2018-2019学年最新人教版七年级数学上学期期中复习考试模拟试题3及答案解析-经典试题

合集下载

2018-2019学年最新人教版七年级数学上册期中考试模拟试题及答案解析-经典试题

2018-2019学年最新人教版七年级数学上册期中考试模拟试题及答案解析-经典试题

七年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项填在表格里.1.3的倒数的相反数是()A.﹣3 B. 3 C.D.2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D. 1.68×103m3.下列运算正确的是()A.B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣5÷+7=﹣10+7=﹣34.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.55.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1 D.2bc与2abc6.下列计算相等的是()A.23和32B.﹣23和|﹣2|3C.﹣32和(﹣3)2D.(﹣1)2和(﹣1)2(n﹣2)(n是大于1的整数)7.下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b8.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6 C.D.ma+8=mb+89.两个互为相反数的数之积()A.符号必为负B.一定为非正数C.一定为非负数D.符号必为正10.如果m<0,n>0,且m+n<0,那么下列关系式中正确的是()A.m>﹣m>n>﹣n B.n>m>﹣n>﹣m C.m>n>﹣n>﹣m D.﹣m>n>﹣n>m二、填空题:本大题共8小题,每空2分,共20分.把答案填在横线上.11.单项式﹣的系数是,次数是.12.若单项式x2y n与﹣2x m y3的和仍为单项式,则n m的值为.13.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.14.绝对值小于2的非负整数是.15.已知a、b互为相反数,m、n互为倒数,则(a+b)﹣mn的值为.16.若方程(m﹣2)x|1﹣m|+8=0是关于x的一元一次方程,则﹣m﹣1= .17.若2<a<6,则化简|a﹣7|+|3﹣a|的结果为.18.有一列数,…,那么第7个数是,第n个数是.三.计算下列各题(每题5分,共20分)19.(﹣﹣+)×(﹣12)20.计算﹣82+3×(﹣2)2+(﹣6)÷(﹣)2.21.2a2b+3a2b﹣a2b.2a2b﹣5ab2)﹣2(3a2b﹣4ab2)四.解下列方程(每题5分,共20分).23.4x=﹣3.24.7x﹣3=4x﹣5.25.3(x﹣2)+1=x﹣(2x﹣1)26.﹣=1.五.先化简,再求值(本题6分)27.先化简,后求值:5x2﹣(3y2+5x2)+(4y2+3xy),其中.六.解答题(本题4分)28.现场学习:观察一列数:1,2,4,8,16,…,这一列数按规律排列,我们把它叫做一个数列,其中的每个数,叫做这个数列中的项,从第二项起,每一项与它的前一项的比都等于2,我们把这个数列叫做等比数列,这个常数2叫做这个等比数列的公比.一般地,如果一列数从第二项起,每一项与它的前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.解决问题:(1)已知等比数列5,﹣15,45,…,那么它的第六项是.(2)已知一个等比数列的各项都是正数,且第2项是10,第4项是40,则它的公比为.(3)如果等比数列a1,a2,a3,a4,…,公比为q,那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,…,a n= .(用a1与q的式子表示,其中n为大于1的自然数)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项填在表格里.1.3的倒数的相反数是()A.﹣3 B. 3 C.D.考点:倒数;相反数.专题:存在型.分析:先根据倒数的定义求出3的倒数,再由相反数的定义进行解答.解答:解:∵3×=1,∴3的倒数是,∵与﹣只有符号不同,∴的倒数是﹣.故选D.点评:本题考查的是倒数及相反数的定义,熟知倒数及相反数的定义是解答此题的关键.2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为()A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将16 800用科学记数法表示为1.68×104.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.B.﹣7﹣2×5=﹣9×5=﹣45C.D.﹣5÷+7=﹣10+7=﹣3考点:有理数的混合运算.专题:计算题.分析:根据有理数的加减乘除运算依次计算即可.解答:解:A、﹣+=﹣(﹣)=﹣,故本选项错误;B、﹣7﹣2×5=﹣7﹣10=﹣17,故本选项错误;C、3÷×=3××=,故本选项错误;D、﹣5÷+7=﹣5×2+7=﹣10+7=﹣3,故本选项正确;故选D.点评:本题是基础题,考查了有理数的混合运算,是基础知识比较简单.4.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5考点:代数式求值.专题:图表型.分析:根据运算程序可得若输入的是x,则输出的是﹣3x﹣2,把x的值代入即可求值.解答:解:根据运算程序可知,若输入的是x,则输出的是﹣3x﹣2,∴当x=﹣1时,原式=﹣3×(﹣1)﹣2=1.故选:A.点评:此题考查了代数式求值问题.解题的关键是理解题意,能根据题意列得代数式.5.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1 D.2bc与2abc考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.解答:解:A、a2b与a2b是同类项;B、x2y与xy2不是同类项;C、a与1不是同类项;D、bc与abc不是同类项.故选A.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.6.下列计算相等的是()A.23和32B.﹣23和|﹣2|3C.﹣32和(﹣3)2D.(﹣1)2和(﹣1)2(n﹣2)(n是大于1的整数)考点:有理数的乘方.分析:利用有理数乘方的运算法则分别计算,得出结果相等的选项.解答:解:A、23=8,32=9,故不相等;B、﹣23=﹣8,|﹣2|3=8,故不相等;C、﹣32=﹣9,(﹣3)2=9,故不相等;D、(﹣1)2=1,(﹣1)2(n﹣2)(n是大于1的整数)=1,故相等.故选D.点评:本题主要考查了有理数乘方的运算法则,较简单,细心就能做对.7.下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b考点:合并同类项.分析:根据合并同类项:系数相加字母部分不变,可得答案.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.点评:本题考查了同类项,利用合并同类项法则:系数相加字母部分不变.8.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6 C.D.ma+8=mb+8考点:等式的性质.分析:根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.解答:解:A、当m=0时,a=b不一定成立.故选项错误;B、ma=mb,根据等式的性质1,两边同时减去6,就得到ma﹣6=mb﹣6.故选项正确;C、根据等式的性质2,两边同时乘以﹣,即可得到.故选项正确;D、根据等式的性质1,两边同时加上8就可得到ma+8=mb+8.故正确.故选A.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.两个互为相反数的数之积()A.符号必为负B.一定为非正数C.一定为非负数D.符号必为正考点:有理数的乘法;相反数.分析:分这两个数都是0和不等于0两种情况讨论,根据乘法法则即可作出判断.解答:解:当这两个数等于0时,乘积是0;当两个数不等于0时,则互为相反数的两个数一定异号,则乘积一定是负数.总之,两个互为相反数的数之积一定是非正数.故选B.点评:本题考查了有理数的乘法法则,注意到互为相反数的两个数可以都是0,是关键.10.如果m<0,n>0,且m+n<0,那么下列关系式中正确的是()A.m>﹣m>n>﹣n B.n>m>﹣n>﹣m C.m>n>﹣n>﹣m D.﹣m>n>﹣n>m考点:有理数大小比较.分析:根据m<0,n>0,且m+n<0得出|m|>n,即﹣m>n,由此可得出结论.解答:解:∵m<0,n>0,∴m<0<n.∵m+n<0,∴|m|>n,即﹣m>n,∴﹣m>n>﹣n>m.故选D.点评:本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.二、填空题:本大题共8小题,每空2分,共20分.把答案填在横线上.11.单项式﹣的系数是,次数是 4 .考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因数是系数,字母的指数和1+3=4,故次数为4.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.若单项式x2y n与﹣2x m y3的和仍为单项式,则n m的值为9 .考点:同类项.分析:单项式x2y n与﹣2x m y3的和仍为单项式,则它们是同类项.由同类项的定义可先求得m和n的值,从而求出n m的值.解答:解:单项式x2y n与﹣2x m y3的和仍为单项式,则它们是同类项.∴m=2,n=3.则n m=9.故答案为:9.点评:本题考查了同类项的概念:所含字母相同,相同字母的指数相同的单项式叫同类项.13.已知代数式x+2y的值是3,则代数式2x+4y+1的值是7 .考点:代数式求值.专题:整体思想.分析:把题中的代数式2x+4y+1变为x+2y的形式,再直接代入求解.解答:解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故答案为:7.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x+2y的值,然后利用“整体代入法”求代数式的值.14.绝对值小于2的非负整数是0,1 .考点:绝对值.分析:根据绝对值的意义及非负整数就是正整数或0解答.解答:解:绝对值小于2的非负整数有:0、1.故答案为:0,1.点评:本题主要考查了绝对值的性质,及非负整数的概念,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0,非负整数就是正整数或0,需熟练掌握.15.已知a、b互为相反数,m、n互为倒数,则(a+b)﹣mn的值为﹣1 .考点:代数式求值;相反数;倒数.专题:计算题.分析:利用倒数,以及相反数的定义求出a+b,mn的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,mn=1,则原式=0﹣1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.16.若方程(m﹣2)x|1﹣m|+8=0是关于x的一元一次方程,则﹣m﹣1= ﹣1 .考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:因为方程(m﹣2)x|1﹣m|+8=0是关于x的一元一次方程,可得:m﹣2≠0,|1﹣m|=1,解得:m=0,所以﹣m﹣1=﹣1.故答案为:﹣1.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.17.若2<a<6,则化简|a﹣7|+|3﹣a|的结果为10﹣2a或4 .考点:整式的加减;绝对值.分析:由a的范围判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.解答:解:∵2<a<6,∴当2<a≤3时,|a﹣7|+|3﹣a|=7﹣a+3﹣a=10﹣2a;当3<a<6时,|a﹣7|+|3﹣a|=7﹣a+a﹣3=4;故答案为:10﹣2a或4.点评:此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.18.有一列数,…,那么第7个数是,第n个数是(﹣1)n.考点:规律型:数字的变化类.分析:由,…,可以看出第几个数分子就是几,分母是几的平方加1,奇数位置为负,偶数位置为正,由此规律得出答案即可.解答:解:,…,那么第7个数是﹣=﹣;第n个数是(﹣1)n.故答案为:﹣;(﹣1)n.点评:此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.三.计算下列各题(每题5分,共20分)19.(﹣﹣+)×(﹣12)考点:有理数的乘法.分析:利用乘法的分配律进行简便运算即可.解答:解:原式=﹣+=6+4﹣3=7.点评:本题主要考查的是有理数的乘法,利用乘法的分配律进行简便计算是解题的关键.20.计算﹣82+3×(﹣2)2+(﹣6)÷(﹣)2.考点:有理数的混合运算.分析:先算乘方,再算乘法和除法,再算加法,由此顺序计算即可.解答:解:原式=﹣64+3×4+(﹣6)÷=﹣64+12﹣54=﹣106.点评:此题考查有理数的混合运算,注意搞清运算顺序和每一步的运算符号.21.2a2b+3a2b﹣a2b.考点:合并同类项.分析:根据合并同类项的法则:系数相加作为系数,字母和字母的指数不变,即可求解.解答:解:2a2b+3a2b﹣a2b=(2+3﹣1)a2b=4a2b.点评:本题考查了合并同类项的法则,理解法则是关键.2a2b﹣5ab2)﹣2(3a2b﹣4ab2)考点:整式的加减.分析:先去括号,再进一步合并同类项即可.解答:解:原式=8a2b﹣5ab2﹣6a2b+8ab2=2a2b+3ab2.点评:此题考查整式的加减,掌握去括号法则和合并同类项的方法是解决问题的关键.四.解下列方程(每题5分,共20分).23.4x=﹣3.考点:解一元一次方程.专题:计算题.分析:方程两边除以4系数化为1,即可求出解.解答:解:4x=﹣3,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.7x﹣3=4x﹣5.考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程移项合并得:3x=﹣2,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.3(x﹣2)+1=x﹣(2x﹣1)考点:解一元一次方程.专题:计算题.分析:先去括号,然后移项合并、化系数为1可得出答案.解答:解:去括号得:3x﹣6+1=x﹣2x+1移项合并得:4x=6系数化为1得:x=点评:本题考查解一元一次方程的解法,比较简单,注意移项时和去括号时符号的变化.26.﹣=1.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:去分母得:2﹣3x+3=6,移项合并得:3x=﹣1,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.五.先化简,再求值(本题6分)27.先化简,后求值:5x2﹣(3y2+5x2)+(4y2+3xy),其中.考点:整式的加减—化简求值.分析:本题需先根据整式加减的运算法则和顺序分别进行计算,再把x、y的值代入即可求出结果.解答:解:5x2﹣(3y2+5x2)+(4y2+3xy)=y2+3xy.当x=﹣1,y=时原式=(﹣1)2+3×(﹣1)×=﹣.点评:本题主要考查了整式的加减﹣化简求值,在解题时要根据整式加减的运算法则和顺序分别进行计算是本题的关键.六.解答题(本题4分)28.现场学习:观察一列数:1,2,4,8,16,…,这一列数按规律排列,我们把它叫做一个数列,其中的每个数,叫做这个数列中的项,从第二项起,每一项与它的前一项的比都等于2,我们把这个数列叫做等比数列,这个常数2叫做这个等比数列的公比.一般地,如果一列数从第二项起,每一项与它的前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.解决问题:(1)已知等比数列5,﹣15,45,…,那么它的第六项是﹣1215 .(2)已知一个等比数列的各项都是正数,且第2项是10,第4项是40,则它的公比为 2 .(3)如果等比数列a1,a2,a3,a4,…,公比为q,那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,…,a n= a1q n﹣1.(用a1与q的式子表示,其中n为大于1的自然数)考点:规律型:数字的变化类.分析:(1)首先算出等比数列的公比为(﹣15)÷5=﹣3,第二项为5×(﹣3),第三项为5×(﹣3)2,…第n项为5×(﹣3)n﹣1,由此求得第六项即可;(2)设等比数列的公比为x,则10×x2=40,则求得x=2;(3)由a2=a1q,a3=a2q=(a1q)q=a1q2,…,a n=a1q n﹣1.解答:解:(1)5×(﹣3)6﹣1=﹣1215.(2)设等比数列的公比为x,则10×x2=40,则求得x=2;(3)a n=a1q n﹣1.点评:此题考查等比数列的意义以及求等比数列的公比和通项公式的方法.。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018-2019学年新人教版七年级上册数学期中考试试卷及答案

2018-2019学年新人教版七年级上册数学期中考试试卷及答案

2018—2019学年上学期期中考试七年级数学试卷(本试题满分120分,考试时间120分钟)题号 一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. 下面几何体的截面图可能是圆的是 ( )A. 正方体B. 圆锥C. 长方体D. 棱柱 2. 相反数是最大负整数的数是 ( ) A. 1B. -1C. 0D.23. 下列图形经过折叠不能围成棱柱的是( )A B C D 4. 已知15a -=,则a 的值为( )A.6B.-4C.-6或4D.6或-4 5. 数轴上与-3的距离等于2个单位的点表示的数是 ( ) A.0和2 B. -1和-3 C. -1和-5 D. -2和26. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( ) A. 3 B.12-C.23D. -3 二、填空题(本大题共6小题,每小题3分,共18分.) 7. 比较大小:0________-2 (填“>”“<”或“=”) 8. 代数式2x -系数是________,代数式c b a 323π-的系数是__ _,次数是_______.9. 某风力发电站每天能发电约74850000度,该数据用科学记数法表示 为 度.10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第4次后剩下的小棒长_______________米.11.如果图中的平面展开图折叠成正方体后,相对面上的两个数互为相反数,则x y + =__________.11题图 12题图12.观察如图中的数列排放顺序,根据其规律猜想: 第10行第8个数应该是三、解答题(本大题共5小题,每小题6分,共30分) 13.计算或化简:(1)3116(2)(4)8÷-+⨯-(2)22(212)(1)a a a a -+--+14. 画出数轴,把下列各数分别在数轴上表示出来,并用“<”连接起来:21-,2, 0, 3-,0.5-,)214(--,22-15. 已知 ()2230x x y -++-=,求代数式()()x y x y +- 的值.16.探索规律:按照如图方式摆放餐桌和椅子.完成问题:1 2 3(1)填写下表:图形编号 1 2 3 4 … 10 … 100 图中座位总数610……402(2)照这样的方式摆下去,写出摆第n 个图形座位的总数; 解:第n 个图形共有座位: 个 17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.四、(本大题共3小题,每小题8分,共24分)18.某校分为初中部和高中部,做广播操时,两部分别站两个不同的操场上进行,站队时,做到了整齐化一,高中部排成的是一个规范的长方形方阵,每排40人,站有(2)a b 排;初中部站的方阵更特别,排数和每排人数都是5a .⑴试求该校初中部比高中部多多少学生(用含 a b 、 的代数式表示)? ⑵当a =10,b =2时,试求该学校共有多少学生?19.张强在南城某房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题: (1)用含x 的代数式表示这所住宅的总面积.• • • • • •(2)若铺1平方米地砖平均费用120元,求当x =6时,这套住宅铺地砖总费用为多少元?20.如图用一边长为16 cm 的正方形纸片,在其四个角上剪掉四个边长相同的小正方形可做成无盖的长方体盒子.若剪掉的小正方形的边长为x cm ,做成的无盖长方体盒子的容积为V 3cm .⑴ 要使做成的长方体盒子底面周长为48 cm ,那么剪掉的正方形边长为_ cm ;⑵ 用含x 的式子表示V = ;⑶填表:观察表格中的结果,你能得到哪些信息?(写出一条)五、(本大题共2小题,每小题9分,共18分)21.先化简再求值:已知222244,7A x xy y B x xy y =--=-++ ①求A ﹣3B ; ②若A=﹣1,B= 12时,求226615x xy y -- 的值.x (cm ) 1 2 3 4 5 V (3cm )22.某城市按以下规定收取每月煤气费:用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.例如,甲用户5月份用煤气80立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72(元).(1)设甲用户某月用煤气x 立方米,用含x 的代数式表示甲用户该月的煤气费. 若60x ≤,则费用表示为 ;若60x >,则费用表示为 . (2)若甲用户10月份用去煤气90立方米,求甲用户10月份的煤气费是多少元?六、(本大题共12分)23.在学习了有理数的加减法之后,老师讲解了例题-1+2-3+4+……-2017+2018的计算思路为:将两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为+1009.根据这个思路学生改编了下列几题:(1)计算:① 1-2+3-4+……+2017-2018=② 1-3+5-7+……+2017-2019=(2)蚂蚁在数轴的原点O 处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……按照这个规律,第1024次爬行后蚂蚁在数轴什么位置?参考答案 1-6、BABCCC 7、> 8、-269、7.485×107 10、11、-412、5313、14、15、16、17、18、19、20、21、22、23、。

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年新人教版七年级数学初一期中考试卷含答案

2018-2019学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.254.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣16.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.18.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是.12.若单项式5x4y和25x n y m是同类项,则m+n的值为.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为.14.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是.15.化简|π﹣4|+|3﹣π|=.16.计算:﹣5÷×5=(﹣1)2000﹣02011+(﹣1)2012=.17.单项式的系数是,次数是.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【考点】有理数的混合运算.【分析】A、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;B、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算;C、根据有理数的乘方法则计算即可求解;D、从左往右依次计算即可求解.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C,3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.25【考点】绝对值.【分析】根据绝对值的定义解答.【解答】解:绝对值是5的数,原点左边是﹣5,原点右边是5,∴这个数是±5.故选A.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.5.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣1【考点】数轴;有理数大小比较.【分析】根据数轴上的点表示数的方法得到数轴上表示﹣2的点与表示+2的点的距离是4;数轴上原点表示的数是0;所有的有理数都可以在数轴上表示出来;﹣1是最大的负整数.【解答】解:A、数轴上表示﹣2的点与表示+2的点的距离是4,所以A选项错误,符合题意;B、数轴上原点表示的数是0,所以B选项正确,不符合题意;C、所有的有理数都可以在数轴上表示出来,所以C选项正确,不符合题意;D、﹣1是最大的负整数,所以D选项正确,不符合题意.故选A.6.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.1【考点】整式的混合运算;绝对值.【分析】由于a≠0,那么应该分两种情况讨论:①a>0;②a<0,然后分别计算即可.【解答】解:∵a≠0,①当a>0时,(a﹣|a|)÷2a=(a﹣a)÷2a=0;②当a<0时,(a﹣|a|)÷2a=(a+a)÷2a=1.故选A.8.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元【考点】列代数式.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.【考点】数轴;有理数的加法;有理数的减法;有理数的乘法;有理数的除法.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后根据有理数的加、减、乘、除运算进行符号判断即可.【解答】解:根据题意,a<0且|a|<1,b>且|b|>1,∴A、a+b是正数,故本选项正确;B、a﹣b=a+(﹣b),是负数,故本选项错误;C、ab是负数,故本选项错误;D、是负数,故本选项错误.故选A.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.【考点】规律型:数字的变化类.【分析】分别求出a2,a3,a4,a5的值,不难发现每3个数为一组依次进行循环,用2011除以3,余数是几,则与第几个数相同.【解答】解:∵a1=2,∴a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,a5=1﹣=,…依此类推,每3个数为一组进行循环,2011÷3=670…1,∴a2011=a1=2.故答案为:2.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是﹣3p.【考点】列代数式.【分析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:p的3倍的相反数是﹣3p,故答案为:﹣3p.12.若单项式5x4y和25x n y m是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.【解答】解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为﹣7或1.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:当点A在﹣3的左侧时,则﹣3﹣4=﹣7;当点A在﹣3的右侧时,则﹣3+4=1.则A点表示的数为﹣7或1.故答案为:﹣7或114.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是13.【考点】代数式求值.【分析】把代数式1+3a2﹣6a变形为3(a2﹣2a)+1,然后把a2﹣2a=4整体代入计算即可.【解答】解:∵1+3a2﹣6a=3(a2﹣2a)+1,而a2﹣2a=4,∴1+3a2﹣6a=3×4+1=13.故答案为13.15.化简|π﹣4|+|3﹣π|=1.【考点】绝对值.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.16.计算:﹣5÷×5=﹣125(﹣1)2000﹣02011+(﹣1)2012=2.【考点】有理数的混合运算.【分析】(1)乘除运算时,从左往右进行计算;(2)先计算乘方运算,再算加减运算即可得到结果.【解答】解:(1)﹣5÷×5,=﹣5×5×5,=﹣125;(2)(﹣1)2000﹣02011+(﹣1)2012,=1﹣0+1,=2.17.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是8℃.【考点】正数和负数.【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3)=5+3=8℃.故答案为:8℃.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f=n﹣1,f()=n(n为整数),再计算即可.【解答】解:由规律得:f(n)=n﹣1,f(1n)=n(n为整数),∴f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.【考点】有理数的混合运算.【分析】(1)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(2)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(3)先把除法化为乘法,再根据乘法分配律进行计算;(4)先计算乘方,再计算加减,注意﹣32=﹣9.【解答】解:(1)﹣14﹣×[2﹣(﹣3)2],=﹣1﹣×[2﹣9],=﹣1﹣×(﹣7),=;(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2,=﹣64+3×4﹣6,=﹣64+12﹣54,=﹣52﹣54,=﹣106;(3)(﹣+﹣+)÷,=﹣+×60﹣×60+×60,=﹣45+50﹣35+12,=﹣80+62,=﹣18;(4)﹣32﹣(﹣2)2+1,=﹣9﹣4+1,=﹣13+1,=﹣12.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)先去括号,再合并即可;(2)先去括号,再合并.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y﹣3xy2﹣2xy2﹣4x2y=﹣2x2y﹣5xy2,当x=,y=﹣2时,原式=1﹣10=﹣9.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】先根据互为相反数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴|a+2|=0,(b﹣3)2=0,a+2=0,b﹣3=0,解得a=﹣2,b=3,∴a b+3(a﹣b),=(﹣2)3+3(﹣2﹣3),=﹣8﹣15,=﹣23.故答案为:﹣23.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产599辆;(2)产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数.【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【解答】解:(1)前三天生产的辆数是20×3+(5﹣2﹣4)=599(辆).答案是:599;(2)16﹣(﹣10)=16+10=26(辆),故答案是26;(3)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×7+9×15=9800+135=9935(元).答:该厂工人这一周的工资是9935元.27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=﹣(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据连续整数的乘积的倒数等于倒数差可得;(2)利用(1)中所得规律裂项求解可得;(3)根据=(﹣)裂项求和可得.【解答】解:(1)=﹣,故答案为:﹣;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;;(3)原式=(﹣+﹣+﹣+…+﹣)=×(﹣)=×=,故答案为:.2017年5月4日。

人教版2018—2019学年初一上册数学期中考试试卷及答案

人教版2018—2019学年初一上册数学期中考试试卷及答案

人教版2018—2019学年初一上册数学期中考试试卷及答案2018-201年上学期期中考试初一数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)1.在下列数:-(-),-42,-(-9),1/2,22,(-1)2004 中,正数有()个。

A。

1个 B。

2个 C。

3个 D。

4个2.下列各式计算正确的是()。

A。

-32=-6 B。

(-3)2=-9 C。

-32=-9 D。

-(-3)2=93.数a、b在数轴上的位置如图所示,则下列判断中,正确的是()。

A。

a>1 B。

b>1 C。

a<-1 D。

b<-14.在-22,1/7,-0.xxxxxxxx1…,π四个数中,有理数的个数为()。

A。

1 B。

2 C。

3 D。

45.下列说法不正确的是()。

A。

到原点的距离相等且在原点两旁的两个点所表示的数一定互为相反数。

B。

所有的有理数都有相反数。

C。

正数和负数互为相反数。

D。

在一个有理数前添加“-”号就得到它的相反数。

6.如果abb,那么一定有()。

A。

a>0,b>0 B。

a>0,b0 D。

a<0,b<07.如果x=y=2,xy<0,那么x+y的值是()。

A。

5或-5 B。

1或-1 C。

5或1 D。

08.近似数4.50所表示的真值a的取值范围是()。

A。

4.495≤a≤4.405 B。

4.050≤a<4.60 C。

4.495≤a<4.505 D。

4.500≤a<4.505二、填空题:(本大题共12小题,每空2分,共28分)9.-5的相反数是(5),-的倒数为(不存在)。

10.光的传播速度大约是300 000 000米/秒,用科学记数法可表示为(3×108)米/秒。

11.若3a2-a-2=0,则5+2a-6a2=(-1/3)。

12.若a=8,b=5,且a+b>0,那么a-b=(3)。

13.若x<0,则x/x=(-1)。

人教版2018-2019学年七年级上册期中数学考试题及答案

人教版2018-2019学年七年级上册期中数学考试题及答案

2019-2019学年七年级上册期中数学试卷一、选择题:1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7 D.83.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式-3a2b+7a2b2-2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个4.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对5.明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A.1.25×105B.1.25×106C.1.25×107D.1.25×1086.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零9.下列运算中结果正确的是()A.3a+2b=5abB.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1D.3x2+2x=5x310.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:。

【3套试卷】七年级上册数学期中考试题(含答案)

【3套试卷】七年级上册数学期中考试题(含答案)

七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;(4)百位数乘100,十位数乘10,个位数乘1,相加即可得.【解答】解:(1)a的5倍与b的平方的差可表示为5a﹣b2;(2)m的平方与n的平方的和可表示为m2+n2;(3)x、y两数的平方和减去它们积的2倍可表示为x2+y2﹣2xy;(4)此三位数为100a+10b+c.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有13个★,第六个图形共有19个★;(2)第n个图形中有★3n+1个;(3)根据(2)中的结论,第几个图形中有2020个★?【分析】(1)根据题目中的图形,可以得到第四个图形和第六个图形中★的个数;(2)根据题目中的图形,可以得到第n个图形中有★的个数;(3)根据(2)中的结论,可以解答本题.【解答】解:(1)由图可知,第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第四个图形中有★:1+3×4=13,第六个图形中有★:1+3×6=19,故答案为:13,19;(2)第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第n个图形中有★:1+3×n=3n+1,故答案为:3n+1;(3)设第x个图形中有2020个★,3x+1=2020,解得,x=673,答:第673个图形中有2020个★.【点评】本题考查图形的变化类,解答本题的关键是明确图形中★的个数的变化规律,利用数形结合的思想解答.23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3=45×1.3=58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为(1560+70x)元;到乙商场购买所需的费用为(1920+56x)元;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?【分析】(1)根据题意表示出甲乙两商场的费用即可;(2)计算出甲乙两个商场的费用,比较即可.【解答】解:(1)则到甲商场购买所需的费用为:12×200+70(x﹣12)=(1560+70x)元;到乙商场购买所需的费用为:(12×200+70x)×0.8=(1920+56x)元;故答案为:(1560+70x)元;(1920+56x)元;(2)到甲商场购买所需的费用为:15×200+70×(30﹣15)=4050(元),到乙商场购买所需的费用为:(15×200+70×30)×80%=4080(元),4050元<4080元答:到甲商场购买划算.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.人教版七年级第一学期期中模拟数学试卷【答案】一、选择题(共10小题,每小题3分,满分30分)1.2018的绝对值是()A.2018B.﹣2018C.D.2.在式子a,2x2+y,,﹣5,3m﹣3n中,多项式的个数是()A.4个B.3个C.2个D.1个3.(﹣2)6表示()A.6个﹣2相乘的积B.﹣2与6相乘的积C.2个6相乘的积的相反数D.6与2相乘的积4.下列各组式子中,是同类项的是()A.abc与5bc B.x2与y2C.m2n3与n3m2D.3a与a3 5.下列选项中,去括号正确的是()A.a+(b﹣1)=a﹣b﹣1B.a+(b﹣1)=a+b+1C.a﹣(b﹣1)=a﹣b+1D.a﹣(b﹣1)=a﹣b﹣16.下列说法正确的是()A.近似数13.5亿精确到亿位B.近似数3.1×105精确到十分位C.近似数1.80精确到百分位D.用四舍五入法取2.258精确到0.1的近似值是2.27.有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b|C.﹣a>b D.b﹣a<a+b 8.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣3 9.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=,y=3 10.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则的值为()A.200B.199C.D.1二、填空题(共5小题,每小题3分,满分15分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.根据文化和旅游部的测算数据,2018年“十一”黄金周.全国共接待国内游客726000000人次.其中数据726000000用科学记数法表示为.13.如图,图中阴影部分的面积是.14.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.三、解答题(共7小题,满分55分)16.(12分)(1)6+(﹣3)﹣(+5)﹣9(2)(﹣6)2×(﹣)(3)8﹣8÷(﹣)×(﹣)(4)5×(﹣1)3÷[﹣32+(﹣2)2]17.(6分)(1)3x2+6x﹣5x2﹣5x(2)3(2x2﹣xy)﹣2(3x2+xy﹣1)18.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?19.(6分)已知:A=a2+b2﹣c2,B=﹣4a2+2b2+3c2,且A﹣B+C=0(1)求A﹣B;(2)若a=1,b=﹣1,c=3,求多项式C的值.20.(7分)在数轴上两点之向的距离两数差的绝对值,我们可以用表示这两个点的大写字母一起标记,比如,表示点A的数为2,点B表示的数为﹣3,点A与点B之间的距离记作AB,别AB=2﹣(﹣3)=5.(1)数轴上表示﹣3和5的两点之间的距离是(2)如图,在数轴上点A表示数a,点C表示数c,且|a+20|+(c﹣30)2=0.求点A与点C之间的距离AC;(3)在(2)的条件下,在数轴上是否存在点B,使AB=5,若存在,求出点B 表示的数b;若不存在,请说明理由.21.(8分)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.22.(10分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.2018-2019学年山东省济宁市微山县七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2018的绝对值是()A.2018B.﹣2018C.D.【分析】直接利用绝对值的性质分析得出答案.【解答】解:2018的绝对值是:2018.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.在式子a,2x2+y,,﹣5,3m﹣3n中,多项式的个数是()A.4个B.3个C.2个D.1个【分析】由几个单项式的和组成的式子叫多项式,判断即可得出结论.【解答】解:在式子a,2x2+y,,﹣5,3m﹣3n中,多项式有:2x2+y,3m﹣3n共2个.故选:C.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.3.(﹣2)6表示()A.6个﹣2相乘的积B.﹣2与6相乘的积C.2个6相乘的积的相反数D.6与2相乘的积【分析】根据乘方的意义直接回答即可.【解答】解:根据乘方的意义知:(﹣2)6表示6个﹣2相乘,故选:A.【点评】本题考查了有理数的乘法的意义,了解乘方的意义是解答本题的关键,难度不大.4.下列各组式子中,是同类项的是()A.abc与5bc B.x2与y2C.m2n3与n3m2D.3a与a3。

最新人教版2018-2019学年七年级数学上学期期中考试模拟试题3及答案解析-精编试题

最新人教版2018-2019学年七年级数学上学期期中考试模拟试题3及答案解析-精编试题

七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.下列方程中,是一元一次方程的为()A. 2x﹣y=1 B. x2﹣y=2 C.﹣2y=3 D. y2=42.将右边两个椭圆框中的同类项用直线段连接起来,其中对应正确的连接线有()A. 1条B. 2条C. 3条D. 4条3.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A. 8分钟B. 7分钟C. 6分钟D. 5分钟4.用四舍五入按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(保留两个有效数字)D. 0.0502(精确到0.0001)5.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A. 2,3 B. 3,3 C. 2,4 D. 3,46.下列命题正确的是()A.一个数的平方大于9,这个数一定大于3B. a,b为有理数,若>0,则a>0且b>0C.设a为一个有理数,则a>D. a,b为有理数,若ab=0,则a,b至少有一个为07.已知方程3x+8=﹣a的解满足|x﹣2|=0,则a的值为()A.﹣B.﹣C.﹣D. 48.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A. 20 B. 119 C. 138 D. 3199.根据下表中的规律,从左到右的空格中应依次填写的数字是()A. 100,011 B. 011,100 C. 011,101 D. 101,11010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A. 7 B. 6 C. 5 D. 4二、填空题(本大题共4小题,每小题5分,满分20分)11.日常生活中,“老人”是一个模糊概念.有人想用“老人系数”来表示一个人的老年化程度.他设想“老人系数”的计算方法如下表:人的年龄x(岁)x≤60 60<x<80 x≥80该人的“老人系数”0 1按照这样的规定,一个70岁的人的“老人系数”为.12.πR2的系数是,次数是.13.英国著名的天文学家琼斯计算出地球与太阳的平均距离约为1.49亿千米,用科学记数法表示为米.14.在如图所示的运算流程中,若输出的数y=3,则输入的数x= .三、解答题(共90分)15.计算下列各式(1)|﹣5|×(﹣)×0.6÷(﹣1.75)(2)[2﹣(﹣+)×36]×0.25(3)(﹣98)×(﹣0.125)+(﹣98)×﹣98×(﹣)(4)1÷(﹣1)+0÷(﹣5.6)﹣(﹣4.2)×(﹣1)16.化简并求值.(1)(4x3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.(2)(xy﹣y﹣)﹣(x﹣xy+1),其中x=,y=.17.解方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)=﹣3.18.某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5 ﹣2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?19.如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标注的数据.(1)用式子表示图中空白部分的面积;(2)当a=50,b=30,c=4时,空白部分的面积是多少?20.已知a,b,c为都不等于0的有理数,且++的最大值是m,最小值是n.(1)求n﹣m的值.(2)你解答本题用到了什么数学思想方法.21.阅读并解答后面的问题.,;,;,…(1)等于吗?请验证.(2)化简(计算):…+.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.下列方程中,是一元一次方程的为()A. 2x﹣y=1 B. x2﹣y=2 C.﹣2y=3 D. y2=4考点:一元一次方程的定义.分析:根据一元一次方程的定义对各选项进行逐一分析即可.解答:解:A、2x﹣y=1是二元一次方程,故本选项错误;B、x2﹣y=2是二元二次方程,故本选项错误;C、﹣2y=3是一元一次方程,故本选项正确;D、y2=4是一元二次方程,故本选项错误.故选C.点评:本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.2.将右边两个椭圆框中的同类项用直线段连接起来,其中对应正确的连接线有()A. 1条B. 2条C. 3条D. 4条考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关.解答:解:4m与m所含字母相同,并且相同字母的指数相同,是同类项;﹣ab与6a所含字母不相同,所以不是同类项;﹣2与3,是常数项,也是同类项.3x2y与﹣6xy2,5xy2与4x2y所含字母相同,但相同字母的指数不同,不是同类项.故选B.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.3.假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A. 8分钟B. 7分钟C. 6分钟D. 5分钟考点:有理数的乘方.专题:应用题.分析:第一分钟通知到1个学生;第二分钟最多可通知到1+2=3个学生;第三分钟最多可通知到3+4=7个学生;第四分钟最多可通知到7+8=15个学生;第五分钟最多可通知到15+16=31个学生;第六分钟最多可通知到31+32=63个学生,即可得到至少需要的时间为6分钟.解答:解:第一分钟通知到1个学生;第二分钟最多可通知到1+2=3个学生;第三分钟最多可通知到3+4=7个学生;第四分钟最多可通知到7+8=15个学生;第五分钟最多可通知到15+16=31个学生;第六分钟最多可通知到31+32=63个学生;答:至少用6分钟.故答案为:C点评:解决本题的关键是得到每一分钟后,即知道消息的总人数.4.用四舍五入按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(保留两个有效数字)D. 0.0502(精确到0.0001)考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边的一位进行四舍五入.解答:解:A、把0.05019精确到0.1约为0.1,故本选项正确;B、把0.05019精确到百分位约为0.05,故本选项正确;C、把0.05019保留2个有效数字约为0.050,故本选项错误;D、把0.05019精确到0.0001约为0.0502,故本选项正确.故选:C.点评:本题考查了近似数和有效数字,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.5.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A. 2,3 B. 3,3 C. 2,4 D. 3,4考点:有理数的混合运算.专题:应用题;压轴题.分析:认真分析8×9的计算过程后,得到规律:左手伸出8﹣5=3个,右手伸出9﹣5=4个,再计算5×6.解答:解:计算8×9的过程为:左手伸出8﹣5=3个,右手伸出9﹣5=4个,∴8×9=10×(3+4)+2×1=72.计算7×8的过程为:左手应伸出7﹣5=2个,右手伸出8﹣5=3个,∴7×8=10×(2+3)+3×2=56.故7×9的过程为:左手伸出7﹣5=2个,右手伸出9﹣5=4个,所以7×9=10(2+4)+3×1=63,故选C.点评:本题的关键在于根据例子找到伸手指的规律.6.下列命题正确的是()A.一个数的平方大于9,这个数一定大于3B. a,b为有理数,若>0,则a>0且b>0C.设a为一个有理数,则a>D. a,b为有理数,若ab=0,则a,b至少有一个为0考点:命题与定理.分析:根据乘方的意义对A进行判断;根据有理数的性质对B、D进行判断;利用反例对C进行判断.解答:解:A、一个数的平方大于9,这个数一定大于3或小于﹣3,所以A选项错误;B、a,b为有理数,若>0,则a>0且b>0或a<0,b<0,所以B选项错误;C、当a=1时,a=,所以C选项错误;D、a、b为有理数,若ab=0,则a,b至少有一个为0,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.已知方程3x+8=﹣a的解满足|x﹣2|=0,则a的值为()A.﹣B.﹣C.﹣D. 4考点:一元一次方程的解;绝对值.分析:首先根据|x﹣2|=0求得x的值,把x的值代入第一个方程,得到一个关于a的方程,求得a 的值.解答:解:解|x﹣2|=0得:x=2,把x=2代入方程3x+8=﹣a得:6+8=﹣a,解得:a=﹣.故选A.点评:本题考查了方程的解的定义以及绝对值的性质,求得a的值是关键.8.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A. 20 B. 119 C. 138 D. 319考点:用数字表示事件.分析:直快列车的车次号在101~198之间,向北京开的列车为偶数.解答:解:根据题意,双数表示开往北京,101~198次为直快列车,由此可以确定答案为101﹣198中的一个偶数,杭州开往北京的某一直快列车的车次号可能是138.故选:C.点评:本题考查了用数字表示数,本题是材料题,要仔细阅读所给信息,才能正确判断.9.根据下表中的规律,从左到右的空格中应依次填写的数字是()A. 100,011 B. 011,100 C. 011,101 D. 101,110考点:规律型:图形的变化类.专题:规律型.分析:根据题意分析可得:两个小线段表示0,一个大线段表示1.解答:解:从左到右的空格中应依次填写的数字是011,100.故选B.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A. 7 B. 6 C. 5 D. 4考点:整式的加减.专题:计算题.分析:设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.解答:解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.点评:本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.日常生活中,“老人”是一个模糊概念.有人想用“老人系数”来表示一个人的老年化程度.他设想“老人系数”的计算方法如下表:人的年龄x(岁)x≤60 60<x<80 x≥80该人的“老人系数”0 1按照这样的规定,一个70岁的人的“老人系数”为0.5 .考点:一次函数的应用.专题:压轴题;图表型.分析:根据题意,把x=70,直接代入相应解析式即可解答.解答:解:∵x=70,∴60<x<80,70岁老人的老人系数对应着,∴当x=70时,.点评:本题考查识表能力,即将已知的题意与表格中的栏目一一对应.12.πR2的系数是,次数是 2 .考点:单项式.分析:根据单项式的次数和系数的定义解答即可.解答:解:πR2的系数是,次数是2,故答案为:;2.点评:此题考查单项式问题,关键是根据单项式的次数和系数的定义分析.13.英国著名的天文学家琼斯计算出地球与太阳的平均距离约为1.49亿千米,用科学记数法表示为1.49×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1.49亿用科学记数法表示为2×108.故答案为:1.49×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.在如图所示的运算流程中,若输出的数y=3,则输入的数x= 5或6 .考点:代数式求值.专题:压轴题;图表型.分析:根据所给的图可知,若x为偶数,则x=2y,若x不是偶数,则x=2y﹣1,分两种情况计算x 的值.解答:解:当x是偶数时,有x=2×3=6,当x是奇数时,有x=2×3﹣1=5.故本题答案为:5或6.点评:本题主要是考虑要全面,会逆推运算.三、解答题(共90分)15.计算下列各式(1)|﹣5|×(﹣)×0.6÷(﹣1.75)(2)[2﹣(﹣+)×36]×0.25(3)(﹣98)×(﹣0.125)+(﹣98)×﹣98×(﹣)(4)1÷(﹣1)+0÷(﹣5.6)﹣(﹣4.2)×(﹣1)考点:有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的,注意灵活运用乘法分配律计算;(3)直接运用乘法的分配律计算;(4)按照有理数混合运算的顺序,先乘除后算加减.解答:解:(1)|﹣5|×(﹣)×0.6÷(﹣1.75)=×(﹣)××(﹣)=(2)[2﹣(﹣+)×36]×0.25=[2﹣×36+×36﹣×36]×0.25=[2﹣28+33﹣6]×0.25=×=;(3)(﹣98)×(﹣0.125)+(﹣98)×﹣98×(﹣)=98×(0.125﹣+)=98×=56;(4)1÷(﹣1)+0÷(﹣5.6)﹣(﹣4.2)×(﹣1)=﹣1+0﹣4.2=﹣5.2.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.16.化简并求值.(1)(4x3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.(2)(xy﹣y﹣)﹣(x﹣xy+1),其中x=,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7;(2)原式=xy﹣y﹣﹣x+xy﹣1=xy﹣x﹣y﹣,当x=,y=时,原式=﹣﹣﹣=﹣1.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.解方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)=﹣3.考点:解一元一次方程.专题:计算题.分析:(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母,得7(1﹣2x)=3(3x+1)﹣63,去括号,得7﹣14x=9x=3﹣63,移项,得﹣14x﹣9x=3﹣63﹣7合并同类项,得﹣23x=﹣67,系数化为1,得x=.点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5 ﹣2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?考点:加权平均数;用样本估计总体.专题:计算题.分析:根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.解答:解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).点评:此题要理解统计图,会计算加权平,另外计算时要细心.19.如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,根据图中标注的数据.(1)用式子表示图中空白部分的面积;(2)当a=50,b=30,c=4时,空白部分的面积是多少?考点:列代数式;代数式求值.分析:(1)根据题中图形,空白部分面积实际上是一个长为(a﹣c),宽为(b﹣c)的新矩形,按照面积公式计算即可,(2)把a=50,b=30,c=4代入式子即可求出空白面积.解答:解:(1)空白部分面积实际上是一个长为(a﹣c),宽为(b﹣c)的新矩形,面积s=(a﹣c)(b﹣c)=ab﹣ac﹣bc+c2,(2)当a=50,b=30,c=4,s=(a﹣c)(b﹣c)=ab﹣ac﹣bc+c2=1196.点评:本题主要考查列代数式和代数式求值的知识,要注意图片给出的信息,要特别注意阴影中重叠部分的面积不要丢掉.20.已知a,b,c为都不等于0的有理数,且++的最大值是m,最小值是n.(1)求n﹣m的值.(2)你解答本题用到了什么数学思想方法.考点:绝对值.专题:分类讨论.分析:(1)当a,b,c为正数时++有最大值,当a,b,c为负数++有最小值求解,(2)解答本题用到了当a,b,c为正数时,当a,b,c为负数的分类讨论的数学思想方法.解答:解:(1)当a,b,c为正数时++有最大值m=3,当a,b,c为负数++的最小值是n=﹣3.故n﹣m=﹣3﹣3=﹣6.(2)解答本题用到了分类讨论的数学思想方法.点评:本题主要考查了绝对值,解题的关键是分两种情况讨论.21.阅读并解答后面的问题.,;,;,…(1)等于吗?请验证.(2)化简(计算):…+.考点:有理数的混合运算.专题:规律型.分析:(1)先算出=,再把与进行统分,再进行相减,求出的值与的值进行比较,即可得到验证.(2)根据(1)得出规律,再把原式进行分解,然后互相抵消,即可求出答案.解答:解:(1)∵=,=﹣=,∴=;(2)根据以上得出的规律得:…+=﹣++﹣+…=1﹣=.点评:此题考查了有理数的混合运算,根据所给的样例得出=﹣是解题的关键,计算时要注意符号的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期期中检测七年级
数学试题
(全卷满分100分,考试时间120分钟)
一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求.)
1.-3的相反数的倒数是( )
A .13
B .3-
C .13-
D .3 2.下列各数:(3)--,0,5+,, 3.1+,42-,2014,2π-, 其中是负数的有 ( )
A .2个
B .3个
C .4个
D .5个
3.下列各组数中,两个数相等的是( )
A .23与32
B .3
2-与3(2)- C .23-与2(3)- D .[]2
2(3)-⨯-与22(3)⨯- 4.若|a ﹣1|=1—a ,则a 的取值范围是( )
A .a ≥1
B .a ≤1
C .a <1
D .a >1
5.如果0a b +>,ab >0,那么下列各式中一定正确的是( )
A .0a b ->
B .0a b >
C .0b a ->
D .0a b <
6.计算:1110(2)(2)-+-的值是( )
A .2-
B .21
(2)- C .0 D .102- 7.下列式子:-abc 2,3x+y ,c ,0,2a 2+3b+1, , .其中单项式有( )
A .3个
B .4个
C .5个
D .6个
132-
8.已知 2x6y2和-3x3m y n 是同类项,则9m2-5mn-17的值是 ( )
A -1
B -2
C -3
D -4
二、填空题(本大题共6个小题,每小题3分,共18分.)
9.用四舍五入法把0.003971精确到0.0001得到的近似值是.
10.2016年成都市承接产业转移示范区建设成效明显,第一季度完成固定资产投资483亿元,用科学计数法可记作元。

11.已知多项式3x m+(n-5)x-2是关于x的二次三项式,则m、n应满足的条件是.
12.代数式的系数是,次数是次.
13.已知,且,则x+y的值等于.
14.已知数轴上有A、B两点,点A与原点的距离为2,A、B两点之间的距离为1,则满足条件的点B表示的数是.
三、解答题(本大题共5个小题,共25分.)

15.-12-[5×(-2) + (-4)2÷8
16.已知:|x − 2| + (y + 1)2 = 0,求-2(2x − 3y 2) + 5(x − y2) − 1的值。

17.先化简,再求值: 2(ab 2-2a 2b)-3(ab 2-a 2b)+(2ab 2-2a 2b),其中a=2,b=1.
18.(本题8分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,
求 的值.
19.阅读下题解答:
计算:123724348⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭. 分析:利用倒数的意义,先求出原式的倒数,再得原式的值.
1x a b cd cd ⎛⎫⨯+-- ⎪⎝⎭
解:2371237(24)16182119
34824348⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以原式1
19=-.
根据阅读材料提供的方法,完成下面的计算:
211152(6)422373⎡⎤⎛⎫⎛⎫-÷-++-⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.
四、解答题(本大题共3个小题,共18分.)
20.规定一种新的运算:21a b a b a b =⨯--+★.例如:2
3(4)3(4)3(4)-=⨯----★ 1+.请用上述规定计算下面各式:
(-3)★ 6 ★(-7).
21.已知多项式3x2+my-8 与多项式-nx2+2y+7的差中,不含有x、y,求n m+m-n的值.
22.已知x2-xy=21,xy-y2=12,分别求式子x2-y2与x2-2xy+y2的值。

五、解答题(本大题共2个小题,共15分.其中23题7分,24题8分)
23.有理数a、b、c在数轴上的位置如图所示:
若m=|a+b|-|b-1|-|a-c|-|1-c|,则1000m的值是多少?
24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,可以同时向客户提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x超过20).
(1)若该客户按方案(1)购买,需付款______元(用含x的式子表示);若该客户按方案(2)购买,需付款______元(用含x的式子表示);
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出所需的钱数.
参考答案。

相关文档
最新文档