当a <0或a >1时,原不等式的解集为{}2|x a x a <<;当a =0或a =1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为{}2|x a x a <<.5.已知函数()()2,1ax bf x a b x -=∈-R . (1)若关于x 的不等式20ax b ->的解集为1,2⎛⎫+∞ ⎪⎝⎭,求()0f x <的解集; (2)若12a =,解不等式()0f x >的解集. 考向六 含参不等式恒成立问题的求解策略解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:(1)变换主元,转化为一次函数问题. 解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果. (2)联系不等式、函数、方程,转化为方程根的分布问题.(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a <(或()f x a ≤)恒成立⇔a m >(或a m ≥);②若()f x 在定义域内存在最小值m ,则()f x a >(或()f x a ≥)恒成立⇔a m <(或a m ≤);③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到.(4)转化为两个函数图象之间的关系,数形结合求参数. 在不等式恒成立问题的处理中,若能画出不等式两边相应的函数图象,恒成立的代数问题立即变得直观化,等价的数量关系式随之获得,数形结合可使求解过程简单、快捷.典例11 已知二次函数f(x)=ax 2+bx +c ,且不等式f(x)<2x 的解集为(1,3),对任意的x ∈R 都有f(x)≥2恒成立. (1)求f(x)的解析式;(2)若不等式k f (2x )−2x +1≤0在x ∈[1,2]上有解,求实数k 的取值范围. 【解析】(1)∵f(x)=ax 2+bx +c <2x 的解集为(1,3), ∴方程ax 2−(2−b)x +c =0的两个根是1和3.则243ba c a-==⎧⎪⎪⎨⎪⎪⎩,解得{b =2−4a c =3a.又∵f(x)≥2在x ∈R 上恒成立,∴ax 2+(2−4a)x +3a −2≥0在x ∈R 上恒成立, 则Δ=(2−4a)2−4a(3a −2)≤0,即(a −1)2≤0, 又∵(a −1)2≥0,∴(a −1)2=0, 得a =1,故f(x)=x 2−2x +3.(2)由题意知kf(2x )−2x +1≤0,即k(22x −2⋅2x +3)≤2x −1,∵22x−2⋅2x+3=(2x−1)2+2>0,∴2212223x x x k -≤-⋅+,设t =2x −1∈[1,3],则22tk t ≤+,又∵2122t t t t=≤++t =2t 即t =√2时取得最大值√24, ∴k ≤√24,即实数k的取值范围为⎛-∞ ⎝⎦. 典例12 已知函数()21f x mx mx =--.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5−m 恒成立,求实数m 的取值范围.【解析】(1)因为()210f x mx mx =--<对x ∈R 恒成立,则①m =0时,()10f x =-<恒成立;②240m m m <⎧⎨+<⎩,解得40m -<<. 故实数m 的取值范围为(]4,0-.(2)f (x )<5−m ,即()216m x x -+<.因为210x x -+>,所以m <261x x -+对于x ∈[1,3]恒成立.记g (x )=261x x -+=2613()24x -+,x ∈[1,3],易知()()min 637g x g ==,所以67m <.即实数m 的取值范围为(6,)7-∞.6.若函数2()6(8)f x kx kx k =-++的定义域为R ,求实数k 的取值范围.1.已知集合()(){|140}A x x x =--≤,5{|0}2x B x x -=≤-,则A B = A .{|12}x x ≤≤ B .{|12}x x ≤< C .{|24}x x ≤≤ D .{|24}x x <≤2.下列命题正确的是 A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd3.2x >是220x x ->的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设0.321log 0.6,log 0.62m n ==,则 A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+5.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是 A .[7,26]- B .[1,20]- C .[4,15]D .[1,15]6.三个正整数x ,y ,z 满足条件:x y >,y z >,3xz >,若5z =,则y 的最大值是 A .12 B .13 C .14D .157.若不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则不等式220cx x a ++≤的解集是 A .11,23⎡⎤-⎢⎥⎣⎦B .11,32⎡⎤-⎢⎥⎣⎦C .[−2,3]D .[−3,2]8.关于x 的不等式22(1)(1)10a x a x ----<的解集为R ,则a 的取值范围为 A .315a -<<B .315a -≤≤ C .315a -<≤或1a =- D .315a -<≤ 9.设,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根,则22(1)(1)a b -+-的最小值是 A .494- B .18 C .8D .−610.设正数a ,b 满足2b a -<,若关于x 的不等式()222440a x bx b -+-<的解集中的整数解恰有4个,则a 的取值范围是A .(2,3)B .(3,4)C .(2,4)D .(4,5)11.不等式2260x x --+≥的解集是_____.12.设P Q R ===,,P Q R 的大小顺序是______.13.不等式210x kx -+>对任意实数x 都成立,则实数k 的取值范围是__________. 14.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________. 15.已知函数21()1()f x x a x x a ⎛⎫=-++∈ ⎪⎝⎭R . (1)当12a =时,求不等式()0f x <的解集; (2)若关于x 的不等式()0f x <有且仅有一个整数解,求正实数...a 的取值范围.16.已知函数21()(2)()2f x x m x m =+-∈R . (1)若关于x 的不等式()4f x <的解集为()2,4-,求m 的值; (2)若对任意[0,4],()20x f x ∈+恒成立,求m 的取值范围.1.(2019年高考全国Ⅲ卷文数)已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.(2019年高考全国Ⅰ卷文数)已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .3.(2019年高考天津卷文数)设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2019年高考浙江卷)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件5.(2018年高考天津卷文数)设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.(2017年高考天津卷文数)设x ∈R ,则“20x -≥”是“|1|1x -≤”的a b c <<a c b <<c a b <<b c a <<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.(2017年高考山东卷文数)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝8.(2017年高考上海卷)不等式11x x->的解集为________. 9.(2018年高考北京文数)能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.10.(2019年高考江苏)函数y =的定义域是 ▲ .1.【答案】C【解析】对于①,由22a b >,得||||a b >,不一定有a b >成立,不符合题意; 对于②,当1,1a b =-=时,有11a b<,但a b >不成立,所以不符合题意; 对于③,由22ac bc >,知c ≠0,所以有a b >成立,当a b >成立时,不一定有22ac bc >,因为c 可以为0,符合题意. 本题选择C 选项.【名师点睛】本题主要考查不等式的性质及其应用,充分条件和必要条件的判定等知识,意在考查学生的转化能力和计算求解能力. 2.【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-,则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩, ∵13x y ≤-≤,∴()226x y ≤-≤,①又11x y -≤+≤,② ∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .【名师点睛】本题主要考查不等式的性质以及指数函数的性质,意在考查综合运用所学知识解答问题的能力,属于中档题.求解时,利用待定系数法求得()()32x y x y x y -=++-,由11x y -≤+≤,13x y ≤-≤,结合38212yx yx -⎛⎫⋅ ⎪⎝⎭=,从而可得结果.3.【解析】(1)根据题意得()2424ab-=⎧⎨⨯-=-⎩,解得2a =-,8b =.(2)当1b a =+时,()22010x ax b x ax a -++>⇔--+<,即()()110x a x ⎡⎤-++<⎣⎦.当11a +=-,即2a =-时,原不等式的解集为∅; 当11a +<-,即2a <-时,原不等式的解集为()1,1a +-; 当11a +>-,即2a >-时,原不等式的解集为()1,1a -+.【名师点睛】本题考查一元二次不等式解集与对应一元二次方程根的关系以及解一元二次不等式,考查基本应用求解能力.属基本题.(1)根据不等式解集与对应一元二次方程根的关系列方程,解得a ,b 的值; (2)先代入化简不等式,再根据对应一元二次方程根的大小分类讨论不等式解集. 4.【解析】(1)()0f x <,即()210kx k x k --+<,由二次函数知识得00k <⎧⎨∆<⎩,即220(1)40k k k <⎧⎨--<⎩, 解得1k <-.(2)()f x x =,即()21kx k x k x --+=,即()220kx k x k --+=,由二次方程有两个不等正实根知,112212000000x x x x x x ∆>∆>⎧⎧⎪⎪>⇔+>⎨⎨⎪⎪>>⎩⎩,由根与系数间关系得,22(2)402010k k k k⎧-->⎪-⎪<⎨⎪>⎪⎩,解得203k <<.5.【解析】(1)∵不等式20ax b ->的解集为1,2⎛⎫+∞ ⎪⎝⎭, ∴0a >,0a b =>, ∴()()()()210021101a x f x a x x x -<⇔<⇔--<-,∴()0f x <的解集为1,12⎛⎫⎪⎝⎭. (2)12a =时,不等式()()()()00101x bf x f x x b x x ->⇔=>⇔-->-, 1当1b >时,不等式的解集为()(),1,b -∞+∞;2当1b =时,不等式的解集为{}1x x ≠; 3当1b <时,不等式的解集为()(),1,b -∞+∞.【名师点睛】本题考查不等式的求解应用,属于基础题. (1)()()()()210021101a x f x a x x x -<⇔<⇔--<-,然后求解即可.(2)12a =时,不等式()()()()00101x bf x f x x b x x ->⇔=>⇔-->-,然后分类讨论即可.6.【解析】∵f (x )的定义域为R , ∴不等式kx 2﹣6kx +k +8≥0的解集为R. ①k =0时,8>0恒成立,满足题意;②k ≠0时,则()236480>k k k k ⎧⎨∆=-+≤⎩,解得0<k ≤1. 综上得,实数k 的取值范围为[0,1].1.【答案】D【解析】依题意[](]1,4,2,5A B ==,故(]2,4A B =.故选D.2.【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==-不成立; B.若>a b ,则22a b >,取0,1a b ==-不成立; C.若>a b ,c d <,则>a c b d --,正确;D.若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==-不成立. 故选C.【名师点睛】本题考查了不等式的性质,找出反例是解题的关键. 3.【答案】A【解析】由220x x ->解得:0x <或2x >,{}2x x ⊂>≠{}02或x x x <>,因此,2x >是220x x ->的充分不必要条件,故选A.【名师点睛】本题考查充分必要条件的判断,先解不等式220x x ->得出解集,根据集合之间的包含关系得出两条件的充分必要性.一般利用集合的包含关系来判断两条件的充分必要性:(1)A ⊂≠B ,则“x A ∈”是“x B ∈”的充分不必要条件; (2)AB ,则“x A ∈”是“x B ∈”的必要不充分条件;(3)A B =,则“x A ∈”是“x B ∈”的充要条件. 4.【答案】A【解析】0.30.3log 0.6log 10,m =>=2211log 0.6log 10,22n =<=0mn <, 0.60.611log 0.3log 4m n +=+0.60.6log 1.2log 0.61=<=,即1m n mn+<,故m n m n +>. 又()()20m n m n n --+=->,所以m n m n ->+. 故m n m n mn ->+>,所以选A.【名师点睛】本题考查利用作差法、作商法比较大小,考查对数的化简与计算,考查分析计算,化简求值的能力,属中档题.求解时,先判断m ,n 的正负,即可得0mn <;计算11m n+0.6log 1.21=<,化简可得m n m n +>,再通过作差法比较m n -,m n +的大小,即可得结果. 5.【答案】B【解析】令m x y =-,4n x y =-,343n m x n my -⎧=⎪⎪⇒⎨-⎪=⎪⎩,则859,33z x y n m =-=- 552041,,333m m -≤≤-∴≤-≤又884015,333n n -≤≤∴-≤≤,因此80315923z x y n m -=-=-≤≤,故本题选B.【名师点睛】本题考查了利用不等式的性质,求不等式的取值范围问题,利用不等式同向可加性是解题的关键.令m x y =-,4n x y =-,得到关于,x y 的二元一次方程组,解这个方程组,求出9x y -关于,m n 的式子,利用不等式的性质,结合,m n 的取值范围,最后求出9x y -的取值范围. 6.【答案】B【解析】由不等式的性质结合题意有:,5,53xx y y >>>,即,5,15.15x y y x y x >><∴<<,由于,,x y z 都是正整数,故y 的最大值是13. 故选B.【名师点睛】本题主要考查不等式的性质及其应用,不等式的传递性等知识,意在考查学生的转化能力和计算求解能力.由题意结合不等式的性质和不等式的传递性即可确定y 的最大值. 7.【答案】D【解析】因为不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭,所以0211321132a ac a⎧⎪<⎪⎪-=-+⎨⎪⎪=-⨯⎪⎩,解得122a c =-⎧⎨=⎩,所以不等式220cx x a ++≤可化为222120x x +-≤,即260x x +-≤,解得32x -≤≤. 故选D.【名师点睛】本题主要考查一元二次不等式的解法,熟记三个二次之间的关系即可,属于基础题型.先由题意求出,a c ,再代入不等式220cx x a ++≤求解,即可得出结果. 8.【答案】D【解析】当210a -=时,1a =±,若1a =,则原不等式可化为10-<,显然恒成立;若1a =-,则原不等式可化为210x -<不恒成立,所以1a =-舍去;当210a -≠时,因为()()221110a x a x ----<的解集为R ,所以只需()()222101410a a a ⎧-<⎪⎨∆=-+-<⎪⎩,解得315a -<<; 综上,a 的取值范围为:315a -<≤.故选D.【名师点睛】本题主要考查一元二次不等式恒成立的问题,需要用分类讨论的思想来处理,属于常考题型.分情况讨论,当210a -=时,求出满足条件的a 的值;当210a -≠时,求出满足条件的a 的取值范围,即可得出结果. 9.【答案】C【解析】因为,a b 是关于x 的一元二次方程2260x mx m -++=的两个实根, 所以由根与系数的关系得26a b m ab m +=⎧⎨=+⎩ ,且()2460m m ∆=--≥,所以()()22222224(1)(1)610a b ab b y m a b a m =+-=-+--++=--2349444m ⎛⎫=-- ⎪⎝⎭,且3m ≥或2m ≤-,由二次函数的性质知,当3m =时,函数2349444y m ⎛⎫=-- ⎪⎝⎭取得最小值8, 即22(1)(1)a b -+-的最小值为8. 故选C.【名师点睛】本题考查二次函数的最小值问题,属于一般题.求解时,由根与系数的关系得26a b m ab m +=⎧⎨=+⎩ ,且()2460m m ∆=--≥,则22(1)(1)y a b =-+-可变成2349444y m ⎛⎫=-- ⎪⎝⎭,再求最小值. 10.【答案】C【解析】()222440a x bx b -+-<,即()2222440a x x bx b --+<, ∴()22220a x x b --<,即()()220ax x b ax x b +--+<,∴()()220a x b a x b ⎡⎤⎡⎤+--+<⎣⎦⎣⎦, 由于解集中整数解恰有4个,则a >2,∴122b bx a a -<<<-+,则四个整数解分别为−3,﹣2,﹣1,0. ∴432b a -≤-<--,即342ba <≤-,即3648ab a -<≤-, 又2b a <+,∴362a a -<+,∴4a <, 又a >2,∴a 的取值范围是()2,4. 故选C.【名师点睛】本题考查一元二次不等式的解法,考查不等式的整数解的求法,考查不等式的性质的运用,考查运算能力,属于易错题.求解时,将不等式因式分解可得()()220a x b a x b ⎡⎤⎡⎤+--+<⎣⎦⎣⎦,由于解集中整数解恰有4个,则a >2,则有122b b x a a -<<<-+,且四个整数解分别为−3,﹣2,﹣1,0,则有432b a -≤-<--,结合条件2b a <+,可得a <4,进而得到a 的范围. 11.【答案】32,2⎡-⎤⎢⎥⎣⎦【解析】不等式2260x x --+≥可化为2260x x +-≤,解得322x -≤≤; ∴该不等式的解集是32,2⎡-⎤⎢⎥⎣⎦.故答案为32,2⎡-⎤⎢⎥⎣⎦.【名师点睛】本题主要考查了一元二次不等式的解法,解题时先把不等式化简,再求解集,是基础题.直接利用一元二次不等式的解法求解. 12.【答案】P R Q >>【解析】∵0P R -==>,∴P R >,R Q -=-,而29=+29=+>R Q >,∴P R Q >>,故答案为:P R Q >>.【名师点睛】本小题主要考查作差比较法比较数的大小,属于基础题.求解时,利用作差比较法先比较,P R 的大小,然后比较,R Q 的大小,由此判断出三者的大小关系. 13.【答案】()2,2-【解析】∵不等式210x kx -+>对任意实数x 都成立, ∴240<k ∆=-,∴2-<k <2, 故答案为:()2,2-.【名师点睛】(1)二次函数图象与x 轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式.(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法. 14.【答案】12(,]23【解析】x 2﹣(a +2)x +2﹣a <0,即x 2﹣2x +1<a (x +1)﹣1,分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知y =a (x +1)﹣1的图象过定点(﹣1,﹣1), 分别画出两函数的图象,如图所示:∵集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得10120311<a a a -≤⎧⎪-⎨⎪-≤⎩,解得12<a 23≤. 故答案为:(12,23].【名师点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题.求解时,由x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图象的上方的点只有一个整数1,结合图象即可求出. 15.【答案】(1)1,22⎛⎫⎪⎝⎭;(2)12a <≤或112a ≤<.【解析】(1)当12a =时,不等式为25102x x -+<,即22520x x -+<,即(2)(21)0x x --<,所以122x <<, 所以不等式()0f x <的解集为1,22⎛⎫ ⎪⎝⎭.(2)原不等式可化为1()0x a x a ⎛⎫--< ⎪⎝⎭, ①当1a a=,即1a =时,原不等式的解集为∅,不满足题意; ②当1a a >,即1a >时,1,x a a ⎛⎫∈ ⎪⎝⎭,此时101a <<,所以12a <≤; ③当1a a <,即01<a <时,1,x a a ⎛⎫∈ ⎪⎝⎭,所以只需112a <≤,解得112a ≤<;综上所述,12a <≤,或112a ≤<. 【名师点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.求解时,(1)直接解不等式25102x x -+<得解集;(2)对a 分类讨论解不等式分析找到a 满足的不等式,解不等式即得解. 16.【答案】(1)1m =;(2)[0,)+∞.【解析】(1)法一:不等式()4f x <可化为2(42)80x m x ---<,其解集为()2,4-, 由根与系数的关系可知2442m -+=-,解得1m =, 经检验1m =时满足题意.法二:由题意知,原不等式所对应的方程()4f x =的两个实数根为2-和4, 将2-(或4)代入方程计算可得1m =, 经检验1m =时满足题意.(2)法一:由题意可知21(2)22m x x -≤+恒成立, ①若0x =,则02≤恒成立,符合题意. ②若(0,4]x ∈,则12(2)2m x x-≤+恒成立,而1222x x +≥=,当且仅当2x =时取等号, 所以min 12222m x x ⎛⎫-≤+=⎪⎝⎭,即0m ≥.故实数m 的取值范围为[0,)+∞.法二:二次函数21()(2)2f x x m x =+-的对称轴为2x m =-. ①若20m -≤,即2m ≥,函数()f x 在[]0,4上单调递增,()2(0)220f x f +≥+=≥恒成立,故2m ≥;②若024m <-<,即22m -<<,此时()f x 在[]0,2m -上单调递减,在[]2,4m -上单调递增,由22(2)()2(2)2(2)202m f x f m m -+≥-+=--+≥,得04m ≤≤.故02m ≤<;③若24m -≥,即2m ≤-,此时函数()f x 在[]0,4上单调递减, 由1()2(4)216(2)424202f x f m m +≥+=⨯+-⨯+=+≥,得12m ≥-,与2m ≤-矛盾,故m 不存在.综上所述,实数m 的取值范围为[0,)+∞.【名师点睛】本题主要考查一元二次不等式的性质,不等式恒成立中含参问题,意在考查学生的分析能力,计算能力及转化能力,难度较大.(1)不等式()4f x <可化为2(42)80x m x ---<,而解集为()2,4-,可利用根与系数的关系或直接代入即可得到答案;(2)法一:讨论0x =和(0,4]x ∈时,分离参数利用均值不等式即可得到取值范围; 法二:利用二次函数在[0,4]x ∈上大于等于0恒成立,即可得到取值范围.1.【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤, 又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.。
专题1-1 基本不等式归类(16题型+解题攻略)-2024年高考数学二轮热点题型归纳与变式演练含答案
A .x +1x(x >0)的最小值是2B .2254x x ++的最小值是2C .2222x x ++的最小值是2D .若x >0,则2-3x -4x的最大值是2-43【变式1-2】(2023·全国·高三专题练习)下列不等式证明过程正确的是( )A .若,R a b Î,则22b a b a a b a b+³×=B .若x >0,y >0,则lg lg 2lg lg x y x y +³×C .若x <0,则4x x+424x x³-×=-D .若x <0,则222222x x x x --+>×=【变式1-3】(2022秋·广东·高三深圳市宝安中学(集团)校考)在下列函数中,最小值是22的是( )A .()20y x x x =+¹B .()10y x x x=+>C .22233y x x =+++D .2xxy e e =+题型02 基础模型:倒数型【解题攻略】倒数型:1t t +,或者b at t+容易出问题的地方,在于能否“取等”,如2sin sin ,其中锐角q q q +,22155x x +++【典例1-1】(2022·浙江杭州·杭州高级中学校考模拟预测)已知,,a b c R Î且0,++=>>a b c a b c ,则22a c ac+的取值范围是( )A .[)2,+¥B .(],2-¥-C .5,22æù--çúèûD .52,2æùçúèû【典例1-2】(2020下·浙江衢州·高三统考)已知ABC V 的面积为23,3A p=,则4sin 2sin sin sin 2sin sin C B BC B C+++的最小值为( )A .162-B .162+C .61-D .61+【变式1-1】(2021上·全国·高三校联考阶段练习)已知1,,,12a b c éùÎêúëû,则2222a b c ab bc+++的取值范围是( ).A .[]2,3B .5,32éùêúëûC .52,2éùêúëûD .[]1,3【变式1-2】(2020上·河南·高三校联考阶段练习)函数22621x y x -=-的最小值为( )A .2B .4C .6D .8【变式1-3】(2022上·上海徐汇·高三上海市第二中学校考阶段练习)若()2sin 3sin f x x t x=+++(x,t R Î)最大值记为()g t ,则()g t 的最小值为A .0B .14C .23D .34题型03 常数代换型【解题攻略】利用常数11m m⨯=代换法,可以代通过“分子分母相约和相乘”,相约去或者构造出“倒数”关系。
高中数学——“不等式的解法”归类专题(参考)
“不等式的解法”专题一.整式不等式的解法步骤:正化,求根,标轴,穿线(奇过偶不过),定解1. 一元一次不等式ax >b 解的讨论: 当a>0时解集为⎪⎭⎫ ⎝⎛+∞,a b ,当a<0时解集为,b a ⎛⎫-∞ ⎪⎝⎭当a=0且b<0时解集为R ,当a=0且b ≥0时,解集为Φ;2. 一元二次不等式我们总可化为ax 2+bx+c>0和ax 2+bx+c+<0(a>0)两形式之一,记△=b 2-4ac 。
跟踪训练1.若01,a <<则不等式()10x a x a ⎛⎫--< ⎪⎝⎭的解是 2. x 的取值范围是3. 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.4.解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()二.分式不等式的解法先移项通分化为一边为()()f xg x ,一边为0的形式,再等价转化为整式不等式,即: ()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩跟踪训练 1.下列不等式与012≤+x x同解的是( ) (A)01≤+xx (B)0)1(≤+x x (C) 0)1lg(≤+x (D)21|1|≤+x x 2. 不等式x x<1的解集为 .3. 不等式1213≥--xx 的解集为( ) (A){x |43≤x ≤2} (B) {x |43≤x <2} (C) {x |x >2或x ≤43} (D){x |x <2} 4. 不等式21≥+x x的解集为 .5.解不等式237223x x x -≥+- 巩固训练不等式(x -2)2·(x -1)>0的解集为 . 不等式(x +1) ·(x -1)2≤0的解集为 .1. 不等式(x 2-2x -3)(x 2-4x +4)<0的解集为( ) A .{x | x <-1或x >3} B .{x | -1<x <3}C .{x | x <-3或x >1}D .{x | -1<x <2或2<x <3} 2.与不等式023≥--xx 同解的不等式是 ( ) A.(x -3)(2-x )≥0 B.lg(x -2)≤0 C.032≥--x xD.(x -3)(2-x )>0 3.不等式12x x-≥的解集为( ) A. [1,0)- B. [1,)-+∞C. (,1]-∞-D. (,1](0,)-∞-+∞U含绝对值的不等式1.应用分类讨论思想去绝对值;2.应用数形结合思想;3.应用平方法(要求不等式两端同号)基础训练1. 不等式|8-3x|>0的解集是( )A B RC {x|x }D {83}...≠.∅83 2.不等式1|1|3x <+<的解集为( ).C. (4,0)-D. (4,2)(0,2)--U3. 不等式4<|1-3x|≤7的解集为指数、对数不等式的解法解指数、对数不等式的一些常用方法:(1) 同底法:能化为同底数先化为同底,再根据指数、对数的单调性转化为代数不等式,底是参数时要注意分类讨论,并注意到对数真数大于零的限制条件 (2) 转化法:多用于指数不等式,通过两边取对数转化为对数不等式(3) 换元法:多用于不等式两边均有统一的组合形式,或取对数后再换元,注意所换“元”的范围 (4) 数形结合 基础训练 1. 不等式2261xx +-<的解集为2.不等式1(33>的解集为 3. 不等式2log (2)0x -≤的解集为 4.函数()f x =为5. 不等式20.20.2log (23)log (31)x x x +->+的解集为6. 不等式0.51log x x ->的解集为 巩固训练 1.已知当94x =时,不等式22log (2)log (23)a a x x x x -->-++成立,则不等式的解集为 2.设1232,(2)()log (1),(2)x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 3. 已知集合22{228,},{log 1,}x A x x Z B x x x R -=≤≤∈=>∈,则()R A C B ⋂的元素个数为_____个5 若关于x 的方程2222x xxxa ---=+有解,求实数a 的取值范围6 已知0,1a a >≠,若2log 2log a a <,求实数a 的取值范围不等式解法六种典型例题典型例题一(整式不等式) 例1. 解不等式:(1)015223>--x x x ; (2)0)2()5)(4(32<-++x x x说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”。
高中数学破题36大招(详例精编)
目录目录 (1)第1关:极值点偏移问题--对数不等式法 (2)第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (9)第4关:绝对值不等式解法问题—7大类型 (13)第5关:三角函数最值问题—解题9法 (19)第6关:求轨迹方程问题—6大常用方法 (24)第7关:参数方程与极坐标问题—“考点”面面看 (37)第8关:均值不等式问题—拼凑8法 (43)第9关:不等式恒成立问题—8种解法探析 (49)第10关:圆锥曲线最值问题—5大方面 (55)第11关:排列组合应用问题—解题21法 (59)第12关:几何概型问题—5类重要题型 (66)第13关:直线中的对称问题—4类对称题型 (69)第14关:利用导数证明不等式问题—4大解题技巧 (71)第15关:函数中易混问题—11对 (76)第16关:三项展开式问题—破解“四法” (82)第17关:由递推关系求数列通项问题—“不动点”法 (83)第18关:类比推理问题—高考命题新亮点 (87)第19关:函数定义域问题—知识大盘点 (93)第20关:求函数值域问题—7类题型16种方法 (100)第21关:求函数解析式问题—7种求法 (121)第22关:解答立体几何问题—5大数学思想方法 (124)第23关:数列通项公式—常见9种求法 (129)第24关:导数应用问题—9种错解剖析 (141)第25关:三角函数与平面向量综合问题—6种类型 (144)第26关:概率题错解分类剖析—7大类型 (150)第27关:抽象函数问题—分类解析 (153)第28关:三次函数专题—全解全析 (157)第29关:二次函数在闭区间上的最值问题—大盘点 (169)第30关:解析几何与向量综合问题—知识点大扫描 (178)第31关:平面向量与三角形四心知识的交汇 (179)第32关:数学解题的“灵魂变奏曲”—转化思想 (183)第33关:函数零点问题—求解策略 (194)第34关:求离心率取值范围—常见6法 (199)第35关:高考数学选择题—解题策略 (202)第36关:高考数学填空题—解题策略 (211)第1关:极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点. 求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
【备战】高考数学 高频考点归类分析 不等式问题中“最值法”和“单调性法”的应用(真题为例)
高频考点分析不等式问题中“最值法”和“单调性法”的应用典型例题:例1. (2012年福建省文4分)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是 ▲ .【答案】(0,8)。
【考点】一元二次不等式的解法。
【解析】关于x 的不等式x 2-ax +2a >0在R 上恒成立,则满足Δ=a 2-4×2a <0,解得0<a <8。
例2. (2012年福建省理5分)函数()f x 在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有1212+1[()+()]22x x f f x f x ⎛⎫≤ ⎪⎝⎭,则称()f x 在[a ,b ]上具有性质P .设()f x 在[1,3]上具有性质P ,现给出如下命题:①()f x 在[1,3]上的图象是连续不断的; ②()2f x 在[1,3]上具有性质P ;③若()f x 在x =2处取得最大值1,则()f x =1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有12341234+++1[()+()+()+()]44x x x xf f x f x f x f x ⎛⎫≤ ⎪⎝⎭. 其中真命题的序号是【 】 A .①② B.①③ C.②④ D.③④ 【答案】D 。
【考点】抽象函数及其应用,函数的连续性。
【解析】对于命题①,设()()()10,22,3=0=2x f x x ⎧∈⎪⎨⎪⎩,,,显然它在[1,3]上具有性质P ,但函数在=2x 处是不连续的,命题错误;对于命题②,设()=f x x -,显然它在[1,3]上具有性质P ,但()22=f x x -在[1,3]上不具有性质P ,命题错误;对于命题③,∵()f x 在x =2处取得最大值1, ∴在[1,3]上,()()()412422x x f f f x f x +-=≤⎡+-⎤⎣⎦()(),即()()()42=2f x f x f x+-≥。
特殊值法在高考试题中的应用
特殊值法在高考试题中的应用近几年来,高考物理试题中出现了一类新题型,命题者所给的问题我们按中学物理的常规方法很难解决,但要求学生对这些问题的解是否合理进行分析和判断。
若在处理这类问题时,采用”特殊值假设法”能对所给的问题较快地作出判断。
现举例说明此法在解这类高考试题中的作用。
例1 (2012安徽.20)如图1所示,半径为r 均匀带电圆形平板,单位面积带电量为,其轴线上任意一点(坐标为x )p的电场强度可以由库仑定律和电场强度的叠加原理求出: e=2πkα1- ,方向沿x 轴。
现考虑单位面积带电量为α0 的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。
则圆孔轴线上任意一点α(坐标为)的电场强度为()解析:我们可以这样考虑:x=0坐标和半径r不论取何值,结论式都适用。
不防我们先代以某些特殊值,看看结论如何?例如:(1)当x=0 时,即o点的电场强度由对称性和电场强度的叠加原理可求出,结果为0;将特殊值代入a、b、c、d四个式子中,a、c两个式子的值为0,b式不是0,d式为无穷大。
故ac可能是正确的;(2)当x取无穷大时,q点的电场强度为0;将特殊值无穷大代入ac两式中,c式的值不是0,a式 =0,故a 正确;例2 (2011福建.18)如图,一不可伸长的轻质细绳跨过定滑轮后,两端分别悬挂质量为m1 和m2 的物体a和b。
若滑轮有一定大小,质量m为且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦。
设细绳对a和b的拉力大小分别为t1 和t2 ,已知下列四个关于的表达式中有一个是正确的。
请你根据所学的物理知识,通过一定的分析,判断正确的表达式是a.t1=b.t1=c.t1=d. t1=解析:(1)当m1=m2=m 时,整个系统处于静止状态, t1=mg ;将特殊值m1=m2=m 代入a、b、c、d四个式子中,a式中t1=- m ,b式中t1=- ,d式中mg t1=- mg ,只有c式中t1=mg ,故c选项是正确的。
特殊值法在高考数学解题中的运用
C、sgn[g(x)] sgn[f(x)] D、sgn[g(x)] sgn[f(x)]
传统解法:
(1)当x > 0时, ax x, f (x) f (ax) 0 g(x) f (x) f (ax) 0
sgn(g(x)) 1 A
(2)当x 0时, ax x, f (x) f (ax) 0 g(x) f (x) f (ax) 0 sgn(g(x)) 1
例题1(选自2014湖南卷理第3题)
已知f(x),g(x)分别是定义在R上的偶函数和奇函数,并且
f(x)-g(x)=x^3+xA^2+1,则f(1)+gD、3
解(特殊取值法):因为f(x),g(x)分别是定义在R上的偶函数 和奇函数,不妨令f(x)=x^2+1,g(x)=-x^3,则f(1)=2,g(1)= 1,f(1)+g(1)=1,所以答案为C
1、 特殊值法的定义
解数学题时,如果直接解原题有时难以入手,不妨先 考察它的某些简单的特列,通过解答这些特列,最终 达到原题的目A的,这种解决数学问题的思想方法,通 常称为“特殊值法”
2、特殊值法的理论基础
对于一般性成立的结果,特殊值则一定成立,而当特殊 值成立时,一般性的结果不一定成立。这是很简单的一 个思维逻辑,我们可以通过显而易见的容易得出结果的 特殊值进行运算,得出结果再与答案相比较,选出答案 的方法
90o的两个不动点,则 1 1 等于
OP2 OQ2
A
A、34 B、8
C、8 D、34
15
225
变式训练2
在ABC中,角A、B、C所对的边分别为a,b,c.
a、b、c成等差数列,则 cos A cos C = 1 cos Acos C
浅谈“特殊值法”在不等式选择题中的应用
(作者单位:湖北省当阳市第一高级中学)
化,达到出奇 制 胜 的 效 果 .本 文 将 从 “特 殊 值 法”在 求
解不等式选择题中的适用题 型、“特 殊 值 法”在 求 解 不
欢迎的程度三个方面进行阐述 .
1 适用题型
高考试题中不等式问 题 的 考 查 方 式 是 千 变 万 化、
度 .所以,拿到 题 目 后,首 先 要 仔 细 审 题,看 能 否 从 题
进行比较,同 时 不 能 得 到 非 常 准 确 的 答 案,所 以 很 明
比如选择题 中 的 代 数 式 比 较 大 小、特 殊 函 数 求 值、绝
显不适合采用“特殊值法”.
例 2 已 知 a>b>0,那 么 下 列 不 等 式 中 成 立 的
用于解决一般化的函数问 题 .同 时,借 助 函 数 的 图 象,
直观想象函 数 的 极 值、零 点 等 特 征,从 而 获 得 解 决 问
题的方法和思想 .
通过长期教学实践的积 累,笔 者 总 结 出 培 养 学 生
数学抽象素养的一些有效方法 .
◇ 甘肃 王亚萍
不等式贯穿 于 整 个 高 中 数 学 教 材 .在 比 较 大 小、
灵活多样的,它 可 以 穿 插 在 很 多 知 识 点 的 考 查 中,同
时,在选择 题 中 所 占 比 例 较 大 .因 此,为 了 给 难 度 较
大、分值较高 的 解 答 题 留 下 足 够 的 思 考 时 间,在 保 证
能够准确地得到选择题答 案 的 同 时,应 使 每 道 选 择 题
争取在 1~2mi
2
技巧聚焦
能准确应用基本不 等 式,或 把 y 的 表 达 式 转 化 为y =
高考数学不等式知识点解析
高考数学不等式知识点解析不等式在高考数学中占据着重要的地位,它不仅是数学知识体系中的关键组成部分,也是解决各种数学问题和实际应用问题的有力工具。
掌握不等式的相关知识,对于提高数学解题能力和思维水平具有重要意义。
一、不等式的基本性质1、对称性:若 a>b,则 b<a;若 a<b,则 b>a。
比如,5>3,那么 3<5。
这一性质非常直观,也很好理解。
2、传递性:若 a>b 且 b>c,则 a>c。
例如,7>5,5>3,所以 7>3。
传递性在比较多个数的大小时经常用到。
3、加法性质:若 a>b,则 a + c > b + c。
比如,因为 8>5,那么 8 + 2 > 5 + 2,也就是 10 > 7。
4、乘法性质:若 a>b 且 c>0,则 ac>bc。
若 a>b 且 c<0,则 ac<bc。
例如,4>2,当 c = 3 时,4×3 > 2×3,即 12 > 6;当 c =-2 时,4×(-2) < 2×(-2),即-8 <-4。
这些基本性质是解决不等式问题的基础,必须牢记并能熟练运用。
二、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式称为一元一次不等式。
解一元一次不等式的一般步骤:1、去分母(如果有分母的话):在不等式两边同时乘以分母的最小公倍数,注意当乘以一个负数时,不等号方向要改变。
2、去括号:根据乘法分配律去掉括号。
3、移项:将含有未知数的项移到不等式的一边,常数项移到另一边,注意移项要变号。
4、合并同类项:将同类项合并。
5、系数化为 1:在不等式两边同时除以未知数的系数,如果系数是负数,不等号方向要改变。
例如,解不等式 3x 5 > 2x + 1。
首先,移项得到 3x 2x > 1 + 5,即 x > 6。
三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0(a ≠ 0)的不等式称为一元二次不等式。
高考数学高频考点揭秘与仿真测试专题53不等式不等式的应用文含解析
专题53 不等式 不等式的应用【考点讲解】一、具本目标:能够灵活运用不等式的性质求定义域、值域;能够应用基本不等式求最值;熟练掌握运用不等式解决应用题的方法.考点解读:不等式的性质与函数、导数、数列等内容相结合,解决与不等式有关的数学问题和实际问题是高考的热点. 二、知识概述:1.不等式的应用题分类:一类是建立不等式求参数范围或解决一些实际应用题;另一类是建立函数关系,利用基本不等式求最值问题.2.利用基本不等式求最值:要灵活运用两个公式,(1),当且仅当a b =时取等号;(2),a b R +∈ ,,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.注意三个问题:要求各数均为正数;要求和或积为定值;要注意是否具备等号成立的条件. 3. 解不等式的实际应用题的一般步骤:现实生活中不等关系→建立不等式模型→解不等式模型→【真题分析】1.【2015高考广东,文11】不等式的解集为 .(用区间表示)【答案】()4,1-2. 【2016高考上海文科】设x ∈R ,则不等式31x -<的解集为_______.【解析】本题考点是绝对值不等式的基本解法.要合理去掉绝对值符号及解集的表达. 法一:由题意得:,即42<<x ,故解集为()42,. 法二:因为原不等式的两边都为非负数,因此平方后不等号的方向不变,所以将原不等式两边平方可得,可得,即42<<x ,故解集为()42,.【答案】⎪⎪⎭⎫⎝⎛-2,2ππ ⎪⎪⎭⎫⎢⎣⎡-0,2π ,10<<a 解不等式:【解析】log 3a x ∴<11. ,0>>b a 0>c ,试比较bc a 2与c ab 2的大小 【解析】,0>>b a 0>c ,∴bc a 20>,c ab 20>∴bc a 2>c ab 2.12.已知函数且求)2(-f 的取值范围.13.已知b a ≥>0,求证:证明:∵= = =又∵b a ≥>0,∴b a +>0,0≥-b a ,20a b +≥, ∴≥0 ∴≥0∴14.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.。
【备战】高考数学 高频考点归类分析 基本不等式的应用(真题为例)
高频考点分析 基本不等式的应用典型例题:例 1. (2012年天津市理5分)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是【 】(A )[1 (B)(,1[1+3,+)-∞∞(C)[2- (D)(,2[2+22,+)-∞-∞ 【答案】D 。
【考点】直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法 【分析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,∴1mn m n =++。
又∵222mn m n ≤+,∴()2224+2=+mn m n mn m n ≤+,即()2+4m n mn ≤。
∴2()14m n m n +++≤。
设=t m n +,则21+14t t ≥,解得(,2[2+22,+)t ∈-∞-∞。
故选D 。
例2. (2012年浙江省文5分)若正数x ,y 满足x +3y =5xy ,则34x y +的最小值是【 】 A.245 B. 285C.5D.6 【答案】C 。
【考点】基本不等式或配方法的应用。
【解析】∵x +3y =5xy ,∴135y x +=,11315y x ⎛⎫+= ⎪⎝⎭。
∴21131********(34)()()555555x y x y y x y x +⋅+=++=≥。
(或由基本不等式得)∴34x y +≥5,即34x y +的最小值是5。
故选C 。
例3. (2012年湖北省理5分)设,,,,,a b c x y z 是正数,且222222++=10,++=40,++=20a b c x y z ax by cz ,则++=++a b cx y z【 】A.14 B. 13 C.12 D.34【答案】C 。
【考点】柯西不等式不等式的应用,待定系数法的应用。
【解析】由柯西不等式知()()()2222222++++++=400a b cx yz ax by cz ≥,而此时()()222222++++=400a b cx yz 恰好满足取等条件==a b cx y z。
【备战】高考数学 高频考点归类分析 不等式问题中“特殊值法”的应用(真题为例)
高频考点分析不等式问题中“特殊值法”的应用典型例题:例1. (2012年福建省理5分)下列命题中,真命题是【 】A .∃x 0∈R ,0x e ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件 【答案】D 。
【考点】必要条件、充分条件与充要条件的判断,全称命题,特称命题,命题的真假判断与应用。
【解析】对于A ,根据指数函数的性质不存在x 0,使得0x e ≤0,因此A 是假命题。
对于B ,当x =2时,2x=x 2,因此B 是假命题。
对于C ,当a +b =0时,a b不存在,因此C 是假命题。
对于D ,a >1,b >1时 ab >1,所以a >1,b >1是ab >1的充分条件,因此D 是真命题。
故选D 。
例2. (2012年四川省文4分)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若1=,则||1a b -<; ④若33||1a b -=,则||1a b -<。
其中的真命题有 ▲ 。
(写出所有真命题的编号) 【答案】①④。
【考点】真命题的判定,特殊值法的应用。
【解析】对于①,∵,a b 为正实数,∴222211+11+1a b a b >a >a b >-=⇒=⇒⇒。
又∵221a b -=,∴()()1+1=1+a b a b a b <a b-=⇒-。
故①正确。
对于②,可以采用特殊值列举法:取2=2,=3a b ,满足,a b 为正实数和111b a -=的条件,但4=13a b >-。
故②错误。
对于③,可以采用特殊值列举法:取=4,=1a b ,满足,a b为正实数和1=的条件,,但=31a b >-。
故③错误。
对于④,不妨设a >b ,由33||1a b -=得331a b -=,∴331+a b =。
特殊值法在高考数学解题中的应用
特殊值法在高考数学解题中的应用摘要:文章谈了特殊值法在高考数学解题中的应用。
在考试中有些数学题采用一般方法很难求解,在这时可以选择代入特殊值,以达到简化题目、减少思维量的效果。
主题词:数学高考特殊值法简化应用随着高考的日益临近,各位考生进入了紧张的备战阶段,如何在短时间内使数学成绩突飞猛进成为大家关心的问题。
身为一个过来人,我想把我的经验传授给大家,让大家能在高考的考场上得心应手,取得好成绩。
第一,在高考场上要放松心态,抱着一颗冲击别人的心态来考试,比如你平时刚上重本线,可以把自己的目标定为上一个很好的二本即可,既没有超出你能力范围,又没有给你自己太大的压力,有利于考出好成绩。
如果实在很紧张,还有一种很好的方法,就是在考试的前一天完全放弃看书,去亲近自然,接触自然,相信自己,给自己以良好的暗示,这样你就一定能在考场上发挥出平时的水平,甚至超常发挥。
第二,在最后一个月内要准确掌握书本上的知识点,掌握基本方法、基本技巧,这样即使你做不出最后一题,也能保证较高的分数。
第三,在掌握了基本的知识和技巧之后你就需要一定的应试技巧来取得成功,这些技巧很多,如直接法,数行结合法,大致求解法,特殊值法,等等。
这里着重介绍特殊值法在数学高考中的应用。
特殊值法的定义:解数学题时,如果直接解原题有时难以入手,不妨先它的某些简单的特例,通过解答这些特例,最终达到原题的目的。
这种解决数学问题的思想方法,通常称为“特殊值法”。
[1]特殊值法的理论基础:对于一般性成立的结果,特殊值则一定成立,而当特殊值成立时一般性的结果不一定成立。
这是很简单的一个思维逻辑,我们可以通过显而易见的容易得出结果的特殊值进行运算,得出结果再与答案相比较,选出正确答案的方法。
如:要证明(教材基础):一个排列中的任意两个元素对换,排列改变奇偶性。
证:先证相邻对换的情形。
设排列为a…aabb…b,对换a和b,变为a…abab…b.显然,a,…,a;b,…,b这些元素的逆序数经过对换并不改变,而a,b两元素的逆序数改变为:当a<b时,经对换后a的逆序数增加1而b的逆序数不变;当a>b时,经对换后a的逆序数不变而b的逆序数减少1.所以排列a…aabb…b与排列a…abab…b的奇偶性不同。
特殊值法在高考试题中的应用
特殊值法在高考试题中的应用近几年来,高考物理试题中出现了一类新题型,命题者所给的问题我们按中学物理的常规方法很难解决,但要求学生对这些问题的解是否合理进行分析和判断。
若在处理这类问题时,采用”特殊值假设法”能对所给的问题较快地作出判断。
现举例说明此法在解这类高考试题中的作用。
例1 (2012安徽.20)如图1所示,半径为r 均匀带电圆形平板,单位面积带电量为,其轴线上任意一点(坐标为x )p的电场强度可以由库仑定律和电场强度的叠加原理求出: e=2πkα1- ,方向沿x 轴。
现考虑单位面积带电量为α0 的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。
则圆孔轴线上任意一点α(坐标为)的电场强度为()解析:我们可以这样考虑:x=0坐标和半径r不论取何值,结论式都适用。
不防我们先代以某些特殊值,看看结论如何?例如:(1)当x=0 时,即o点的电场强度由对称性和电场强度的叠加原理可求出,结果为0;将特殊值代入a、b、c、d四个式子中,a、c两个式子的值为0,b式不是0,d式为无穷大。
故ac可能是正确的;(2)当x取无穷大时,q点的电场强度为0;将特殊值无穷大代入ac两式中,c式的值不是0,a式 =0,故a 正确;例2 (2011福建.18)如图,一不可伸长的轻质细绳跨过定滑轮后,两端分别悬挂质量为m1 和m2 的物体a和b。
若滑轮有一定大小,质量m为且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦。
设细绳对a和b的拉力大小分别为t1 和t2 ,已知下列四个关于的表达式中有一个是正确的。
请你根据所学的物理知识,通过一定的分析,判断正确的表达式是a.t1=b.t1=c.t1=d. t1=解析:(1)当m1=m2=m 时,整个系统处于静止状态, t1=mg ;将特殊值m1=m2=m 代入a、b、c、d四个式子中,a式中t1=- m ,b式中t1=- ,d式中mg t1=- mg ,只有c式中t1=mg ,故c选项是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频考点分析不等式问题中“特殊值法”的应用典型例题:例1. (20XX 年福建省理5分)下列命题中,真命题是【 】A .∃x 0∈R ,0x e ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件 【答案】D 。
【考点】必要条件、充分条件与充要条件的判断,全称命题,特称命题,命题的真假判断与应用。
【解析】对于A ,根据指数函数的性质不存在x 0,使得0x e ≤0,因此A 是假命题。
对于B ,当x =2时,2x=x 2,因此B 是假命题。
对于C ,当a +b =0时,a b不存在,因此C 是假命题。
对于D ,a >1,b >1时 ab >1,所以a >1,b >1是ab >1的充分条件,因此D 是真命题。
故选D 。
例2. (20XX 年四川省文4分)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若1=,则||1a b -<; ④若33||1a b -=,则||1a b -<。
其中的真命题有 ▲ 。
(写出所有真命题的编号) 【答案】①④。
【考点】真命题的判定,特殊值法的应用。
【解析】对于①,∵,a b 为正实数,∴222211+11+1a b a b >a >a b >-=⇒=⇒⇒。
又∵221a b -=,∴()()1+1=1+a b a b a b <a b-=⇒-。
故①正确。
对于②,可以采用特殊值列举法:取2=2,=3a b ,满足,a b 为正实数和111b a -=的条件,但4=13a b >-。
故②错误。
对于③,可以采用特殊值列举法:取=4,=1a b ,满足,a b为正实数和|1=的条件,,但=31a b >-。
故③错误。
对于④,不妨设a >b ,由33||1a b -=得331a b -=,∴331+a b =。
∵,a b 为正实数,∴331+11a b >a >=⇒。
∴()()33222211++1=1++a b a b a ab ba b <a ab b-=⇒-=⇒-。
故④正确。
∵且,∴=a b ab -。
综上所述,真命题有 ①④。
例3. (20XX 年浙江省理4分)设a R ∈,若0x >时均有()()21110a x x ax ----≥⎡⎤⎣⎦,则a = ▲ . 【答案】32。
【考点】特殊元素法,偶次幂的非负数性质。
【解析】∵0x >时均有()()21110a x x ax ----≥⎡⎤⎣⎦,∴应用特殊元素法,取2x =,得()()()222112210230a a a ----≥⇒--≥⎡⎤⎣⎦。
∴32302a a -=⇒=。
例4. (20XX 年四川省理14分) 已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。
(Ⅰ)用a 和n 表示()f n ;(Ⅱ)求对所有n 都有33()1()11f n n f n n -≥++成立的a 的最小值;(Ⅲ)当01a <<时,比较11()(2)nk f k f k =-∑与27(1)()4(0)(1)f f n f f --的大小,并说明理由。
【答案】解:(Ⅰ)由已知得,交点A 的坐标为0⎫⎪⎪⎭,对22n a y x =-+求导得2y'x =-。
∴抛物线在点A处的切线方程为y x=⎝,即+ny a=。
∴()=nf n a。
(Ⅱ)由(1)知()=nf n a,则33()1()11f n nf n n-≥++成立的充要条件是321na n≥+。
即知,321na n≥+对于所有的n成立,特别地,取n=2时,得到a≥。
当3a n=时,()122334=1+3=13+3+3+nn nn n na C C C>+⋅⋅⋅⋅⋅⋅1223313+3+3n n nC C C≥+⋅⋅⋅()()233112+52+252+12n n n n>n⎡⎤⎣⎦-=+-。
当n=0,1,2时,显然321nn≥+。
∴当a=时,33()1()11f n nf n n-≥++对所有自然数都成立。
∴满足条件的a的最小值是(Ⅲ)由(1)知()=nf n a,则21111=()(2)n nk kk kf k f k a a==--∑∑,(1)()(0)(1)1nf f n a af f a--=--。
下面证明:1127(1)()()(2)4(0)(1)nkf f nf k f k f f=->⋅--∑。
首先证明:当0<x<1时,31274xx x≥-,设函数227()()1,014g x x x x x=-+<<,则812'()()43g x x x=-。
∵当23x<<时,'x0g<();当213x<<时,'()0g x>,∴()g x在区间(0,1)上的最小值()g x min=g0)32(=。
∴当0<x<1时,()g x≥0,即得31274xx x≥-。
由0<a <1知0<a k<1(k N *∈),∴21274kk k a a a ≥-。
从而21111()(2)nnk kk k f k f k a a ===--∑∑+1127272727(1)()441414(0)(1)n n n k k a a a a f f n a a a f f =---≥=⋅>⋅=⋅---∑。
【考点】导数的应用、不等式、数列。
【解析】(Ⅰ)根据抛物线22na y x =-+与x 轴正半轴相交于点A ,可得A 0⎫⎪⎪⎭,进一步可求抛物线在点A 处的切线方程,从而可得()=nf n a(Ⅱ)由(Ⅰ)知()=nf n a ,则 33()1()11f n n f n n -≥++成立的充要条件是321n a n ≥+,即知,321n a n ≥+对所有n成立。
当3a n =时,()34=1+32+1nn n a >n >;当n =0,1,2时,321nn ≥+,由此可得a 的最小值。
(Ⅲ)由(Ⅰ)知()=nf n a ,证明当0<x <1时,31274x x x ≥-即可证明: 1127(1)()()(2)4(0)(1)nk f f n f k f k f f =->⋅--∑。
例5. (20XX 年四川省文14分)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。
(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有()1()11f n nf n n -≥++成立的a 的最小值;(Ⅲ)当01a <<时,比较111(1)(2)(2)(4)()(2)f f f f f n f n ++⋅⋅⋅+---与)1()0()1()1(6f f n f f -+-⋅的大小,并说明理由。
【答案】解:(Ⅰ)由已知得,交点A的坐标为0⎫⎪⎪⎭,对22n a y x =-+求导得2y'x =-。
∴抛物线在点A 处的切线方程为y x =⎝,即+n y a =。
∴()=nf n a 。
(Ⅱ)由(1)知()=nf n a ,则()1()11f n nf n n -≥++成立的充要条件是21n a n ≥+。
即知,21n a n ≥+对于所有的n 成立,特别地,取n =1时,得到3a ≥。
当3,1a n ==时,()122333=1+2=12+2+2+21nn n n n n a C C C n =+⋅⋅⋅⋅⋅⋅≥+。
当n =0时,21n a n =+。
∴当3a =时,()1()11f n nf n n -≥++对所有自然数都成立。
∴满足条件的a 的最小值是3。
(Ⅲ)由(1)知()=nf n a ,下面证明:)1()0()1()1(.6)2()(1)4()2(1)2()1(1f f n f f n f n f f f f f -+->-+⋯+-+-。
首先证明:当0<x <1时,216x x x ≥-, 设函数()()261,01g x x x x x =-+<<,则)32(18)('-=x x x g 。
∵当203x <<时,'x 0g <();当213x <<时,'()0g x >, ∴()g x 在区间(0,1)上的最小值()g x min =g 21()039>=。
∴当0<x <1时,()g x ≥0,即得216x x x ≥-。
由0<a <1知0<a k<1(k N *∈),∴216k k ka a a≥-。
从而211(1n nf ff ff n fna a a aa a++⋯+=++⋯------12(1)(1)6()661(0)(1)n na a f f n a a a n f f +--+>++⋯+=⨯=⨯--。
【考点】导数的应用、不等式、数列。
【解析】(Ⅰ)根据抛物线22na y x =-+与x 轴正半轴相交于点A ,可得A 0⎫⎪⎪⎭,进一步可求抛物线在点A 处的切线方程,从而可得()=nf n a(Ⅱ)由(Ⅰ)知()=nf n a ,则()1()11f n nf n n -≥++成立的充要条件是21n a n ≥+,即知,21n a n ≥+对所有n 成立。
当3,1a n ==时,()3=1+221nn n a n =≥+;当n =0时,21n a n =+,由此可得a 的最小值。
(Ⅲ)由(Ⅰ)知()=nf n a ,证明当0<x <1时,216x x x ≥-即可证明: )1()0()1()1(.6)2()(1)4()2(1)2()1(1f f n f f n f n f f f f f -+->-+⋯+-+-。